Browsing by Subject "spores"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A revised generic classification of vittarioid ferns (Pteridaceae) based on molecular, micromorphological, and geographic data(Taxon, 2016-08-01) Schuettpelz, E; Chen, C; Kessler, M; Pinson, JB; Johnson, G; Davila, A; Cochran, AT; Huiet, L; Pryer, KM© International Association for Plant Taxonomy (IAPT) 2016. Vittarioid ferns compose a well-supported clade of 100-130 species of highly simplified epiphytes in the family Pteridaceae. Generic circumscriptions within the vittarioid clade were among the first in ferns to be evaluated and revised based on molecular phylogenetic data. Initial analyses of rbcL sequences revealed strong geographic structure and demonstrated that the two largest vittarioid genera, as then defined, each had phylogenetically distinct American and Old World components. The results of subsequent studies that included as many as 36 individuals of 33 species, but still relied on a single gene, were generally consistent with the early findings. Here, we build upon the previous datasets, incorporating many more samples (138 individuals representing 72 species) and additional plastid markers (atpA, chlN, rbcL, rpoA). Analysis of our larger dataset serves to better characterize known lineages, reveals new lineages, and ultimately uncovers an underlying geographic signal that is even stronger than was previously appreciated. In our revised generic classification, we recognize a total of eleven vittarioid genera. Each genus, including the new genus Antrophyopsis (Benedict) Schuettp., stat. nov., is readily diagnosable based on morphology, with micromorphological characters related to soral paraphyses and spores complementing more obvious features such as venation and the distribution of sporangia. A key to the currently recognized vittarioid genera, brief generic descriptions, and five new species combinations are provided.Item Open Access Myriopteris grusziae: A New Species from Texas and Oklahoma Segregated from the Chihuahuan Desert Taxon M. scabra (Pteridaceae)(Systematic botany., 2022-09) Windham, Michael D; Picard, Kathryn T; Pryer, Kathleen MMyriopteris scabra (until recently called Cheilanthes horridula) is a xeric-adapted fern species, endemic to the southwestern United States and northern Mexico. It is one of the most recognizable ferns in North America due to the unusual nature of the indument present on its adaxial leaf surfaces. This consists of rigid, multicellular trichomes with glassy, needle-like apices and compact conical bodies that are partially embedded in the leaf surface to form swollen, pustulate bases. Despite the seemingly distinctive nature of M. scabra, published chromosome counts indicate that collections assigned to this taxon encompass both diploids (n = 29) and tetraploids (n = 58). Here we investigate this case of cryptic diversity by integrating data from cytogenetic and spore analyses, observations of sporophyte morphology, and geographic distributions. Myriopteris scabra s.l. is shown to comprise two genetically disparate, morphologically recognizable taxa that exhibit little or no geographic overlap. The tetraploid taxon is described as a new species, M. grusziae, which completely supplants diploid M. scabra in the northeastern portion of its range (central Texas and south-central Oklahoma). This presumed allotetraploid is most like M. scabra but differs in having ultimate segments with adaxial trichomes that are longer, more flexible, mostly linear, and superficially attached. In addition, tetraploid M. grusziae has larger, more abundant scales that largely conceal the dark, sclerified leaf rachises, and it produces consistently larger spores than diploid M. scabra. We hypothesize that M. grusziae is an allotetraploid hybrid that acquired half of its chromosomes from M. scabra. However, the identity of the other diploid parent has yet to be resolved.Item Open Access Species relationships and farina evolution in the cheilanthoid fern genus Argyrochosma (Pteridaceae)(Systematic Botany, 2011-07-01) Sigel, EM; Windham, MD; Huiet, L; Yatskievych, G; Pryer, KMConvergent evolution driven by adaptation to arid habitats has made it difficult to identify monophyletic taxa in the cheilanthoid ferns. Dependence on distinctive, but potentially homoplastic characters, to define major clades has resulted in a taxonomic conundrum: all of the largest cheilanthoid genera have been shown to be polyphyletic. Here we reconstruct the first comprehensive phylogeny of the strictly New World cheilanthoid genus Argyrochosma. We use our reconstruction to examine the evolution of farina (powdery leaf deposits), which has played a prominent role in the circumscription of cheilanthoid genera. Our data indicate that Argyrochosma comprises two major monophyletic groups: one exclusively non-farinose and the other primarily farinose. Within the latter group, there has been at least one evolutionary reversal (loss) of farina and the development of major chemical variants that characterize specific clades. Our phylogenetic hypothesis, in combination with spore data and chromosome counts, also provides a critical context for addressing the prevalence of polyploidy and apomixis within the genus. Evidence from these datasets provides testable hypotheses regarding reticulate evolution and suggests the presence of several previously undetected taxa of Argyrochosma. © 2011 by the American Society of Plant Taxonomists.