Browsing by Subject "stereotactic radiosurgery"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Intervention.(Frontiers in human neuroscience, 2021-01) Zaer, Hamed; Deshmukh, Ashlesha; Orlowski, Dariusz; Fan, Wei; Prouvot, Pierre-Hugues; Glud, Andreas Nørgaard; Jensen, Morten Bjørn; Worm, Esben Schjødt; Lukacova, Slávka; Mikkelsen, Trine Werenberg; Fitting, Lise Moberg; Adler, John R; Schneider, M Bret; Jensen, Martin Snejbjerg; Fu, Quanhai; Go, Vinson; Morizio, James; Sørensen, Jens Christian Hedemann; Stroh, AlbrechtRecording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.Item Open Access Research using the Quality Outcomes Database: accomplishments and future steps toward higher-quality real-world evidence.(Journal of neurosurgery, 2023-05) Asher, Anthony L; Haid, Regis W; Stroink, Ann R; Michalopoulos, Giorgos D; Alexander, A Yohan; Zeitouni, Daniel; Chan, Andrew K; Virk, Michael S; Glassman, Steven D; Foley, Kevin T; Slotkin, Jonathan R; Potts, Eric A; Shaffrey, Mark E; Shaffrey, Christopher I; Park, Paul; Upadhyaya, Cheerag; Coric, Domagoj; Tumialán, Luis M; Chou, Dean; Fu, Kai-Ming G; Knightly, John J; Orrico, Katie O; Wang, Michael Y; Bisson, Erica F; Mummaneni, Praveen V; Bydon, MohamadObjective
The Quality Outcomes Database (QOD) was established in 2012 by the NeuroPoint Alliance, a nonprofit organization supported by the American Association of Neurological Surgeons. Currently, the QOD has launched six different modules to cover a broad spectrum of neurosurgical practice-namely lumbar spine surgery, cervical spine surgery, brain tumor, stereotactic radiosurgery (SRS), functional neurosurgery for Parkinson's disease, and cerebrovascular surgery. This investigation aims to summarize research efforts and evidence yielded through QOD research endeavors.Methods
The authors identified all publications from January 1, 2012, to February 18, 2023, that were produced by using data collected prospectively in a QOD module without a prespecified research purpose in the context of quality surveillance and improvement. Citations were compiled and presented along with comprehensive documentation of the main study objective and take-home message.Results
A total of 94 studies have been produced through QOD efforts during the past decade. QOD-derived literature has been predominantly dedicated to spinal surgical outcomes, with 59 and 22 studies focusing on lumbar and cervical spine surgery, respectively, and 6 studies focusing on both. More specifically, the QOD Study Group-a research collaborative between 16 high-enrolling sites-has yielded 24 studies on lumbar grade 1 spondylolisthesis and 13 studies on cervical spondylotic myelopathy, using two focused data sets with high data accuracy and long-term follow-up. The more recent neuro-oncological QOD efforts, i.e., the Tumor QOD and the SRS Quality Registry, have contributed 5 studies, providing insights into the real-world neuro-oncological practice and the role of patient-reported outcomes.Conclusions
Prospective quality registries are an important resource for observational research, yielding clinical evidence to guide decision-making across neurosurgical subspecialties. Future directions of the QOD efforts include the development of research efforts within the neuro-oncological registries and the American Spine Registry-which has now replaced the inactive spinal modules of the QOD-and the focused research on high-grade lumbar spondylolisthesis and cervical radiculopathy.