Browsing by Subject "sulfate"
Results Per Page
Sort Options
Item Open Access Linking upstream mining to downstream water quality: Mountaintop mining in West Virginia(2010-04-30T16:33:20Z) Carter, CatherineMountaintop mining valley fill (MTM/VF) coal mining is currently the dominant form of land use change in the central Appalachians. MTM/VF activities level mountains, remove forests and forest soils, bury headwater streams and generate substantial amounts of acid and alkaline mine drainage. Numerous case studies have documented elevated concentrations of sulfate and trace metal and metalloids with known toxicity in surface waters downstream from MTM/VF activity, yet no comprehensive effort has been made to link landscape scale mining activity and water quality. Here, I used newly obtained remote sensing data of surface mining activity delineated from 1976 to 2005 to estimate the extent of MTM/VF impact on downstream surface water quality in the Coal and Guyandotte river basins of WV. Hydrologic connectivity between mining and water quality was estimated using an inverse distance weighting technique in GIS (ESRI, Inc.). The findings show significant biogeochemical alterations, including streamwater conductivity and sulfate concentrations, even when small amounts of surface mining (<5%) are observed. Results provide the first comprehensive analysis of the cumulative impact of mining activity in these watersheds on water quality and demonstrate the need for further investigation involving strategic water quality sampling with the ultimate goal of developing an empirical basis on which to form regulations governing MTM/VF throughout the central Appalachians.Item Open Access Microbial Community Responses to Environmental Perturbation(2016) Bier, Raven LeeMicroorganisms mediate many biogeochemical processes critical to the functioning of ecosystems, which places them as an intermediate between environmental change and the resulting ecosystem response. Yet, we have an incomplete understanding of these relationships, how to predict them, and when they are influential. Understanding these dynamics will inform ecological principles developed for macroorganisms and aid expectations for microbial responses to new gradients. To address this research goal, I used two studies of environmental gradients and a literature synthesis.
With the gradient studies, I assessed microbial community composition in stream biofilms across a gradient of alkaline mine drainage. I used multivariate approaches to examine changes in the non-eukaryote microbial community composition of taxa (chapter 2) and functional genes (chapter 3). I found that stream biofilms at sites receiving alkaline mine drainage had distinct community composition and also differed in the composition of functional gene groups compared with unmined reference sites. Compositional shifts were not dominated by groups that could benefit from mining associated increases of terminal electron acceptors; two-thirds of responsive taxa and functional gene groups were negatively associated with mining. The majority of subsidies and stressors (nitrate, sulfate, conductivity) had no consistent relationships with taxa or gene abundances. However, methane metabolism genes were less abundant at mined sites and there was a strong, positive correlation between selenate reductase gene abundance and mining-associated selenium. These results highlighted the potential for indirect factors to also play an important role in explaining compositional shifts.
In the fourth chapter, I synthesized studies that use environmental perturbations to explore microbial community structure and microbial process connections. I examined nine journals (2009–13) and found that many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant. No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure. Together, the findings suggested that few publications report statistically testing structure-process links; but when tested, links often occurred yet shared few commonalities in linked processes or structures and the techniques used for measuring them.
Although the research community has made progress, much work remains to ensure that the vast and growing wealth of microbial informatics data is translated into useful ecological information. In part, this challenge can be approached through using hypotheses to guide analyses, but also by being open to opportunities for hypothesis generation. The results from my dissertation work advise that it is important to carefully interpret shifts in community composition in relation to abiotic characteristics and recommend considering ecological, thermodynamic, and kinetic principles to understand the properties governing community responses to environmental perturbation.