Browsing by Subject "superconductivity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Critical Current Scaling in Long Diffusive Graphene-Based Josephson Junctions.(Nano letters, 2016-08) Ke, Chung Ting; Borzenets, Ivan V; Draelos, Anne W; Amet, Francois; Bomze, Yuriy; Jones, Gareth; Craciun, Monica; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo; Finkelstein, GlebWe present transport measurements on long, diffusive, graphene-based Josephson junctions. Several junctions are made on a single-domain crystal of CVD graphene and feature the same contact width of ∼9 μm but vary in length from 400 to 1000 nm. As the carrier density is tuned with the gate voltage, the critical current in these junctions ranges from a few nanoamperes up to more than 5 μA, while the Thouless energy, ETh, covers almost 2 orders of magnitude. Over much of this range, the product of the critical current and the normal resistance ICRN is found to scale linearly with ETh, as expected from theory. However, the value of the ratio ICRN/ETh is found to be 0.1-0.2, which much smaller than the predicted ∼10 for long diffusive SNS junctions.Item Open Access Supercurrent Flow in Multiterminal Graphene Josephson Junctions.(Nano letters, 2019-02) Draelos, Anne W; Wei, Ming-Tso; Seredinski, Andrew; Li, Hengming; Mehta, Yash; Watanabe, Kenji; Taniguchi, Takashi; Borzenets, Ivan V; Amet, François; Finkelstein, GlebWe investigate the electronic properties of ballistic planar Josephson junctions with multiple superconducting terminals. Our devices consist of monolayer graphene encapsulated in boron nitride with molybdenum-rhenium contacts. Resistance measurements yield multiple resonant features, which are attributed to supercurrent flow among adjacent and nonadjacent Josephson junctions. In particular, we find that superconducting and dissipative currents coexist within the same region of graphene. We show that the presence of dissipative currents primarily results in electron heating and estimate the associated temperature rise. We find that the electrons in encapsulated graphene are efficiently cooled through the electron-phonon coupling.