Browsing by Subject "tropical forest"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Assessing the effects of elephant foraging on the structure and diversity of an Afrotropical forest(Biotropica, 2020-05-01) Rosin, Cooper; Beals, Kendall K; Belovitch, Michael W; Harrison, Ruby E; Pendred, Megan; Sullivan, Megan K; Yao, Nicolas; Poulsen, John RAfrican forest elephants (Loxodonta cyclotis) are ecosystem engineers that browse and damage large quantities of vegetation during their foraging and movement. Though elephant trail networks and clearings are conspicuous features of many African forests, the consequences of elephant foraging for forest structure and diversity are poorly documented. In this study in northeastern Gabon, we compare stem size, stem density, proportional damage, species diversity, and species relative abundance of seedlings and saplings in the vicinity of seven tree species that produce elephant-preferred fruits (“elephant trees”) relative to control trees that do not. Across 34 survey trees, with a combined census area of 2.04 ha, we recorded data on 26,128 woody stems in three sizes classes. Compared with control trees, the area around elephant trees had the following: (a) a significantly greater proportion of damaged seedlings and a marginally greater proportion of damaged saplings (with 82% and 24% greater odds of damage, respectively); (b) no significant difference in stem density or species diversity; and (c) a significantly greater relative abundance of seedlings of elephant tree species. Increasing distance away from focal elephant trees was associated with significantly reduced sapling stem damage, significantly increased sapling stem density, and significantly increased sapling species diversity. Considered in sum, our results suggest that elephants can affect the structure and diversity of Afrotropical forests through their foraging activities, with some variation based on location and plant size class. Developing a more complete understanding of elephants’ ecological effects will require continued research, ideally with manipulative experiments. Abstract in French is available with online material.Item Open Access Deadwood stocks increase with selective logging and large tree frequency in Gabon.(Glob Chang Biol, 2017-04) Carlson, Ben S; Koerner, Sally E; Medjibe, Vincent P; White, Lee JT; Poulsen, John RDeadwood is a major component of aboveground biomass (AGB) in tropical forests and is important as habitat and for nutrient cycling and carbon storage. With deforestation and degradation taking place throughout the tropics, improved understanding of the magnitude and spatial variation in deadwood is vital for the development of regional and global carbon budgets. However, this potentially important carbon pool is poorly quantified in Afrotropical forests and the regional drivers of deadwood stocks are unknown. In the first large-scale study of deadwood in Central Africa, we quantified stocks in 47 forest sites across Gabon and evaluated the effects of disturbance (logging), forest structure variables (live AGB, wood density, abundance of large trees), and abiotic variables (temperature, precipitation, seasonality). Average deadwood stocks (measured as necromass, the biomass of deadwood) were 65 Mg ha-1 or 23% of live AGB. Deadwood stocks varied spatially with disturbance and forest structure, but not abiotic variables. Deadwood stocks increased significantly with logging (+38 Mg ha-1 ) and the abundance of large trees (+2.4 Mg ha-1 for every tree >60 cm dbh). Gabon holds 0.74 Pg C, or 21% of total aboveground carbon in deadwood, a threefold increase over previous estimates. Importantly, deadwood densities in Gabon are comparable to those in the Neotropics and respond similarly to logging, but represent a lower proportion of live AGB (median of 18% in Gabon compared to 26% in the Neotropics). In forest carbon accounting, necromass is often assumed to be a constant proportion (9%) of biomass, but in humid tropical forests this ratio varies from 2% in undisturbed forest to 300% in logged forest. Because logging significantly increases the deadwood carbon pool, estimates of tropical forest carbon should at a minimum use different ratios for logged (mean of 30%) and unlogged forests (mean of 18%).Item Open Access Long Distance Seed Dispersal by Forest Elephants(Frontiers in Ecology and Evolution, 2021-12-22) Poulsen, JR; Beirne, C; Rundel, C; Baldino, M; Kim, S; Knorr, J; Minich, T; Jin, L; Núñez, CL; Xiao, S; Mbamy, W; Obiang, GN; Masseloux, J; Nkoghe, T; Ebanega, MO; Clark, CJ; Fay, MJ; Morkel, P; Okouyi, J; White, LJT; Wright, JPBy dispersing seeds long distances, large, fruit-eating animals influence plant population spread and community dynamics. After fruit consumption, animal gut passage time and movement determine seed dispersal patterns and distances. These, in turn, are influenced by extrinsic, environmental variables and intrinsic, individual-level variables. We simulated seed dispersal by forest elephants (Loxodonta cyclotis) by integrating gut passage data from wild elephants with movement data from 96 individuals. On average, elephants dispersed seeds 5.3 km, with 89% of seeds dispersed farther than 1 km. The longest simulated seed dispersal distance was 101 km, with an average maximum dispersal distance of 40.1 km. Seed dispersal distances varied among national parks, perhaps due to unmeasured environmental differences such as habitat heterogeneity and configuration, but not with human disturbance or habitat openness. On average, male elephants dispersed seeds farther than females. Elephant behavioral traits strongly influenced dispersal distances, with bold, exploratory elephants dispersing seeds 1.1 km farther than shy, idler elephants. Protection of forest elephants, particularly males and highly mobile, exploratory individuals, is critical to maintaining long distance seed dispersal services that shape plant communities and tropical forest habitat.Item Open Access Low-intensity logging and hunting have long-term effects on seed dispersal but not fecundity in Afrotropical forests.(AoB PLANTS, 2019-02) Nuñez, Chase L; Clark, James S; Clark, Connie J; Poulsen, John RHunting and logging, ubiquitous human disturbances in tropical forests, have the potential to alter the ecological processes that govern population recruitment and community composition. Hunting-induced declines in populations of seed-dispersing animals are expected to reduce dispersal of the tree species that rely on them, resulting in potentially greater distance- and density-dependent mortality. At the same time, selective logging may alter competitive interactions among tree species, releasing remaining trees from light, nutrient or space limitations. Taken together, these disturbances may alter the community composition of tropical forests, with implications for carbon storage, biodiversity conservation and ecosystem function. To evaluate the effects of hunting and logging on tree fecundity and seed dispersal, we use 3 years of seed rain data from a large-scale observational experiment in previously logged, hunted and protected forests in northern Republic of Congo (Brazzaville). We find that low-intensity logging had a meaningful long-term effect on species-specific seed dispersal distances, though the direction and magnitude varied and was not congruent within dispersal vector. Tree fecundity increased with tree diameter, but did not differ appreciably across disturbance regimes. The species-specific dispersal responses to logging in this study point towards the long-lasting toll of disturbance on ecological function and highlight the necessity of conserving intact forest.Item Open Access Old growth Afrotropical forests critical for maintaining forest carbon(Global Ecology and Biogeography, 2020-10-01) Poulsen, JR; Medjibe, VP; White, LJT; Miao, Z; Banak-Ngok, L; Beirne, C; Clark, CJ; Cuni-Sanchez, A; Disney, M; Doucet, JL; Lee, ME; Lewis, SL; Mitchard, E; Nuñez, CL; Reitsma, J; Saatchi, S; Scott, CTAim: Large trees [≥ 70 cm diameter at breast height (DBH)] contribute disproportionately to aboveground carbon stock (AGC) across the tropics but may be vulnerable to changing climate and human activities. Here we determine the distribution, drivers and threats to large trees and high carbon forest. Location: Central Africa. Time period: Current. Major taxa studied: Trees. Methods: Using Gabon's new National Resource Inventory of 104 field sites, AGC was calculated from 67,466 trees from 578 species and 97 genera. Power and Michaelis–Menten models assessed the contribution of large trees to AGC. Environmental and anthropogenic drivers of AGC, large trees, and stand variables were modelled using Akaike’s information criterion (AIC) weights to calculate average regression coefficients for all p. ossible models. Results: Mean AGC for trees ≥ 10 cm DBH in Gabonese forestlands was 141.7 Mg C/ha, with averages of 166.6, 171.3 and 96.6 Mg C/ha in old growth, concession and secondary forest. High carbon forests occurred where large trees are most abundant: 31% of AGC was stored in large trees (2.3% of all stems). Human activities largely drove variation in AGC and large trees, but climate and edaphic conditions also determined stand variables (basal area, tree height, wood density, stem density). AGC and large trees increased with distance from human settlements; AGC was 40% lower in secondary than primary and concession forests and 33% higher in protected than non-managed areas. Main conclusions: AGC and large trees were negatively associated with human activities, highlighting the importance of forest management. Redefining large trees as ≥ 50 cm DBH (4.3% more stems) would account for 20% more AGC. This study demonstrates that protecting relatively undisturbed forests can be disproportionately effective in conserving carbon and suggests that including sustainable forestry in programs like reduced emissions for deforestation and forest degradation could maintain carbon dense forests in logging concessions that are a large proportion of remaining Central African forests.