Browsing by Subject "turgor pressure"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access How Teichoic Acids Could Support a Periplasm in Gram-Positive Bacteria, and Let Cell Division Cheat Turgor Pressure.(Frontiers in microbiology, 2021-01) Erickson, Harold PThe cytoplasm of bacteria is maintained at a higher osmolality than the growth medium, which generates a turgor pressure. The cell membrane (CM) cannot support a large turgor, so there are two possibilities for transferring the pressure to the peptidoglycan cell wall (PGW): (1) the CM could be pressed directly against the PGW, or (2) the CM could be separated from the PGW by a periplasmic space that is isoosmotic with the cytoplasm. There is strong evidence for gram-negative bacteria that a periplasm exists and is isoosmotic with the cytoplasm. No comparable studies have been done for gram-positive bacteria. Here I suggest that a periplasmic space is probably essential in order for the periplasmic proteins to function, including especially the PBPs that remodel the peptidoglycan wall. I then present a semi-quantitative analysis of how teichoic acids could support a periplasm that is isoosmotic with the cytoplasm. The fixed anionic charge density of teichoic acids in the periplasm is ∼0.5 M, which would bring in ∼0.5 M Na+ neutralizing ions. This approximately balances the excess osmolality of the cytoplasm that would produce a turgor pressure of 19 atm. The 0.5 M fixed charge density is similar to that of proteoglycans in articular cartilage, suggesting a comparability ability to support pressure. An isoosmotic periplasm would be especially important for cell division, since it would allow CM constriction and PGW synthesis to avoid turgor pressure.Item Open Access Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division.(Frontiers in microbiology, 2018-01-31) Osawa, Masaki; Erickson, Harold PBacterial cytokinesis begins with the assembly of FtsZ into a Z ring at the center of the cell. The Z-ring constriction in Gram-negative bacteria may occur in an environment where the periplasm and the cytoplasm are isoosmotic, but in Gram-positive bacteria the constriction may have to overcome a substantial turgor pressure. We address three potential sources of invagination force. (1) FtsZ itself may generate force by curved protofilaments bending the attached membrane. This is sufficient to constrict liposomes in vitro. However, this force is on the order of a few pN, and would not be enough to overcome turgor. (2) Cell wall (CW) synthesis may generate force by pushing the plasma membrane from the outside. However, this would probably require some kind of Brownian ratchet to separate the CW and membrane sufficiently to allow a glycan strand to slip in. The elastic element is not obvious. (3) Excess membrane production has the potential to contribute significantly to the invagination force. If the excess membrane is produced under the CW, it would force the membrane to bleb inward. We propose here that a combination of FtsZ pulling from the inside, and excess membrane pushing membrane inward may generate a substantial constriction force at the division site. This combined force generation mechanism may be sufficient to overcome turgor pressure. This would abolish the need for a Brownian ratchet for CW growth, and would permit CW to operate by reinforcing the constrictions generated by FtsZ and excess membrane.