Online Auction Markets

by

Song Yao

Department of Business Administration
Duke University

Date: __________________________

Approved:

Carl Mela, Chair

Han Hong

Wagner Kamakura

Andrés Musalem

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Business Administration in the Graduate School of Duke University

2009
Abstract

(Business Administration)

Online Auction Markets

by

Song Yao

Department of Business Administration
Duke University

Date: ____________________________

Approved:

Carl Mela, Chair

Han Hong

Wagner Kamakura

Andrés Musalem

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Business Administration in the Graduate School of Duke University

2009
Abstract

Central to the explosive growth of the Internet has been the desire of dispersed buyers and sellers to interact readily and in a manner hitherto impossible. Underpinning these interactions, auction pricing mechanisms have enabled Internet transactions in novel ways. Despite this massive growth and new medium, empirical work in marketing and economics on auction use in Internet contexts remains relatively nascent. Accordingly, this dissertation investigates the role of online auctions; it is composed of three essays.

The first essay, “Online Auction Demand,” investigates seller and buyer interactions via online auction websites, such as eBay. Such auction sites are among the earliest prominent transaction sites on the Internet (eBay started in 1995, the same year Internet Explorer was released) and helped pave the way for e-commerce. Hence, online auction demand is the first topic considered in my dissertation. The second essay, “A Dynamic Model of Sponsored Search Advertising,” investigates sponsored search advertising auctions, a novel approach that allocates premium advertising space to advertisers at popular websites, such as search engines. Because sponsored search advertising targets buyers in active purchase states, such advertising venues have grown very rapidly in recent years and have become a highly topical research domain. These two essays form the foundation of the empirical research in this dissertation. The third essay, “Sponsored Search Auctions: Research Opportunities in Marketing,” outlines areas of future inquiry that I intend to pursue in my research.
Of note, the problems underpinning the two empirical essays exhibits a common form, that of a two-sided network wherein two parties interact on a common platform (Rochet and Tirole, 2006). Although theoretical research on two-sided markets is abundant, this dissertation focuses on their use in e-commerce and adopts an empirical orientation. I assume an empirical orientation because I seek to guide firm behavior with concrete policy recommendations and offer new insights into the actual behavior of the agents who interact in these contexts. Although the two empirical essays share this common feature, they also exhibit notable differences, including the nature of the auction mechanism itself, the interactions between the agents, and the dynamic frame of the problem, thus making the problems distinct. The following abstracts for these two essays as well as the chapter that describes my future research serve to summarize these contributions, commonalities and differences.

Online Auction Demand

With $40B in annual gross merchandise volume, electronic auctions comprise a substantial and growing sector of the retail economy. For example, eBay alone generated a gross merchandise volume of $14.4B during the fourth quarter of 2006. Concurrent with this growth has been an attendant increase in empirical research on Internet auctions. However, this literature focuses primarily on the bidder; I extend this research to consider both seller and bidder behavior in an integrated system within a two-sided network of the two parties. This extension of the existing literature enables an exploration of the implications of the auction house’s marketing on its revenues as well as the nature of bidder and seller interactions on this platform. In the first essay, I use a unique data set of Celtic coins online auctions. These data were obtained from an anonymous firm and include complete bidding and listing histories. In contrast, most existing research relies only on the observed website bids. The complete bidding and listing histories provided by the data afford additional information that
illuminates the insights into bidder and seller behavior such as bidder valuations and seller costs.

Using these data from the ancient coins category, I estimate a structural model that integrates both bidder and seller behavior. Bidders choose coins and sellers list them to maximize their respective profits. I then develop a Markov Chain Monte Carlo (MCMC) estimation approach that enables me, via data augmentation, to infer unobserved bidder and seller characteristics and to account for heterogeneity in these characteristics. My findings indicate that: i) bidder valuations are affected by item characteristics (e.g., the attributes of the coin), seller (e.g. reputation), and auction characteristics (e.g., the characteristics of the listing); ii) bidder costs are affected by bidding behavior, such as the recency of the last purchase and the number of concurrent auctions; and iii) seller costs are affected by item characteristics and the number of concurrent listings from the seller (because acquisition costs evidence increasing marginal values).

Of special interest, the model enables me to compute fee elasticities, even though no variation in historical fees exists in these data. I compute fee elasticities by inferring the role of seller costs in their historical listing decision and then imputing how an increase in these costs (which arises from more fees) would affect the seller’s subsequent listing behavior. I find that these implied commission elasticities exceed per-item fee elasticities because commissions target high value sellers, and hence, commission reductions enhance their listing likelihood. By targeting commission reductions to high value sellers, auction house revenues can be increased by 3.9%. Computing customer value, I find that attrition of the largest seller would decrease fees paid to the auction house by $97. Given that the seller paid $127 in fees, competition offsets only 24% of the fees paid by the seller. In contrast, competition largely in the form of other bidders offsets 81% of the $26 loss from buyer attrition. In both events, the auction house would overvalue its customers by neglecting the
effects of competition.

A Dynamic Model of Sponsored Search Advertising

Sponsored search advertising is ascendant. Jupiter Research reports that expenditures rose 28% in 2007 to $8.9B and will continue to rise at a 26% Compound Annual Growth Rate (CAGR), approaching half the level of television advertising and making sponsored search advertising one of the major advertising trends affecting the marketing landscape. Although empirical studies of sponsored search advertising are ascending, little research exists that explores how the interactions of various agents (searchers, advertisers, and the search engine) in keyword markets affect searcher and advertiser behavior, welfare and search engine profits. As in the first essay, sponsored search constitutes a two-sided network. In this case, bidders (advertisers) and searchers interact on a common platform, the search engine. The bidder seeks to maximize profits, and the searcher seeks to maximize utility.

The structural model I propose serves as a foundation to explore these outcomes and, to my knowledge, is the first structural model for keyword search. Not only does the model integrate the behavior of advertisers and searchers, it also accounts for advertisers competition in a dynamic setting. Prior theoretical research has assumed a static orientation to the problem whereas prior empirical research, although dynamic, has focused solely on estimating the dynamic sales response to a single firm’s keyword advertising expenditures.

To estimate the proposed model, I have developed a two-step Bayesian estimator for dynamic games. This approach does not rely on asymptotics and also facilitates a more flexible model specification.

I fit this model to a proprietary data set provided by an anonymous search engine. These data include a complete history of consumer search behavior from the site’s web log files and a complete history of advertiser bidding behavior across all advertisers.
In addition, the data include search engine information, such as keyword pricing and website design.

With respect to advertisers, I find evidence of dynamic bidding behavior. Advertiser valuation for clicks on their sponsored links averages about $0.27. Given the typical $22 retail price of the software products advertised on the considered search engine, this figure implies a conversion rate (sales per click) of about 1.2%, well within common estimates of 1-2% (gamedaily.com). With respect to consumers, I find that frequent clickers place a greater emphasis on the position of the sponsored advertising link. I further find that 10% of consumers perform 90% of the clicks.

I then conduct several policy simulations to illustrate the effects of change in search engine policy. First, I find that the search engine obtains revenue gains of nearly 1.4% by sharing individual level information with advertisers and enabling them to vary their bids by consumer segment. This strategy also improves advertiser profits by 11% and consumer welfare by 2.9%. Second, I find that a switch from a first to second price auction results in truth telling (advertiser bids rise to advertiser valuations), which is consistent with economic theory. However, the second price auction has little impact on search engine profits. Third, consumer search tools lead to a platform revenue increase of 3.7% and an increase of consumer welfare of 5.6%. However, these tools, by reducing advertising exposure, lower advertiser profits by 4.1%.

Sponsored Search Auctions: Research Opportunities in Marketing

In the final chapter, I systematically review the literature on keyword search and propose several promising research directions. The chapter is organized according to each agent in the search process, i.e., searchers, advertisers and the search engine, and reviews the key research issues for each. For each group, I outline the decision process involved in keyword search. For searchers, this process involves what to search, where
to search, which results to click, and when to exit the search. For advertisers, this process involves where to bid, which word or words to bid on, how much to bid, and how searchers and auction mechanisms moderate these behaviors. The search engine faces choices on mechanism design, website design, and how much information to share with its advertisers and searchers. These choices have implications for customer lifetime value and the nature of competition among advertisers. Overall, I provide a number of potential areas of future research that arise from the decision processes of these various agents.

Foremost among these potential areas of future research are i) the role of alternative consumer search strategies for information acquisition and clicking behavior, ii) the effect of advertiser placement alternatives on long-term profits, and iii) the measure of customer lifetime value for search engines. Regarding the first area, a consumer’s search strategy (i.e., sequential search and non-sequential search) affects which sponsored links are more likely to be clicked. The search pattern of a consumer is likely to be affected by the nature of the product (experience product vs. search product), the design of the website, the dynamic orientation of the consumer (e.g., myopic or forward-looking), and so on. This search pattern will, in turn, affect advertisers payments, online traffic, sales, as well as the search engine’s revenue. With respect to the second area, advertisers must ascertain the economic value of advertising, conditioned on the slot in which it appears, before making decisions such as which keywords to bid on and how much to bid. This area of possible research suggests opportunities to examine how advertising click-through and the number of impressions differentially affect the value of appearing in a particular sponsored slot on a webpage, and how this value is moderated by an appearance in a non-sponsored slot (i.e., a slot in the organic search results section). With respect to the third area of future research, customer value is central to the profitability and long-term growth of a search engine and affects how the firm should allocate resources for customer
acquisition and retention.

Organization

This dissertation is organized as follows. After this brief introduction, the essay, “On-line Auction Demand,” serves as a basis that introduces some concepts of auctions as two-sided markets. Next, the second essay, “A Dynamic Model of Sponsored Search Advertising,” extends the first essay by considering a richer context of bidder competition and consumer choice behavior. Finally, the concluding chapter, which outlines my future research interests, considers potential extensions that pertain especially to sponsored search advertising.
Contents

Abstract iv
List of Tables xv
List of Figures xvii
Acknowledgements xviii

1 Online Auction Demand 1
1.1 Introduction .. 1
1.2 The E-auction Context and Data 7
 1.2.1 Rules of the Auction House and Participants’ Decision Processes 7
 1.2.2 Data .. 11
1.3 An Integrated Model of Bidders and Sellers 14
 1.3.1 Key Assumptions and Nomenclature 14
 1.3.2 Model Overview 19
 1.3.3 The Second Stage – Bidder’s Model 20
 1.3.4 The First Stage – Seller’s Model 25
1.4 Estimation .. 31
 1.4.1 The Conditional Likelihood of Bidder Model 31
 1.4.2 The Conditional Likelihood of Seller Model 32
 1.4.3 Augmented Full Posterior Distribution 33
1.5 Results .. 34
Managerial Implications

1.6.1 Auction House Pricing

1.6.2 Customer Value in a Two-sided Market

1.6.3 Elasticities of Seller Feedback Scores

Conclusion

2 A Dynamic Model of Sponsored Search Advertising

2.1 Introduction

2.2 Recent Literature

2.3 Empirical Context

2.3.1 Data Description

2.4 Model

2.4.1 Consumer Model

2.4.2 Advertiser Model

2.5 Estimation

2.5.1 An Overview

2.5.2 First Step Estimation

2.5.3 Second Step Estimation

2.5.4 Sampling Chain

2.6 Results

2.6.1 First Step Estimation Results

2.6.2 Second Step Estimation Results

2.7 Policy Simulations

2.7.1 Policy Simulation I: Alternative Webpage Design

2.7.2 Policy Simulation II: Segmentation and Targeting

2.7.3 Policy Simulation III: Incorporating Disaggregate Level Data
2.7.4 Policy Simulation IV: Alternative Auction Mechanisms 103

2.8 Conclusion 104

3 Sponsored Search Auctions: Research Opportunities in Marketing 109

3.1 Introduction 109

3.2 An Introduction of Sponsored Search Auctions 111

3.3 Internet Users 114

3.3.1 Choosing Engines and Keywords 114

3.3.2 Choosing Search Websites to Investigate 115

3.3.3 Choosing Links to Click 122

3.4 Advertisers 125

3.4.1 Which Search Engines and Which Words to Bid 125

3.4.2 How to Measure the Value of an Advertising Spot 127

3.4.3 How Much to Bid 130

3.5 Search Engines 138

3.5.1 Optimal Auction Design 139

3.5.2 Search Query Results 142

3.5.3 Targeted Marketing–Product Differentiation Across Users 144

3.5.4 Customer Value in a Two-sided Market 146

3.5.5 Price Dispersion Among Advertisers’ Goods 147

3.5.6 Click Fraud 149

3.6 Conclusion 150

4 Appendices 152

4.1 Appendices for “Online Auction Demand” 152

4.1.1 Proof of Theorem 1.1 152

4.1.2 Proof of Theorem 1.2 155
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Listing Features Summary Statistics</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Auctions Summary Statistics</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Bidders Summary Statistics</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Feedback Summary Statistics</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Private Value vs. Common Value – Regression of Bids on the Number of Bidders</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Posterior Means and Standard Deviations of Model Parameters</td>
<td>35</td>
</tr>
<tr>
<td>1.7</td>
<td>Fee and Commission Price Elasticities</td>
<td>39</td>
</tr>
<tr>
<td>1.8</td>
<td>Revenue Percentage Changes with Alternative Pricing Schedules</td>
<td>40</td>
</tr>
<tr>
<td>1.9</td>
<td>Revenue Effects with Targeting of Commissions and Fees</td>
<td>42</td>
</tr>
<tr>
<td>1.10</td>
<td>The Value of the Largest Customer</td>
<td>44</td>
</tr>
<tr>
<td>1.11</td>
<td>Indirect Value Due to Listings and Prices</td>
<td>46</td>
</tr>
<tr>
<td>1.12</td>
<td>Seller Feedback Score Elasticity</td>
<td>47</td>
</tr>
<tr>
<td>2.1</td>
<td>Bids Summary Statistics</td>
<td>66</td>
</tr>
<tr>
<td>2.2</td>
<td>Product Compatibility</td>
<td>67</td>
</tr>
<tr>
<td>2.3</td>
<td>Product Attributes and Downloads</td>
<td>68</td>
</tr>
<tr>
<td>2.4</td>
<td>Bidding Function Estimates</td>
<td>90</td>
</tr>
<tr>
<td>2.5</td>
<td>Alternative Numbers of Latent Segments</td>
<td>92</td>
</tr>
<tr>
<td>2.6</td>
<td>Consumer Model Estimates</td>
<td>93</td>
</tr>
<tr>
<td>2.7</td>
<td>Searching Behavior of Consumers</td>
<td>94</td>
</tr>
</tbody>
</table>
List of Figures

1.1a Payment Flows in a Two-sided Market 4
1.1b Pricing Decision of the Auction House in a Two-sided Market 4
1.1c The Value of a Customer in a Two-Sided Market 5
1.2 The Seller Decision .. 8
1.3 The Bidder Decision ... 10
1.4 Observed Bids Vs. Simulated Bids 36
2.1 Searching “chocolate phone” Using A Specialized Search Engine ... 65
2.2 Consumer Decisions .. 70
2.3 Advertiser Decisions .. 79
2.4 Distribution of Values per Download 97
3.1 Sponsored Search Advertising Example 112
3.2 The Relationship among Customers, Advertisers and Search Engines 113
3.3 A Search Engine with the Easy Comparison Tool 117
Acknowledgements

I would like to dedicate this work to my family. My parents and my sister taught me the value of education and always encouraged me to pursue my dreams. More importantly, I would like to dedicate this dissertation to my wife, Hong Ke, and my son, Nathan, for their support, kindness, and patience during this splendid journey of personal growth. Without my family’s unconditional love, I could not have done it.

I would like to thank my dissertation committee members for making this experience of Ph.D. education enjoyable and fulfilling. They helped me to transition from a student to a researcher.

I am especially grateful to my dissertation Chair, Carl Mela. Carl has been a marvelous advisor. He has always been able to guide me in the right direction at different stages of this dissertation process. His support helped me to overcome various obstacles during my Ph.D. study. Carl’s insights and advice enabled me to gain a much better appreciation of the issues addressed in this work, and more crucially, to shape my future research interests.

I would also thank my committee members Han Hong, Wagner Kamakura, Andrés Musalem, and my ad hoc committee member, Rick Staelin. Their mentorship and support not only enhanced my insights and creativity throughout the production of this work, but also have strengthened the foundation for my future research.

Likewise, I am appreciative of Debu Purohit. Together with Carl and Rick, Debu
served as one of my academic advisors during my first year at Duke. The discussions with my first year advisors helped me to achieve a clearer understanding of the field of Business Administration.

My thanks also go to the faculty at the Fuqua School of Business for always being supportive, kind and, more significantly, treating students as colleagues. I have become more confident due to such a nurturing and friendly environment. Also, the industrious work of the faculty assistants at the Fuqua School of Business, especially Kathy Joiner and Bobbie Clinkscales, made my life much easier.

Lastly, I thank my fellow students for drinking beers together, sharing joys and frustrations, and in particular, listening to my “tedious” research for hours and providing helpful feedback. Our friendships will continue.
Online Auction Demand

1.1 Introduction

Commensurate with the ascendancy of the Internet, e-commerce has witnessed explosive growth. According to a US Census Bureau report in Q1-2006, US e-commerce retail sales increased by 25.4% while retail sales across all channels grew at a more restrained 8.1%.\(^1\) Much of this growth is due to online auctions. For example, eBay alone had 222 million confirmed registered users by the end of Q4-2006. These users generated a gross merchandise volume of $14.4 billion across 610 million auctions, a growth rate of 23%.\(^2\) This compares to quarterly sales of roughly $100 billion in the US Grocery industry.\(^3\)

Concurrent with this growth, empirical/econometric research pertaining to the design and conduct of auctions has seen increased attention in marketing of late (Chakravarti et al., 2002). For example, Park and Bradlow (2005) analyze “whether,

\(^1\) Resource: US Census Bureau(2006, Q1), Quarterly Retail E-Commerce Sales. (http://www.census.gov/mrts/www/ecomm.html)

who, when and how much” to bid under an online auction context; Chan et al. (2007) consider bidders’ willingness to pay for an auction; and Bradlow and Park (2007) investigate how bidders’ behaviors evolve over the course of an auction. This research has led to some important insights regarding the nature of bidder behavior in auctions. We extend this empirical literature by considering the behavior of sellers at the auction site. An integrated analysis of bidder and seller behavior has pivotal implications for the marketing policies of the auction house, such as the fees the auction house sets, the rules used to conduct the auction, or an assessment of the value of its customers (Greenleaf and Sinha, 1996).

Given our interest in seller behavior and its attendant policy implications, we focus on structural models of auction behavior. Such models enable one to ascertain unobserved characteristics of bidders and sellers, such as their latent costs of bidding and listing and their ramifications for auction fees, mechanism design and/or customer value. Like the marketing literature to which we alluded above, structural model research in the context of auctions has largely focused on bidder behavior (Reiss and Wolak, 2005). For example, Bajari and Hortacsu (2003) propose a structural model to explore the determinants of bidders bidding behaviors. The paper assesses the effects of endogenous bidder entry into an auction and is among the first to model structural bidding behavior in the context of electronic auctions. As such, it forms a cornerstone of the bidder model in our research. Jofre-Bonet and Pesendorfer (2003) consider dynamic bidding behavior arising from capacity constraints in a repeated procurement auction game. They find these constraints lead to higher bids because a winning bid increases capacity constraints in the subsequent period; this reduced incentive to win is commensurate with higher bids. Campo et al. (2002) investigate an auction model with possible risk averse bidders and propose a

4 As discussed in Laffont and Vuong (1996), auction data are well-suited for structural models as auctions are asymmetric information games and the data generating process is strategy-driven. For a more complete summary of structural models of auctions, see Reiss and Wolak (2005).
semiparametric estimation procedure to test the risk neutrality of bidders. There is also a rich literature focusing on the question of identification of empirical auction models, e.g., Paarsch (1992), Guerre et al. (2000), Athey and Haile (2002), Hong and Shum (2002) and Haile et al. (2003). In sum, this literature has further enriched our insights regarding strategic buying behavior in the context of auctions.

Our model supplements the structural auctions literature in a number of regards: First, we integrate both bidder and seller behavior; that is, we do not presume seller behavior regarding the number of items to list to be exogenous. In practice, both bidders and sellers are strategically interactive, and it is reasonable to suspect that the market equilibrium is determined by their interactions. The integration of bidder and seller behavior in auctions is an example of a two-sided market, wherein multiple parties interact on a platform (Rochet and Tirole, 2006; Tucker, 2005). Following Rochet and Tirole (2006), the two-sided network as well as the period payment flows between the various agents can be depicted graphically as indicated in Figure 1.1a. Though there is a rich theoretical literature pertaining to these two-sided markets, empirical research remains nascent (Roson, 2005). We contribute to this empirical literature by a) assessing how these markets should be priced, b) the value of agents in these markets, and c) an empirical analysis of two-sided markets in the context of auctions. Second, we accommodate heterogenous bidding disutilities/costs across bidders.\(^5\) As a result, we can infer how changes in the listing behavior of the seller affect each bidder’s likelihood of bidding in any given auction. Summing these behaviors across bidders and auctions yields the total auction revenue conditioned on seller listings. Third, we incorporate heterogeneity in seller costs.

\(^5\) Bajari and Hortacsu (2003) assume an opportunity cost for bidders such that all bidders’ entry decisions satisfy a “zero profit condition”. That is, no bidder obtains positive expected utility for attending auctions. Given the estimates of their model, the distribution of the cost is simulated based on the “zero profit condition” and the model estimates. In our context we observe bidders’ bidding histories across multiple auctions which enables us to explicitly estimate heterogenous bidding disutilities across bidders.
Heterogeneity in costs implies that the number of auctions listed can change in response to bidders’ valuations or auction house fees. Fourth, we integrate Bayesian statistics and structural models in the context of auctions, which is relatively novel in marketing and economics.\(^6\) The Bayesian approach enables considerable flexibility in model specification (Rossi et al., 1996).

Together, these innovations enable us to assess how changes in auction house strategies (such as fee schedules or auction design) affect the number of auctions and the corresponding bidding behaviors even in the absence of any observed variation.

\(^6\) Bajari and Hortacsu (2003) is a notable exception.
in these strategies. This in turn affects the number of items upon which bidders bid. As a result, the auction house can forecast the effect of fee changes on the equilibrium number of items listed by sellers and the prices that buyers pay for these items. Closing prices and the number of items listed factor into the auction house revenue. In this manner it is possible to compute price elasticities for the auction house fees in order to evaluate its pricing strategy. In contrast, it is difficult to assess these elasticities by regressing seller listings and closing prices on fees, because there is often little variation in fees from which to infer changes in auction demand and prices. eBay, for example, changes its fees about once per year, leaving few observations from which to infer price response. Moreover, to infer price response, one would need to use observations regarding fee changes that are many years old and it is unclear whether data from the distant past remain valid given the changing sample composition of customers over time.

Using the imputed price-demand system, we conclude (via a pricing policy experiment wherein we manipulate auction house prices) that changing fees can increase auction house revenue by 3.9% with a targeted pricing strategy and 2.9% with a uniform pricing strategy. Much of this gain arises from emphasizing per item fees over commissions. Lower commissions disproportionately attract higher valuation
items by increasing per item profits. This further suggests that categories with a greater prevalence of high value items such as art should emphasize per item fees over commissions. Figure 1.1b depicts the pricing policy experiment graphically in the context of the two-sided market.

A corollary benefit of the foregoing innovations is that they enable one to assess the short-term value of a customer in a two-sided market. Information regarding customer value is useful for assessing how much to invest in retaining a customer (exemplified via a targeted coupon or rebate from the auction house). A common approach toward assessing customer value is to simply tally the total commissions and fees the seller pays to the auction house. However, were that seller to depart the system, some bidders would switch to other sellers. Moreover, with less competition, the remaining sellers are inclined to list more items. Both behaviors affect equilibrium prices. A proper accounting of these competitive effects offsets about 24% of the fees paid by a departing seller. An analogous argument can be constructed for valuing buyers. The lost revenue resulting from the attrition of a buyer is offset by the remaining bidders who bid on the items that the attriting buyer would have purchased. In addition, the departure of a buyer can incent a seller to reduce listings in response to a decrease in the expected price they will receive. We find other bidders bidding on the items of the attrited buyer offset about 81% of the lost revenue from the attrited buyer. Stated differently, valuing agents without regard to competitive interactions overstates the value of the seller by $1/3$ and the value of a buyer in excess of 400%. These conclusions arise from a policy experiment wherein we assess the impact of an attrited customer on equilibrium revenue. This policy experiment is reflected graphically in Figure 1.1c. It is worth noting that Figures 1.1a–1.1c suggest that our model could also be useful in addressing further policy experiments

7 By short-term, we refer to the value of the customer over the duration of our data. Long-term, or life-time value would consider the infinite horizon value of a customer.
such as assessing the profitability of auction fees to the buyer.

In sum, explicitly considering seller and bidder behavior in a joint system or two-sided market enables one to a) attain a better understanding of how sellers make listing decisions and b) engage policy simulations to help the auction house implement its marketing strategies. With these goals in mind, the paper is organized as follows. Section 1.2 describes the bidding mechanism used by many online auction houses. This characterization motivates the structure of the game. Next, we present our data and some exploratory analyses to develop insights regarding auction behavior, especially with respect to the interaction between bidders and sellers. We then detail the model and corresponding estimation approach in Section 1.3 and 1.4. Results of this model are detailed in Section 1.5. Using the results, Section 1.6 overviews the managerial implications, including the impact of fee changes, valuing customers and gauging the effect of seller’s reputation in auctions. This discussion is followed by Section 3.6, which concludes the paper with a summary of findings, limitations and future research directions.

1.2 The E-auction Context and Data

A necessary precursor to modeling auction behavior is a complete characterization of the process of listing and bidding an item. Hence, in this section, we preface our model discussion with a characterization of the data and auction mechanism. As the firm supplying the data wishes to remain anonymous, we describe the process in somewhat general terms, beginning with the decisions of the seller.

1.2.1 Rules of the Auction House and Participants’ Decision Processes

Listing

A seller commences an auction by listing an item online. To list an item, the seller must be registered with the auction firm and pay a small listing fee. For an additional
fee, sellers can also opt for listing features such as product pictures, the duration of the auction, a secret reserve price, etc. Secret reserves enable a seller to retain the listed item should the highest bid fail to exceed the reserve, which is not revealed to bidders. In addition to these listing features, experienced sellers (by virtue of interactions with past buyers) can also garner reputation ratings. Previously successful buyers can provide positive, negative or neutral ratings for the seller based on the buyer’s experience with the transaction.

If the auction successfully concludes, the seller pays a commission and listing fee to the firm. If not, the seller is responsible only for a listing fee. Other seller costs include acquisition costs and shipping. We presume sellers’ listing strategies (whether and how many items to list) are selected to maximize the seller’s profit. Figure 1.2 overviews the decision of sellers. The links in the Figure, denoted S1-S8 reflect the processes modeled in this paper.
Bidding

Bidders typically initiate the bidding process via a key-word search to locate relevant sellers, categories and items of interest. The results of this search list pertinent items open to bidding, sorted by price and time left until the auction concludes. Upon finding an item of interest, a bidder can bid immediately (if registered) or place the item onto a “watch list” for subsequent monitoring and potential bidding.

The bidding mechanism used by the auction house is called “proxy bidding”. With proxy bidding, a bidder enters an auction prior to its conclusion and submits their bid. The website will then act as a “proxy” to bid for the bidder by entering a bid on behalf of the user whenever the user is outbid (to some pre-determined maximum level). For example, assume a bidder intends to bid no more than $10.00 for a given item. Suppose further that the item’s current price is $1.00 with a bid increment of $0.50. By submitting a $10.00 proxy bid to the website, the auction site enters a bid of $1.50 on behalf of the bidder. If another bidder enters and bids $5.00, the proxy bid automatically becomes $5.50. If a subsequent bid of $15.00 materializes, the high bid changes to $10.50 and the first bidder receives an E-mail notification that they were outbid. The bidder can then choose whether to increase their bid or quit the auction altogether.

Upon placing the highest bid, the bidder wins the auction and makes a payment to the seller that equals to the second highest bid. It is the responsibility of the seller and the winning bidder to settle payment and delivery issues. We presume that a bidder’s bidding strategy (whether and how much to bid) is selected to maximize their expected profits. More specifically, we assume the bidder will bid if the expected return from doing so exceeds the cost. Figure 1.3 overviews bidding decision process. The links in the Figure, denoted B1-B10 reflect the bidder behaviors we model.
Seller-Bidder Interactions

The foregoing discussion suggests why it is desirable to model bidder and seller behaviors jointly. First, the bidder’s costs and returns affect the optimal bidding levels and decisions to bid. Strategic sellers form expectations regarding bidding levels and bidder costs. Predicated upon these expectations, sellers make listing decisions. Bidders, who are also strategic, in turn make bidding decisions conditional on the seller’s listing behavior. Hence, seller and bidder decisions are interdependent. Accordingly, the auction house directly affects the seller’s profits and the number of items sellers list by varying auction fees. The effects of a fee change propagate to bidders by altering the decisions of sellers. To exemplify this point, we next describe our data and present some descriptive statistics regarding bidder-seller interactions.
1.2.2 Data

We use a unique data set generously presented by an international auction house that prefers to remain anonymous. The focal category is collectible Celtic coins. We selected this category because it is fairly isolated, inasmuch as bidders in this category tend not to buy other types of coins. This mitigates considerations regarding seller and bidder behavior in other categories. The data were collected from November, 2004 to April, 2005 and encompass 816 auctions\(^8\) listed by 57 sellers over 189 days. Of these listings, 72.2% were finally sold. The number of bidders is 925. The auctions data comprise several files, including a listing file, a bidding file, and a demographics file for the bidders and sellers. We describe each in turn.

Listing File

The listing data include, for each item listed, the unique seller ID, a text description of the item, and the item’s listing characteristics. These characteristics include “picture”, whether the seller includes at least one picture of the item in their listing; “subtitle”, a paid feature which present detailed descriptions under the listing title; “gallery picture”, an icon-size picture of the item beside the title when the auction is presented by the search engine; “store”, which enables a seller to group items on a single web page; “bold”, in which the auction title is shown as bold characters; and “featured listing”, wherein the item listing is displayed near the top of the searching results. For each listing, we also observe the exact value of the secret reserve price, if chosen by the seller. We include the percentage statistics of the listing features in Table 1.1. This Table shows “Bold”, “Featured Listing” and “Secret Reserve” are seldom used by sellers.

\(^8\) This number reflects the exclusion of 36 largely inactive sellers who only listed one auction in the 6-month period. The sparse observation per seller make it difficult to make inferences regarding their behavior and identify seller-specific effects (that said, our key results are robust to their inclusion). By omitting these 36 sellers/auctions, we also lose 10 bidders (out of a pool of 935
Table 1.1: Listing Features Summary Statistics

<table>
<thead>
<tr>
<th>Listing Features</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td>90.21</td>
</tr>
<tr>
<td>Subtitle</td>
<td>4.57</td>
</tr>
<tr>
<td>Gallery Picture</td>
<td>30.90</td>
</tr>
<tr>
<td>Bold</td>
<td>1.85</td>
</tr>
<tr>
<td>Featured Listing</td>
<td>0.54</td>
</tr>
<tr>
<td>Online Store</td>
<td>28.00</td>
</tr>
<tr>
<td>Secrete Reserve</td>
<td>2.33</td>
</tr>
<tr>
<td>Number of Auctions</td>
<td>816</td>
</tr>
</tbody>
</table>

Table 1.2: Auctions Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Median</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Value $</td>
<td>93.39</td>
<td>96.87</td>
<td>55</td>
<td>3</td>
<td>675</td>
</tr>
<tr>
<td>Final Price/Book Value</td>
<td>0.86</td>
<td>1.31</td>
<td>0.48</td>
<td>0</td>
<td>4.25</td>
</tr>
<tr>
<td>Secret Reserve Price/Book Value (Obs. = 19)</td>
<td>1.33</td>
<td>2.23</td>
<td>0.54</td>
<td>0.13</td>
<td>9.06</td>
</tr>
<tr>
<td>Minimum Bid/Book Value</td>
<td>0.15</td>
<td>0.46</td>
<td>0.1</td>
<td>4.00E-05</td>
<td>11.65</td>
</tr>
<tr>
<td>Average Listing Fees per Auction $</td>
<td>0.74</td>
<td>1.59</td>
<td>0.35</td>
<td>0.25</td>
<td>21.40</td>
</tr>
<tr>
<td>Average Commisions per Auctions $</td>
<td>1.00</td>
<td>1.99</td>
<td>0.39</td>
<td>0</td>
<td>22.62</td>
</tr>
<tr>
<td>Duration (Days)</td>
<td>7.01</td>
<td>1.14</td>
<td>7</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Lapse Since Last Listing (Days)</td>
<td>53.23</td>
<td>42.22</td>
<td>42</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>Number of Concurrent Listings By the Same Seller</td>
<td>1.65</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Number of Sellers per Week</td>
<td>14.96</td>
<td>3.84</td>
<td>15</td>
<td>9</td>
<td>23</td>
</tr>
</tbody>
</table>

To obtain the prevailing market prices of listed items, we collect the data from two sources. The first one is an online coins catalog (www.vcoins.com), which is widely recognized among the coin collectors community. A second source is from the book *Coins of England and the United Kingdom, Standard Catalogue of British Coins, 41st Edition*. We report the price information together with some other listing information in Table 1.2.

The final price is close to book value. While auction durations vary from 1 day to 10 days, most auctions last 7 days. Hence, we define the interval of analysis (e.g., whether to list) to be weekly. All auctions employ an open reserve price, denoted minimum bid, that is observed by all buyers. A handful of sellers (2.3%) also employ a secret reserve. Though its level is not known to the bidders, the presence of a secret (bidders) who bid only in those auctions.
Table 1.3: Bidders Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Median</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bidders per Auction</td>
<td>2.58</td>
<td>2.94</td>
<td>1.50</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Number of Bids per Auction</td>
<td>4.17</td>
<td>5.44</td>
<td>2</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Lapse Since Last Winning (Days)</td>
<td>61.37</td>
<td>41.73</td>
<td>56</td>
<td>7</td>
<td>189</td>
</tr>
<tr>
<td>Number of Concurrent Auctions Attended per Week</td>
<td>1.02</td>
<td>0.24</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Number of Bidders per Week</td>
<td>64.46</td>
<td>29.82</td>
<td>58.50</td>
<td>18</td>
<td>160</td>
</tr>
</tbody>
</table>

reserve is common knowledge and can therefore enter the bidder utility function.

Bidding File

The bidding data include a detailed bidding history of each unique bidder ID through the 6 months. Thus we observe every bid a bidder submits and the time the bid was made. This includes the highest bid that occurred in each auction, which is not normally observed for most sealed second-price online auction data. Table 1.3 presents some summary statistics of the data.

The majority of bidders only attend one auction per week, suggesting that purchases are not concentrated in the hands of a few buyers. We also observe little evidence of buyer reselling as none are cross listed as sellers and they tend to purchase only one coin at a time. In addition, the total number of items listed is dominated by a few large sellers. Together, these observations reflect a market comprised of many collectors buying from a set of dealers and that it is therefore appropriate to model the bidders and sellers as different agents. The lapse since last winning varies dramatically across bidders and suggests the importance of capturing heterogeneity across bidders.

Demographic File: Seller and Buyer Feedback

The demographic file includes demographic information for sellers and bidders. With the exception of participants’ feedback scores, these demographics are incomplete, so

9 The seller market is moderately concentrated with a Herfindahl Index of 0.12. The top 15 sellers account for 80% of all listings.
Table 1.4: Feedback Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Median</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seller Feedback Rating</td>
<td>1886.25</td>
<td>2554.18</td>
<td>821.5</td>
<td>1</td>
<td>13600</td>
</tr>
<tr>
<td>Bidder Feedback Rating</td>
<td>186.55</td>
<td>273.55</td>
<td>89</td>
<td>-1</td>
<td>2167</td>
</tr>
</tbody>
</table>

we focus only on feedback scores. We report the feedback scores in Table 1.4. Among the participants population, 5.5% are females, 53.6% are males, and the balance did not report their gender.

While feedback scores for both sellers and bidders evidence considerable variation, the scores for sellers are more diverse. Also, as a group, sellers have a higher mean and median feedback score than bidders, which suggests that sellers are more active and experienced than bidders.

1.3 An Integrated Model of Bidders and Sellers

1.3.1 Key Assumptions and Nomenclature

We detail a number of assumptions used to make our modeling approach more efficient. Most are standard assumptions in the literature. These are as follows:

- First, we assume a private value (PV) auction. The assumptions of a private value (PV) auction and a common value (CV) auction lead to different interpretations of the data and methods of inference (Milgrom and Weber, 1982).\(^\text{10}\)

To justify the PV assumption, we use the empirical test first proposed by Milgrom and Weber (1982). The method is also discussed and implemented in other literature (Athey and Haile, 2002; Bajari and Hortacsu, 2003; Haile et al., \(^\text{10}\)

\(^{10}\) There are two types auctions based on the degree of independence across bidders’ valuation for an auctioned item: private value and common value. In a private value model, bidders evaluate the item independently from others and such valuations are private information. Knowledge of others’ valuations does not affect one’s own valuation. In contrast, the common value model assumes all bidders’ valuations are identical ex post (even though each bidder may have an idiosyncratic ex ante valuation).
Table 1.5: Private Value vs. Common Value – Regression of Bids on the Number of Bidders

<table>
<thead>
<tr>
<th></th>
<th>All Bids</th>
<th>Last Bids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.05 (0.16)</td>
<td>0.34 (0.21)</td>
</tr>
<tr>
<td>Log(Number of Bidders)</td>
<td>0.48* (0.03)</td>
<td>0.41* (0.04)</td>
</tr>
<tr>
<td>Log(Book Value)</td>
<td>0.65* (0.03)</td>
<td>0.57* (0.04)</td>
</tr>
<tr>
<td>Log(Seller Feedback)</td>
<td>-0.06* (0.01)</td>
<td>-0.05* (0.02)</td>
</tr>
<tr>
<td>Secret Reserve Price</td>
<td>0.49* (0.10)</td>
<td>0.56* (0.15)</td>
</tr>
<tr>
<td>Gallery Picture</td>
<td>0.03 (0.04)</td>
<td>0.10* (0.05)</td>
</tr>
<tr>
<td>Log(Bidder Feedback)</td>
<td>0.01 (0.01)</td>
<td>0.01 (0.02)</td>
</tr>
<tr>
<td>Number of Obs. Used</td>
<td>3344</td>
<td>2117</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.29</td>
<td>0.25</td>
</tr>
</tbody>
</table>

2003; Paarsch, 1992). The idea of the test is to exploit the relationship between the number of bidders and bids. With the existence of the “winner’s curse” in common value auctions, the average bids in an N–bidder auction should be lower than a $(N−1)$–bidder auction.\(^{11}\) In comparison, such a relationship does not hold under a private value assumption. In Table 1.5, we present the results from two IV regressions of (log) bids on (log) number of bidders. The first regression uses all bids while the second only uses the last bids of each bidder. Using (log) minimum bid, “Bold” and “Featured Listing” as instruments for the number of bidders, the regression coefficients for the number of bidders on prices are positive and significant. Thus we proceed with the Private Value assumption in our structural empirical model. Under the PV assumption auctions reduce to a second price, sealed bid auction (Vickrey, 1961; Milgrom and Weber, 1982).

- Second, we assume bidders’ private valuation signals for a given item are drawn independently from the value distribution, another common assumption in the

\(^{11}\) In common value settings, winning bidders are those most likely to have over-estimated an item’s value (which is the reason for their highest bids). Note that all bidders have the same ex post valuation. Thus, winning bidders typically over-pay, hence the “winner’s curse”. The bidder will lower their bid to offset this potential over-estimation.
literature, denoted independent value (IV). Given the context of bidders bidding modestly priced items over the Internet (with dispersed bidders and limited interpersonal contact), we also believe this to be a reasonable assumption. Note that this assumption does not imply valuations are independent as changes in the mean of the distribution affect all bidders. For example, the seller use of a gallery can affect all buyers’ valuations. As noted by Reiss and Wolak (2005), the alternative assumption of Affiliated Values (AV) has seen scant attention because it is difficult to characterize the equilibria of these auctions (requiring additional strict assumptions). Thus, like most research that precedes ours, we model an Independent Private Value (IPV) auction on the bidder side.

- Third, we consider a static game with bidders and sellers. This assumption is not as restrictive as it initially appears, as we can control for dynamics such as an inter-temporal budget constraint via a reduced-form approximation. We leave more formal resolution of the dynamic problem for future research; this would entail solving a dynamic program, ensuring the equilibrium is unique, and identifying this solution from the data, all of which may be a contribution in its own right, if feasible. As noted in our literature review, this is a prevalent assumption.

- Fourth, we model cross-auction interdependence by specifying a diminishing marginal value for each additional auction attended. In contexts wherein bidders routinely bid on multiple concurrent auctions, there exist the potential for other interdependencies in strategic bidding behavior (Brusco and Lopomo, 2009). However, Table 1.3 indicates there exists little multiple auction bidding suggesting that this is an appropriate approximation. Accommodating strategic cross-item bidding adds considerable complexity to the model with little
attendant benefit given the limited occurrence of these events in our data.

- Fifth, we assume the sellers’ choices of listing features (e.g., reservation prices, gallery, etc.) are exogenously given. Endogenizing this decision admits a multiplicity of listing feature equilibria, rendering such a specification of little value for assessing how the pricing of features affects demand for these features. Moreover, endogenizing feature choices implies the need to compute an equilibrium for every set of features, which leads to the curse of dimensionality and quickly becomes infeasible (or requiring an approximate as opposed to an exact solution). Thus, we leave it to future research in combinatorial optimization to assess whether this problem is resolvable and restrict our analysis to the effect of listing fees and commissions.12 We note prior research considers seller behavior to be altogether exogenous.

- Sixth, our model estimation assumes bidders and sellers are fully informed about the number of bidders in the market and the bidder valuation and bidder cost distributions. The assumption that bidders and sellers are aware of the value distribution may be a reasonable approximation in light of the ability of bidders and sellers to monitor auction outcomes over time by observing historical bids on the web site. Most preceding research makes this assumption on the bidder side and we extend this precedent to the seller side. The number of sellers and bidders can also be observed from the web site. We explore

12 It is possible to endogenize the reservation price decision. A benefit of this approach is that such a model formalizes the decision making process on the part of the seller. The cost is that endogenous reservation prices make the model more complex (i.e., introduces additional noise along with explanation). Given the trade-off, we test such a model and find that endogenizing reservation price has only a negligible effect on parameter estimates (the correlation between the median parameter estimates in this model and our base formulation is 0.985). Further, the endogenous reservation price model evidences lower fit (by decreasing the log marginal likelihood for listings and bids from -21278.41 to -22150.82). Therefore we do not pursue this development further in this paper. As an aside, endogenizing reservation prices leads to reservation pricing equilibria that may not be unique; as such the model has more limited applicability in the context of policy simulations.
the assumption that sellers and bidders are fully informed about the buyer cost distribution by estimating a model wherein we assume their knowledge is limited only to the mean of this distribution. We find this model leads to a 0.9% decrease in the log marginal likelihood.\footnote{The assumption that bidders and sellers know the full bidder cost distribution results in a log marginal likelihood of -21278.4. Restricting this knowledge to only the mean of this distribution yields a log marginal likelihood of -21469.9. Hence the data support the assumption that bidders and sellers are aware of the bidder cost distribution.} For our policy simulations we invoke the additional assumption sellers form expectations about the number of sellers in the market and the distribution of seller costs.

- Seventh, we assume risk neutral and symmetric bidders, consistent with previous literature (e.g. Bajari and Hortacsu, 2003). Symmetry implies that bidders draw private valuations from the same distribution, \textit{ex ante}. However, upon receiving their signals, they differ in their individual valuations. Moreover, heterogeneity in bidder costs implies bidders are asymmetric in their bidding utilities even when they \textit{ex ante} have the same expected valuation for an item (as utility is value less costs). Accordingly, the symmetry assumption is not as restrictive as it may appear. Nonetheless, we explore this assumption following the approach of Athey et al. (2004) and Flambard and Perrigne (2004), who posit asymmetry in valuations arises from bidders’ idiosyncratic characteristics. Following this approach, we regress final bids on observed bidder characteristics including bidder feedback, time lapse since last bid, and time lapse since last win. We find none of these effects to be statistically significant, consistent with the assumption of symmetric bidders.

- Eighth, we assume that the focal auction house is operating as a monopoly. We believe it is a reasonable approximation due to the dominant market share of the auction house in the category and market we consider. Its scale leads
to strong network effects (for example, a seller can reach a large number of bidders) making it difficult for bidders and sellers to successfully buy and list items with competing houses and reducing the likelihood they will defect over a small change in fees. Evidence for this assumption is afforded by a small share competitor who lowered their fees with no effect on the share of the considered firm.

- Ninth, we focus on behaviors within one category and abstract any cross category bidding, listing implications (e.g., Haile et al., 2003, and others). We select our category of analysis to comport with this assumption.

1.3.2 Model Overview

We assume the bidder-seller game in any given period (e.g. weekly in our data) as follows:

- In Stage 0, each seller is endowed with some types of coins associated with a seller-item specific opportunity cost for acquiring the coin(s). For each type of these coins, an optimal listing feature combination is \textit{exogenously} determined by the item’s and seller’s characteristics. This combination of listing features, in conjunction with seller and item characteristics, determines the distribution of valuations of bidders regarding the item. Each bidder will then draw a valuation for the item from this distribution.

- In Stage 1, conditioned upon house fees, the acquisition costs and the expected revenue, the seller assesses the expected return. The seller then decides whether to list and, if so, how many items to list for each type conditional on the expected returns. More specifically, we presume the seller lists the precise number of items that leads to the highest profit over all alternative numbers of items listed.
• In Stage 2, for each auction, each bidder decides whether to participate in the auction and, if so, submits the optimal bid. As noted by Bajari and Hortacsu (2003), sniping (last-minute bidding) is the unique Bayesian Nash equilibrium for on-line auctions and, as a result, these auctions are equivalent to sealed-bid second price auctions. Even in the absence of sniping, when the IPV assumption sustains, auctions are equivalent to sealed-bid second price auctions (Vickrey, 1961; Milgrom and Weber, 1982), i.e., the timing of bid submission does not affect the optimal bidding strategy. As such, we abstract away from within-auction bidding dynamics.

Given we assume that the listing feature choice and cost function are exogenously determined in Stage 0, we only detail the game for Stage 1 (how many items to list) and Stage 2 (conditioned on listings, how much to bid). We solve this problem using backward induction, beginning with the bidder model first. As a further prelude to our model, some clarifications of the indices we use are necessary. We define $i = 1, 2, ..., I$ to indicate sellers and $j = 1, 2, ..., J$ to denote the bidders in the market. Different types $t = 1, 2, ..., T$ of items are available for auction (e.g., Celtic silver drachm of Alexander III vs. Celtic silver tetradrachm of Philip II). The same seller can initiate multiple auctions for the same type of coin. We use $n = 1, 2, ..., N$ to index auctions.

1.3.3 The Second Stage – Bidder’s Model

The Valuation of A Bidder

For the n-th auction with item t listed by seller i, each potential bidder draws a valuation from the distribution with p.d.f. $g(v_{ijtn} | \mu_{it}, \sigma)$, where v_{ijtn} stands for bidder j’s valuation for the item (for example, a specific coin). We presume the bidder’s valuation for a given type of item auctioned by a given seller remains the same across auctions, i.e., $v_{ijtn} = v_{ijtn'}$. This ensures that the primary source of variation
in unobserved valuations occurs across bidders as opposed to within bidder volatility in valuations, as the within person variation is likely to be relatively constant over a short span of time (recall, we can allow longitudinal variation in bidder valuations via observed changes in item and seller characteristics in conjunction with listing features). We define \(\mu_{it} \) and \(\sigma \) to be the value distribution mean and standard deviation respectively. A natural candidate for the distribution \(g(v_{ijtn} | \mu_{it}, \sigma) \) is a normal distribution. We assume that

\[
(v_{ijtn} | \mu_{it}, \sigma) \sim N(\mu_{it}, \sigma) \tag{1.1}
\]

For second price sealed auctions under an independent private value setting, one bidder’s valuation of the item is independent from others’ valuations and the number of competitors. Upon winning the auction, the realized gross return is exactly the bidder’s valuation, \(v_{ijtn} \).

We posit the valuation distribution of an auction is incumbent upon item and seller characteristics as well as listing features (links B1-B3, Figure 1.3). We therefore set

\[
\mu_{it} = Z^\mu_{it} \beta^\mu
\]

\[
Z^\mu_{it} = [1, BOOKVAL_{it}, FeedbackSeller_i, MinBid_{it}, ReserveDummy_{it}, StoreDummy_i, SubtitleDummy_{it}, GalleryDummy_{it}]
\]

and ensure \(\sigma \) to be positive by using a truncated normal as its proposal density function in the sampling chain (see the Appendix 4.1.3).\(^{15}\) The choice of variables

\(^{14}\) We also considered a lognormal distribution for \(v \) to ensure all valuations are positive, however this led to a considerable decrease in model fit (-21278.4 vs. -23305.8). The negative values implied by the normal distribution may be justified by the explanation that some bidders do value the item negatively. A similar specification is used in Bajari and Hortacsu (2003).

\(^{15}\) We also considered a specification wherein the variance of the bidder valuation distribution was a function of item, seller and marketing characteristics, that is \(\sigma_{it} = \sigma(Z_{it}) \). However, this model did not improve fit nor were any of the variables significant (the log marginal likelihood of the alternative specification is -21355.7).
to use is motivated by the variables available in the data. However, there is little variation in “Bold” and “Featured Listing” so it is not possible to reliably estimate these effects.

We place normal distributions on the priors of β. We try to minimize the effect of the choice of priors on the shape of posterior distributions by choosing a diffuse prior. Details of the choice of priors and sampling chain are presented in the Appendix 4.1.3.

Minimum Bid, Disutility of Bidding and The Optimal Bidding Strategy

Optimal Bidding Strategy In addition to bidder valuations (link B5), two other factors affect bidder strategy. First, each auction has a minimum bid, $MinBid_{it}$, which is common across the same items listed by a seller. $MinBid_{it}$ functions as a “reserve price” as discussed in Milgrom and Weber (1982). All submitted bids must be greater than the minimum bid (link B6). Second, each customer has a disutility of bidding, C_{ijtn}, which we express as a dollar metric and can be interpreted as the bidder’s “marginal cost” for bidding on one more item (we parameterize these costs in the next section). Higher costs reduce the likelihood of a bid on a given auction (link B7). This disutility can involve opportunity costs on time such as the efforts for researching and monitoring of the auction as well as reflecting the opportunity cost of capital. Following an approach similar to Milgrom and Weber (1982), we obtain the following result.

Theorem 1.1. For a given auction itn having a minimum bid $MinBid_{it}$, bidder j
has bidding disutility C_{ijtn}^b. The optimal bidding strategy is

$$b^*(v_{ijtn}) = \begin{cases} v_{ijtn} & \text{if } v_{ijtn} \geq x_{ijtn}^* \\ 0 & \text{otherwise} \end{cases} \quad (1.4)$$

where x_{ijtn}^* is defined by the implicit function

$$C_{ijtn}^b = \int_{-\infty}^{x_{ijtn}^*} (x_{ijtn}^* - \max(\alpha_j, \text{MinBid}_{it})) f(\alpha_j) d\alpha_j \quad (1.5)$$

where $f(\alpha_j)$ is the density function of α_j, the highest competing bid.

Proof: See Appendix 4.1.1.

Theorem 1.1 suggests that in equilibrium a bidder will only bid if their valuation for an item exceeds a certain threshold, x_{ijtn}^*, and, if so, they will bid the valuation, i.e., “truth-telling” (links B8-B10). The bidding threshold, x_{ijtn}^*, is an increasing function of three factors: i) the MinBid_{it}, ii) the bidder cost, C_{ijtn}^b, and, iii) the expected highest competing bid, α_j. As the MinBid_{it} increases, only higher value bidders will participate, increasing the expected closing price. Hence only higher valuation bidders are likely to participate thereby elevating the participation threshold. Second, higher bidder costs imply higher valuations are necessary to make a bid profitable. Thus, the bidding threshold increases with bidder costs. Third, x_{ijtn}^* is increasing in α_j. As an order statistic, α_j increases with the number of bidders; hence the bidding threshold rises with the number of bidders. As such, the intensity of competition affects the likelihood of an individual’s entry into an auction.

Bidder Costs, C_{ijtn}^b The marginal disutility of bidding in a focal auction (link B4) is assumed to be bidder-auction specific and is specified as follows:

$$\log(C_{ijtn}^b) = \beta_{0j} + Z_{ijtn}^b \beta_{1j} + e_{ijtn}^b; \quad e_{ijtn}^b \sim N(0,1) \quad (1.6)$$

$$Z_{ijtn}^b = [\log(\text{AttendedAuction}_{ijtn} + 1), \log(\text{Lapse}_{ijtn})]$$

23
where \textit{AttendedAuction} is the total number of alternative auctions the bidder is attending during the duration of the focal auction; the “+1” ensures the log function is defined; \textit{Lapse} is the lapse of time since the last win; and \(var(\epsilon_{ijtn}^C) = 1 \) to ensure identification of costs.\(^{16} \)

The \textit{Lapse} variable reflects potential inter-temporal dynamics in bidding behavior. Inter-temporal dependence can also be induced by price or listing expectations. For example, rising expectations regarding the number of potential future listings might induce customers to delay purchases. In addition, the presence of an inter-temporal budget constraint or an inventory constraint implies bidders who recently win auctions may have less space or cash available to purchase on subsequent bidding occasions, thereby lowering their bidding likelihood (i.e., the marginal utility of bidding decreases as the lapse in time since a win decreases). Similarly, the \textit{AttendedAuction} variable reflects the potential existence of a within-period budget or inventory constraint. In the event bidders have insufficient space or capital to accommodate multiple auction wins, their marginal likelihood of bidding in additional auctions will decrease (else bidders will either bid on all available auctions (if their marginal value of bidding exceeds the marginal cost) or none). \(\beta_{b}^{C} \) is a bidder-specific constant to account for heterogeneity in bidder costs. We use log costs to

\(^{16}\) To see this, consider equation (4.46) in the Appendix. When variances are not constrained to 1, (4.46) can be rewritten as

\[L \propto \prod_{ijtn} \exp \left(- \frac{1}{2\sigma^2} \left(\log C_{ijtn}^b - \frac{\beta_{0j}^C - Z_{ijtn}^C \beta_C^C}{\sigma} \right)^2 \right) \]

Because \(C_{ijtn}^b \) is not observed, this expression can be rewritten as

\[L \propto \prod_{ijtn} \exp \left(- \frac{1}{2} \left(\frac{\log C_{ijtn}^b}{\sigma} - \frac{\beta_{0j}^C}{\sigma} - Z_{ijtn}^C \frac{\beta_C^C}{\sigma} \right)^2 \right) \]

From which it can be observed the parameters are identified only up to a scale, analogous to a probit or logit model.
ensure costs are positive. We assume β_{0j}^C has the following hierarchical structure to capture heterogeneity in costs across bidders.

$$
\beta_{0j}^C \sim N \left(\bar{\beta}_0^C, (\phi_C)^{-1} \right)
$$

$$
\bar{\beta}_0^C \sim N \left(\bar{\beta}_0^C, \sigma_{0C}^2 \right)
$$

$$
\phi_C \sim Gamma(a_{0C}^C, b_{0C}^C)
$$

On the surface, it may appear that bidder valuations and costs are not separately identified, as a concurrent increase in both would yield the same bidder profits and thus bidding behavior. Observations of positive bids reveal the bidder’s valuation, which in turn helps to determine their cost. With costs known, together with our parametric specification regarding the costs, it becomes possible to infer values in auctions wherein bids are not observed (that is, a bidder decide not to bid). In addition, costs have a common parametric specification across different items. For those observations with the same covariate values for bidder costs, the variation in bidder behavior across these items helps to identify bidder valuations because differences in costs cannot explain differences in bidding behavior (as these costs are constant across bidders in this case).

1.3.4 The First Stage – Seller’s Model

The seller chooses the optimal number of items to list in order to maximize their expected return. We first derive the expected revenue a seller obtains from listing an item (links S3 and S4 in Figure 1.2), and then use this revenue in conjunction with seller costs (links S1 and S2) to derive the expected return for listing a specific number of items (links S5-S7) and the optimal number of items to list (link S8).
Expected Revenue for Listing An Item

Seller Expected Revenue $E(R_{itn}^s|\cdot)$ Without Secret Reserve Price For auctions without secret reserve prices, the seller receives the second highest bid when there are at least two bidders competing. When there is only one bidder, the seller receives the minimum bid MinBid_{it}. If there is no bidder, $E(R_{itn}^s|\cdot) = 0$. We condition the seller revenue on each of these events, as discussed next.

■ Number of Bidders ≥ 2. For the case where there are at least two bidders, denote α as the second highest bid among bidders and x_{α}^* as the threshold (defined in Theorem 1.1) associated with the bidder bidding α.

Theorem 1.2. Given μ_{it}, σ and market size J, the conditional distribution of α, the second highest bid, can be expressed as

$$p(\alpha|\mu_{it}, \sigma, J) = J(J - 1) \cdot \left\{ \int_{C_{ijtn}^b} \left[\left\{ G(\alpha|\mu_{it}, \sigma) - G(x_{ijtn}^*|\mu_{it}, \sigma) \right\} F_{x^*}(\alpha) \right] f(C_{ijtn}^b) dC_{ijtn}^b \right\}^{J-2}$$

$$\times \left\{ 1 - \int_{C_{ijtn}^b} \left[\left\{ G(\alpha|\mu_{it}, \sigma) - G(x_{ijtn}^*|\mu_{it}, \sigma) \right\} F_{x^*}(\alpha) \right] f(C_{ijtn}^b) dC_{ijtn}^b \right\}$$

$$\int_{C_{ijtn}^b} g(\alpha|\mu_{it}, \sigma, \alpha \geq x_{\alpha}^*) f(C_{ijtn}^b) dC_{ijtn}^b \quad (1.8)$$

where C_{ijtn}^b is the bidding disutility associated with the focal auction and $f(C_{ijtn}^b)$ is the distribution density of C_{ijtn}^b; $F_{x^*}(\cdot)$ is the distribution of x_{ijtn}^* and $F_{x^*}(\alpha)$ indicates the probability of $\alpha \geq x_{ijtn}^*$; x^* is defined in equation 1.5.

Proof: See Appendix 4.1.2.

The term in the first set of braces represents the probability $J - 2$ bids lie below α; the term in the second row represents the probability that the highest bid is greater than α; and the term in the third row is the probability the second highest bid is α. The integrals yield expectations over the unobserved bidder costs. The term J
reflects the number of permutations in which α can be the second highest bidder.
Similarly, the term $(J - 1)$ reflects the fact that any bidder among the $(J - 1)$ bidders (J bidders less the second highest one) can be the highest bidder.

Number of Bidders = 1. When there is only one bidder, just that bidder’s valuation exceeds their threshold while the other $J - 1$ bidders do not. That yields the probability of the seller earning $MinBid_{it}$ as the following

$$\Pr(R_{itn}^s = MinBid_{it}) = J \cdot \left\{ \int_{C_{ijtn}^b} G(x_{ijtn}^*|\mu_{it},\sigma)f(C_{ijtn}^b)dC_{ijtn} \right\}^{J-1} \quad (1.9)$$

That is, for $(J - 1)$ bidders, each has a valuation lower than the threshold, yielding $G(x_{ijtn}^*|\mu_{it},\sigma)$. This is the term in the first set of brackets on the right hand side. Given that C_{ijtn}^b is a random variable from the seller’s perspective, this term must be integrated out. The second term pertains to the one bidder whose valuation exceeds their threshold, leading to $[1 - \int_{C_{ijtn}^b} G(x_{ijtn}^*|\mu_{it},\sigma)f(C_{ijtn}^b)dC_{ijtn}]$. Moreover, as this sole bidder is chosen from among J bidders, the final result needs to be multiplied by J potential bidders that can have the highest bid (that is, $\binom{J}{1}$).

Combining equation 1.8 and 1.9 yields the conditional expected return of the seller,

$$E(R_{itn}^s|\mu_{it},\sigma,J) = E(\alpha|\mu_{it},\sigma,J) + MinBid_{it} \cdot \Pr(R_{itn}^s = MinBid_{it}) \quad (1.10)$$

$$= \int_{MinBid_{it}}^{\infty} \alpha p(\alpha|\mu_{it},\sigma,J)d\alpha + MinBid_{it} \cdot \Pr(R_{itn}^s = MinBid_{it}).$$

Seller Expected Return With Secret Reserve Price The results developed in the case of no secret reserve can be generalized as follows to the case of a secret reserve. First, in the case of multiple bidders, if the second highest bid is lower than the secret
reserve, the seller keeps the item. Thus the return is zero. Second, in the one bidder

 case, the seller retains the item because the winning bid must be MinBid_{it} and is

 therefore lower than the secret reserve.\(^{17}\) Hence, the expected return becomes

\[
E(R_{itn}^s|\mu_{it}, \sigma, J) = E(\alpha|\mu_{it}, \sigma, J, \alpha \geq Reserve_{it})
\]

\[
= \int_{Reserve_{it}}^{\infty} \alpha p(\alpha|\mu_{it}, \sigma, J) d\alpha
\]

The Seller Listing Decision

Seller Profits Prior to bidding, the seller must decide whether to list an item, and if

so, how many of the items to list.\(^{18}\) This decision is analogous to the seller choosing

the optimal supply of goods at a subgame level. We assume that seller i’s conditional

expected profit given listing \(q_{it}\) units of item \(t\) is:\(^{19}\)

\[
\pi_{it}(q_{it}) = q_{it} \cdot (1 - \text{commission}) E(R_{itn}^s|\cdot) - C_{it}^n(q_{it}) - q_{it} \cdot fee_{it}
\]

where *commission* is the commission rate charged by the auction house; *fee_{it}* is the

unit listing fee paid to the auction site.\(^{20}\) Other than the listing fees and commissions

paid to the auction house, there exist acquisition or opportunity costs for an item.

The cost is assumed to depend on the item’s prevailing market value and the number

of units listed, \(q_{it}\). Owing to finite supply, as the seller endeavors to source more

units acquisition becomes more difficult. This leads to an increase in the marginal

\(^{17}\) Although the seller can still choose to sell the item if the realized final price is lower than the

secret reserve, we assume the seller assigns zero probability to such an event when calculating *ex ante* expected return.

\(^{18}\) We also estimated a model wherein the minimum price decision is endogenous. The endogenous

minimum price model yields a lower log marginal likelihood for the listing decision and bids (-21278.41 vs. -22150.82).

\(^{19}\) Under the assumption that listing features are exogenous, a unique equilibrium is assured with

a quasi-concave revenue function and a convex cost function.

\(^{20}\) Given that commissions are tiered in our data, we compute commissions incumbent upon the auc-

tion’s closing price. However, to facilitate exposition, we omit tier-specific commission subscripts

throughout the paper.
opportunity cost of obtaining these items. Denote \(C_s^\ell(q_{it}) \) as the total acquisition cost for listing \(q_{it} \) units. Increasing marginal costs imply that \(C_s^\ell(q_{it}) \) is convex in \(q_{it} \). Moreover, our specification implies that the expected revenue is quasi-concave in \(q_{it} \), which is a necessary condition for a concave profit function and ensures an optimum exists. The seller’s problem is to find the optimal \(q_{it} \) that satisfies

\[
q_{it} = \arg \max_{\tilde{q}_{it}} \pi_{it}(\tilde{q}_{it}) \tag{1.13}
\]

i.e., any deviation from \(q_{it} \) (i.e., selling fewer or more items) will not result in a higher profit for the seller. As \(q_{it} \) can include zero, the decision of whether to list, as what number of items to list, is endogenous.

It is notable that observed variations in \(q_{it} \) over the duration of the data leads to estimated variations in the costs \(C_s^\ell \) over this duration. In turn, these variations in acquisition costs inform how sellers’ listing behaviors vary with changes in costs. In this fashion we can extrapolate how other costs (such as changes in fees) affect listing behavior even if such changes are not observed in the data. Stated differently, though there is no variation in fees over time from which to impute the seller listing elasticity, we can use the link between costs and listings to assess how hypothetical changes in fees affect listings.

Equation 1.13 indicates whether a given seller will list \(q_{it} \) items. This decision is affected by the number of competing sellers and participating buyers. As the number of competing sellers increases, the total number of items listed to bidders can increase. Yet equation 1.6 places a constraint on the number of auctions in which a bidder can concurrently bid. In the presence of an increased number of items listed, this constraint lowers the likelihood that any given seller will be able to sell their items as an increase in the total listings leads to fewer bidders per auction listed. In the presence of a fixed listing fee this lowers the expected return from listing an item. Therefore, an increase in the number of sellers leads to a decrease in the expected
number of items listed by each seller. One implication of this is that the auction house can manage this decrease in items listed per seller by lowering per item fees.

Likewise, the number of active buyers and their respective valuations affect the seller’s listing decision. The expected return in equation 1.12 is a function of the second highest bid, as noted in equation 1.10. The second highest bid is, in turn, a function of the number of bidders J and their bidding thresholds x^* as indicated in equation 1.8. As more bidders become active (i.e., x^* decreases – which could occur if the mean of the valuation distribution increases) or the universe of bidders becomes larger (J increases – for example, the bidding population become larger) then the seller return increases and more sellers will list. In sum, the number of items listed affects buyer participation and the buyer participation affects the number of items listed. Hence, there is a structural link between seller and bidder behaviors.

Seller Acquisition Cost, C_{sit} Given the foregoing concavity assumption, we specify the prior distribution of seller i’s acquisition cost to be:

$$C_{sit} = \beta_{0si}^{Cs} \cdot \text{BOOKVAL}_{it}^{\beta_{1si}^{Cs}} \cdot d_{it}^{\beta_{2si}^{Cs}} + e_{sit}^{Cs} \tag{1.14}$$

We include a seller-specific constant term, β_{0si}^{Cs}, to capture unobserved heterogeneity in seller costs. e_{sit}^{Cs} is an i.i.d. error term following normal distribution with mean 0 and variance θ^{-1} (the prior specifications for θ and other parameters are detailed in Appendix 4.1.3). The stochastic terms are known by the seller itself but unobserved by researchers. Delivery costs, which are unobserved, can affect both the average seller costs β_{0si}^{Cs} and per item costs β_{2si}^{Cs} (Lewis et al., 2006). These costs, which are unobserved, can affect both the average seller costs β_{0si}^{Cs} and per item costs β_{2si}^{Cs}.

30
We adopt the following hierarchical structure for the heterogenous constant term:

\[
\beta_{bi}^{C_s} \sim N \left(\bar{\beta}_{i}^{C_s}, (\phi^{C_s})^{-1} \right)
\]

\[
\bar{\beta}_0^{C_s} \sim N(\bar{\beta}_0^{C_s}, \sigma_{0C_s}^2)
\]

\[
\phi^{C_s} \sim \text{Gamma}(a_0^{C_s}, b_0^{C_s})
\]

Similar to the bidder cost, multiple observations of sellers across auctions enable the identification of seller cost from valuation distribution (which is an important component determining seller revenues). In particular, seller costs are identified through the observed bids, bidder costs, and seller’s listing behavior across multiple auctions.

1.4 Estimation

We adopt MCMC approach to estimate the model due to the flexibility of Bayesian methods (Rossi et al., 1996). In particular, it enables us to readily accommodate latent variables via data augmentation, including bidder valuations, bidder disutility and seller profits. Moreover, the approach enables us to readily estimate a complex model. In this section we define the likelihood and in the Appendix 4.1.3 we detail the sampling chain and priors.

1.4.1 The Conditional Likelihood of Bidder Model

Given the threshold level \(x_{ijtn}^{*} \), the conditional likelihood of bidder \(j \) bidding on auction \(itn \) is,

\[
(p_{bid}^{ijtn}|\mu_{it}, \sigma, MinBid_{it}, C_{ijtn}^{b}) = \left[g(b_{ijt}|\mu_{it}, \sigma) \right]^{ibid} \left[g(v_{ijtn}^{*}|\mu_{it}, \sigma, MinBid_{it}, C_{ijtn}^{b}) \right]^{1-ibid}
\]

(1.16)

where \(b_{ijt} \) is the bidder’s revealed valuation from either a) the current auction \(n \) or b) the bidder’s most recent bid on a like item (e.g., the same coin type) in a previous auction.
auction; I^{bid} equals one if the bidder’s valuation has been revealed; v^*_{ijtn} is a partially latent valuation drawn from the valuation distribution if $I^{bid} = 0$. The first term in (1.16) reflects the case where a bid is observed, and the likelihood of observing b_{ijt} on this instance is $g(b_{ijt} | \cdot)$. The second term reflects the case where a bid is not observed ($I^{bid} = 0$). In this case, the latent valuation v^*_{ijtn} is obtained from the distribution $g(\cdot | \cdot)$ truncated at x^*_{ijtn}, where x^*_{ijtn} is defined in Theorem 1.1.

The product of equation 1.16 across $ijtn$ gives the conditional likelihood of bidder model,

$$L^{bidder} = \prod_{i,j,t,n} (p^{bid}_{ijtn} | \cdot)$$ \hspace{1cm} (1.17)

1.4.2 The Conditional Likelihood of Seller Model

The decision regarding the number of items to list, q_{it}, enters the likelihood as follows:

$$p^{list}_{it}(q_{observed} = q_{it} | \cdot) = \prod_{\tilde{q}_{it} \neq q_{it}} \Pr\{\pi_{it}(q_{it}) \geq \pi_{it}(\tilde{q}_{it} \neq q_{it})\}$$ \hspace{1cm} (1.18)

That is, the estimated parameters should maximize the likelihood such that any deviations from the observed q_{it} can not result in extra profit. In practice, given the fact that \tilde{q}_{it} can assume an infinite number of values, it is impossible to calculate $\pi_{it}(\tilde{q}_{it} \neq q_{it})$ for all potential values of \tilde{q}_{it}. Instead, we approximate the likelihood by considering only those profits for a set of \tilde{q}_{it}’s that are within an arbitrarily large range around the observed q_{it}. Given that the profit function is assumed to be concave, any dramatic deviation of \tilde{q}_{it} from the observed q_{it} is unlikely to achieve a higher profit. Therefore the probability of $\Pr\{\pi_{it}(q_{it}) \geq \pi_{it}(\tilde{q}_{it} \neq q_{it})\}$ approaches 1. Hence, our approximation is not likely to be very restrictive.

The conditional likelihood of seller’s model is the product of p^{list}_{it} across i, t,

$$L^{seller} = \prod_{i,t} p^{list}_{it}(q_{observed} = q_{it} | \cdot)$$ \hspace{1cm} (1.19)
Hence the conditional likelihood for the integrated bidder and seller model is

\[L = L_{\text{bidder}} \cdot L_{\text{seller}} \]

(1.20)

1.4.3 Augmented Full Posterior Distribution

By conditioning on the unobserved latent variables, \(v^*_{ijtn}, \pi_{it} \) and \(C^b_{ijtn} \), the model likelihood can be written as follows,

\[
L^{\text{augmented}}|\Omega
= \int_{C^b_{ijtn}} \int_{v^*_{ijtn}} \int_{\pi_{it}(q_{it})} \int_{\pi_{it}(\bar{q}_{it})} (L_{\text{bidder}}|v^*_{ijtn}, C^b_{ijtn})(L_{\text{seller}}|v^*_{ijtn}, C^b_{ijtn}, \pi_{it}(q_{it}), \pi_{it}(\bar{q}_{it}))
\]

\[
\prod_{i,j,t,n} p(C^b_{ijtn}|\Omega_{C^b}) \prod_{i,j,t,n} p(v^*_{ijtn}|\Omega_{v^*})
\]

\[
\prod_{i,t} p(\pi_{it}(q_{it})|\Omega_q) \prod_{i,t,\bar{q}_{it}} p(\pi_{it}(\bar{q}_{it})|\Omega_{\bar{q}}) d\pi_{it}(q_{it}) d\pi_{it}(\bar{q}_{it}) dv^*_{ijtn} dC^b_{ijtn}
\]

where \(L_{\text{bidder}} \) is the bidder model likelihood from equation 1.17, \(L_{\text{seller}} \) is the seller model likelihood from equation 1.19, \(C^b_{ijtn} \) is the latent bidder disutility from equation 1.6, \(v^*_{ijtn} \) is the latent bidder value from equation 1.1, \(\pi_{it}((q_{it})|\cdot) \) and \(\pi_{it}((\bar{q}_{it})|\cdot) \) are latent profits from equation 1.12 and \(\Omega = \{\Omega_{C^b}, \Omega_{v^*}, \Omega_q, \Omega_{\bar{q}}\} \) are the model parameters. As the latent variables are unobserved, we must integrate over these variables to compute the likelihood. We perform this integration via an MCMC approach using data augmentation. One advantage of this approach is that it yields estimates for the distribution of the latent variables which become useful in our policy analysis (for example, we can estimate the unobserved listing costs for each seller and valuations of each bidder). Another advantage of this approach is that it facilitates the integration.

The augmented full posterior can then be constructed by multiplying the likelihood by the prior,

\[
p(\Omega|L^{\text{augmented}}) \propto (L^{\text{augmented}}|\Omega) \ast p(\Omega)
\]
where $p(\Omega)$ is the prior distribution for the model parameters. More details regarding the MCMC sampling chain and the choice of priors are presented in Appendix 4.1.3.

In Appendix 4.1.4, we present the design and results of a simulation that indicates our sampling chain is effective at recovering the true model parameters, enhancing our confidence in model identification. All simulated parameters lie well within the 95% posterior predictive interval for these simulates.

1.5 Results

Table 1.6 reports the parameter estimates for the auctions model using the Celtic coin data. The Table indicates that book value and seller feedback have a positive effect on bidder valuations. For each $1.00 increase in book value, on average bidders value the item an additional 90 cents. A $1.00 increase in the minimum bid implies an 18-cent increase in bidder value and this may reflect the belief that a minimum bid is a signal of quality. Consistent with Ariely and Simonson (2003) and Reiley (2006) we find a positive correlation between minimum price and auction price; for each dollar increase in the seller’s minimum price, the bidder value increases $0.18.

There is no significant effect of a secret reserve on bidder valuations after controlling for the minimum bid. This null result may arise from the sellers’ infrequent use of this feature (in just over 2% of auctions) or because the presence of the secret reserve is not as informative as its level (which is not observed). Storefronts add 76 cents to the mean valuation of an item. The presence of a gallery leads to an increase in value of 54 cents while the presence of a subtitle increases average value by 56 cents. The fee charged to a seller for the gallery is 25 cents while the fee for the subtitle is 50 cents; both fees lie within the posterior 95% predictive interval suggesting that the pricing of these features is in line with the additional value they generate. In sum, item-specific, seller-specific characteristics of the auction and marketing all have material effects on bidders’ perceived valuations of the goods.
Table 1.6: Posterior Means and Standard Deviations of Model Parameters

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>95% Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valuation Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.59*</td>
<td>(0.31, 0.82)</td>
</tr>
<tr>
<td>Book Value</td>
<td>0.90*</td>
<td>(0.89, 0.92)</td>
</tr>
<tr>
<td>(Seller Feedback)/100</td>
<td>0.03*</td>
<td>(0.02, 0.04)</td>
</tr>
<tr>
<td>Minimum Bid</td>
<td>0.18*</td>
<td>(0.15, 0.21)</td>
</tr>
<tr>
<td>Secret Reserve Dummy</td>
<td>0.28</td>
<td>(-0.16, 0.99)</td>
</tr>
<tr>
<td>Store Dummy</td>
<td>0.76*</td>
<td>(0.32, 1.21)</td>
</tr>
<tr>
<td>Gallery Picture Dummy</td>
<td>0.54*</td>
<td>(0.04, 0.79)</td>
</tr>
<tr>
<td>Subtitle Dummy</td>
<td>0.56*</td>
<td>(0.02, 2.21)</td>
</tr>
<tr>
<td>σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.00*</td>
<td>(3.84, 4.41)</td>
</tr>
<tr>
<td>Bidder Disutility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Auctions Attended</td>
<td>0.79*</td>
<td>(0.70, 0.95)</td>
</tr>
<tr>
<td>Lapse Since Last Winning</td>
<td>-0.31*</td>
<td>(-0.34, -0.28)</td>
</tr>
<tr>
<td>Mean Individual Constant</td>
<td>1.68*</td>
<td>(1.50, 1.78)</td>
</tr>
<tr>
<td>Seller Acquisition Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Value</td>
<td>0.86*</td>
<td>(0.65, 1.07)</td>
</tr>
<tr>
<td>Number of Listings</td>
<td>1.27*</td>
<td>(1.02, 1.55)</td>
</tr>
<tr>
<td>Cost Error Variance</td>
<td>0.95*</td>
<td>(0.65, 1.19)</td>
</tr>
<tr>
<td>Mean Individual Constant</td>
<td>1.05*</td>
<td>(0.98, 1.13)</td>
</tr>
<tr>
<td>Log Marginal Likelihood</td>
<td></td>
<td>-21278.41</td>
</tr>
</tbody>
</table>

The number of auctions attended increases one’s bidding disUtility, suggesting decreasing marginal returns for auctions. Meanwhile, consistent with an inter-temporal budget constraint, we find that a bidder’s likelihood of attending new auctions decreases if they won recently (or, alternatively, there are decreasing marginal returns for acquiring an additional item). A significant positive constant cost exists. The constant implies a fixed bidding disutility in the neighborhood of $5.37. Since we use a log-log specification for bidder disutility, the parameters for Attended Auction and Lapse can be interpreted as elasticities or sensitivities. Hence the bidding disutility elasticities for concurrent auctions attended and lapse of time are around 0.79 and -0.31, respectively.
Acquisition opportunity costs for a seller increase with an item’s book value. In particular, given the log-log specification, one can interpret the parameters as elasticities. For a 1 percent increase in the book value, there is an impact on the seller’s total cost in the amount of 0.86 percent. Further, the elasticity of seller cost for the number of listings is 1.27. The mean of the seller-specific constant term is 1.05. As the constant term serves as a scaling factor in our formulation of seller costs, the finding that this term is close to one suggests the scaling effect is immaterial. In other words, seller acquisition costs are largely determined by per item costs and the opportunity cost for multiple listings.

To illustrate the fit of our model, we simulate bid values within sample based on our estimates and data. We then compare the observed bid/book ratios with the simulated ratios. Figure 1.4 shows the comparison between the two variable distributions. The model fits the mean bid to book ratio very well (Observed =
0.48, Simulated = 0.48). The median is also comparable (0.31 vs. 0.39). Overall, the fit seems good, suggesting our model specification captures the observed bidding behaviors well.

Of note, we contrast the full model to one wherein we model only bidder behavior. The bidder-model parameter estimates are virtually identical to those obtained using the full model though the full model yields better predictions regarding bidder behavior, potentially suggesting gains in efficiency arising from joint estimation (the log-marginal likelihood for bidders in the joint model is -20062.5 vs. -20265.2 in the buyer only model). We speculate that the similarity in bidder parameter estimates across the bidder only and bidder-seller models reflects independence in errors across the bidder and lister models; this finding would be less likely to obtain in the face of omitted variables that could induce correlated errors. Though our results indicate joint estimation is more likely an issue of efficiency than bias, it is important to note that estimates pertaining to seller behavior are requisite for engaging the policy simulations that underpin the goals of this paper. Hence our research could not proceed without the seller model.

1.6 Managerial Implications

Whereas the parameter estimates are informative about bidder and seller behavior, they offer little explicit guidance to the auction house regarding its marketing strategy. We consider three strategic implications: a manipulation of auction house fees (which is informative about optimal pricing), the attrition of a customer (which is informative about customer value), and the effect of seller characteristics on auction house revenues (which places a value on a seller’s reputational capital).
1.6.1 Auction House Pricing

Pricing Elasticity and Optimal Pricing

Using the model estimates, one can assess the effect of the auction house pricing strategy on the market equilibrium number of listings, bids and closing prices in the considered category.21 As noted above, we can infer the price-demand relationship even in the absence of any historic variation in fees because the structural model is informative about the latent bidder and seller costs and the bidder valuations. The price-demand relationship enables us to infer how a change in auction house fees affects seller profits, hence the seller listings and the resulting bidder demand. With information on the number and closing price of auctions, the auction house can assess how a fee change affects its revenue (which is equal to the total merchandise volume in the market times the percent commission plus the total number of listed items times the listing fee per item). In Table 1.7 we compute auction fee price elasticities by simulating the effect of a 1\% decrease in current listing fees and commissions on profits.22

Table 1.7 indicates that a decrease in fees improves seller profits, leading to more listings and more gross volume sold on the site.23 However, the effect is much larger for commissions than listing fees. As a result, the overall increase in volume at

21 Note that our model assumes that buyers and seller behave optimally while our simulation presumes the auction house does not. Prima facie, this seems inconsistent. However, there exist some differences between these parties. First and foremost, the firm has indicated directly to us that its pricing does not follow an elasticity-based approach but that it is more heuristic based. Hence they are interested in using elasticity based pricing to inform their decisions, which is a key goal of this exercise. Second, buyers and sellers face repeated observations and play auctions over many occasions. This suggests the potential for learning and feedback, as such, the “as if” optimality assumption may be reasonable (Amaldoss and Jain, 2005). In contrast, little price variation exists for the auction house making it difficult to learn.

22 The auction house utilizes a tiered commission system. To protect the confidentiality of the data supplier, we do not reveal the actual commissions. To compute the elasticities, we decrease the commission at each level by 1\%. Likewise we reduce the listing fees by 1\%.

23 We do not report actual revenues to protect the confidentiality of the data provider. However, the actual revenue lies within the 95\% posterior predictive interval for estimated revenues.
Table 1.7: Fee and Commission Price Elasticities

<table>
<thead>
<tr>
<th>Percentage Change</th>
<th>1% Decrease in Commissions</th>
<th>1% Decrease in Listing Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seller Profit</td>
<td>3.90 (1.67, 5.90)</td>
<td>1.93 (0, 4.94)</td>
</tr>
<tr>
<td>Number of Auctions</td>
<td>2.04 (0, 8.95)</td>
<td>0.68 (0, 1.99)</td>
</tr>
<tr>
<td>Auction Website Revenue</td>
<td>0.86 (0.09, 1.85)</td>
<td>-0.08 (-0.11, -0.03)</td>
</tr>
</tbody>
</table>

the auction site arising from a commission decrease generates enough total revenue to offset the reduction in per item commissions. In contrast, the increased volume arising from reduced per item listing fees does not offset the loss in the per item listing fee. All 95% posterior predictive intervals for these fee elasticities exclude zero. Accordingly, we would recommend that the auction house shift its fees for this category from commissions to listing fees by reducing the commissions and increasing the listing fees. At a minimum we would recommend that they refrain from raising commissions further by raising listing fees instead.

This recommendation can in part be explained by noting how different fee types affect sellers. Per item fees are an example of a uniform pricing strategy whereas commissions tend to disproportionately affect higher value items. As a result, a decrease in commissions disproportionately affects high value sellers relative to a decrease in fees. Simulating the effect of a 2 point decrease in commissions, we observe more high book value items listed and high feedback sellers listing more items relative to the case wherein per item fees are decreased. As higher book values and reputations lead to increased item valuations, a reduction in commissions disproportionately affects these groups thereby leading to an increase in high valuation listings. Given that these high valuation items generate higher profits for the seller, a small reduction in commissions can lead to a considerable increase in seller profits for such items and a concurrent increase in listings. We note that these effects are likely to be amplified in categories wherein valuations and feedback scores assume
greater importance, such as art. To further assess the degree to which listing fees should be increased and commissions reduced for the considered category, we create a 9 by 6 grid of alternative commission and listing fee structures and estimate the house revenues associated with each fee combination. Table 1.8 reports the result of this analysis.

Table 1.8: Revenue Percentage Changes with Alternative Pricing Schedules

<table>
<thead>
<tr>
<th>Commissions (points)</th>
<th>Fees (%) 0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>0.63</td>
<td>0.96</td>
<td>0.76</td>
<td>0.13</td>
</tr>
<tr>
<td>-0.25</td>
<td>1.04</td>
<td>1.48</td>
<td>1.74</td>
<td>1.77</td>
<td>1.21</td>
<td>0.30</td>
</tr>
<tr>
<td>-0.50</td>
<td>1.11</td>
<td>1.61</td>
<td>1.84</td>
<td>2.03</td>
<td>1.37</td>
<td>1.30</td>
</tr>
<tr>
<td>-0.75</td>
<td>1.19</td>
<td>1.87</td>
<td>2.19</td>
<td>2.89</td>
<td>2.66</td>
<td>1.76</td>
</tr>
<tr>
<td>-1.00</td>
<td>1.16</td>
<td>1.77</td>
<td>1.97</td>
<td>2.87</td>
<td>2.49</td>
<td>1.65</td>
</tr>
<tr>
<td>-1.25</td>
<td>1.12</td>
<td>1.38</td>
<td>1.68</td>
<td>1.90</td>
<td>1.61</td>
<td>1.33</td>
</tr>
<tr>
<td>-1.50</td>
<td>1.01</td>
<td>1.19</td>
<td>1.48</td>
<td>1.73</td>
<td>1.53</td>
<td>1.07</td>
</tr>
<tr>
<td>-1.75</td>
<td>0.97</td>
<td>1.18</td>
<td>1.48</td>
<td>1.71</td>
<td>1.52</td>
<td>0.81</td>
</tr>
<tr>
<td>-2.00</td>
<td>0.31</td>
<td>0.81</td>
<td>0.93</td>
<td>1.39</td>
<td>0.87</td>
<td>0.39</td>
</tr>
</tbody>
</table>

The upper left corner of Table 1.8 reflects the current level of listing fees and commissions. Each subsequent row indicates the effect of a one quarter point decrease in commissions. Thus, the last row indicates a two point decrease in commissions. Each subsequent column from left to right indicates the effect of a 5% increase in the listing fee. Thus, the last column indicates a 25% increase in listing fees from the current level. The cells in Table 1.8 report the percentage change in auction house revenue for each combination of commission and listing fees; in general, revenues increase with lower commissions and higher fees. The maximum revenue increase of roughly 3% is associated with a 0.75 point reduction in commissions and a 15% increase in listing fees. Even were the auction house not to decrease commissions, it

24 We base the two point decrease upon the highest commission rate (which is associated with the lowest tier of closing prices). We then translate this point decrease to a percentage and apply it to the other pricing tiers.

40
is possible to increase revenues by nearly 1% with a 15% increase in listing fees. To the extent similar increases could be realized across categories, a 3% increase could prove quite considerable.

Price Customization

Recently, Zhang and Wedel (2008) have proposed that the pricing customization across customers enhances profits in the context of frequently purchased grocery goods. We therefore seek to assess whether the result is similar in the context of auctions. One reason to believe customization may be efficacious is the relatively high dispersion in the value of items listed for sale in the auction context (book values range from $3 to $675). Sellers of high value listings (defined as those items with greater value than the median Book Value) stand to gain more from changes to commissions whereas sellers of low value items stand to gain more from changes in per item listing fees. To explore whether we can improve upon the pricing strategies in Table 1.8, we proceed as follows. Instead of increasing fees and lowering commissions to all sellers, we increase fees and lower commissions only for high value sellers. Given sellers of high value items are more sensitive to commissions and less sensitive to fees, targeting a price change to these sellers could prove profitable. Table 1.9 reports this analysis.

Comparing the first columns of Table 1.8 with those in Table 1.9, we observe that a 0.75 point decrease in commissions (and no change in per item fees) targeted to only the high item value sellers yields a nearly 3.0% revenue increase in a customized setting but only a 1.2% increase in the uniform pricing setting. Not only does this triple the revenue gain observed in the non-targeted pricing setting, it exceeds the maximum potential return of 2.89% when prices are not customized. Therefore, targeting commissions seems to have a material effect on revenues. Contrasting the first rows of Table 1.8 to those in Table 1.9 yields a comparison between raising per
Table 1.9: Revenue Effects with Targeting of Commissions and Fees

<table>
<thead>
<tr>
<th>Commissions (points)</th>
<th>Fees (%)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.34</td>
<td>0.82</td>
<td>0.99</td>
<td>0.73</td>
<td>0.69</td>
</tr>
<tr>
<td>-0.25</td>
<td>1.00</td>
<td>2.09</td>
<td>2.59</td>
<td>3.47</td>
<td>3.67</td>
<td>2.57</td>
<td>2.37</td>
</tr>
<tr>
<td>-0.50</td>
<td>2.93</td>
<td>3.13</td>
<td>3.82</td>
<td>3.91</td>
<td>2.96</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>-0.75</td>
<td>2.92</td>
<td>3.07</td>
<td>3.80</td>
<td>3.84</td>
<td>2.59</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>-1.00</td>
<td>2.21</td>
<td>2.49</td>
<td>2.62</td>
<td>2.31</td>
<td>2.19</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>-1.25</td>
<td>1.02</td>
<td>1.11</td>
<td>1.80</td>
<td>2.02</td>
<td>1.78</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>-1.50</td>
<td>0.91</td>
<td>1.03</td>
<td>1.73</td>
<td>1.81</td>
<td>1.91</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>-1.75</td>
<td>0.22</td>
<td>0.54</td>
<td>1.07</td>
<td>1.57</td>
<td>1.04</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

item listing fees to all sellers with only raising fees to high value sellers (as low value sellers are presumably more sensitive to fees). As the cells are comparable across the two Tables, we conclude that there is little benefit to targeting fees relative to targeting commissions. Finally, Table 1.9 suggests the maximum return of the proposed customized strategy (obtained with a 0.75 point decrease in commission and a 15% increase in fee to high value sellers,) to be 3.91% compared to 2.89% from the blanket strategy. Thus, the potential gain arising from targeted pricing is about 35%. These numbers are in line with the findings of Zhang and Wedel (2008).

In sum, the joint model of bidder and seller behavior enables us to develop pricing prescriptions even in absence of any historical pricing variation. Given the total volume transacted in the area of Internet auctions, the pricing problem is an important one and the proposed model represents an initial step towards addressing this problem. In principle, other policy simulations are possible with our model, including an assessment of how a change in auction rules away from sealed bid second price auctions would affect auction house revenue.
1.6.2 Customer Value in a Two-sided Market

Valuing customers has seen increased research attention in marketing in recent years (Kamakura et al., 2005). Firms seek to assess customer profitability in order to determine how much to invest in a given customer (for retention or acquisition), whether to divest an unprofitable customer and for firm valuation. Yet the customer valuation literature focuses on customer valuation in contexts where one customer’s presence does not affect another. Valuing customers in two-sided markets is problematic because of the interaction between bidders and sellers. Exacerbating this consideration in the context of auctions is the role of competition in customer valuation. Should a seller attrite, the supply of auctions decreases. Given price increases are permanent, this has two enduring effects: i) fewer items listed leads to increased competition on the part of bidders for the remaining items, thereby driving up prices resulting in higher per-auction commissions for the auction house and ii) higher prices paid by buyers and lesser competition encourages the remaining sellers to list some additional items which will also generate revenue for the auction house. These factors, which we denote indirect value effects, will offset the initial revenue lost from a departing seller (denoted direct value effects) and these indirect effects could be considerable. A similar categorization applies on the bidder side. When one buyer departs the system, others that remain will bid for the items thereby offsetting this loss to some degree. However, softer competition among bidders could also lead to lower prices and therefore fewer items listed on the part of sellers. Thus, the direct value effect for a buyer in terms of auction revenue is offset to some degree by the presence of other bidders in the system provided this does not induce too many sellers to depart.

In the absence of a model that captures competitive interactions, it is unclear how to value customers. The most commonly used practice is to use the direct effect to measure customer value. However, this approach overstates the value of
a customer by ignoring competition. Our solution to this problem is to conduct a policy experiment wherein a particular buyer or seller is excluded from the system and compute the change in the equilibrium number of listings and closing prices of those listings over the duration of the data. By comparing the new equilibrium to the original, we can compute the short-term value of a customer to the auction house. In doing so, we abstract away from long-term dynamics such as the growth (diffusion) of bidders and sellers (Gupta et al., 2006). It is therefore important to delineate between our short-term measure of customer value (as in our approach) and the more forward-looking lifetime value metrics often used in marketing (Gupta et al., 2006; Kamakura et al., 2005). Table 1.10 reports the result of a simulation wherein the largest buyer and seller, respectively, attrite and the resulting loss in fees to the auction house.

Table 1.10: The Value of the Largest Customer

<table>
<thead>
<tr>
<th></th>
<th>Seller</th>
<th></th>
<th>Buyer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dollars</td>
<td>Percent</td>
<td>Dollars</td>
<td>Percent</td>
</tr>
<tr>
<td>Direct Value</td>
<td>$127</td>
<td>100%</td>
<td>$26</td>
<td>100%</td>
</tr>
<tr>
<td>Indirect Value</td>
<td>$30</td>
<td>24%</td>
<td>$21</td>
<td>81%</td>
</tr>
<tr>
<td>Total Value</td>
<td>$97</td>
<td>76%</td>
<td>$5</td>
<td>19%</td>
</tr>
</tbody>
</table>

The first row of Table 1.10 presents the direct value effects or the revenue of the auctions in which the customer participates, reflecting the total fees arising from the auctions in which the largest seller and buyer transact (a commonly used metric for valuing a customer in a two-sided market). The third row reports the equilibrium revenue realized by the auction house when the customer attrites as computed by our model (we call this the total effect as it is the sum of the direct effect plus the indirect and opposite effect arising from competition). The second row reports the difference between the direct effect and the total effect (i.e., the indirect effect). We also compute the relative percentage of the total effect that arises from the direct
and indirect effects. For example, the direct effect of the largest seller on auction house revenues is $127. The revenue realized by the auction house were this seller to attrite is $97 (the total effect). Thus, the direct effects overstate the total revenue loss by $30, or nearly a third ($30/$97). Given that competition does not offset most of the loss, we conclude that products sold by this vendor in this market are not altogether highly substitutable with the other products being auctioned. A rather different conclusion is realized on the buyer side where the largest buyer generates $26 in direct revenue but only $5 in total revenue, suggesting the indirect effects to be $21. When this buyer leaves the market, others fill the void. Accordingly, the direct effects overstate the total effect by over 400%.

As noted above, indirect effects manifest as a change in equilibrium prices and supply. We can apportion the indirect effects across prices and supply in order to ascertain which effect is greater. This decomposition yields insights into whether the largest customer is more likely to affect listings (driven by seller behavior) or the closing price per listing (driven by bidder behavior). Let N_0 denote the number of closing auctions listed by competing sellers prior to attrition of the largest seller and p_0 denote the $N_0 \times 1$ vector of unit revenues (commission plus listing fees) of those auctions. Similarly, we denote the number of auctions and vector of unit revenues after the largest seller attrites as N_s and p_s. Using this notation, we compute i) the indirect effects arising solely from a change in unit revenues holding the number of auctions fixed, \(\sum_{k=1}^{N_s} p_{sk} - \sum_{k=1}^{N_0} p_{0k}\) and ii) the expected change in revenue arising from a change in the number of auctions holding the unit revenues fixed, \(\sum_{k=1}^{N_s} p_{0k} - \sum_{k=1}^{N_0} p_{0k}\).

We use a similar decomposition to assess the effect of buyer attrition. Table 1.11 presents the results of this analysis.

Columns 2 and 3 report the results of this analysis for the attrition of the largest
seller and columns 4 and 5 report the analogous results for the attrition of the largest buyer. Of the $30 indirect competitive effects that offset the total effect of the largest seller’s attrition, about 2/5 ($12) of the competitive effects are due to other sellers listing more items and about 3/5 ($18) of the competitive effect is due to higher prices that arise from bidders bidding on fewer goods on the market. Thus, seller attrition plays a major role on both competitor behavior (items listed) and bidder behavior (bids).

With regard to the departure of the largest buyer, about 2/5 ($9) of the indirect effects can be attributed to the unit revenue change and 3/5 ($12) can be accounted by changes of number of auctions. Although the biggest bidder attrites, other bidders step in to fill the void and generate $21 to largely offset the $26 loss. Overall we conclude that, under a two-sided market such as online auction, using direct revenue as the metric may overstate a customer’s value considerably. To accurately measure the value of a customer, a firm needs to take into account the network externalities caused by the customer.

1.6.3 Elasticities of Seller Feedback Scores

As noted in the literature on signalling game, seller feedback should play a role in transmitting the quality of their product leading to increased bids (Cabral and Hortacsu, 2006). Table 1.6 confirms this proposition suggesting an increase of 100 in the seller feedback score leads to an average increase in customer valuation of

Table 1.11: Indirect Value Due to Listings and Prices

<table>
<thead>
<tr>
<th></th>
<th>Seller Value</th>
<th>Seller Percent</th>
<th>Buyer Value</th>
<th>Buyer Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Value</td>
<td>$30</td>
<td>100%</td>
<td>$21</td>
<td>100%</td>
</tr>
<tr>
<td>Effect Due to Adjustment in Listings</td>
<td>$12</td>
<td>39%</td>
<td>$12</td>
<td>57%</td>
</tr>
<tr>
<td>Effect Due to Adjustment in Unit Revenues</td>
<td>$18</td>
<td>61%</td>
<td>$9</td>
<td>43%</td>
</tr>
</tbody>
</table>
3 cents. However, the magnitude of the feedback elasticity is unclear as a change in its value (holding other seller’s feedback scores fixed) will induce other sellers to change their listing behaviors, which in turn has a downstream influence on bidders. In Table 1.12 we report the effect of a 1% increase in seller feedback scores on the seller’s and auction house’s revenues.

Table 1.12: Seller Feedback Score Elasticity

<table>
<thead>
<tr>
<th>Percentage Change</th>
<th>1% increase in Seller Feedback Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seller Profit</td>
<td>0.15 (0.04, 0.19)</td>
</tr>
<tr>
<td>Number of Auctions</td>
<td>0.16 (0.06, 0.65)</td>
</tr>
<tr>
<td>Auction Website Revenue</td>
<td>0.12 (0.11, 0.13)</td>
</tr>
</tbody>
</table>

We find that a 1% increase in reputation leads to a 0.15% increase in seller profits assuming no competitive reaction in reputation. Using our estimates of cost, we can compute the break even value for increasing reputational capital. As our model estimates suggest that costs are roughly half of seller revenues, this calculation implies that if the cost of increasing reputation by 1% is less than 0.30% of revenue, then it is profitable to do so. In practice, the 0.30% threshold is an upper bound because it is reasonable to conjecture that competing sellers will also raise their reputation scores in response.

1.7 Conclusion

Internet auctions have grown exponentially over the past decade and are now a major world wide source of transactional volume. In spite of this ascendancy, few econometric models exist to explain the role of seller behavior in the context of auctions. Seller behaviors are of interest because a) these affect the optimal policy on the part of the auction house (such as the fee structure and auction design), b) seller behaviors affect the choices of bidders, which suggests the traditional assumption of
exogenous seller behavior in the empirical IO literature may be questionable, and
c) seller behavior is of interest in its own right (in assessing customer value, for
example).

We redress this consideration via a structural model of seller and bidder behaviors
across auctions. We posit sellers will list if the return from doing so exceeds their
respective costs. Likewise, we presume the bidders will bid if the expected return
from doing so exceeds their respective costs. An important component of the model
is its integration of bidder and seller behavior. Sellers, when deciding to list, must
consider the bids likely to materialize if they list and also the potential of competitive
listings. Likewise, bidders must consider the number of auctions across which they
can bid. In this fashion, the behaviors of the two groups are linked. This linkage
exemplifies a two-sided market wherein bidders and sellers interact on a common
platform (Rochet and Tirole, 2006) and extends structural models of auctions into
this domain.

Accordingly, we develop an empirical structural model which rationalizes bidder
and seller behavior under the auction context. We estimate this model using six
months of auction data for Celtic coins provided by an auction house. The data are
consistent with an independent private value auction. We use MCMC techniques
to estimate the costs and valuations that would be consistent with the bidding and
listing behavior observed in the data. Once these are known, it becomes possible to
assess the role of fees on equilibrium listings. That is, as fees rise, seller profits fall
and they are less likely to list. Bidders, faced with fewer auctions, will increase their
bids to win. The net effect can be determined in this fashion.

The estimates from our empirical model indicate that item characteristics (such
as its book value), seller characteristics (their feedback scores), and marketing tools
(minimum bid, the use of a store front, and additional item information revealed by
a subtitle and a picture) have significant impacts on bidder valuations and thus their
bids. We further develop insights into bidder and seller costs and valuations, such as the finding that a 1% increase in book value on average increases seller costs by 0.86%.

Using these results, our policy experiment indicates that an increase in listing fees will increase auction house revenues while an increase in commissions will decrease them. By searching over a grid of values in the neighborhood of its current fees, we find that the change in fees and commissions can bring an increase of nearly 3% in auction house revenues for the Celtic coin category. The intuition behind this result is that fees exemplify a uniform pricing policy whereas commissions are a form of high value pricing discrimination. As such, a decrease in commissions has a large effect on the profitability of high valuation items (such as those with a high book value and listed by high reputation sellers) leading to a large increase in listings for such items. Accordingly, we expect our finding that pricing should be reallocated toward fixed fees to be amplified in categories with more high valuations items and attenuated in categories with lower valuation items. We build further upon this intuition by considering a targeted pricing strategy wherein high value users face lower commissions and higher per item fees than low value users. We find that customized pricing can increase revenues by 35% over the uniform pricing solution.

The approach developed herein is also useful for assessing short-term customer value in two sided markets. Customer value is relevant to firms seeking to assess how much to invest in retaining or acquiring customers and, to date, this literature has been silent on the value of customers in the context of two-sided markets. The primary information available to value a customer (such as a seller) is the revenue that customer generates for a firm. However, such a valuation fails to account for competitive effects such as the tendency of bidders to switch to other sellers when a seller attrites and the tendency of other sellers to list more items. In general, we find approaches that ignore such indirect effects to overstate customer value of the
seller by nearly a third and the value of a buyer by over 400%. We further apportion these indirect seller effects into an increase in the number of listings by competing sellers who seek to capitalize on the departure of competition and the increase in prices arising from stiffer bidder competition for the remaining items. We find these effects to be roughly equal.

The complexity of the problem we consider necessitates some simplifications, which also represent both limits and future research opportunities. In particular, we approximate bidding dynamics using lagged purchases in the cost function to capture inter-temporal dynamics and multi-auction bidding that may be induced by an inter-temporal multi-item budget constraint or price expectations. A more complete specification regarding the dynamics might yield some novel insights. Further research is therefore warranted. Second, consistent with our data, our model utilizes the private value assumption to simplify the analysis. An extension to the common value setting would yield interesting insights regarding interactions among bidders. Third, we do not consider competition between auction houses. We believe this is a reasonable approach, as fees constitute a relatively small component of the overall cost of listing items in this category and because the large number of bidders and sellers on this site make it less likely that competing sites would be attractive alternatives to sellers. Nonetheless, inter-site competition is widely unaddressed in the literature and represents an important direction for future analysis. Fourth, we presume the auction house is not strategic in its price setting behavior. Though this assumption is predicated on conversations with price setters at this organization, many firms (e.g., Google and Yahoo!) are strategic in their use of pricing mechanisms and it would be interesting to address this issue. Fifth, we consider listing features to be exogenous. It is unlikely that endogenizing these variables will yield a unique equilibrium, so it is unclear whether relaxing this restriction will be useful for policy analysis. Moreover, given the number of potential combinations of these
features, it is not clear that it is possible to solve for all of them. Yet these features represent a source of revenue to the auction house, and the problem of how to price these is another area of importance to consider; recent advances in combinatorial optimization could prove fruitful here. In sum, we believe that the combination of the material economic importance of auctions and the large array of remaining problems for consideration suggests this is a rich area for future research. We hope our initial foray into the problem of bidder and seller networks in the context of auctions will lead to further research in this domain.
2

A Dynamic Model of Sponsored Search Advertising

2.1 Introduction

Sponsored search is one of the largest and fastest growing advertising channels. In January of 2009 alone, Internet users conducted 13.5B searches using the top 5 American search engines compared to 10.5B in the previous January, indicating a robust 29% year over year increase.1 In the United States, annual expenditures on sponsored search advertising increased 28% to $8.9B in 2007, and the number of firms using sponsored search advertising rose from 29% to 41%.2 Moreover, advertising expenditures on sponsored search is forecast to grow to $25B by 2012.3 By contrast, overall 2007 television advertising spending in the United States is estimated to be $62B, an increase of only 0.7% from the preceding year.4 Hence, search engine marketing is becoming a central component of the promotional mix in many organizations.

52
The growth of this new medium can be ascribed to several factors. First, the increasing popularity of search engine sites relative to other media among consumers affords a greater advertising reach. In addition to searches on large general search engines such as Google.com, MSN.com, and Yahoo.com, search is also widespread on more focused ones (dealtime.com searches Internet stores, kayak.com searches travel products, addall.com searches books, etc.). The broad reach of search can be ascribed to the complexity of wading through an estimated 155 million sites to return relevant results in response to users’ search queries. By comparison, a top rated TV show such as “Desperate Housewives” only has about 25M viewers (IRI, 2007); and the growing popularity of DVR services offered by TiVo and cable companies have and will further decrease the audience base of traditional TV advertising. Second, more and more consumers use the Internet for their transactions (Ansari et al., 2008), and Internet search is an especially efficient way to promote online channels. For example, Qiu et al. (2005) estimate that more than 13.6% of the web traffic is affected by search engines. Third, search advertising often targets consumers who are actively seeking information related to the advertisers’ products. For example, a search of “sedan” and “automotive dealer” might signal an active purchase state. As a result of these various factors, Jupiter Research reports that 82% of advertisers were satisfied or extremely satisfied with search marketing ROI in 2006 and 65% planned to increase search spending in 2007.

Given the increasing ubiquity of sponsored search advertising, the topic has seen substantially increased attention in marketing as of late (Ghose and Yang, 2007; Rutz and Bucklin, 2007; Rutz and Bucklin, 2008; Goldfarb and Tucker, 2008). These recent advances focus upon the efficacy of an advertiser campaign. To date, empirical

research on keyword search has been largely silent on the perspective of the search engine, the competition between advertisers, and the behavior of the searcher. Given that the search engine interacts with advertisers and searchers to determine the price and consumer welfare of the advertising medium (and hence its efficacy), our objective is to broaden this stream of research to incorporate the role of all three agents: the search engine, the advertisers, and the searchers. This exercise enables us to determine the role of search engine marketing strategy on the behavior of advertisers and consumers as well as the attendant implications for search engine revenues. Our key contributions are, accordingly, as follows:

1. From a theoretical perspective, we conceptualize and develop an integrated model of web searcher, advertiser and search engine behavior. To our knowledge, this is the first empirical paper focusing on the marketing strategy of the search engine. Much like Yao and Mela (2008), we construct a model of a two-sided network in an auction context. One side of the network includes the searchers who generate revenue for the advertiser. On the other side of the two-sided network are advertisers whose bidding behavior determines the revenue of the search engine. In the middle lies the search engine. The goal of the search engine is to price consumer information, set auction mechanisms, and design webpages to elucidate product information so as to maximize its profits. Some key insights from this model include:

 • Advertisers in our application have an average value per click of $0.27. Given that the average price of software products advertised on the site in our data is about $22, this implies these advertisers expect about 1.2% (i.e., $0.27/$22) of clicks will lead to a purchase. This is consistent with the industry average of 1-2% reported by GameDaily.com, suggesting good face validity for our model.
• In addition, we find considerable heterogeneity in consumer response to sponsored search advertising. Frequent link clickers, who represent 10% of the population but 90% of the clicks, tend to be more sensitive to slot order – in part because slot position can signal product quality. These insights represent central inputs into our policy simulations alluded to below.

2. From a substantive point of view, we offer concrete marketing policy recommendations to the search engine. In particular, the two-sided network model of keyword search we consider allows us to address the effect of the following policy simulations (and would enable us to address many others) on auction house and advertiser profits as well as consumer welfare:

• Search Tools. Many search engines, especially specialized ones such as Shopping.com, provide users options to sort/filter search results using certain criteria such as product prices. On one hand, the search tools may mitigate the desirability of bidding for advertisements because these tools can remove less relevant advertisements. This would tend to lower search engine revenues. On the other hand, these tools can also attract more users to the site leading to a potential increase in advertising exposures and searchers. This would increase revenues. The trade-off leads to the question of how search tools impact consumer searching behavior, firms’ advertising decisions, and search engine profits. Our analysis indicates that negative consumer effects on search engine profits (−6.4%) outweigh the corresponding positive advertiser effects on search engine profits (2.7%) and that overall the sort/filter options enhance platform profits by 3.7%. Consistent with this result, there is a corresponding loss in consumer welfare of 5.6% and an attendant increase in advertiser profits
of 4.1%.

- Segmentation and Targeting. Most search engines auction keywords across all market segments. However, it is possible to auction keywords by segment. This targeting tends to reduce competition between advertisers within segments as markets are sliced more narrowly, leading to lower bids and hence lower potential revenues for the search engine. Yet targeting also enhances the efficiency of advertising, which tends to increase advertiser bids. Overall, we find that the latter effect dominates (2.2%) the former effect (−0.8%) and that search engine revenue increases 1.4% by purveying keywords by consumer market segments. Moreover, we find advertiser profits improve by 11% (from reduced competition in bidding and more efficient advertising) and consumer welfare (as measured by utility) increases 2.9%. Hence, this change leads to considerable welfare gains across all agents.

- Market Intelligence. Advertisers’ knowledge about consumers changes if search engines sell consumer demographic and behavioral information to advertisers. This raises the question of whether and how information asymmetries between the engine and advertisers affect bidding behavior. We find that there is a negligible 0.08% increase in search engine profits accrued when this information asymmetry is erased. This finding suggests that advertisers are able to make reasonable inferences about the nature of heterogeneity in market response from the aggregate demand data, consistent with recent research regarding individual level inference from aggregate demand (Chen and Yang, 2007; Musalem et al., 2008). Moreover, the value of this information lies more in the advertiser’s ability to exploit it by targeted bidding (as indicated in the preceding paragraph).
• Mechanism Design. The wide array of search pricing mechanisms raises
the question of which auction mechanism is the best in the sense of in-
centing advertisers to bid more aggressively thereby yielding maximum
returns for the search engine. We consider two common mechanisms: a
first price auction (as used by the considered firm in our analysis) and
a second price auction (wherein a firm pays the bid of the next lowest
bidder). Virtually no revenue gains accrue to the platform from a sec-
ond price auction (0.01%). However, advertiser bids under second price
auction are close to bidders’ true values (bids average 98% of valuations),
while bids under the first price auction are much lower (72%). This find-
ing is consistent with theory that suggests first price auctions lead to bid
shading and second price auctions lead to truth telling (Edelman et al.,
2007). Hence, we lend empirical validation to the theoretical literature on
auction mechanisms in keyword search.

3. From a methodological view, we develop a dynamic structural model of key-
word advertising. This dynamic is induced by the search engine’s use of past
advertising performance when ranking current advertising bids. The dynamic
aspect of the problem requires the use of some recent innovations pertaining
to the estimation of dynamic games in economics (e.g., Bajari et al. 2007;
Pesendorfer and Schmidt-Dengler, 2008). We extend this work to be Bayesian
in implementation and apply it to a wholly new context. Overall, we find that
there is a substantial improvement in model fit when the advertiser’s strategic
bidding behavior is considered (the log marginal likelihood improves by 50.0),
consistent with the view that their bidding behavior is dynamic. In addition,
we find the posterior distributions of parameter estimates is non-normal; while
classical methods assume asymptotic normality, our Bayesian approach does
Though we cast our model in the context of sponsored search, we note that the problem, and hence the conceptualization, is even more general. Any interactive, addressable media format (e.g., DVR, satellite digital radio) can be utilized to implement similar auctions for advertising. For example, with the convergence in media between computers and television in DVRs, simple channel or show queries can be accompanied by sponsored search and this medium may help to offset advertising losses arising from ads skipping by DVR users. In such a notion, the research literature on sponsored search auctions generalizes to a much broader context, and our model serves as a basis for exploring search based advertising.

The remainder of this paper proceeds as follows. First we overview the relevant literature to differentiate our analysis from previous research. Given the relatively novel research context, we then describe the data to help make the problem more concrete. Next, we outline the details of our model, beginning with the clicking behavior of consumers and concluding with the advertiser bidding behavior. Subsequently, we turn to estimation and present our results. We then explore the role of information asymmetry, targeted bidding, advertising pricing, and webpage design by developing policy simulations that alter the search engine marketing strategies. We conclude with some future directions.

2.2 Recent Literature

Research on sponsored search, commensurate with the topic it seeks to address, is nascent and growing. Heretofore this literature can be characterized along two distinct dimensions: theoretical and empirical. The theoretical literature details how agents (e.g., advertisers) are likely to react to different pricing mechanisms. In contrast, the empirical literature measures the effect of advertising on consumer response
in a given market but not the reaction of these agents to changes in the platform environment (e.g., advertising pricing, information state or the webpage design of the platform). By integrating the theoretical and empirical research streams, we develop a complete representation of the role of pricing and information in the context of keyword search. To elaborate on these points, we begin by surveying theoretical work on sponsored search and then proceed to discuss some recent empirical research.

Foundational theoretical analyses of sponsored search include Edelman et al. (2007) and Varian (2007) who examine the bidding behaviors of advertisers in this auction game. The authors assume the auction game as a complete information and simultaneous-move static game, in which exogenous advertising click-through rates increase with better placements. In equilibrium advertiser bidding behavior has the same payoff structure as a Vickrey-Clarke-Groves auction, where a winner’s payment to the seller equals to those losing bidders’ potential payoffs (opportunity costs) were the winner absent (Groves, 1979). Extending this work, Chen and He (2006) incorporate clicking behavior into their model and show that, under the Google bidding mechanism, consumers clicking behavior is affected by access to product information. In particular, they make inferences about product quality based on the ranking presented by the platform and search sequentially according to the ranking. As an equilibrium response, advertisers submit bids equal to their true values for the advertising. Katona and Sarvary (2008) further extend the analysis by relaxing several key assumptions such as the competition for traffic between sponsored links and organic links, the heterogeneity of advertisers in term of their inherent attractiveness to consumers. The authors show multiple equilibria in this auction which do not have closed form solutions. Additional work by Iyengar and Kumar (2006), Feng (2008), and Garg et al. (2006) explicitly consider the effect of the various auction mechanisms on search engine profits. In particular, Iyengar and Kumar (2006) show that the Google pricing mechanism maximizes neither the search engine’s revenue nor the
efficiency of the auction, suggesting the potential to improve on this mechanism as we seek to do. Further, they show that the optimal mechanism is incumbent upon the characteristics of the market, thereby making it imperative to estimate market response as we intend to do in order to improve on pricing mechanisms. Summarizing the key insights from this stream of work, we note that i) there are three agents interacting in the sponsored search context, those who engage in keyword search, advertisers that bid for keywords, and the search platform, ii) searchers affect advertisers bidding behavior by reacting to the search engine’s web page design and hence advertiser payoffs, iii) bidders affect searcher behavior by the placement of their advertisements on the page, and iv) changes in advertiser and consumer behavior are incumbent upon the strategies of the platform.

In spite of these insights, several limits remain. First, because equilibrium outcomes are incumbent upon the parameters of the system, it is hard to characterize precisely how agents will behave. This implies it would be desirable to estimate a model of keyword search in order to measure these behaviors. Second, a static advertiser game over bidding periods is typically assumed, which is inconsistent with the pricing practices used by search engines. Search engines commonly use the preceding period’s click-throughs together with current bids to determine advertising placement, making this an inherently dynamic game. Third, this research typically assumes no asymmetry in information states between the advertiser and the search engine even though the search engine knows individual level clicking behaviors and the advertiser does not. We redress these issues in this paper.

Empirical research on sponsored search advertising is also proliferating. Notable among these papers, Rutz and Bucklin (2008) investigate the efficacy of different keyword choices by measuring the conversion rate from users’ clicks on ads to actual sales for the advertiser. In a related paper, Rutz and Bucklin (2007) considers how advertiser revenue is affected by click-throughs and exposures. This work is impor-
tant because it demonstrates that advertiser valuations differ for various placements and keywords, and that the bids are likely to be related to placements. Ghose and Yang (2007) further investigate the relationships among different metrics such as click-through rate, conversion rate, bid price, and advertisement rank. Though extant empirical research on sponsored search establishes a firm link between advertising, slot position, and revenues – and indicates that these effects can differ across advertisers, some limitations of this stream of work remain. First, it emphasizes a single agent (one advertiser), making it difficult to predict how advertisers in an oligopolistic setting might react to a change in the auction mechanism, webpage design, or information state regarding consumers. Competitive interactions are material to understanding the role of each agent in the context of sponsored search. For example, an advertiser’s value to the search engine pertains not only to its direct payment to the search engine but also to the indirect effect that advertiser has on the intensity of competition during bidding. The increased intensity of competition may serve to drive bids upward and hence increase search engine revenues. Second, the advertisers’ actions affect search engine users and vice-versa. For example, with alternative advertisers being placed at premium slots on a search result page, it is likely that users’ browsing behaviors will be different. As advertisers make decisions with the consideration of users’ reactions, any variations of users’ behaviors provide feedback on advertisers’ actions and thus will ultimately affect the search engine’s revenue.

Integrating these two research streams suggests it is desirable to both model and estimate the equilibrium behavior of all the agents in a network setting. In this regard, sponsored search advertising can be characterized as a two-sided market wherein searchers and advertisers interact on the platform of the search engine (Rochet and Tirole, 2006). This enables us to generalize a structural modeling approach advanced by Yao and Mela (2008) to study two-sided markets. These authors model
bidder and seller behavior in the context of electronic auctions to explore the effect of auction house pricing on the equilibrium number of listings and closing prices. However, additional complexities exist in the keyword search setting including: i) the aforementioned information asymmetry between advertisers and the search engine and ii) the substantially more complex auction pricing mechanism used by search engines relative to the fixed fee auction house pricing considered in Yao and Mela (2008). Moreover, unlike the pricing problem addressed in Yao and Mela (2008), sponsored search bidding is inherently dynamic owing to the use of lagged advertising click rates to determine current period advertising placements. Hence we incorporate the growing literature of two-step dynamic game estimation (e.g., Hotz and Miller, 1993; Bajari et al., 2007; Bajari et al., 2008). Instead of explicitly solving for the equilibrium dynamic bidding strategies, the two-step estimation approach assumes that observed bids are generated by equilibrium play and then use the distribution of bids to infer underlying primitive variables of bidders (e.g., the advertiser’s expectation about the return from advertising). A similar method is also used in an auction context in Jofre-Bonet and Pesendorfer (2003). However, our approach is unique inasmuch as it is a Bayesian instantiation of these estimators, which leads to desirable small sample properties and enables considerable flexibility in modeling choices. Equipped with these advertiser primitives, we solve the dynamic game played by the advertiser to ascertain how changes in search engine policy affect equilibrium bidding behavior.

2.3 Empirical Context

The data underpinning our analysis is drawn from a major search engine for high technology consumer products. Within this broad search domain, we consider search for music management software because the category is relatively isolated in the sense
that searches for this product do not compete with others on the site.7 The category is a sizable one for this search engine as well. Along with the increasing popularity of MP3 players, the use of music management PC software is increasing exponentially, making this an important source of revenue. The goal of the search engine is to enable consumers to identify and then download trial versions of these software products before their final purchase.8 It is important to note that the approach we develop can be readily generalize to other contexts and that we consider this particular instantiation to be a particular illustration of a more general approach.

2.3.1 Data Description

The data are comprised of three files, including:

- Bidding file. Bidding is logged into a file containing the bidding history of all active bidders from January 2005 to August 2007. It records the exact bids submitted, the time of each bid submission, and the resulting monthly allocation of slots. Hence, the unit of analysis is vendor-bid event. These data form the cornerstone of our bidding model.

- Products file. Product attributes are kept in a file that records, for each software firm in each month, the characteristics of the software they purvey. This file also indicates the download history of each product in each month.

- Consumer file. Consumer log files record each visit to the site and are used

7 The search engine defines the music management broadly enough that an array of different search terms (e.g., MP3, iTunes, iPod, lyric, etc.) yield the same search results for the software products in this category. Hence we consider the consumer decision of whether to search for music software on the site and whether to download given a search.

8 A “click” and a “download” are essentially the same from the perspectives of the advertiser, consumer, and search engine. In the “click” case, a consumer makes several clicks to investigate and compare products offered by different vendors and then makes a final purchase. In the “download” case, a consumer downloads several products and makes the comparison before final purchase. Hence there is no difference for a “click” and a “download” in the current context. We use “click” and “download” interchangeably throughout the paper.
to infer whether downloads occur as well as browsing histories. A separate but related file includes registration information and detailed demographics for those site visitors that are registered. These data are central to the bidding model in the context of complete information.

We detail each of these files in turn.

Bidding File

Most search engines yield “organic” search results that are often displayed as a list of links sorted by their relevance to the search query (Bradlow and Schmittlein, 2000). Sponsored search involves advertisements placed above or along side the organic search results (See Figure 2.1). Given that users are inclined to view the topmost slots in the page (Ansari and Mela, 2003), advertisers are willing to pay a premium for these more prominent slots (Goldfarb and Tucker, 2008).

To capitalize on this premium, advertising slots are auctioned off by search engines. Advertisers specify bids on a per-click basis for a respective search term. Though most search engines use auctions to price advertisements, there is considerable variation in the nature of the auctions they use. For example **Overture.com** (who pioneered Internet search auctions and is now a part of **Yahoo!**) adopted a first price auction wherein the advertiser bidding the highest amount per click received the most prominent placement at the cost of its own bid for each click.⁹ First price auctions are still used by **Shopping.com** and a number of other Internet properties. **Google** has developed an algorithm which factors in not only the level of the bid, but the expected click-through rate of the advertiser. This enhances search engine revenue because these revenues depend not only on the per-click bid, but also the number of clicks a link receives. Another distinction of the **Google** practice is that

⁹ In the economics literature, such an auction with multiple items (slots) where bidders pay what they bid is sometimes termed as discriminatory auction (Krishna, 2002).
The mechanism used by the firm we consider is similar to that of Google except that the considered search engine uses a first price auction in place of a second price auction (we intend to compare the efficacy of this mechanism to that of Google in our policy experiments). Winning bids are denoted as sponsored search results and the site flags these as sponsored links. The site we consider affords up to five premium

With a simplified setting, Edelman et al. (2007) show that the Google practice may result in an equilibrium with bidders’ payoffs equivalent to the Vickrey-Clarke-Groves (VCG) auction, whereas VCG auction has been proved to maximize total payoffs to bidders (Groves, 1979). Iyengar and Kumar (2006) further show that under some conditions the Google practice induces VCG auction’s dominant “truth-telling” bidding strategy, i.e., bidders will bid their own valuations.
slots which is far less than the 400 or so products that would appear at the search engine. Losing bidders and non-bidders are listed beneath the top slots on the page and like previous literature we denote these listings as *organic search results*.

These advertiser bidding histories by month are all captured in a database. In particular, the search engine collects bidding and demographic data on all advertisers (products attributes, products download history and bids from active bidders). We detail these data next. Table 2.1 reports summary statistics for the bidding files. At this search engine, bids were submitted on a monthly basis. Over the 32 months from January 2005 to August 2007, 322 bids (including zeros) were submitted by 21 software companies.11 As indicated in Table 2.1, bidders on average submitted about 22 positive bids in this interval (slightly less than once per month). The average bid amount (conditioned on bidding) was $0.20 with a large variance across bidders and time.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-zero Bids (cents)</td>
<td>19.55</td>
<td>8.32</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>Non-zero Bids/Bidder</td>
<td>21.78</td>
<td>10.46</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>All Bids (cents)</td>
<td>8.14</td>
<td>11.04</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>Bids/Bidder</td>
<td>23.13</td>
<td>9.68</td>
<td>1</td>
<td>32</td>
</tr>
</tbody>
</table>

Product File

Searching for a keyword on this considered site results in a list of relevant software products and their respective attributes. Attribute information is stored in a product file along with the download history of all products that appeared in this category from January 2005 to August 2007. In total, these data cover 394 products over 32 months. The attributes include the price of the non-trial version of a product,

11 Since some products were launched after January 2005, they were not observed in all periods.
backward compatibility with preceding operating systems (e.g., Windows 98 and Windows Server 2003), expert ratings provided by the site, and consumer ratings of the product.\footnote{We further considered file size but found many missing values. Moreover, in light of increased Internet speed, file size has become somewhat inconsequential in the download decision and thus is omitted from our analysis.} Trial versions typically come with a 30-day license to use the product for free, after which consumers are expected to pay for its use. Expert ratings at the site are collected from several industrial experts of these products. The consumer rating is based on the average feedback score about the product from consumers. Tables 2.2 and 2.3 give summary statistics for all products as well as active bidders’ products. Based on the compatibility information, we sum each product’s compatibility dummies and define this summation as a measure for that product’s compatibility with older operating systems. This variable is later used in our estimation.

Table 2.2: Product Compatibility

<table>
<thead>
<tr>
<th>Product</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Products</td>
<td></td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>54</td>
</tr>
<tr>
<td>Windows 98</td>
<td>64</td>
</tr>
<tr>
<td>Windows Me</td>
<td>66</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>91</td>
</tr>
<tr>
<td>Windows Server 2003</td>
<td>43</td>
</tr>
<tr>
<td>Bidders’ Products</td>
<td></td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>67</td>
</tr>
<tr>
<td>Windows 98</td>
<td>67</td>
</tr>
<tr>
<td>Windows Me</td>
<td>71</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>85</td>
</tr>
<tr>
<td>Windows Server 2003</td>
<td>57</td>
</tr>
</tbody>
</table>

Overall, active bidders’ products have higher prices, better ratings, and more frequent updates.
Table 2.3: Product Attributes and Downloads

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-trial Version Price $</td>
<td>16.65</td>
<td>20.43</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Expert Rating (if rated)</td>
<td>3.87</td>
<td>0.81</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Average Consumer Rating (if rated)</td>
<td>3.89</td>
<td>1.31</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Months Lapse Since Last Update</td>
<td>15.31</td>
<td>9.88</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Compatibility Index</td>
<td>3.29</td>
<td>1.47</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Number of Downloads/(Product × Month)</td>
<td>1367.29</td>
<td>9257.16</td>
<td>0</td>
<td>184442</td>
</tr>
<tr>
<td>Bidders’ Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-trial Version Price $</td>
<td>21.97</td>
<td>15.87</td>
<td>0</td>
<td>39.95</td>
</tr>
<tr>
<td>Expert Rating (if rated)</td>
<td>4</td>
<td>0.50</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Average Consumer Rating (if rated)</td>
<td>4.06</td>
<td>0.91</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Months Lapse Since Last Update</td>
<td>2.38</td>
<td>0.66</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Compatibility Index</td>
<td>3.51</td>
<td>1.51</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Number of Downloads/(Product × Month)</td>
<td>1992.12</td>
<td>6557.43</td>
<td>0</td>
<td>103454</td>
</tr>
</tbody>
</table>

Consumer File

The consumer file contains the log files of consumers from May 2007 to August 2007. This file contains each consumer’s browsing log when they visit the search engine both within the search site and across Internet properties owned by the search site. The consumer file also has the registration information for those that register.

The browsing log of a consumer records the entry time, browsing path, and duration of the visit. It also indicates whether the consumer made downloads and, if yes, which products she downloaded. Upon a user viewing the search results of software products, the search engine allowed the consumer to sort the results based on some attributes such as the ratings; consumers can also filter products based on some criteria such as whether a product’s non-trial version is free. The browsing log records the sorting and filtering actions of each consumer. Prior to sorting and filtering, the top five search results are allocated to sponsored search slots and the remaining slots are ordered by how recently the software has been updated. There is a small, discrete label indicating whether a search result is sponsored, and sorting and filtering will often remove these links from the top five premium slots.

As the demographic information upon the registration is only optional, the dataset provides little if any reliable demographics of consumers. Hence we focus instead
upon whether a consumer is a registered user of the search engine and on their past search behavior at the other website properties, in particular whether they visited any music related sites (which should control for the consumers’ interests in music).

2.4 Model

The model incorporates behaviors of the agents interacting on the search engine platform: i) advertisers who bid to maximize their respective profits and ii) utility maximizing consumers who decide whether to click on the advertiser’s link. For any given policy applied by the search engine, this integrated model enables us to predict equilibrium revenues for the search engine (the consumer-advertiser interactions are analogous to a sub-game contingent on search engine behavior). The behavior of the bidder (advertiser) is dependent on the behavior of the consumer as consumer behavior affects advertiser expectations for downloads and, hence, their bids. The behavior of the consumer is dependent upon the advertiser because the rank of the advertisement affects the behavior of the consumer. Hence, the behaviors are interdependent. Because advertisers move prior to consumers’ actions in this game, we first exposit the consumer model and then solve the bidder problem in a backward deduction manner.

2.4.1 Consumer Model

Advertiser profit (and therefore bidding strategy) is incumbent upon their forecast of consumer downloads for their products \(d_j^t(k, X_j^t; \Omega_c) \), where \(k \) denotes the position of the advertisement on the search engine results page, \(X_j^t \) indicate the attributes of the advertiser \(j \)'s product at time \(t \), and \(\Omega_c \) are parameters to be estimated. Thus, we seek to develop a forecast for \(d_j^t(k, X_j^t; \Omega_c) \) and the attendant consequences for bidding. To be consistent with the advertisers information set, we begin by basing these forecasts of consumer behavior solely on statistics observed by the advertiser:
the aggregate download data and the distribution of consumers characteristics. Later, in the policy section of the paper, we assess what happens to bidding behavior and platform revenues when disaggregate information is revealed to advertisers by the platform. We begin by describing the consumer’s download decision process and how it affects the overall number of downloads.

The Consumer Decision Process

Figure 2.2 overviews the decisions made by consumers. In any given period t, the consumer’s problem is whether and which software to select in order to maximize their utility. The resolution of this problem is addressed by a series of conditional decisions.

![Figure 2.2: Consumer Decisions](image)

First, the consumer decides whether she should search on the category considered in this analysis (C1). We presume that the consumer will search on the site if it maximizes her expected utility.13

Conditioned upon engaging a search, the consumer next decides whether to sort and/or filter the results (C2). The two search options lead to the following 4 options for viewing the results: $\kappa = \{0 \equiv \text{neither}, \ 1 \equiv \text{sorting but not filtering}, \ 2 \equiv \text{not} \}

13 Though we do not explicitly model the consumer’s decision to search across different terms, product categories or competitors, our model incorporates an “outside option” that can be interpreted as a composite of these alternative behaviors.
sorting but filtering, \(3 \equiv \text{sorting and filtering}\). For each option, the set of products returned by the search engine differs in terms of the number and the order of products. Consumers choose the sorting/filtering option that maximizes their expected utility.

Third, the consumer then chooses which, if any products to download (C3). We presume that consumers choose to download software if it maximizes their expected utility. We discuss the modeling details for this process in a backward induction manner (C3–C1).

\textit{Download} We assume that consumers exhibit heterogeneous preferences for the products and that these consumers choose products to download to maximize their expected payoffs. Consumer \(i\) of preference segment \(g\) \((g = 1, 2, ..., G)\) has some underlying latent utility \(u_{ijt}^{g\kappa}\) for downloading software \(j\) in period \(t\), conditional on her sorting/filtering choice \(\kappa\). A product will be downloaded if and only if \(u_{ijt}^{g\kappa} \geq 0\).

Let \(a\) index product attributes

\[
\begin{align*}
 u_{ijt}^{g\kappa} &= \alpha_j^g + \sum_a x_{jat}^{\kappa} \beta_a^g + \varepsilon_{ijt}^{g\kappa} \\
 &\quad (2.1)
\end{align*}
\]

where

- \(x_{jat}^{\kappa}\) is the observed attribute \(a\) of product \(j\); product attributes also includes product \(j\)'s slot \(k\) on the search page that may vary conditional on sorting/filtering choice \(\kappa\) (hence the superscript \(\kappa\));

- \(\beta_a^g\) is consumer \(i\)'s "taste" regarding product attribute \(a\), which is segment specific;

- \(\varepsilon_{ijt}^{g\kappa}\)'s are individual idiosyncratic preference shocks, realized after the sorting/filtering decision. They are independently and identically distributed over individuals, products and periods as zero mean normal random variables.
To allow the variance of the download ($\tilde{\varepsilon}_{ijt}^g$) and sorting/filtering errors (ξ_{ijt}^g), which will be detailed below) to differ, both must be properly scaled (cf. Train, 2003, Chapter 2). Hence, we invoke the following assumption:

Assumption 1: $\tilde{\varepsilon}_{ijt}^g$'s are independently and identically distributed normal random variables with mean 0 and variance normalized to $(\delta^g)^2$. ξ_{ijt}^g's are independently and identically distributed Type I extreme value random variables.

Under assumption 1, we may re-define the utility in equation 2.1 as

$$u_{ijt}^g = \delta^g (\alpha_j^g + \sum_a x_{jat}^a \beta_a^g + \tilde{\varepsilon}_{ijt}^g)$$ \hspace{1cm} (2.2)

where $\{\alpha_j^g, \beta_a^g, \tilde{\varepsilon}_{ijt}^g\} = \{\tilde{\alpha}_j^g, \tilde{\beta}_a^g, \tilde{\varepsilon}_{ijt}^g\}/\delta^g$; \overline{u}_{ijt}^g is the scaled “mean” utility and $\varepsilon_{ijt}^g \sim N(0,1)$. The resulting choice process is a multivariate probit choice model.\(^{14}\) Let $d_{ijt} = 1$ stand for downloading and $d_{ijt} = 0$ stand for not downloading. We have

$$d_{ijt} = \begin{cases} 1 & \text{if } u_{ijt}^g \geq 0 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (2.3)

and the probability of downloading conditional on parameters $\{\alpha_j^g, \beta_a^g\}$ is

$$\Pr(d_{ijt} = 1) = \Pr(u_{ijt}^g \geq 0) \hspace{1cm} (2.4)$$

$$= \Pr(\delta^g (\overline{u}_{ijt}^g + \tilde{\varepsilon}_{ijt}^g) \geq 0)$$

$$= \Pr(-\tilde{\varepsilon}_{ijt}^g \leq \overline{u}_{ijt}^g)$$

$$= \Phi(\overline{u}_{ijt}^g)$$

where $\Phi(\cdot)$ is the standard normal distribution CDF.

Sorting and Filtering Prior to making a download decision, consumers face several filtering and sorting options which we index as $\kappa = 0, 1, 2, 3$. We expect consumers

\(^{14}\) It can be shown that, under very weak assumptions, download decisions across multiple products with the purpose of maximizing total expected utility can be represented by a multivariate binary choice probit model.
to choose the option that maximizes their expected download utility. Although consumers know the distribution of the product utility error terms ($\tilde{\varepsilon}_{ijt}$), these error terms do not realize before the sorting/filtering. Hence consumers can only form an expectation about the total utilities of all products under a given sorting/filtering option κ before choosing that option. Let $U_{it}^{g\kappa}$ denote the total expected utility from products under option κ, which can be calculated based on equation 2.1:

$$U_{it}^{g\kappa} = \sum_j E(\varepsilon_{ijt} | u_{ijt}^{g\kappa} \geq 0) \Pr(u_{ijt}^{g\kappa} \geq 0) \tag{2.5}$$

This definition reflects that a product’s utility is realized only when it is downloaded. Hence, the expected utility $E(\varepsilon_{ijt} | u_{ijt}^{g\kappa} \geq 0)$ is weighted by the download likelihood, $\Pr(u_{ijt}^{g\kappa} \geq 0)$. The expectation, $E(\cdot)$, is taken over the random preference shocks ε_{ijt}.

In addition to $U_{it}^{g\kappa}$, individuals may accrue additional benefits or costs for using sorting/filtering option κ. These benefits or costs may arise from individual differences of efficiency or experience in terms of engaging the various options for ordering products. We denote such benefits or costs by random terms $\xi_{it}^{g\kappa}$’s. As indicated in assumption 1, $\xi_{it}^{g\kappa}$’s are i.i.d. Type I extreme value. $\xi_{it}^{g\kappa}$ is not observed by researchers but known to individual i. Note that these sorting/filtering benefits or costs do not materialize during the consumption of the products. Therefore, they do not enter the latent utility in equation (2.1). The total utility of search option κ is thus given by

$$z_{it}^{g\kappa} = U_{it}^{g\kappa} + \xi_{it}^{g\kappa} \tag{2.6}$$

Consumers choose the option of sorting/filtering that leads to the highest total utility $z_{it}^{g\kappa}$.

With $\xi_{it}^{g\kappa}$ following a Type I extreme value distribution, the choice of sort-
ing/filtering becomes a logit model such that

$$
Pr(\kappa)_{it}^g = \frac{\exp(U_{it}^{g\kappa})}{\sum_{\kappa'=0}^3 \exp(U_{it}^{g\kappa'})}
$$

(2.7)

To better appreciate the properties of this model, note that $U_{it}^{g\kappa}$ in equation 2.5

$$
U_{it}^{g\kappa} = \sum_j E_x(u_{ijt}^{g\kappa}|u_{ijt}^{g\kappa} \geq 0) \cdot Pr(u_{ijt}^{g\kappa} \geq 0)
$$

(2.8)

$$
= \delta^g \sum_j \left(\bar{\pi}_{ijt}^{g\kappa} + \frac{\phi(\bar{\pi}_{ijt}^{g\kappa})}{\Phi(\bar{\pi}_{ijt}^{g\kappa})} \right) \cdot \Phi(\bar{\pi}_{ijt}^{g\kappa})
$$

With such a formulation, the factors driving the person’s choice of filtering or sorting become more apparent:

- Filtering eliminates options with negative utility, such as highly priced products (because consumer price sensitivity is negative). As a result, the summation in equation 2.8 for the filter option will increase as the negative $\bar{\pi}_{ijt}^{g\kappa}$ are removed. This raises the value of the filter option suggesting that price sensitive people are more likely to filter on price.

- Sorting re-orders products by their attribute levels. Products that appear low on a page will typically have lower utility regardless of their product content.

\footnote{For a normal random variable x with mean μ, standard deviation σ and left truncated at a (Greene, 2003), $E(x|x \geq a) = \mu + \sigma \lambda(a, \mu, \sigma)$, where $\lambda(a, \mu, \sigma)$ is the hazard function such that $\lambda(a, \mu, \sigma) = \frac{\phi \left(\frac{a-\mu}{\sigma} \right)}{1 - \Phi \left(\frac{a-\mu}{\sigma} \right)}$. Hence with $u_{ijt} \sim N(\delta^g \bar{\pi}_{ijt}^{g\kappa}, (\delta^g)^2)$, we have

$$
E(u_{ijt}^{g\kappa}|u_{ijt}^{g\kappa} \geq 0)
$$

$$
= (\delta^g \cdot \bar{\pi}_{ijt}^{g\kappa} + \delta^g \cdot \left(\frac{\phi(-\delta^g \cdot \bar{\pi}_{ijt}^{g\kappa})}{1 - \Phi(-\delta^g \cdot \bar{\pi}_{ijt}^{g\kappa})} \right))
$$

$$
= \delta^g \left(\bar{\pi}_{ijt}^{g\kappa} + \frac{\phi(\bar{\pi}_{ijt}^{g\kappa})}{\Phi(\bar{\pi}_{ijt}^{g\kappa})} \right)
$$

74}
(because consumer slot rank sensitivity is negative). For example, suppose a consumer relies more on product ratings. By moving more desirable items that have high ratings up the list, sorting can increase the $\bar{\pi}_{ijt}$ for these items, thereby increasing the resulting summation in equation 2.8 and the value of this sorting option.\footnote{In particular, in the data over 80\% of consumers who used sorting option chose ratings to reorder products. Thus, we suspect that consumers who rely on ratings are more likely to use the sorting option to see which items are the most popular ones.}

Keyword Search The conditional probability of keyword search takes the form

$$
Pr(search_{i}^{g}) = \frac{\exp(\lambda_{0}^{g} + \lambda_{1}^{g}IV_{i}^{g})}{1 + \exp(\lambda_{0}^{g} + \lambda_{1}^{g}IV_{i}^{g})} \tag{2.9}
$$

where IV_{i}^{g} is the inclusive value for searching conditional on the segment membership. IV_{i}^{g} is defined as

$$
IV_{i}^{g} = \log[\sum_{\kappa} \exp(U_{i}^{g\kappa})] \tag{2.10}
$$

This specification can be interpreted as the consumer making a decision to use a keyword search based on the rational behavior of utility maximization (McFadden, 1977; Ben-Akiva and Lerman, 1985).\footnote{This specification is consistent with the consumer information structure such that $\xi_{i}^{g\kappa}$ is not observed by researchers but known to consumer i.} A search term is more likely to be invoked if it yields higher expected utility.

Segment Membership Recognizing that consumers are heterogeneous in behaviors described above, we apply a latent class model in the spirit of Kamakura and Russell (1989) to capture heterogeneity in consumer preferences. Heterogeneity in preference can arise, for example, when some consumers prefer some features more than others.

We assume G exogenously determined segments.\footnote{It is possible to allow for continuous mixtures of heterogeneity as well. In our application, many consumers enter only once, making it difficult to identify a consumer specific term for them.} Note that our specification implies
a dependency across decisions within the same segment that is not captured via the stage-specific decision errors, and therefore captures the effect of unobserved individual specific differences in search behavior.

The prior probability for user i being a member of segment g is defined as

$$ p_g^i = \exp (\gamma_0^g + Demo'_it \gamma^g) / \sum_{g'=1}^{G} \exp (\gamma_0^{g'} + Demo'_it \gamma^{g'}) $$

(2.11)

where $Demo'_it$ is a vector of attributes of user i such as demographics and past browsing history; vector $\{\gamma_0^g, \gamma^g\} \forall_g$ contains parameters to be estimated. For the purpose of identification, one segment’s parameters are normalized to zero.

Consumer Downloads

The search, sort/filter and download models can be integrated to obtain an expectation of the number of downloads that an advertiser receives for a given position of its keyword advertisement. Advertisers must form this expectation predicated on observed aggregate download totals, d_j^t (in contrast to the search engine who observes y_{ijt}, κ_it and $Demo_it$).\(^{19}\)

To develop this aggregate download expectation, we begin by noting that the download utility $u_{ijt}^{g\kappa}$ is a function of consumer specific characteristics and decisions $\zeta_{ijt} = [\epsilon_{ijt}^{g\kappa}, \zeta_{it}^{g\kappa}, \text{search}_i^g, \text{segment } g \text{ membership, } Demo'_it]$ and that an advertiser needs to develop an expectation of downloads over the distribution of these unobserved (to the advertiser) individual characteristics. Define

$$ A_{ijt} = \{\zeta_{ijt} : u_{ijt}^{g\kappa} \geq 0\} $$

i.e., A_{ijt} is the set of values of ζ_{ijt} which will lead to the download of product j in period t.

\(^{19}\) We discuss the corresponding advertiser download expectation under complete information in section 2.7.3.
Let $D(\zeta_{ijt})$ denote the distribution of ζ_{ijt}. The likelihood of downloading product j in period t can be expressed as

$$P^t_j = \int_{\zeta_{ijt} \in A_{ijt}} D(\zeta_{ijt})$$

$$= \int_{Demo_{ijt}} \sum_g \sum_\kappa \left[\Phi(\pi_{ijt}^{g\kappa}) \frac{\exp(U_{ijt}^{g\kappa})}{\sum_{\kappa' = 0}^3 \exp(U_{ijt}^{g\kappa'})} \right] \Pr(search_{ijt}^g) pg_{ijt}^g dD(Demo_{ijt})$$

where the first term in the brackets captures the download likelihood, the second term captures the search strategy likelihood, and the first term outside the brackets captures the likelihood of search. pg_{ijt}^g is the probability of segment g membership and $D(Demo_{ijt})$ is the distribution of demographics.

Correspondingly, the advertiser with attributes X^t_j has an expected number of downloads for appearing in slot k, $d^t_j(k, X^t_j; \Omega_c)$, which can be computed as follows

$$d^t_j(k, X^t_j; \Omega_c) = M_t P^t_j$$

where Ω_c is the set of consumer preference parameters; M_t is the market size in period t; and X^t_j is the vector of the a product characteristics, x_{jat}.

Product attributes are posted on the search engine and are therefore common knowledge to all advertisers and consumers. We assume these X^t_j are exogenous within the scope of our sponsored search analysis for several reasons. First, advertisers distribute and promote their products through multiple channels and they do so over longer periods of time than considered herein. Hence, product attributes are more likely to be determined via broader strategic considerations than the particular auction game and time frame we consider. Second, the attribute levels for each product are stable over the duration of our data and analysis. We would expect more variation in attribute levels if they were endogenous to the particular advertiser and
search engine decisions we consider. Third, because there is little or no variation
in product attributes over time, it is not feasible to estimate endogenous attribute
decision making with our data.

2.4.2 Advertiser Model

Figure 2.3 overviews the dynamic game played by the advertiser. Advertiser j’s
problem is to decide the optimal bid amount b_j^t with the objective of maximizing
discounted present value of payoffs.\footnote{Because the search engine used in our application has the dominant market share in the con-
sidered category, we do not address advertiser bidding on other sites. Also, it would be difficult to
obtain download data from these more minor competitors. We note this is an important issue and
call for future research.} Higher bids lead to greater revenues because
they yield more favorable positions on the search engine, thereby yielding more click-
throughs for the advertiser. However, higher bids also increase costs (payments)
leading to a trade-off between costs and revenues. The optimal decision of whether
and how much to bid is incumbent upon the bidding mechanism, the characteristics
of the advertiser, the information available at the time of bidding (including the state
variables), and the nature of competitive interactions.

An advertiser’s period profit for a download is the value it receives from the
download less the costs (payments) of the download. Though we do not observe the
value of a download, we infer this value by noting the observed bid can be rationalized
only for a particular value accrued by the advertiser. We presume this value is drawn
from a distribution known to all firms. The total period revenue for the advertiser is
then the value per download times the expected number of downloads.\footnote{The expected number of downloads is inferred form the consumer model and we have derived
this expression in section 2.4.1.} The total
period payment upon winning is the number of downloads times the advertiser’s bid.
Hence, the total expected period profit is the number of downloads times the profit
per download (i.e., the value per downloads less the payment per download).

20 The expected number of downloads is inferred form the consumer model and we have derived
this expression in section 2.4.1.
Of course, the bid levels and expected download rates are affected by rules of the auction. Though we elaborate in further details on the specific rules of bidding below, at this point we simply note that the rules of the auction favor advertisers whose products were downloaded more frequently in the past since such products are more likely to lead to higher revenues for the platform.22 Current period downloads are, in turn, affected by the position of the advertisement on the search engine. Because past downloads affect current placement, and thus current downloads, the advertiser’s problem is inherently dynamic; and past downloads are treated as a state variable.

Finally, given the rules of the auction, we note that all advertisers move simultaneously. While we presume a firm knows its own value, we assume competing firms know only the distribution of this value.

22 This is because the payment made to the search engine by an advertiser is the advertiser’s bid times its total downloads.
The process is depicted in Figure 2.3. We describe the process with more details as follows: Section 2.4.2 details the rules of the auction that affect the seller costs (A2), section 2.4.2 details the advertisers’ value distribution (A1), and section 2.4.2 indicates how period values and costs translate to discounted profits and the resulting optimal bidding strategy (A3).

Seller Costs and the Bidding Mechanism

We begin by discussing how slot positions are allocated with respect to bids and the effect of these slot positions on consumer downloads (and thus advertiser revenue).

Upon a consumer completing a query, the search engine returns \(k = 1, 2, ..., K, ..., \overline{N} \) slots covering the products of all firms. Only the top \(K = 5 \) slots are considered as premium slots. Auctions for these \(K \) premium slots are held every period \((t = 1, 2, ...) \). An advertiser seeks to appear in a more prominent slot because this may increase demand for the advertiser’s product. Slots \(K + 1 \) to \(\overline{N} \) are non-premium slots which compose a section called organic search section.

There are \(N \) advertisers who are interested in the premium slots \((N \leq \overline{N}) \). In order to procure a more favorable placement, advertiser \(j \) submits bid \(b_j^t \) in period \(t \). These bids, submitted simultaneously, are summarized by the vector \(b^t = \{b_1^t, b_2^t, ..., b_N^t\} \). Should an advertiser win slot \(k \), the realized number of downloads \(d_j^t \) is a random draw from the distribution with the expectation \(d_j^t(k, X_j^t; \Omega_c) \).

The placement of advertisers into the \(K \) premium slots is determined by the ranking of their \(\{b_j^t d_j^{t-1}\}_{\forall j} \), i.e., the product of current bid and last period realized downloads; the topmost bidder gets the best premium slot; the second bidder gets the second best premium slot; and so on. A winner of one premium slot pays its own bid \(b_j^t \) for each download in the current period. Hence, the total payment for winning the

\[^{23} \text{For the purpose of a clear exposition, we sometimes use boldface notations or pairs of braces to indicate vectors whose elements are variables across all bidders. For example, } d^t = \{d_j^t\}_{\forall j} \text{ is a vector whose elements are } d_j^t, \forall j. \]
auction is \(b_j^t d_j^t \).

If an advertiser is not placed at one of the \(K \) premium slots, it will appear in the organic section; advertisers placed in the organic section do not pay for downloads from consumers. The ranking in the organic search section is determined by the product update recency at period \(t \), which is a component of the attribute vector of each product, \(X_j^t \). Other attributes include price, consumer ratings, and so on.

Given that the winners are determined in part by the previous period’s downloads, the auction game is inherently dynamic. Before submitting a bid, the commonly observed state variables at time \(t \) are the realized past downloads of all bidders from period \(t - 1 \),

\[
s^t = d^{t-1} = \{d_1^{t-1}, d_2^{t-1}, ..., d_N^{t-1}\} \tag{2.14}
\]

Seller Value

The advertiser’s bid determines the cost of advertising and must be weighed against the potential return when deciding how much to bid. We denote advertiser \(j \)’s valuation regarding one download of its product in period \(t \) as \(v_j^t \). We assume that this valuation is private information but drawn from a normal distribution that is commonly known to all advertisers. Specifically,

\[
v_j^t = v(X_j^t; \theta) + f_j + r_j^t \tag{2.15}
\]

\[
= X_j^t \theta + f_j + r_j^t
\]

where \(\theta \) are parameters to be estimated and reflect the effect of product attributes on valuation. The \(f_j \) are firm-specific fixed effect terms assumed to be identically and independently distributed across advertisers. This fixed effect term captures heterogeneity in valuations that may arise from omitted firm-specific effects such as more

24 Though state variables can be categorized as endogenous (past downloads) and exogenous (product attributes), our exposition characterizes only downloads as state variables because these are the only states whose evolution is subject to a dynamic constraint.
efficient operations. The $r^t_j \sim N(0, \psi^2)$ are private shocks to an advertiser’s valuation in period t, assumed to be identically and independently distributed across advertisers and periods. The sources of this private shock may include: (1) temporary increases in the advertiser’s valuation due to some events such as a promotion campaign; (2) unexpected shocks to the advertiser’s budget for financing the payments of the auction; (3) temporary production capacity constraint for delivering the product to users; and so on. The random shock r^t_j is realized at the beginning of period t. Although r^t_j is private knowledge, we assume the distribution of $r^t_j \sim N(0, \psi^2)$ is common knowledge among bidders. We further assume the fixed effect f_j of bidder j is known to all bidders but not to researchers. Given bidders may observe opponents’ actions for many periods, the fixed effect can be inferred among bidders (Greene, 2003).

Seller Profits: A Markov Perfect Equilibrium (MPE)

Given v^t_j and state variable s^t, predicted downloads and search engine’s auction rules, bidder j decides the optimal bid amount b^t_j with the objective of maximizing discounted present value of payoffs. In light of this, every advertiser has an expected period payoff, which is a function of s^t, X^t, r^t_j and all advertisers’ bids b^t

$$
E\pi_j(b^t, s^t, X^t, r^t_j; \theta, f_j)
$$

$$
= E \sum_{k=1}^{K} \Pr (k|b^t_j, b^t_{-j}, s^t, X^t) \cdot (v^t_j - b^t_j) \cdot d^t_j(k, X^t_j; \Omega_c)
$$

$$
+ E \sum_{k=K+1}^{N} \Pr (k|b^t_j, b^t_{-j}, s^t, X^t) \cdot v^t_j \cdot d^t_j(k, X^t_j; \Omega_c)
$$

$$
= E \sum_{k=1}^{K} \Pr (k|b^t_j, b^t_{-j}, s^t, X^t) \cdot (X^t_j \theta + f_j + r^t_j - b^t_j) \cdot d^t_j(k, X^t_j; \Omega_c)
$$

$$
+ E \sum_{k=K+1}^{N} \Pr (k|b^t_j, b^t_{-j}, s^t, X^t) \cdot (X^t_j \theta + f_j + r^t_j) \cdot d^t_j(k, X^t_j; \Omega_c)
$$

82
where the expectation for profits is taken over other advertisers’ bids b^t_{-j}. $\Pr(k|\cdot)$ is the conditional probability of advertiser j getting slot k, $k = 1, 2, \ldots, N$. $\Pr(k|\cdot)$ depends not only on bids, but also on states s^t (the previous period’s downloads) and product attributes X^t. This is because: i) the premium slot allocation is determined by the ranking of $\{b^t_jd^t_j\}_{ij}$, where d^t are the state variables and ii) the organic slot allocation is determined by product update recency, an element of X^t.

In addition to the current period profit, an advertiser also takes its expected future payoffs into account when making decisions. In period t, given the state vector s^t, advertiser j’s discounted expected future payoffs evaluated prior to the realization of the private shock r^t_j is given by

$$E \left[\sum_{\tau=t}^{\infty} \rho^{\tau-t} \pi_j \left(b^\tau, s^\tau, X^\tau, r^\tau_j; \Omega_{aj} \right) | s^t \right]$$

(2.17)

where $\Omega_{aj} = \{\theta, \psi, f_j\}$, with a denoting advertiser behavior (in contrast to the parameters Ω_c in the consumer model). Further, we denote $\Omega_a = \{\Omega_{aj}\}_{j=1,2,\ldots,N} = \{\theta, \psi, f_j\}_{j=1,2,\ldots,N}$. The parameter ρ is a common discount factor. The expectation is taken over the random term r^t_j, bids in period t as well as all future realization of X^t, shocks, bids, and state variables. The state variables s^{t+1} in period $t + 1$ is drawn from a probability distribution $P(s^{t+1}|b^t, s^t, X^t)$.

We use the concept of a pure strategy Markov perfect equilibrium (MPE) to model the bidder’s problem of whether and how much to bid in order to maximize the discounted expected future profits (Bajari et al., 2007; Ryan and Tucker, 2008; Dubé et al., 2008; and others). The MPE implies that each bidder’s bidding strategy only depends on the then-current profit-related information, including state, X^t and its private shock r^t_j. Hence, we can describe the equilibrium bidding strategy of bidder

Note that s^t and X^t are observed by all bidders before bidding.

as a function \(\sigma_j(s^t, X^t, r^t_j) = b_j \). Given a state vector \(s \), product attributes \(X \) and prior to the realization of current \(r_j \) (with the time index \(t \) suppressed), bidder \(j \)'s expected payoff under the equilibrium strategy profile \(\sigma = \{ \sigma_1, \sigma_2, ..., \sigma_N \} \) can be expressed recursively as:

\[
V_j(s, X ; \sigma) = E \left[\pi_j(\sigma, s, X, r_j; \Omega_a) + \rho \int_{s'} V_j(s', X'; \sigma) dP(s'|b, s, X) | s \right] \quad (2.18)
\]

where the expectation is taken over current and future realizations of random terms \(r \) and \(X \). To test the alternative theory that advertiser's may be myopic in their bidding, we will also solve the advertiser problem under the assumption that period profits are maximized independently over time.

The advertiser model can then be used in conjunction with the consumer model to forecast advertiser behavior as we shall discuss in the policy simulation section. In a nutshell, we presume advertisers will choose bids to maximize their expected profits. A change in information states, bidding mechanisms, or webpage design will lead to an attendant change in bids conditioned on the advertisers value function, which we estimate as described next.

2.5 Estimation

2.5.1 An Overview

Though it is standard to estimate dynamic MPE models via a dynamic programming approach such as a nested fixed point estimator (Rust, 1994), this requires one to repetitively evaluate the value function (equation 2.18) through dynamic programming for each instance in which the parameters of the value function are updated. Even when feasible, it is computationally demanding to implement this approach.

26 The bidding strategies are individual specific due to the fixed effect \(f_j \) (hence the subscript \(j \)). For the purpose of clear exposition, we use \(\sigma_j(s^t, X^t, r^t_j) \) instead of \(\sigma_j(s^t, X^t, r^t_j; f_j) \) throughout the paper. Multiple observations for each advertiser allows the identification of \(\sigma_j, j = 1, 2, ... N \).
Instead, we consider the class of two-step estimators. The two-step estimators are predicated upon the notion that the dynamic program can be estimated in two steps that dramatically simplify the estimation process by facilitating the computation of the value function. Specifically, in this application we implement the two-step estimator proposed by Bajari et al. (2007) (BBL henceforth).

As can be seen in equation 2.18, the value function is parameterized by the primitives of the value distribution Ω_a. Under the assumption that advertisers are behaving rationally, these advertiser private values for clicks should be consistent with observed bidding strategies. Therefore, in the second step estimation, values of Ω_a are chosen so as to make the observed bidding strategies congruent with rational behavior. We detail this step in Section 2.5.3 below.

However, as can be observed in equations 2.18 and 2.16, computation of the value function is also incumbent upon i) the bidding policy function that maps bids to the states (downloads), product attributes, and private shocks $\sigma_j (s^t, X^t, r^t_j) = b^t_j$; ii) the expected downloads $d^t_j(k; X^t_j; \Omega_c)$; and iii) a function that maps the likelihood of future states as a function of current states and actions $P(s^{t+1}|b^t, s^t, X^t)$. These are estimated in the first step as detailed in Section 2.5.2 below and then substituted into the value function used in the second step estimation.

2.5.2 First Step Estimation

In the first step of the estimation we seek to obtain:

1. A “partial” policy function $\bar{\sigma}_j (s, X)$ describing the equilibrium bidding strategies as a function of the observed state variables and product attributes, X. We estimate the policy function by noting that players adopt equilibrium strategies (or decision rules) and that behaviors generated from these decision rules lead to correlations between i) the observed states (i.e., past period downloads) and product characteristics and ii) advertiser decisions (i.e., bids). The partial pol-
icy function captures this correlation. In our case, we use a fixed effects Tobit model to link bids to states and product characteristics as described in Section 4.2.1 of the Appendix. Subsequently, the full policy function $\sigma_j (s, X, r^f_j)$ can be inferred based on $\tilde{\sigma}_j (s, X)$ and the distribution of private random shocks r^f_j. The partial policy function can be thought of as the marginal distribution of the full policy function. Inferences regarding the parameters of the full policy function can be made by finding the distribution of r^f_j that, when “integrated out,” leads to the best rationalization for the observed bids. We discuss our approach to infer the full policy functions from the partial policy function in Appendix 4.2.1.

2. The expected downloads for a given firm at a given slot, $d^f_j (k, X_j; \Omega_c)$. The $d^f_j (k, X_j; \Omega_c)$ follows directly from the consumer model. Hence, the first step estimation involves i) estimating the parameters of the consumer model and then ii) using these estimates to compute the expected number of downloads. The expected total number of downloads as a function of slot position and product attributes is obtained by using the results of the consumer model to forecast the likelihood of each person downloading the software and then integrating these probabilities across persons.\footnote{As an aside, we note that advertisers have limited information from which to form expectations about total downloads because they observe the aggregate information of downloads but not the individual specific download decisions. Hence, advertisers must infer the distribution of consumer preferences from these aggregate statistics. In a subsequent policy simulation we allow the search engine to provide individual level information to advertisers in order to assess how it affects advertiser behavior and, therefore, search engine revenues.} We discuss our approach for determining the expected downloads in Section 4.2.1 of the Appendix.

3. The state transition probability $P (s'|b, s, X)$ which describes the distribution of future states (current period downloads) given observations of the current state (past downloads), product attributes, and actions (current period bids).
These state transitions can be derived by i) using the policy function to predict bids as a function of past downloads, ii) determining the slot ranking as a function of these bids, past downloads and product attributes, and then iii) using the consumer model to predict the number of current downloads as a function of slot position. Details regarding our approach to determining the state transition probabilities is outlined in Section 4.2.1 of the Appendix.

With the first step estimates of $\sigma_j(s, X, r_j^t)$, $d_j^t(k, X_j; \Omega_c)$, and $P(s' | b, s, X)$, we can compute the value function in equation 2.18 as a function with only Ω_a unknown. In the second step, we estimate these parameters.

2.5.3 Second Step Estimation

The goal of the second step estimation is to recover the primitives of the bidder value function, Ω_a. The intuition behind how the second-stage estimation works is that true parameters should rationalize the observed data. For bidders’ data to be generated by rational plays, we need

$$V_j(s, X; \sigma_j, \sigma_{-j}; \Omega_a) \geq V_j(s, X; \sigma_j', \sigma_{-j}; \Omega_a), \forall \sigma_j' \neq \sigma_j \quad (2.19)$$

where σ_j is the equilibrium policy function and σ_j' is some deviations from σ_j. This equation means that any deviations from the observed equilibrium bidding strategy will not result in more profits. Otherwise, the strategy would not be optimal. Hence, we first simulate the value functions under the equilibrium policy σ_j and the deviated policy σ_j' (i.e., the left hand side and the right hand side of equation 2.19). Then we choose Ω_a to maximize the likelihood that equation 2.19 holds. We describe the details of this second step estimation in Appendix 4.2.1.

2.5.4 Sampling Chain

With the posterior distributions for the advertiser and consumer models established, we estimate the models using MCMC approach as detailed in Appendix 4.2.2. This
is a notable deviation from prior research that uses a gradient based technique. The advantage of using a Bayesian approach, as long as suitable parametric assumptions can be invoked, is that it facilitates model convergence, has desirable small sample properties, increases statistical efficiency, and enables the estimation of a wide array of functional forms (Rossi et al., 2005). Indeed, posterior sampling distributions for many of the parameters are highly skewed and/or have thin tails, and Kolmogorov-Smirnov tests indicate these posterior distributions are often not normally distributed. Hence, we seek to make a methodological contribution to the burgeoning literature on two-step estimators for dynamic games.

2.6 Results

2.6.1 First Step Estimation Results

Recall, the goal of the first step estimation is to determine the policy function, $\sigma_j(s^t, X^t, r^t_j)$, the expected downloads $d^t_j(k, X^t_j; \Omega_c)$, and the state transition probabilities $P(s^{t+1}|b^t, s^t, X^t)$. To determine $\sigma_j(s^t, X^t, r^t_j)$, we first estimate the partial policy function $\tilde{\sigma}_j(s^t, X^t)$ and then compute the full policy function. To determine $d^t_j(k, X^t_j; \Omega_c)$, we first estimate the consumer model and then compute the expected downloads. Last $P(s^{t+1}|b^t, s^t, X^t)$ is derived from the consumer model and the partial policy function. Thus, in the first stage we need only to estimate the partial policy function and the consumer model. With these estimates in hand, we compute $\sigma_j(s^t, X^t, r^t_j), d^t_j(k, X^t_j; \Omega_c), \text{ and } P(s^{t+1}|b^t, s^t, X^t)$ for use in the second step. Thus, below, we report the estimates for the partial policy function and the consumer model on which these functions are all based.

Partial Policy Function $\tilde{\sigma}_j(s, X)$

The vector of independent variables (s, X) for the partial policy function (i.e., the Tobit model of advertiser behavior that captures their bidding policy as outlined in
Appendix section 4.2.1) contains the following variables:

- Product \(j \)'s state variable, last period download \(d_{jt}^{t-1} \). We reason that high past downloads increase the likelihood of a favorable placement and, therefore, affect bids.

- Two market level variables: the sum of last period downloads from all bidders and the number of bidders in last period. Since we only have 322 observations of bids, it is infeasible to estimate a parameter to reflect the effect of each opponent’s state (i.e., competition) on the optimal bid. Moreover, it is unlikely a bidder can monitor every opponent’s state in each period before bidding because such a strategy carries high cognitive and time costs. Hence, summary measures provide a reasonable approximation of competing states in a limited information context. Others in the literature who have invoked a similar approach include Jofre-Bonet and Pesendorfer (2003) and Ryan (2006). Like them, we find this provides a fair model fit. Another measure of competitive intensity is the number of opponents. Given that bidders cannot directly observe the number of competitors in the current period, we used a lagged measure of the number of bidders.

- Product \(j \)'s attributes in period \(t \) (\(X_{jt}^{t} \)), including its non-trial version price, expert rating, consumer rating, update recency, and compatibility with an older operating system. We expect that a higher quality product will yield greater downloads thereby affecting the bidding strategy.

- An advertiser specific constant term to capture the impact of the fixed effect \(f_{j} \) on bidding strategy.

- To control the possible effect of the growth of ownership of MP3 players, we also collect the average lagged price of all new MP3 players in the market from...
a major online retailing platform (www.pricegrabber.com).

Table 2.4 reports the estimation results for the Tobit model.28 As a measure of fit of the model, we simulated 10,000 bids from the estimated distribution. The probability of observing a positive simulated bid is 42.0%; the probability of observing a positive bid in the real data is 41.6%. Conditional on observing a positive simulated bid, these bids have a mean of $0.21 with a standard deviation of $0.07. In the data, the mean of observed positive bids is $0.20 and the standard deviation is $0.08. We also estimate the same model only using 70% (227/322) of the observations and use the remaining 30% as a holdout sample. The change in estimates is negligible. We then use the holdout to simulate 10,000 bids. The probability of observing a positive bid is 40.2%, while there are 42.4% positive bids in the holdout sample. Among the positive simulated bids, the mean is $0.23 and the standard deviation is $0.06. The corresponding statistics in the holdout are $0.21 and $0.07. Overall, the fit is good.

Table 2.4: Bidding Function Estimates

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>95% Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagged Downloads\textsubscript{jt}/103</td>
<td>-0.12^*</td>
<td>$(-0.16, -0.09)$</td>
</tr>
<tr>
<td>Total Lagged Downloads\textsubscript{t}/103</td>
<td>0.04^*</td>
<td>$(0.01, 0.08)$</td>
</tr>
<tr>
<td>Lagged Number of Bidders\textsubscript{t}</td>
<td>0.04^*</td>
<td>$(0.01, 0.06)$</td>
</tr>
<tr>
<td>Lapse Since Last Update\textsubscript{jt}</td>
<td>-0.31^*</td>
<td>$(-0.70, -0.02)$</td>
</tr>
<tr>
<td>Non-trial Version Price\textsubscript{jt}</td>
<td>0.36^*</td>
<td>$(0.33, 0.39)$</td>
</tr>
<tr>
<td>Expert Ratings\textsubscript{jt}</td>
<td>0.47</td>
<td>$(-0.26, 1.23)$</td>
</tr>
<tr>
<td>Consumer Ratings\textsubscript{jt}</td>
<td>0.81^*</td>
<td>$(0.10, 1.50)$</td>
</tr>
<tr>
<td>Compatibility Index\textsubscript{jt}</td>
<td>-0.91^*</td>
<td>$(-1.74, -0.20)$</td>
</tr>
<tr>
<td>Lagged MP3 Player Price\textsubscript{t}</td>
<td>0.03^*</td>
<td>$(0.02, 0.03)$</td>
</tr>
<tr>
<td>τ</td>
<td>8.14^*</td>
<td>$(6.78, 11.37)$</td>
</tr>
</tbody>
</table>

28To conserve space, we do not report the estimates of fixed effects. These are available upon request from the authors.
The estimates yield several insights into the observed bidding strategy. First, the bidder’s state variable \((d_{j-1}^t) \) is negatively correlated with its bid amount \(b_j^t \) because the ranking of the auction is determined by the product of \(b_j^t \) and \(d_{j-1}^t \). All else being equal, a higher number of lagged downloads means a bidder can bid less to obtain the same slot. Second, the total number of lagged downloads in the previous period \((\sum d_{j-1}^t) \) and the lagged number of bidders both have a positive impact on a bidder’s bid. We take this to mean increased competition leads to higher bids. Third, bids are increasing in the product price. One possible explanation is that a high priced product yields more value to the firm for each download, and hence the firm competes more aggressively for a top slot. Similarly and fourth, a high price for MP3 players reflects greater value for the downloads also leading to a positive effect on bids. Fifth, “Lapse Since Last Update” has a negative effect on bids. Older products are more likely obsolete, thereby generating lower value for consumers. If this is the case, firms can reasonably expect fewer final purchases after downloads and, therefore, bid less for these products. Likewise and sixth, higher compatibility with prior software versions reflects product age leading to a negative estimate for this variable. Finally, ratings from consumers and experts (albeit not significant for experts) have a positive correlation with bid amounts – these again imply greater consumer value for the goods, making it more profitable to advertise them.

Consumer Model

The consumer model is estimated using MCMC approach based on the posterior distribution described in Appendix 4.2.1. We consider the download decisions for each of the 21 products who entered auctions, plus the top 3 products who did not. Together these firms constitute over 80% of all downloads. The remaining number of downloads are scattered across 370 other firms, each of whom has a negligible share. Hence, we exclude them from our analysis.
We calibrate the model by estimating an increasing number of latent segments until there is no significant improvement in model fit. We use log marginal likelihood as the measurement for model fit. In Table 2.5 we report the comparison of the log marginal likelihoods for models with up to four segments. The model with two segments gives the best result in terms of maximizing the log marginal likelihood.

Table 2.6 presents the estimates of the model with two segments. Conditional on the estimated segment parameters and demographic distribution, we calculate the segment sizes as 89.5% and 10.5%, respectively. Based on the parameter estimates in Table 2.6, Segment 1 is less likely to initiate a search (low λ^0). The primary basis of segmentation is whether a customer has visited a music website at other properties owned by the download website; these customers are far more likely to be in the frequent download segment. Moreover, upon engaging a search, this segment appears to be less sensitive to slot ranking but more sensitive to consumer and expert ratings than segment 2. Segment 2, composed of those who search more frequently, relies more heavily on the slot order when downloading. Overall, we speculate that searchers in segment 1 are the occasional downloaders who base their download decisions on others’ ratings and tend not to exclude goods of high price. In contrast, segment 2 contains the “experts” or frequent downloaders who tend to rely on their own assessments when downloading. Of interest is the finding that those in segment 2 rely more on advertising slot rank. This is consistent with a perspective that frequent downloaders might be more strategic; knowing that higher quality firms
Table 2.6: Consumer Model Estimates

<table>
<thead>
<tr>
<th></th>
<th>Segment 1 (89.5%)</th>
<th>Segment 2 (10.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Infrequent searcher)</td>
<td>(Frequent searcher and slot sensitive)</td>
</tr>
<tr>
<td>β^g (utility parameters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−0.09</td>
<td>0.35</td>
</tr>
<tr>
<td>(−0.11,0.001)</td>
<td>(0.31,0.38)</td>
<td></td>
</tr>
<tr>
<td>Slot Rank</td>
<td>−0.08</td>
<td>−0.51</td>
</tr>
<tr>
<td>(−0.06,−0.09)</td>
<td>(−0.52,−0.50)</td>
<td></td>
</tr>
<tr>
<td>Non-trial Version Price</td>
<td>0.03</td>
<td>−0.04</td>
</tr>
<tr>
<td>(0.03,0.04)</td>
<td>(−0.04,−0.03)</td>
<td></td>
</tr>
<tr>
<td>Expert Ratings</td>
<td>0.16</td>
<td>0.06</td>
</tr>
<tr>
<td>(0.15,0.17)</td>
<td>(0.06,0.07)</td>
<td></td>
</tr>
<tr>
<td>Consumer Ratings</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>(0.11,0.12)</td>
<td>(0.03,0.05)</td>
<td></td>
</tr>
<tr>
<td>Compatibility Index</td>
<td>−0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>(−0.09,−0.07)</td>
<td>(0.16,0.17)</td>
<td></td>
</tr>
<tr>
<td>Total Download Percentage</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>(−0.02,0.05)</td>
<td>(0.08,0.10)</td>
<td></td>
</tr>
<tr>
<td>δ^g (sorting/filtering scaling)</td>
<td>1.52</td>
<td>1.87</td>
</tr>
<tr>
<td>(1.48,1.55)</td>
<td>(1.78,1.99)</td>
<td></td>
</tr>
<tr>
<td>λ^g (search probability)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_0^g (base)</td>
<td>−10.22</td>
<td>−0.78</td>
</tr>
<tr>
<td>(−10.75,−9.60)</td>
<td>(−1.21,−0.54)</td>
<td></td>
</tr>
<tr>
<td>λ_1^g (1-correlation)</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>(0.01,0.02)</td>
<td>(0.01,0.04)</td>
<td></td>
</tr>
<tr>
<td>γ^g (segment parameters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−</td>
<td>−4.01</td>
</tr>
<tr>
<td>(−4.74,−2.87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music Site Visited</td>
<td>−</td>
<td>7.66</td>
</tr>
<tr>
<td>(5.77,10.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration Status</td>
<td>−</td>
<td>−0.24</td>
</tr>
<tr>
<td>(−1.91,0.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Downloaded in Last Month</td>
<td>−</td>
<td>−0.40</td>
</tr>
<tr>
<td>(−1.57,−0.02)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tend to bid more and obtain higher ranks, those who download often place greater emphasis on this characteristic.

More insights on this difference in download behavior across segments can be gleaned by determining the predicted probabilities of searching and sorting/filtering by computing Pr(search_g^i) = \frac{\exp(\lambda_0^g + \lambda_1^g IV_g^i)}{1 + \exp(\lambda_0^g + \lambda_1^g IV_g^i)} and \Pr(κ)^g = \frac{\exp(U^g_{κi})}{\sum_{κ′} \exp(U^g_{κ′i})} in equations 2.9 and 2.7, respectively. Table 2.7 reports these probabilities for both segments.

Table 2.7 confirms the tendency of segment 2 to be more likely to initiate a
Table 2.7: Searching Behavior of Consumers

<table>
<thead>
<tr>
<th></th>
<th>Segment 1</th>
<th>Segment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching</td>
<td>0.4%</td>
<td>60.8%</td>
</tr>
<tr>
<td>No sorting or filtering</td>
<td>78.7%</td>
<td>86.1%</td>
</tr>
<tr>
<td>Sorting but no filtering</td>
<td>21.3%</td>
<td>8.2%</td>
</tr>
<tr>
<td>No sorting but filtering</td>
<td>\rightarrow 0</td>
<td>5.5%</td>
</tr>
<tr>
<td>Sorting and filtering</td>
<td>\rightarrow 0</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

search in the focal category. Though comprising only 10.5% of all consumers, they represent 90% of all searches. The increased searching frequency suggests that members of segment 2 are ideal customers to target because more searches lead to more downloads.

Moreover, segment 2 (heavy downloaders) is more likely to be influenced by sponsored advertising. To see this, note that segment 1 consumers put more weight on the ratings of products (e.g., expert and consumer ratings) than do segment 2 consumers. As a consequence segment 1 consumers engage in far more sorting. Sorting eliminates the advantage conferred by sponsored advertising because winners of the sponsored search auction may be sorted out of desirable slots on the page.

However, Table 2.7 indicates consumers in segment 1 (occasional downloaders) seldom filter. Filtering occurs when consumers seek to exclude negative utility options from the choice set (e.g., omitting a product not compatible with a certain operating system). Given the high sensitivity to rank order, segment 2 searchers are more prone to eliminate advertised options by filtering. We suspect this segment, by virtue of being a frequent visitor, searches for very specific products that conform to a particular need. Overall, however, segment 1 is more likely to sort and/or filter than segment 2 (21.3% vs. 13.9%) suggesting that segment 2 is more valuable to advertisers. We will explore this conjecture in more detail in our policy analysis.
2.6.2 Second Step Estimation Results

Alternative Models

In addition to our proposed model, we consider two alternative models of seller behavior: i) myopic bidding and ii) heterogeneous valuations across consumer segments. Table 2.8 reports the fit of each model. In the first alternative model, advertisers maximize period profits independently as opposed to solving the dynamic bidding problem given in equation 2.18. This model yields a considerably poorer fit. Hence, we conclude that advertisers are bidding strategically. This strategic behavior might result from dynamics in the bidding process coupled with non-linearities in advertising response. Similar dynamic behavior has been evidenced in the face of non-linear advertising demand systems with dynamics in advertising carryover (Bronnenberg, 1998).

The second model considers the case wherein advertiser valuations for clicks differ across segments. In this model, we augment equation 2.15 by allowing it to vary by segment and then integrate this heterogeneity into the seller profit function given by equation 2.16. This model leads to only a negligible increase in fit. Closer inspection of the results indicates little difference in valuations across segments, implying advertisers perceive that the conversion rates of each segment are essentially the same. Hence, we adopt the more parsimonious single valuation model. It is further worth noting that all of our subsequent results and policy simulations evidence essentially no change across these two models.

29 We do not estimate the discount factor ρ. As shown in Rust (1994), the discount factor is usually unidentified. We fix $\rho = 0.95$ for our estimation. We also experiment at $\rho = 0.90$ and see minimal difference in the results.
Table 2.8: Alternative Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Log Marginal Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Model</td>
<td>−1651.3</td>
</tr>
<tr>
<td>Base Model Without Advertiser Dynamics</td>
<td>−1701.3</td>
</tr>
<tr>
<td>Base Model With Heterogeneous Customer Valuations</td>
<td>−1645.1</td>
</tr>
</tbody>
</table>

Valuation Model Results

Table 2.9 shows the results of second step estimation for the favored model.\(^{30}\) With respect to the advertiser value function, we find that newer, more expensive and better rated products yield greater values to the advertiser. This is consistent with our conjecture in Section 2.6.1 that firms bid more aggressively when having higher values for downloads. We find that, after controlling for observed product characteristics, 95% of the variation in valuations across firms is on the order of $0.02. We attribute this variation in part due to differences in the operating efficiency of the firms.

Table 2.9: Value per Click Parameter Estimates

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>95% Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapse Since Last Update(_t) (j_t)</td>
<td>−0.98*</td>
<td>(−1.02, −0.95)</td>
</tr>
<tr>
<td>Non-trial Version Price(_t) (j_t)</td>
<td>0.24*</td>
<td>(0.23, 0.25)</td>
</tr>
<tr>
<td>Expert Ratings(_t) (j_t)</td>
<td>0.46*</td>
<td>(0.38, 0.65)</td>
</tr>
<tr>
<td>Consumer Ratings(_t) (j_t)</td>
<td>0.97*</td>
<td>(0.94, 0.98)</td>
</tr>
<tr>
<td>Compatibility Index(_t) (j_t)</td>
<td>−0.27*</td>
<td>(−0.29, −0.26)</td>
</tr>
<tr>
<td>Lagged MP3 Player Price(_t)</td>
<td>0.01*</td>
<td>(0.01, 0.02)</td>
</tr>
<tr>
<td>(\psi), random shock std. dev.</td>
<td>1.45*</td>
<td>(1.43, 1.51)</td>
</tr>
<tr>
<td>Log Marginal Likelihood</td>
<td></td>
<td>−1651.33</td>
</tr>
</tbody>
</table>

Given the second step results, we can further estimate the value of a download to a firm. We estimate the advertiser’s value for a download in each period. The

\(^{30}\) Advertiser specific constant terms \(f_j\) are not reported to save space.
distribution of these estimates across time and advertisers is depicted in Figure 2.4. As indicated in the figure there is substantial variation in the valuation of downloads. Table 2.9 explains some of this variation as a function of the characteristics of the software and firm specific effects. Overall, the mean value of a download to these advertisers is $0.27. This compares to an average bid of $0.20 as indicated in Table 2.1. Hence, on average, each click implies an expected return to a firm of about $0.07. To our knowledge, this is the first paper to impute the advertiser’s return from a click in a keyword search context. One way to interpret these results is to consider the firm’s expected sales per download to rationalize the bid. The firm’s profit per click is roughly $CR_j^t \cdot P_j^t - b_j^t$, where CR_j^t indicates the download-sale conversion rate (or
sales per download) and \(P_j \) is the non-trial version price. Ignoring dynamic effects and setting this profit per click equal to \(v_j - b_j \) yields a rough approximation of the conversion rate as \(CR_j^t = v_j^t/P_j^t \). Viewed in this light, the effect of higher quality software, which raises \(v_j^t \), leads to a higher implied conversion rate. Noting that the average price of the software is $22, this average per-click valuation implies that 1.2% of all clicks lead to a purchase (that is, the conversion rate is \(0.27/22 = 1.2\% \)). This estimate lies within the industry average conversion rate of 1–2% reported by Gamedaily.com, suggesting our findings have high face validity.\(^3\)

Another interesting observation about this result is that the mean value is very close to the mean bid ($0.27 vs. $0.20), which brings the net profits for advertising almost to a break-even point. To better understand this observation, note that an advertiser’s profitability of advertising depends on the comparison between its marginal return and marginal cost. The marginal return for advertising is the advertiser’s value per click, which is common across all clicks. The marginal cost is the bid because the marginal cost of posting software for download is negligible. If an advertiser’s marginal return is higher than its marginal cost, it will increase its bid level to procure a better slot – depending on the bid levels of its competitors. In equilibrium, the bid level (marginal cost) will approach the value per click (marginal return), consistent with our estimate. This difference will decrease as competition increases.

2.7 Policy Simulations

Given the behavior of consumers and advertisers, we can predict how changes in search engine policy affect overall bidding, downloads, consumer welfare, and revenues. The advertiser-consumer behaviors are analogous to a subgame conditioned

on search engine policy. To assess the effect of changes in policy, we recompute the equilibrium behavior of consumers and advertisers conditioned on the new policy. One might ask whether these deviations in policy are valid as the initial strategies might reflect optimal behavior on the part of the search engine. However, extensive interactions with the search site makes it clear that they have neither considered using these alternative policies nor have they tried them in the past in order to obtain a sense of the strategies’ impacts. Hence, it is hard to argue they are behaving strategically and thus we think these are reasonable policy simulations to consider. Alternatively, estimating a model incorporating the engine’s behavior invokes rather strong assumptions of rationality due to the complexity and novelty of the problem. Related, we observe no variation in the considered behaviors of the search engine, meaning there is no means to identify the primitives driving such behaviors.

We describe four policy simulations: i) the effect of alternative webpage designs on search engine revenues, ii) the value of targeting (i.e., not only allowing advertisers to bid on keywords but also on market segments.), iii) the value of disaggregate consumer data, and iv) the effect of alternative pricing mechanisms on search engine revenue. As we can no longer assume the optimal policy estimated in stage one of our two-step estimator remains valid in the face of a change in search engine policy, the following policy simulations involve explicitly solving the dynamic programming problem. Though an involving task, recent advances pertaining to approximate dynamic programming makes solving high-dimension DP problems become possible (Powell, 2007). More details regarding the implementation of the policy simulations are presented in Appendix 4.2.3. Hence, we limit our discussion to the objectives and insights from these simulations.
2.7.1 Policy Simulation I: Alternative Webpage Design

The goal of the search engine’s sorting/filtering options is to provide consumers with easier access to price and rating information across different products. As shown in section 2.4.1 and evidenced by our results, sorting and filtering play a crucial role in consumer decision process. In light of this outcome, it is possible to consider an alternative webpage design of the search engine – eliminating the option of sorting and filtering for consumers – and assessing the resulting impact on consumer search, advertiser bidding, and the search engine’s revenues. Because this change can have contrasting effects on consumer behavior (consumer should be less likely to search on the site because of the decrease in utility arising from fewer search options) and advertiser behavior (advertisers should bid more because of the decreased likelihood their advertisements will be sorted or filtered off of the search results), the overall effect is unclear. Using our model, it can be tested which effect dominates. We do this by setting the probability of consumer choosing no sorting/filtering option in equation 2.7 as 1. This manipulation mimics the scenario in which the sorting/filtering option is disabled. Under this new policy, we find that the search engine’s revenue decreases by 3.7%, suggesting the consumer effect is larger.

Next, to more precisely measure these contrasting effects, we apportion the revenue change across consumers and advertisers. Let D_{j0}^t (D_{j1}^t) denote the number of downloads for product j in period t before (after) the change of the webpage. Let B_{j0}^t (B_{j1}^t) denote the bid from advertiser j in period t before (after) the new policy. Accordingly we can calculate (i) the revenue effect arising solely from changes in consumer behavior by holding advertiser behavior fixed, $(\sum_{j,t} B_{j1}^t D_{j1}^t - \sum_{j,t} B_{j1}^t D_{j0}^t)$ and (ii) the effect arising from changing advertiser behavior by holding consumer behavior fixed, $(\sum_{j,t} B_{j1}^t D_{j0}^t - \sum_{j,t} B_{j0}^t D_{j0}^t)$. Using this decomposition, we find the effect arising from consumers $(\sum_{j,t} B_{j1}^t D_{j1}^t - \sum_{j,t} B_{j1}^t D_{j0}^t)/\sum_{j,t} B_{j0}^t D_{j0}^t$ is -6.4% while the
effect from advertisers \(
\left(\sum_{j,t} B_{j1}^t D_{j0} - \sum_{j,t} B_{j0}^t D_{j0} \right) / \sum_{j,t} B_{j0}^t D_{j0} \) is 2.7%. Consistent with this result, consumer welfare as measured by their overall utility, declines 5.6\% when the search tools are removed while advertiser profits increase 4.1\%. Thus, for the search engine, the disadvantage of this new policy to consumers outweighs the advantages resulting from more aggressive advertiser bidding.

2.7.2 Policy Simulation II: Segmentation and Targeting

It can be profitable for advertisers to target specific consumers. In this instance, instead of a single bid on a keyword, an advertiser can vary its bids across market segments. For example, consider two segments, A and B, wherein segment B is more sensitive to product price and segment A is more sensitive to product quality. Consider further, two firms, X and Y, where firm X purveys a lower price, but lower quality, product. Intuitively, firm X should bid more aggressively for segment B because quality sensitive segment A will not likely buy the low quality good X. This should lead to higher revenues for the search engine. On the other hand, there is less bidding competition for firm X within segment B because Y finds this segment unattractive – this dearth of competition can drive the bid of X down for segment B. This would place a downward pressure on search engine profits. Hence, the optimal revenue outcome for the search engine is likely to be incumbent upon the distribution of consumer preferences and the characteristics of the goods being advertised. Our approach can assess these effects of segmentation and targeting strategy on the search engine’s revenue.

To implement this policy simulation, we enable the search engine to serve a different advertisement to each market segment and allow advertisers to bid differentially each period for these keyword slots across the two consumer segments (see Appendix 4.2.3 for details). We find the search engine’s resulting revenue increases by 1.4\%. Using a similar decomposition mentioned in section 2.7.1, we find the revenue ef-
fect arising from the consumer side of the market is 2.2%. We attribute this effect mainly to the enhanced efficiency of advertisements under targeting. In other words, targeting leads to more desirable advertisements for consumers thereby yielding increased downloads. In contrast, the effect arising from advertisers is −0.8% as a result of diminished competitive intensity. Overall, the consumer effect of targeting is dominant, and a net gain in profitability is indicated.

This policy also benefits advertisers in two ways: by increasing the efficiency of their advertising and reducing the competitive intensity of bidding within their respective segments. Overall, we project an 11% increase in advertiser revenue under the targeting policy. Consistent with this view of consumer gains, consumer welfare increases by 2.9%. In sum, every agent finds this new policy to be an improvement.

2.7.3 Policy Simulation III: Incorporating Disaggregate Level Data

Advertisers and search engines are endowed with different levels of information. The search engine knows all of the clicks made by visitors to its site. The advertiser knows only the total number of downloads all the advertisers received. Hence, there is an information asymmetry arising from the different level of market intelligence accruing to each respective agent. Given this disaggregate consumer information is owned by the search engine but not observed by advertisers, it is relevant to ask how the information revelation from the platform to advertisers will affect advertiser behavior and, hence, platform revenues. In practice, this means that the platform is interested in whether to sell or give this information to advertisers and how it should be priced. More generally, this counterfactual exemplified the value of market intelligence and how it can be computed in the context of a structural model.

Accordingly, we implement a counterfactual scenario under which advertisers have access to the click histories of consumers similar to that described in Section 2.7.2, except that advertisers are not able to bid by segment. We then assess i) how bidding
behavior and returns to advertisers change under this counterfactual information structure and ii) how the resulting revenues change at the search engine. We find little change in bidding behavior, and that search engine profits increase only 0.08%. The finding suggests that advertisers are able to form consistent inferences about consumer behavior from the aggregate download behavior. The finding is interesting because it suggests there is little value to selling this information to advertisers and that aggregate data can be useful for making inferences about consumer heterogeneity (Chen and Yang, 2007; Musalem et al., 2008). Further, the result suggests the value of this disaggregate information lies not in the more efficient estimates, but rather in the ability to exploit this heterogeneity by targeting bids by segment as outlined in Section 2.7.2.

2.7.4 Policy Simulation IV: Alternative Auction Mechanisms

Auction mechanism design has been an active domain of research since the seminal work of Vickrey (1961). Optimal mechanism design involves several aspects including the rules of the auction, the efficiency of the auction in terms of allocation surplus across players, and so forth. We focus on the payment rules in this investigation. In particular, while the focal search engine currently charges winning advertisers their own bids, many major search engines such as Google.com and Yahoo.com are applying a “generalized second-price auction” as termed in Edelman et al. (2007). Under the generalized second-price auction rules, winners are still determined by the ranking of \(\{b_{j'}d_{j'}^{-1}\} \). However, instead of paying its own bid amount, the winner of a slot pays the highest losing bidder’s bid adjusted by their last period downloads. For example, suppose bidder \(j \) wins a slot with the bid of \(b_j \) and last period download \(d_j \), its payment for each download will be \(\frac{b_j d_j^{-1} d_{j'}^{-1}}{d_{j'}^{-1}} \), where \(j' \) is the highest losing bidder.

\[32\] In the paper by Edelman et al. (2007), the adjustment using last period downloads is not considered.
bidders for the slot bidder \(j \) wins.

Though “generalized second-price auction” is widely adopted by major search engines, the optimality of such a mechanism has not been substantiated (Iyengar and Kumar, 2006; Katona and Sarvary, 2008). By implementing a policy simulation that contrasts the search engine and advertiser revenues under the two different mechanisms, we find little difference in revenues for the advertiser or search engine (for example, search engine revenues increase 0.01%). However, the advertisers’ bids for clicks approach their values for clicks. Under second price auction, the median ratio of bid/value is 0.97 compared to 0.78 under first price auction. This is consistent with the theory that in equilibrium bidders bid their true values under “generalized second-price auction” (Edelman et al., 2007). This offers empirical support for the contention that generalized second price auctions yield truth telling – though we find little practical consequence in terms of auction house revenue.

2.8 Conclusion

Given the $9B firms annually spend on keyword advertising and its rapid growth, we contend that the topic is of central concern to advertisers and platforms that host advertising alike. In light of this growth, it is surprising that there is little extant empirical research pertaining to modeling the demand and pricing for keyword advertising in an integrated fashion across advertisers, searchers, and search engines. As a result, we develop a dynamic structural model of advertiser bidding behavior coupled with an attendant model of search behavior. The interplay of these two agents has a number of implications for the search engine platform that hosts them. Because we need to infer advertiser and consumer valuations and use these estimates to infer the effects of a change in search engine strategy, we develop a structural model of keyword search as a two-sided network. In particular, we consider i) how the platform or search engine should price its advertising via alternative auction
mechanisms, ii) whether the platform should accommodate targeted bidding wherein advertisers bid not only on keywords, but also behavioral segments (e.g., those that purchase more often), iii) whether and how the search engine should sell information on individual clicking histories, and iv) how an alternative webpage design of the search engine with less product information would affect bidding behavior and the engine’s revenues.

Our model of advertiser bidding behavior is predicated on the advertiser choosing its bids to maximize the net present value of its discounted profits. The period profits contain two components: i) the advertiser’s value for a given click, times the number of clicks on the advertisement and ii) the payment in form of the bid per click, times the number of clicks on the advertisement. Whereas the advertiser's costs are determined by their bids, we infer the advertiser’s valuation for clicks. Specifically, we estimate valuations by choosing them such that, for an observed set of bids, the valuations rationalize the bidding strategy, that is, making profits as high as possible. In this sense, our structural model “backs out” the advertiser’s expectation for the profit per click. Given an estimate of these valuations, it becomes possible to ascertain how advertiser profits are affected by a change in the rules of the auction, a change in the webpage design, or a change in the information state of the advertiser.

The advertiser model presents some computational challenges in estimation because it is a dynamic problem. In particular, the advertiser’s past downloads affects its subsequent advertising rank and, therefore, its subsequent downloads. Accordingly, we use recent advances in economics wherein a two-step estimator is applied to the problem (BBL). The first step is used to infer the bidding policy and consumer clicking behavior. The second step is used to infer the advertiser valuations conditioned on the bidding strategy and the consumer clicking decisions. Our approach departs from previous work on two-step estimators via our Bayesian instantiation. Like all MCMC approaches, this innovation enables one to estimate a broader set of
models and does not rely on asymptotic for inference (Rossi et al., 2005).

We find that the advertiser model leads to improvements in fit over a model that treats advertiser decisions myopically. Further, we find that advertiser valuations are positively correlated with product attributes that may enhance product quality. One possible explanation is that a higher quality leads to a greater likelihood of a product purchase after a trial download, thus enhancing the advertiser’s valuation for a download; hence, the more aggressive bidding. Also, estimated valuations for downloads/clicks are consistent with a download to sales ratio of 1.2%, well within industry estimates of 1% to 2%.

As noted above, a central component to the calculation of advertiser profits is the expectation of the number of clicks on its advertisement received from consumers. This expectation of clicks is imputed from our consumer search and clicking model. This model, which involves three steps (the choice of whether to search, whether to use search tools, and whether to download), follows from the standard random utility theory (McFadden, 1977), and is computed using traditional MCMC methods adapted to our context. Key findings include the presence of two segments: one which downloads frequently and places greater weight on keyword search order, and another that downloads less often and put more emphasis on consumer and expert ratings. The latter group constitutes 90% of the market but only 10% of all downloads.

Using the consumer and advertiser model, we conduct policy simulations pertaining to search engine policy. Relating to the consumer side, we explore the effect of changing the search engine’s webpage design in order to reduce usability but increase advertising exposures. Such a change would i) benefit advertisers and lead to higher bids – suggesting an increase in search engine revenues but ii) reduce usability leading to lower traffic – suggesting lower search engine revenues. Hence, the net impact on search engine profits is unclear. We manipulate usability by removing the sorting and filtering feature on the search engine site. By removing these features, advertiser
bids per download increase along with a corollary increase in their profits of 4.1%. In contrast, there is a resulting diminution in search site traffic from loss of consumer usability that engenders a decrease in consumer welfare (−5.6%). Combined, these contrasting impacts lead to an overall reduction of 3.7% in search engine revenue, suggesting it would not be prudent to change the site. Second, we consider the possibility of allowing advertisers to bid by segment and allowing advertising slot rankings to differ by segment. Though this reduces competition within segments (suggesting lower bidding intensity and lesser search engine profits), targeting also enhances the expected number of downloads by increasing the relevance of the advertisements (suggesting larger search engine profits). Overall, the latter effect dominates, leading to an increase in search engine revenues of 1.4%. More efficient targeting also leads to i) increases in advertiser revenues on the order of 11% (because of more efficient consumer response and less intense bidding competition for advertisements) and ii) gains in consumer welfare of 2.9%. Hence, this policy change strictly increases the welfare of all agents. Third, we explore alternative auction designs. We find that a generalized second price auction leads to advertiser bids that are consistent with the advertiser’s valuations for those clicks (i.e., advertisers bid their valuations) while first price auctions lead to lower bids (advertisers shade their bids). This result is consistent with previous theoretical research. However, there is little material difference of this truth telling from the perspective of the search engine; revenues are essentially unchanged.

Several extensions are possible. First, we use a two-step estimator to model the dynamic bidding behavior of advertisers without explicitly solving for the equilibrium bidding strategy. Solving explicitly for this strategy could provide more insights into bidder behavior in this new marketing phenomenon. For example, following the extant literature we assume that a bidder’s return of the advertising only comes from consumers’ clicks. It is possible that advertisers also accrue some values from the
exposures at the premium slots. A clear characterization of bidding strategy can better facilitate our understanding about how advertisers value sponsored advertising in term of clicks and exposures and, hence, present a better guideline for search engines to design their pricing schedule. Second, our analysis focuses upon a single category. Bidding across multiple keywords is an important direction for future research. In particular, the existence of multiple keywords auctions may present opportunities for collusion among bidders. For example, advertisers may collusively diverge their bids to different keywords. By doing so, they can find a more profitable trade-off between payments to the search engine and clicks across keywords. In a theoretical paper by Stryszowska (2005) the author shows an equilibrium where bidders implicitly collude across multiple auctions in the context of online auctions such as eBay.com. One managerial implication is how to detect and discourage collusion and reduce its negative impact on search engine revenues. Third, competition between search engines over advertisers is not modeled. Though our data provider has a dominant role in this specific category, inter-engine competition is unattended in the literature. To some extent, sponsored search advertising can be understood as advertisers purchasing products (media) from search engines through auctions. An advertiser makes discrete choice about search engines before entering auctions. Little research has been done on the advertiser’s choice problem, even though there is abundant discrete choice research that can be applied (Palma et al., 1992). Accordingly, the inter-engine competition deserves future attention. Finally, our analysis is predicated on a relatively short duration of bidding behavior. Over the longer-term, there may be additional dynamics in bidding and download behavior that might arise from consumer learning or the penetration of search marketing into the market place, the so called “durable goods problem,” (Horsky and Simon, 1983). Overall, we hope this study will inspire further work to enrich our knowledge of this new marketplace.
3.1 Introduction

This chapter reviews research on sponsored search auctions. The sponsored search auction is a newly developed auction practice where advertisers bid for premium spots on the search results page of an Internet search engine.\footnote{Other than internet search engines, any interactive, addressable media formats (e.g., DVR, satellite digital radio) can be utilized to implement similar auctions for advertising. Another application is to allocate limited shelf space to a variety of products in a retailing store. Due to the limited air time or shelf space, auctions can be used to determine prices and allocate the resources. In such a notion, the research literature on sponsored search auctions can be generalized to a much broader context.} Winning advertisers’ ads are placed in these premium spots—for example, at the top of the search results list. This new form of advertising can create high levels of brand awareness among Internet users. Moreover, its reach has extended dramatically in recent years. By the end of 2006, over 726MM people aged 15 and over were online; and one quarter of these individuals were in the United States (IRI, 2007). In November of 2006 alone, American Internet users conducted 6.7BB searches on the 25 leading search engines. By comparison, a top rated TV show such as “Desperate Housewives”
only has about 25MM viewers (IRI, 2007); and the growing popularity of DVR services offered by TiVo and cable companies has decreased the audience base of traditional TV advertising. Further, sponsored search advertising can boost sales for retailers, especially in online channels. According to a US Census Bureau report in Q1-2007, American e-commerce retail sales achieved a year-over-year increase of 18.4% while retail sales across all channels grew at a much lower rate of 3.2%.² A key driver of sales in online retailing is online promotion (Ansari et al., 2008). In Qiu et al. (2005), the authors estimate that more than 13.6% of the web traffic is affected by search engines. Hence sponsored search advertising is a powerful tool for generating online traffic. The statistics described above illustrate the importance and efficacy of sponsored search advertising, and are the reason for the staggering growth of sponsored search advertising. Compared to the slow annual growth of 3.8% in total advertising expenditure (TNS Media Intelligence, 2007), Search Engine Marketing Professional Organization (SEMPO) reports that search engine marketing expenditure reached 9.7B in 2006,³ a 62% year-over-year growth. In addition, over 70% North American advertisers are shifting in whole or in part of their budget from other marketing programs to search engine marketing.

In marketing, auctions have stimulated research interests because of their growing popularity along with the thriving of online marketplace (Chakravarti et al., 2002). While research on sponsored search auctions remains nascent, there are tremendous potential opportunities in this area. Studies of sponsored search auctions can provide insight into this new practice and guidance for marketing managers.

Since Vickrey’s original work (Vickrey, 1961), auctions have generated a rich body of literature. A query on the search engine Google Scholar with the keyword “auc-

³ Sponsored search auctions account for 86% of the total spending, or 8BB.
tion” returns over 300,000 results. Given this extensive literature, we only consider studies that are the most relevant to sponsored search auctions.

The chapter is organized according to the different agents involved with sponsored search auctions: Internet users, advertisers and search engines. This organization allows us to focus on issues regarding each agent’s behavior and strategies separately. First, we detail the practice of sponsored search auctions in section 3.2. In section 3.3, we consider the decision process of Internet users such as their search behavior. Section 3.4 reviews relevant auction research with an emphasis on advertisers. In section 3.5 we consider issues from the perspective of search engines with the purpose of maximizing their revenues in the auctions. In each of these sections we also discuss potential research opportunities for the field of marketing. We conclude with section 3.6.

3.2 An Introduction of Sponsored Search Auctions

With the ascendancy of top search engine websites such as Google, Yahoo! and MSN, advertisers have a new media arena in which to implement advertising campaigns—search results pages at these search engines. When an Internet user conducts a keyword search on a search engine, the engine creates a search results webpage displaying websites that are ordered according to their relevance to that keyword. These results are called organic search results. Meanwhile, there are several premium sponsor advertising spots on the webpage, mainly the top or the side of that page (see Figure 3.1). Advertisers can place their ads in these premium spots. When a customer clicks either an organic result or a sponsored ad, she will be led to the corresponding website to gather further information or make a purchase.

It is widely recognized by practitioners that the appearance of a particular retailer in a top spot in the organic search results or the sponsored ads section can create positive impressions among consumers, increase online traffic and ultimately
boost sales. To be placed in a top position in the organic search results, advertisers rely on techniques normally termed as “search engine optimization”. Commonly used optimization techniques include changing the website homepage title to more semantically related keywords, rewriting product descriptions on one’s website so they are more visible to search engines and posting website links on popular online bulletin boards and forums.\(^4\) According to SEMPO, about 10% of North America’s search engine marketing expenditure is used for organic search engine optimizations, a total of over $600M.

Alternatively, advertisers can compete for premium advertising spots in which to place their ads. The number of these spots is normally much smaller than the number of interested advertisers. For most search engines, these premium spots are auctioned off because auctions can simultaneously determine appropriate prices for the spots and efficiently allocate their limited supply. During the auction, an advertiser specifies her bid for one-click of the ad. Following some ranking mechanism,

\(^4\) There are also some illicit methods to increase a website’s ranking such as spam emails and hacker software, which are punished severely by major search engines.
the topmost bidder gets the best spot; the second bidder gets the second best spot and so on. Winning advertisers pay the search engine only when their sponsored ads are clicked by Internet users. The calculation of the payment amount for each click varies across search engines. Some engines use the first-price rule, where the advertiser pays her bid for each click (e.g., www.shopping.com). Others use more complicated payment schemes. For example, Google uses the product of the bid of the very next losing bidder and an internally determined factor to calculate a winner’s per-click payment. Each year, these auctions generate billions of dollars revenues for top search engines.

In short, advertisers can use techniques to optimize their positions in the organic search results, or they can attend sponsored search auctions to compete for premium advertising spots. When consumers conduct keyword searches, the advertiser’s appearance on the search results page generates positive impressions, increases online traffic and sales. Figure 3.2 summarizes the relationship among the three agents and serves as the basis for the organization of this paper. We address each agent in turn and summarize extant research and future opportunities for each.
3.3 Internet Users

Internet users, as the customers addressed by Internet advertising, play a crucial role in sponsored search auctions. For advertisers, Internet users create online traffic to their websites and generate sales. For search engines, Internet users’ clicks lead to auction payments from advertisers. Investigations of Internet users behavior can provide a better understanding of the potential strategies advertisers and search engines could employ. Further, such investigations could shed light on consumer behavior in an online environment.

The search process of an Internet user involves the following decisions. First, the user needs to choose which search engine websites to visit and which keywords to search. Upon viewing the search results, she needs to decide how many linked websites to investigate. After she finishes the investigation, she decides whether to make a purchase and from which advertiser. We will discuss each in turn.

3.3.1 Choosing Engines and Keywords

Similar to a shopping trip, a user first needs to choose which “stores” and which “categories/aisles” to visit. Which search engine attracts the most consumers? Why? Do consumers choose multiple search engines to visit? What keywords are more likely to be used by consumers? Answers to these questions have important policy implications for search engines and advertisers; we will discuss these implications in more details in section 3.4 and section 3.5. In short, if consumers intend to visit more than one search engine and use various keywords to query, strategic advertisers will attend more auctions across search engines and keywords. Moreover, the keywords that are most likely to be used by consumers determines the intensity of competition for different keywords. For search engines, these issues directly affect competition and revenues from auctions. Most of these questions can be examined empirically
or experimentally. Existing discrete choice literature provides a solid ground for future research (cf. Palma et al., 1992). With the increasing availability of Internet user clickstream data and advanced behavioral research techniques, there are many potential research opportunities for exploration.

3.3.2 Choosing Search Websites to Investigate

The number of linked websites a consumer clicks will affect the winning advertiser’s payment, online traffic and sales, as well as the search engine’s revenue. For example, if each consumer clicks more links on average, advertisers may get more online traffic, but will also need to make higher payments to the search engine. In fact, if consumers explore search results more broadly by clicking on multiple links, advertisers could experience a drop in sales because consumers would have more options in their consideration sets. In turn, from the perspective of the search engine, more clicks may not necessarily imply higher revenue. Recall that a search engine’s revenue is the product of the volume of clicks and the payment of each click. Thus, although the click volume increases, the per-click-payment may drop since bidders lower their bids due to the possible decrease in sales discussed above. Correspondingly, bidding strategies, optimal auction mechanism design and even the search results webpage design will adjust. Thus the number of investigated websites is crucial for both search engines and advertisers.

The number of clicks is affected by the search patterns of consumers. Consider two different search patterns that could be used by a consumer when she comes to the search engine website:

1. Searching sequentially: the consumer conducts the search by submitting keyword queries; upon viewing the search results page, she clicks one linked website at a time to investigate. All clicked websites and an outside option (e.g., not purchasing) are in her consideration set. If she is satisfied with one option
in her consideration set, she stops the investigation and choose that option; otherwise she will surf back to the search results page and make another click to investigate.

2. Searching nonsequentially: the consumer conducts the search by submitting keyword queries; upon viewing the search results page, she chooses several websites all at once to investigate. All of these investigated websites and an outside option (not purchasing) are in her consideration set. Then she chooses one option out of her consideration set.

Each of these search patterns could describe a consumer’s search behavior. One of the factors that determines which model fits better may be the searched product’s characteristics. To be more specific:

- If a product has a very complicated attribute space or is an experience good, the consumer may prefer the second pattern of simultaneous evaluation. For example, hotels have complex attributes such as locations, ratings, prices, facilities and so on. A consumer may choose to open several websites simultaneously to make a comparison. Some search engines even provide a “compare” function which lines up chosen hotels for easier comparison (see Figure 3.3). Another example where consumers might prefer to evaluate options simultaneously is computer software, an experience good. Customers do not know how well PC software performs until they have used it for some time. In this case, the consumer may prefer to download several trial versions at a time and use them for a few days before making judgment.

5 Other factors may also affect search patterns. For example, when a consumer is less comfortable with switching windows while surfing, she will probably use the first pattern; if the Internet connection speed is very slow, the user may choose the second style so that all webpages will have been already read into the PC’s cache when she is browsing.
Figure 3.3: A Search Engine with the Easy Comparison Tool

- If the attribute space of a product is relatively simple so that the utility of consumption can be easily assessed upfront, for example, a specific textbook, the consumer will mainly focus on prices listed by different book sellers. She will probably use the first pattern to surf through book sellers until she feels satisfied with the price.

Each of the two search patterns above are described by existing search models, which have attracted abundant attention in the theoretical, empirical and experimental literature. The pioneer paper by Stigler (1961) has elicited many studies on search models. In the literature, there are at least two major streams of search
models: sequential search and nonsequential search (cf., Stigler, 1961; Stigler, 1962; Weitzman, 1979). Each matches one of the two aforementioned search patterns. Search is costly in both cases. A sequential search assumes that the user draws only one sample per period to investigate and put it into her consideration set. Based on what is in her consideration set, she makes a decision about whether to continue the search or pick one option out of her consideration set. In contrast, in a nonsequential search model, before making any investigations, a user first chooses the optimal size of her consideration set, i.e., the number of samples for investigation, with the objective of maximizing her expected return. Then she randomly draws samples to fill her consideration set. She finally chooses the best option out of the consideration set. These two models each explain some real life scenarios. The sequential search model can describe the first search pattern mentioned above while the nonsequential model describes the second search pattern better. It is fair to say that in reality the search process may be a mix of both search patterns. In Morgan and Manning (1985), the authors establish that a more generalized optimal search rule should be a combination of both models. Under some conditions, however, the optimal search rule takes one of the two extreme cases of sequential search or nonsequential search.

The newly developed search engine industry provides some promising directions for theoretical, empirical and experimental research that will add to existing search model literature; we discuss these below. A better understanding of consumer search behavior in the online search environment can enrich our knowledge of the strategic behaviors of advertisers and search engines.

1. With the assistance of search engines, should a consumer shopping online search more or less than in a brick-mortar environment? At first glance, since search engines decrease search costs, consumers should search more intensively. However, there are reasons to argue the opposite. First, after investigating several
options, the user may have forgotten the exact attribute values of previously observed products. Thus the user cannot easily choose a product that is already in her consideration set. Also, advertiser’s website normally open in the same browser window to replace the search results page. To go back to the results page for another investigation, the user may have to make several backspace clicks. Even worse, some websites that are encrypted for security reason may even block the user from going back to the results page. All of these create barriers to revisiting previously investigated products. In a laboratory setting, Zwick et al. (2003) design a sequential search experiment such that consumers have a probability less than one of fetching previously visited products. They show that consumers stop searching too early compared to the theoretical optimal level of search. Second, Moorthy et al. (1997) argue that consumers stop searching earlier than the optimal if there is little “relative uncertainty” among products, where “relative uncertainty” is defined as the uncertainty about which product is the best. At many search engines especially more specialized ones (e.g., www.shopping.com for merchandise, www.addall.com for books, www.sidestep.com for travel products), consumers can sort and filter products by different criteria such as price and retailer rating. To some extent, such sorting or filtering decreases the “relative uncertainty” and thus may reduce the consumer search behavior to a suboptimal level. Additional research that shows suboptimal consumer search behavior is an experimental study by Gabaix et al. (2006). The authors demonstrate that there may be bounded rationality during a consumer’s search. In particular, during a sequential search, consumers are myopic in the sense that they behave as if every search will be the last search. Because they only consider the expected value of one search ahead rather than integrating out the expected values of all future searches, this myopic behavior results in an underestimation of the value of search. Hence
consumers may stop searching too early. Clearly, empirical and experimental research on the welfare implications of search engines would be useful, and could offer theoretical insights to further enrich search models.

2. What are consumers’ clicking likelihoods and purchase likelihoods under differently designed search results pages? Design characteristics to consider may include: (1) what advertisers’ characteristics can be sorted/filtered by consumers? (2) After sorting/filtering, should a winning sponsor advertiser still appear at the top spot in the sorted/filtered results? (3) How easily can a consumer surf back to the search results page? Answers to these questions will give the search engine insights into how to design the results page to manipulate the number of clicks per consumer.

Why should a search engine consider the number of clicks per consumer under differently designed webpages? As mentioned at the beginning of this section, the number of clicks has important effects on revenues for advertisers and search engines. As discussed, consumers may stop searching online earlier than in traditional brick-mortar environments (Zwick et al., 2003; Moorthy et al., 1997; Gabaix et al., 2006). On one hand, a shorter search decreases the number of alternatives in the consideration set, increasing the probability of a sale for products already in the consideration set. Since the auctioned advertising spots increase the probability of an advertiser being clicked and hence included in the consideration set, advertisers will value these spots higher. Thus advertisers will bid more aggressively. On the other hand, from the perspective of the search engine, the decreased number of searches has two opposite effects: (1) lowering auction revenue by decreasing the total number of clicks and (2) increasing auction revenue due to the more aggressive bidding. Hence the search engine should be strategic about achieving the optimal number of clicks per
3. What are the consumer welfare implications of sponsored search advertising? First, sponsored search advertising enriches organic search results with sponsored ads for products in which consumers are interested. By aligning relevant product information on the same webpage, the search engine creates a convenient shopping environment. As shown in consumer behavior literature, when consumers can easily make price and quality comparisons across different retailers, their utilities for consuming the chosen products rise (Lal and Sarvary, 1999; Lynch and Ariely, 2000). From the point of view of economics, is this increase in utility a simple result of search cost reduction? Or is there something else, such as the pleasant shopping experience itself, which has an impact on the utility of consumption? Further, easy access to product quality information decreases a consumer’s disutility of payment by lowering the weight of price in one’s utility function (Russo, 1977; Hubl and Murray, 2003). Together with the “easy comparison” feature just mentioned, consumers should be more satisfied with their search engine shopping experience than a brick-mortar purchase. Empirically, can we measure this improvement consumer welfare? How does this improvement affect advertisers’ revenues? Might the search engine be able to monetize this welfare improvement?

4. Under what conditions, will one of the two search models better describe consumer search behavior? As suggested above, the complexity of product attribute space may be one of the factors that contribute to variance in consumer search patterns. The more (less) complicated the product attribute space, the better nonsequential (sequential) search models should mirror the reality of consumer search. Another factor that may affect a customer’s search pattern is the difficulty of fetching searched products from previous periods, or the
consumer’s intertemporal discount factor. If it is very difficult to fetch previously visited products or the discount factor is fairly small, customers are more likely to use nonsequential search. For example, a job seeker is likely to search nonsequentially during job-hunting by submitting multiple applications simultaneously. Thirdly, when consumers use sorting at the search results page, they choose an attribute of products that is more important to them to conduct the sorting. After sorting, products are ordered according to levels of that attribute. It is likely that consumers will investigate products sequentially in the order that is produced by the sorting. Fourthly, when a consumer uses filters at a search results page, she faces a much smaller set of products which all satisfy her criteria. She is more likely to consider all products in this set. Thus, a nonsequential model seems to better describe her search behavior.

All of these influences on consumer search patterns provide empirical and experimental research opportunities. Hong and Shum (2006) and Hortacsu and Syverson (2004) use observed market price dispersion to infer consumer search behavior. Kim et al. (2009) use market level popularity data to infer consumer search behavior and market structure. These empirical studies establish solid ground for future research using individual level search engine data to explore consumer search behavior. However, little experimental research has been done on this topic. Since experiments provide control over the noise in field data, we believe they can offer great insights onto consumer search behavior in the online search environment.

3.3.3 Choosing Links to Click

With multiple links presented on the search results page, the user must choose which link(s) to click. For advertisers and search engines, spots that are more likely to be clicked are more valuable; thus, bidding strategies and auction revenues depend on
consumers choices about where to click.

The Preference of A Consumer

Intuitively, the user should click the link that present the highest expected utility. But how does a consumer form preferences in the search engine environment? Do online consumers have a different preference construction process than those in a brick-and-mortar environment? Since consumers clicking behavior is directly affect by their expected utilities of search results, answers to these issues will lead to a better understanding about which links are more likely to be clicked and hence have higher value. In the consumer behavior literature, some studies have investigated the influence of the online environment on consumer preference formation. Search engines provide consumers with easier access to price information across different retailers, and consumers put more weight during decision making on attributes that are more convenient to process (cf. Russo, 1977; Hubl and Murray, 2003). Alba et al. (1997) hence express the concern faced by many online retailers: since online shopping reduces the search cost for price information, consumers become more price sensitive, which intensifies price competition among retailers and could lead to lower margins. Diehl et al. (2003) provide an additional argument that supports this view on price sensitivity. They show that based on a consumer’s keyword query, search engines oversample products that match the consumer’s interests; these sampled products are more likely to be close substitutes. Thus, there will be less product differentiation and more intensified price competition. In a theoretical paper by Chen and He (2006), the authors show that such an assortment of close substitutes is in fact an equilibrium of sponsored search auctions. On the contrary, Lynch and Ariely (2000) propose the opposite and argue that search engines may decrease price sensitivity. Search engines not only lead to lower search cost for price information, they also make quality information more salient. Thus, when consumers have easier access
to quality information, the product quality becomes more important to consumers and price sensitivity drops. With more field data, these opposing claims could be tested to see which better reflects reality; such empirical research could also provide insight into theoretical modeling on how search engines affect consumer attitudes towards price and quality.

Possible Empirical Modeling Approaches

For nonsequential search, an empirical modeling issue is that consumers make multiple discrete choice when they are viewing the results page: a consumer needs to pick several links out of the search results. In the marketing literature, Harlam and Lodish (1995) use a discrete choice model to describe multiple brand purchases, while Manchanda et al. (1999) consider the “shopping bracket” problem where consumers make purchases across multiple categories. However, Dubé (2004) may be the most relevant study for this issue. Dubé (2004) uses a “multiple discreteness model,” as outlined in Hendel (1999), to estimate the choice problem where a consumer purchases multiple items across different brands within the same category, soft drinks. These models can be easily extended to the problem of consumer behavior on search engine webpages: a user chooses multiple ads to click; the expected return for investigating these ads is determined by the ads attributes and the user’s characteristics. The user tries to maximize the total return of investigation subject to some constraint such as time.

For sequential search, empirical models following the spirit of Hong and Shum (2006) can be applied. If researchers have detailed individual browsing data, consumer search costs may be inferred by relying on the idea that when a consumer stops searching, this implies that the marginal search cost is higher than the expected return for continuing the search.

In short, the availability of search engine data provides opportunities for market-
ing researchers to better understand consumer behavior in the online world.

3.4 Advertisers

The effectiveness of sponsored search advertising attracts business of all types. Before entering the bidding stage, an advertiser needs to first decide which “products” to choose, i.e., which search engines and which keywords should be used to run her advertising campaign. To do so, she also needs to measure values of the auctioned spots of each keyword at each engine. After making the decision, she needs to decide corresponding bid amounts. During the bidding process, there are also other problems affecting her bidding strategies such as the winner’s curse in auctions. We will discuss these below.

3.4.1 Which Search Engines and Which Words to Bid

To some extent, sponsored search auctions can be understood as advertisers purchasing products from search engines through auctions. The products are Internet users’ clicks and impressions. There are different search engines and each engine sells multiple keywords. So an advertiser makes discrete choice about engines and keywords before entering an auction. Little research has been done on the advertiser’s choice problem, even though there is abundant discrete choice research that can be applied (cf. Palma et al., 1992). In order for a choice model about advertisers to be realistic, the following factors should be taken into account:

(1). The number of Internet users using particular search engines and keywords. The volume of Internet users that visit a search engine and use particular keywords determines the number of impressions and clicks of a sponsored ad. Choosing search engines and keywords with high traffic should be a major consideration for the advertiser.

(2). The characteristics of Internet users such as likelihoods of clicks and pur-
chases, and the propensity of being influenced by advertising. The likelihoods of clicks and purchases affect online traffic to the advertiser’s website and purchase conversion rate, which will affect sales. Those users with a very specific search purpose will have higher likelihoods of clicking and purchasing. For example, users searching for more specific keywords “hotels los angeles” may be more likely to click and reserve hotels than those searching for “los angeles”. On the other hand, these more specific keywords may be used by fewer Internet users while searching, resulting in fewer impressions. Thus, the advertiser has to make a trade-off between impressions and sales.

(3) The auction mechanism adopted by the search engine and the competitiveness of the auction. Together these factors determine a bidder’s winning probability and payment (cost), where a low probability of winning and a high payment will deter bidders. For example, Edelman and Ostrovsky (2007) show that a flawed auction mechanism used by Yahoo! caused revenues to be 10% lower than they should (optimally) have been.

Supplementing the use of discrete choice models to select search engines and keywords, selection algorithms have been advanced to help advertisers select a cluster of keywords (which may be distributed across multiple search engines). For example, Rusmevichientong and Williamson (2006) propose algorithms for selecting keywords to bid based on the ranking of keywords in a descending order of profit-to-cost ratio. Amer-Yahia et al. (2008) specify a framework of an open source computer language to help advertisers optimize their advertising campaigns. One extension for such algorithms may be how to incorporate competitor response into the algorithms. For example, when the advertiser’s decision to adopt a specific algorithm becomes known to its competitors, they may predict the focal advertiser’s actions. Then it becomes possible for those competing advertisers to strategically beat the focal advertiser, voiding the advantages of using the algorithm at the first place. In short, when
designing a general algorithm for the purpose of optimizing keyword advertising campaigns, it is crucial to incorporate the game component into the calculation.

Of further interest is search engine optimization (SEO), or techniques that advertisers use to design their advertisements and websites to command a prominent placement in the organic search results section. While there is extensive research in the field of computer science and engineering about the optimization algorithms (e.g., Joachims, 2002; Malaga, 2007; Langville and Meyer, 2006), interesting questions remain in the field of marketing. Such questions include how an advertiser should efficiently allocate resources between sponsored search auctions and SEO and whether an SEO substitutes or complements sponsored advertising. A prerequisite question to consider involves how search engine advertising affects advertiser revenue over the long term and we discuss this question next.

3.4.2 How to Measure the Value of an Advertising Spot

Before bidding, a potential bidder must determine the value of the object in the auction. No matter what auction mechanism is adopted by the search engine, this value will affect the strategy of the bidder.

To assess the value of an advertising spot, there are at least two candidate variables: (1) online traffic (clicks) generated by the spot to the advertiser’s website; (2) the number of impressions on the search results page. Both variables can influence the advertiser’s sales. Although advertisers normally use only one of them to measure the value of a spot (SEMPO, 2005), we suggest a more accurate measure that takes both into account should be constructed.

Online traffic (clicks) is used to calculate spot value more often than number of impressions because it is more convenient to obtain: the search engine uses this number to calculate the payment and the number is clearly shown on the advertiser’s bill. However, it is still unclear how best to calculate the purchase conversion rate of
these clicks. Purchase conversion rate directly affects the advertiser’s sales, and refers to “the percentage of web visitors who make a purchase during a visit to an online retailer (Montgomery et al., 2004).” Using clickstream data from an online retailer, Moe (2003) develops a typology of consumers visits to online stores that includes four groups: browsing, knowledge-building, searching and buying. The author shows that on average purchase conversion rate for “searching” visits is only about 6.64%. Even for “buying” visits, which have the highest conversion rate, only 20% of these visits turn into final purchases.\(^6\) This low purchase conversion rate may cause the value of spots to be overestimated when value is calculated using number of clicks. However, let us consider the consumer’s decision process while visiting an online store. After a click, the consumer may become loyal to the online store due to positive impressions even without a purchase. She may come back to make multiple purchases in the future. With this dynamics ignored, the value of a spot will be underestimated. More intricately, since most online retailers carry a variety of products, even when a click leads to a purchase, it is difficult to predict which product a customer may buy and hence predict the revenue from that transaction. In short, the number of clicks by itself fails to accurately measure the value of a spot.

Other than generating online traffic, sponsored search advertising can also generate impressions similar to banner ads; these impressions increase awareness among consumers. In practice, many firms even bid for “wrong” words so as to create awareness by appearing in the results of potentially irrelevant searches. For example, eBay.com has sponsored ads at Google.com across many words related to “eBay” that are typographical errors such as ebbay, ebya, eaby. Since the seminal work by Nerlove and Arrow (1962), a rich literature shows that advertising is a tool to establish “goodwill” among consumers (cf. Naik et al., 1998; Bass et al., 2007). When an Internet user conducts a search at the engine’s website, even if she does not click the

\(^6\) The other types of visits have much lower purchase rates of less than 0.1%.

128
sponsored ad on the results page, the ad still generates an impression and creates “goodwill”. Some empirical work support this argument. In a paper by Manchanda et al. (2006), the authors show that higher impressions of a banner ad has positive effects on an online retailer’s sales. Recently, Rutz and Bucklin (2008) use a dynamic linear model (DLM) to consider the effect of sponsored search ads on clicks (online traffic) and sales. They demonstrate that the effect of “goodwill” on these two variables is significant. As initial attempts, these papers extend our understanding on sponsored search advertising. However, there are still many questions to answer before we can apply impressions as an accurate measure of spot value. For example, because Rutz and Bucklin (2008) only have sponsored search advertising data from one advertiser firm on an aggregate level, they are not able to consider competition among advertisers, or heterogeneity of surfing behaviors and product preference among Internet users. An even more crucial problem is that with aggregate level data it is difficult to distinguish whether it is “goodwill” that increases clicks and sales or the fact that, even without “goodwill”, the presence of a link on the results page will lead to more clicks and more sales in a probability sense. Further, the value of a spot changes dynamically across time: if the advertiser has run intensive advertising recently, the marginal return of the spot generated from impressions may be lower than otherwise.

In sum, recent studies provide initial steps towards better measures of the profitability of sponsored search advertising. However, many aspects of the problem call for future research. To name a few potential research questions: First, on the search results page, one retailer’s ad link is adjacent to dozens of competitors’. This assortment may be able to make price and quality information more apparent to consumers as mentioned above; how does competition among ads affect one online retailer’s impressions, online traffic and sales? Second, an advertiser can choose to direct online traffic to the main page of its website or to some specific category that
is more related to the searched keyword by consumers; how does such a choice affect the value of an ad spot? Third, the design of an ad at the search results page affects traffic and impressions; should the retailer disseminate more information in the spot on the search engine’s page or retain information with the hope that consumers will visit the retailer’s site for more information? While the former strategy may create more positive impressions, the latter may increase clicks; how should the retailer make such a trade-off?

3.4.3 How Much to Bid

In this section, we first summarize studies about bidding strategies in sponsored search auctions in general. Then we extend the discussion by considering additional aspects of this auction game that may affect bidding strategies such as multiple auctions, the winner’s curse, collusion, and so on.

Bidding Strategies: An Overview

The auction formats most pertinent to sponsored search auctions are multi-item first-price auctions and second-price auctions with single demand. That is, there are multiple spots for an auction; each bidder needs only one of the multiple spots. Payment is calculated based on the bidder’s own bid (first-price) or the highest losing competitor’s bid (second-price). Below we set forth some established conclusions about these common auction mechanisms.

Take Yahoo! as an example. Before 2004, Yahoo! allowed bidders to submit bids at any time. The highest bidder got the best spot, the second bidder got the second best spot, and so on. A winner pays its bid for each click by Internet users. This auction can be described as a multi-item first price auction that has single demand and no clear ending time. The same mechanism is still being used by many search

That is, Bestbuy can direct a consumer who searches for “iPod” to bestbuy.com or directly to the “iPod” section at bestbuy.com.
engines. In existing literature, multi-unit first price auctions have been shown to have a pure strategy Nash equilibrium for independent private value (IPV) under some moderate assumptions (Reny, 1999; Athey, 2001). Roughly speaking, a rational bidder’s bidding strategy is to submit a bid lower than her true value regarding the object, which is called bid shading. The degree of bid shading decreases when the number of competing bidders increases.

After 2004, Yahoo! followed Google and adopted a more complicated mechanism which is termed as Generalized Second Price Auction by Edelman et al. (2007). Using this new mechanism, bidders can still submit bids over time, but their payments are more similar to those of a second price auction that encourages bidders to bid their true values. The search engine calculates the product of each bidder’s bid and her ad’s quality factor. The quality factor is mainly determined by the number of past clicks, ad design and relevance to the keyword. Winners are determined based on the ranking of these products. For example, suppose there are two bidders A and B whose bids are b_A and b_B. Their quality factors are Per_A and Per_B. If $b_A Per_A > b_B Per_B$, then A wins the better spot and her payment for one click will be $b_B \frac{Per_B}{Per_A}$. Putting the quality factor aside for a moment, the auction can be considered as a multi-item second price auction, where there is an ex post equilibrium equivalent to the truth-telling equilibrium, i.e., all bidders submit bids equal to their true values (Edelman et al., 2007; Varian, 2007). However, Katona and Sarvary (2008) extend the analysis by taking the quality factor into account and show that there are multiple equilibriums which do not have closed form solutions.

Chen and He (2006) try to disentangle the bidding strategies under Google’s mechanism from a different perspective. They assume that consumers (Internet users) engage in costly search. An advertiser’s valuation for sponsored slots depends on the advertiser’s product quality. A click on a high quality advertiser’s link leads to a high likelihood of sale and a high value for the slot. Similar to Edelman et al. (2007),
Chen and He (2006) show that, in equilibrium, bidders will submit bids equal to their true values. Hence advertisers will be ranked according to their values (qualities). Correspondingly, in equilibrium, consumers will search sequentially according to the ranking of advertisers because this signals their quality.

Athey and Ellison (2008) also consider a model that integrates both consumers and advertisers as in Chen and He (2006) but add several other important features. They assume that advertisers only know the distribution of their competitors’ valuations about sponsored slots thus making the auction an incomplete information game. They also assume consumers engage in costly sequential searches that follow an optimal stopping rule (cf. Weitzman, 1979): consumers stop searching when the expected return of further searching is lower than the best choice in their consideration set. Thus, the better slot an advertiser gets, the higher the probability that her product will be purchased by consumers. Intuitively, this is because a better spot will give the product a higher probability to be included in the consumer’s consideration set before she stops searching. So a better slot implies higher sales for the advertiser. The equilibrium bidding strategy in Athey and Ellison (2008) is different than those in previous literature. Although bids are still monotonically increasing in values (qualities), high value (quality) advertisers will bid more aggressively than low value (quality) advertisers.

The rich literature in auctions offers a great start for the investigation of bidding strategies in sponsored search auctions. Still, the existing studies only have limited ability to generalize to this new practice. For future research, the following characteristics of the game need to be considered.

1. The dynamics involved in the auction game. An additional complication of the Google mechanism is the dynamics, i.e., a bidder’s current performance will affect her future payoff. A better slot will increase the number of clicks, which
will in turn affect the advertiser’s future advertisement quality factor. As described above, this quality factor will affect the bidder’s winning probability and payment. Hence the bidder may consider dynamics in her bidding strategy. Such dynamics have significant effects on equilibrium bidding strategies. For example, Zeithammer (2006) considers the dynamics of bidding for online auctions such as eBay.com. In his model, by winning in the current period, a bidder gives up the option of purchasing the same or similar items in the future. Hence a rational bidder will bid more conservatively to offset the disadvantage of losing future options. This conservative bidding strategy may lead to inefficiency and welfare loss because it is possible that some low value but myopic bidders bid more aggressively and win the auctions. In an empirical paper by Jofre-Bonet and Pesendorfer (2003), the authors confirm the existence of such conservative bidding behavior in a dynamic setting. Following the same notion but in a reverse direction, in the sponsored search auction, if a bidder is placed at a better spot and hence has a better performance, her future payoff will increase since the current good performance enhances her winning probability and lower her future payment. If this dynamic effect is prominent, we should see bidders bid more aggressively (Yao and Mela, 2009). These issues can be studied in future, including the effect of dynamics on the revenue of the search engine and the efficiency of the auction.

2. The competition between sponsored search ads and organic search results (see Figure 3.1). For example, consumers are more likely to click the organic results when both organic and sponsored results are presented. If an advertiser’s link has already appeared in a top position of organic search results, should she still choose to participate in sponsored search auctions? If yes, should she bid more or less aggressively? More essentially, are organic results and sponsored
ads complements or substitutes, i.e., do they boost or offset each other’s impressions/clicks/purchases? Due to the complexity of this problem, there are currently no closed form characterizations of the equilibrium so far (Katona and Sarvary, 2008). A follow-up managerial question for advertisers is how to allocate resources between sponsored search advertising and organic search optimization. For the latter, advertisers can apply techniques to increase their ranking in the organic search results. Marketing expenditures used for organic search optimizations were over $600MM in 2005 (SEMPO, 2006). Given the magnitude of the expenditure, this is definitely a significant issue.

3. Dynamic learning of advertisers. Even under the private value setting, the sponsored search auction is still a complicated game. Novice advertisers may not be familiar with the rules or with competitors’ characteristics and, more importantly, they may not certain about the return (value) of sponsored search advertising. We would expect advertisers to update these pieces of information dynamically across time. Dynamic learning models have been used extensively in marketing to study agents’ uncertainty and knowledge building. It would be fruitful to model sponsored search auctions in a dynamic learning framework.

Bidding Strategies: Multi-item Auctions with Multiple Demands

We considered the case of a multi-item auction with single demand above. In practice, each bidder also faces multiple simultaneous auctions held by multiple search engines on multiple semantically similar keywords. This leads to the more complicated auction game of multi-item auctions with multiple demands, i.e., there are multiple items for auction and each bidder may demand multiple units (across search engines and across keywords).

Holding multiple auctions simultaneously is frequently observed in government resource allocation auctions for its quick transaction (e.g., spectrum auctions in the
wireless phone industry). In recent years, multiple simultaneous auctions have drawn more attention from researchers due to the booming of B2B commerce, where such auctions are widely used. However, due to the complexity of these auctions, caused by the heterogeneity of auctions/items and bidders’ intricate strategies across these multiple auctions/items, the literature on multi-item auctions with multiple demands is much less developed and very few generalizations are available (for a thorough review see Krishna (2002)).

Most studies on sponsored search auctions do not consider this issue for tractability reasons (e.g., Edelman et al., 2007; Varian, 2007; Chen and He, 2006; Athey and Ellison, 2008). To our best knowledge, Katona and Sarvary (2008) are the first to address this question. The authors demonstrate that one equilibrium for such auctions is for bidders to bid on multiple keywords and treat them as independent auctions as long as the generated clicks across keywords are independent. However, the “independence” assumption is hardly satisfied in reality. Normally there will be complementarity or substitutability among keywords, which will be discussed next. Further, the model only uses the number of clicks (online traffic) as a measure for the value of a spot. While clicks, impressions and sales are all important factors for an advertiser’s profits, this assumption limits the generality of the model. Investigation of multiple auctions taking these issues into account would be fruitful.

Another promising aspect for modeling multi-item auctions with multiple demand is the complementarity and substitutability among keywords. Complementarity exists when the sum of each single item’s value is smaller than the bundle value of the same set of items. The reverse case implies substitutability among items. When it comes to sponsored search auctions where bidders face multiple keywords, it becomes an empirical question whether these different keywords are complements or substitutes. At first glance, different keywords are substitutes in the sense that generated values across multiple keywords may have diminishing marginal returns. Winning
one keyword makes other keywords less valuable to the bidder. However, different keywords may also complement each other semantically (e.g., the words “hotel”, “flight” and “car rental”). Further, even for similar keywords, the impressions generated by one keyword may have positive effects on the other keywords (e.g., the impressions from the “wrong” word eaby on eBay). Future research is merited on questions about how to determine complementarity among keywords, how to measure the degree of complementarity and how to allocate bidding resource among complementary keywords. Moreover, complementarity makes winning one item but not the whole bundle less attractive to bidders. Sometimes, bidders will be reluctant to bid since they may win some items but lose the others. This makes the whole bundle’s value tainted (Brusco and Lopomo, 2009). This issue also calls for further investigations into how bidding strategies vary and how auction mechanisms should be optimized under different complementarity and substitutability conditions.

Bidding Strategies: Other Aspects of Sponsored Search Auctions

We also list some other promising research directions for sponsored search auctions.

Private Value vs. Common Value It is well established that bidding behaviors and equilibrium results vary dramatically between private value auctions and common value auctions (cf. Milgrom and Weber, 1982). Although it is hard to find a pure private or common value auction in practice, researchers normally have to resort to one of these classifications for model tractability. All the studies about bidding strategies in sponsored search auctions mentioned above rely on the private value assumption. That is, each bidder knows the true value of a spot to her. While this assumption simplifies the analysis, it may be the case that all bidders are not perfectly certain about the impression/traffic/sales generated by a spot and they assign some distribution to the values. This interdependence of values among bidders introduces
new complications such as the winner’s curse. Bidding behavior under this alternative common value information structure deserves our attention.

The Winner’s Curse Related to the puzzle of private value or common value, the winner’s curse is another interesting topic in sponsored search auctions. The winner’s curse exists in common value auctions. Although theoretically rational bidders will not fall to the prey to the winner’s curse since their bidding strategies should have taken the factor into account, both empirical and experimental studies show that some bidders suffer the winner’s curse in online auction environment (Jin and Kato, 2006; Bajari and Hortacsu, 2003; Heyman et al., 2004). It would be interesting to see whether the effect has been diminished over time as advertisers become more experienced with auctions. Also from the perspective of a search engine, this is an important issue since the winner’s curse causes bidders to bid more conservatively and hence affects the search engine’s revenue. How might search engines attenuate this effect so as to increase profit?

Collusion For sponsored search auctions, major bidders’ identities can easily be observed from the results page. Also, since the auctions repeat over time and across keywords, collusion among bidders can be easily achieved. For example, advertisers may form some type of agreement (which may be implicit) that they win the auction of one keyword alternatively over periods. They may also diverge their bids collusively to different keywords. By doing so, they may be able to find a more profitable trade-off between payments to the search engine and clicks/impressions/sales across auctions/periods. In a theoretical paper by Stryszowska (2005) the author shows an equilibrium where bidders implicitly collude across multiple auctions and multiple periods in the context of online auctions such as eBay.com. In practice, collusive behavior is widely observed for multi-item electronic auctions such as mobile wireless
service licenses (Cramton, 1995; Wolfram, 1998; Grimm et al., 2003). It is an interesting empirical question to investigate whether collusive bidding behavior exists in sponsored search auctions.

3.5 Search Engines

A search engine faces multiple intertwined issues throughout the auction process. First, the search engine seeks to design an auction mechanism that maximizes its revenue. Second, in the competitive environment of the online search industry, a search engine needs to consider how to position its “product”, search results, against its competitors. Since sponsored ads are also a part of the product, the positioning decision will affect the auction directly. Third, the existing literature has shown the benefits of customer targeting and product customization. Search engines need to consider how to incorporate these concepts into their auctions. Related to customer targeting, another issue is sharing of market intelligence between the search engine and advertisers. To allow advertisers to appreciate the value of targeting a segment of customers, the search engine may need to share some market intelligence with them. Fourth, central to the profitability and long-term growth of a firm, the search engine needs an accurate measure of the value of its customers so that it can allocate resources for customer acquisition and retention. In particular, the search engine creates a two-sided market of advertisers and Internet users. The traditional metrics of customer value will be biased in such a two-sided market. Fifth, sustained price dispersion among advertisers still exists given the reduced search cost for consumers under search engines, which contradicts the prediction of existing theoretical search models. How does price dispersion affect the search engine? Sixth, click fraud is a type of deceitful practice of clicking on advertisements to create false impressions of high click-through rates and/or high levels of exposures. It has become a serious issue for the whole industry and may jeopardize the business model of sponsored search.
advertising. What is the welfare implication of click fraud? This raises the question of which approaches may be adopted to fight click fraud. Seventh, each of these foregoing factors affects both consumer welfare and advertiser revenue. A strategy that enhances a search engine’s revenue may be to the detriment of consumers and advertisers. Hence, from a public policy perspective, it is important to ascertain the role of search engine strategy on consumers and advertisers. We discuss these issues next.

3.5.1 Optimal Auction Design

A search engine faces the revenue maximization problem when it designs its auction mechanism. Auction mechanism design has established a rich literature body since the study by Vickrey (1961). With the purpose of revenue maximization,⁸ the optimal design involves the determination rules of winners, payments and the choice of reserve price.⁹ We discuss each in turn.

Winners and Payments

Central to the design of an auction mechanism is the determination of winners and payments of the auction.

There are common auction formats that are widely used in reality, such as first price auction and second price auction. However, due to the specific nature of sponsored search auctions, these common formats can not be directly applied for the purpose of revenue maximization. To be more specific, consider the following simple example. Suppose there are only 2 bidders, A and B, and one slot for the auction of a focal keyword. Within a given period, A’s ad can generate 70 clicks and B’s

⁸ Sometimes efficiency of allocation is also an objective of the auction design. An efficient auction mechanism enables the bidder with the highest value to win the best slot, the second value bidder to get the second best slot and so on. While most search engines are profit-seeking firms, we will only focus on the revenue maximization objective.

⁹ We will discuss the information release issue in the section on targeted marketing.
can generate 50. Suppose A bids 4 and B bids 5. With a second-price auction that encourages a truth-telling strategy, B will be the winner and pay $4 for each click. The engine’s revenue is $4 \times 50 = 200$. Suppose the slot was awarded to A instead, even with a lower per-click-payment than 4, say 3, the engine’s revenue would be higher: $3 \times 70 = 210$.

In practice, many search engines use more complex mechanisms to determine winners and payments. For example, Google uses the generalized second price rule mentioned earlier. Continuing with the same example above, under the second price rule, A will be the winner and the payment for each click will be $5 \times 50/70 = 3.57$. The revenue for the engine becomes $3.57 \times 70 = 250 > 200$.

However, even Google’s mechanism is far from optimal (Iyengar and Kumar, 2006). The current mechanism fails to consider some important factors in the revenue determination process. For future research, we seek to diagnose the search engine’s revenue more carefully. The expected revenue of the search engine from a winning advertiser has two components: the expected number of clicks and per-click-payment. The following factors will affect the values of the two components and need to be considered when designing auction mechanisms:

- Which slot does the advertiser win? A better slot can boost the number of clicks and also implies a higher payment, but the click rate of each slot is not independent of the identity of the winner. That is, different advertisers will have diversified click rates at the same slot.

- The adjacent advertisers matter. For example, if a small online retailer is placed beside a prestigious large retailer, the clicks on the small one may decline since consumers would be attracted to the prestigious retailer.

- What are the organic search results, and how do these impact the click behavior of Internet users? Users probably have different likelihoods of clicking an
advertiser’s link when the advertiser also appears in the organic results versus otherwise. How should the search engine decide the winning bidders with the organic results taken into account?

- How many auctions should be offered, and how many ad spots should be offered for each auction? As mentioned in Section 3.4.3, bidding strategies change dramatically when bidders face multi-item auctions. Auctioning more keywords and more slots may be able to increase the total number of bids. However, it will divert advertisers into multiple auctions and reduce competition within each auction. Multiple auctions may also change bidders’ valuations about each spot and affect their bidding behavior.

- Bidders may (implicitly) collude in the online environment. Such collusion reduces the search engine’s profits. How might search engines discourage collusion among bidders?

Reservation Price

Search engines can set minimum bids such that any bids lower than the minimum will not be admitted; this minimum bid is termed as a “reserve price” of an auction. Reserve prices are a tool that search engines might use to maximize revenue (cf. Riley and Samuelson, 1981). The basic idea is to set a reserve so that it extracts all surplus from the winner. Although this concept can be applied to the optimization of reserve price in sponsored search auctions, some complications exist, and will require further investigations:

First, a high reserve will deter low value bidders from participation. This reduction in the number of bidders may decrease the intensity of bidding competition and lower revenue for the search engine.

Second, reserve prices create the problem of endogenous entry of bidders. For
example, in an auction, the reserve price serves as the minimum payment of a winner. Only if an advertiser’s valuation for an ad slot exceeds some threshold that depends on the reserve price, will she attend the auction. This endogeneity causes difficulties, especially for conducting empirical studies.

Third, which winner’s surplus to extract? How much is that winner’s surplus? There are multiple winners for a given auction. Intuitively, the search engine should focus on the winner who has the lowest surplus and set the reserve so that the lowest winner is just indifferent between winning or not. However, the identity of that winner is difficult to determine since it is embedded in the winner-payment determination mechanism. With different winner-payment determination mechanisms, the surplus distribution among winners changes dramatically.

3.5.2 Search Query Results

Search engines compete for both Internet users and advertisers, which are both heterogeneous. The nature of competition across search engines is incumbent upon the advertiser and consumer problems of which search engines to choose. Predicated on those, the search engine will independently choose their policies to maximize their profits. Such policies include both consumer strategies (e.g., web page design and/or search algorithms) and bidder strategies (e.g. auction mechanisms). Here we focus on the former because auction mechanisms are discussed above.

A search engine’s product for Internet users is (free) information—search results, including organic results and sponsored ads. For advertisers, a search engine’s product is essentially Internet users: the engine is selling users’ clicks and impressions to advertisers using auctions. How to effectively deliver the first product, information, to Internet users may be the more crucial service: by attracting more Internet users, the sponsored ads become more valuable to advertisers. The advertisers are more likely to choose a more popular engine over others to run a marketing campaign and
bid higher in the auction. Hence, we will focus here on competition for Internet users.

It is impossible for a search engine to perfectly cover all the information on the Internet relevant to the keyword queried. According to some work by Bradlow and Schmittlein (2000) on the efficiency of search engines, even the “best” search engine can only cover about 50% of the information on the Internet. It takes about 6 engines to cover 90% of the information on the Internet.

A strategic decision that search engines must make is whether to exert effort to cover online information as comprehensively as possible, or whether they should differentiate their search results coverage. In the extreme case of the former strategy, all engines would have homogeneous products for heterogeneous customers, i.e., engines have the same set of information and rank results in the same order. Assuming visiting multiple search engines is costly, we may expect rational consumers not to visit several search engines with homogeneous information. This situation will cause (1). intensive competition for Internet users among search engines. (2). less advertisers per search engine and each advertiser has lower valuation regarding the auctioned ad spots. This is because search engines’ products for advertisers are also homogenous per se: if search engines have homogenous information, they will attract customers with the same probability. Thus the composition of the group of users of one engine would be the same as that of other engines. In contrast, when search engines have differentiated information, they attract different segments of Internet users in the market. From the viewpoint of an advertiser, this segmentation makes the sponsored search advertising more valuable: she can customize her ads/products to match some specific segments so that there will be a higher price margin caused by the product differentiation. This differentiation will, in turn, increase the search engine’s revenue from auctions.

Thus we conjecture that a more profitable equilibrium is that search engines
differentiate the information presented on their results page. The core of this differentiation is the information provided, which causes segmentation among Internet users and thus leads to another level of differentiation in the auctioned spots. While there are many studies of product differentiation, none has been done in the context of online search. Many research questions can be explored. For example, how should the equilibrium strategies of search engines be characterized? What factors affect the equilibrium level of product differentiation? In reality, we do observe some level of differentiation in the information presented by search engines. Is this difference caused by search engines’ strategic actions or is it purely a result of their underlying different search techniques and algorithms? Further, another real-world observation is that some leading search engines such as Google are very comprehensive in terms of their search results, but there are also smaller specialized engines focusing on a few categories. Is this an equilibrium of a sequential entry game, in the sense that Google is among the first few prototypes of web crawler search engines and other smaller ones try to position for niche markets?

3.5.3 Targeted Marketing–Product Differentiation Across Users

Following the long history of targeted marketing research, Ansari and Mela (2003) demonstrate that targeting customers in the online environment can also be very profitable. In their paper, they show that the expected click rates of promotional emails can increase by 62% after customizing those emails based on customers characteristics.

The same notion can be applied into sponsored search auctions. Based on past clicking and browsing data, a search engine can present more relevant ads to a customer when she makes keyword query. Such customization should increase the advertising ROI due to these ads’ high relevance to the user. From the perspective of advertisers, a bidder may focus on bidding for the most profitable segments of
customers.\footnote{Note that here advertisers are focusing on different segments of internet users within the same search engine while in the last section, advertisers considered different search engines having different segments of users.} Especially when advertisers’ products are differentiated, their profitable segments tend to be different. This will decrease the intensity of competition at the customer purchase stage and hence the value of the auctioned spots should be higher. From the search engine’s point of view though, a trade-off needs to be made between the higher value of each bidder and lower bidding competition. While advertisers may increase their values for the auctioned spots due to customization, the search engine essentially turns one auction with all traffic into several auctions where each only has the traffic generated from a single segment of customers. The number of bidders for each auction may decrease and thus bidders may bid less aggressively. How the search engine should make this trade-off is an interesting question to be answered by researchers.

An additional concern about target marketing is the release of information from search engines to advertisers. For advertisers to be clear about the value of each customized segments, the search engine may have to share some information with them. Milgrom and Weber (1982) theoretically prove that the releasing information regarding the value of an item can increase the return of an auctioneer through the existence of the winner’s curse in common value auctions. Rational bidders shade their bids to offset the winner’s curse. By releasing information, however, bidders’ uncertainty about the value of the item is reduced and so the severity of the winner’s curse decreases. Thus, bidders bid more aggressively. Goeree and Offerman (2002) and De Silva et al. (2007) confirm this claim in an experimental setting and using field data, respectively. In sponsored search auctions, the problem faced by a search engine is what and how much information to release to advertisers. Most of the information may be too sensitive to be released. For example, by releasing the information on the traffic of one spot, bidders can infer the traffic of the retailer who won that spot.
since the identity is shown on the search results page. Further, clicking and browsing information about consumers is even more sensitive due to privacy concerns. So the information to be released should: (1) be accurate enough to inform advertisers about the value of each segment of customers and (2) not contain any sensitive information. For researchers, the question becomes what aggregate level statistics can provide the best presentation of the value of a customer segment without leaking sensitive information.

3.5.4 Customer Value in a Two-sided Market

It is central for a firm to understand its customers’ value to ensure the firm’s long term growth. There has been a recent proliferation of studies focusing on the value of customers. The most commonly used metric is customer lifetime value (CLV): the present value of all future profits generated by the customer (Kamakura et al., 2005). However, this metric can not be directly applied to the search engine context. The search engine serves as a platform of a two-sided market whose participants are Internet users and advertisers. In this market, there are direct network effect (e.g., competition among advertisers during bidding) and indirect network effect (e.g., Internet users attract advertisers to the search engine and vice versa). Of the two sides, only advertisers generate direct revenues for the search engine. However, without Internet users, the platform loses its functionality. So part of the direct revenue generated by an advertiser should be attributed to Internet users. The traditional CLV metric ignores indirect network effects and thus will underestimate the value of an Internet user and overestimate the value of an advertiser. Gupta et al. (2006) attempt to measure the value of non-paying customers in a two-sided market and estimate a joint system including both sides of the market. Each side contributes to the revenue of the platform and there are interactions between the two sides. These authors find strong direct and indirect network effects and show
that a “free” customer is even more valuable than a paying customer. Omitting direct network effect can also lead to biased estimation of customer value (Tucker, 2005; Yao and Mela, 2008). In the context of sponsored search auctions, the value of an advertiser is not just her payment to the search engine. An advertiser not only increases the intensity of competition during bidding, but also increases the value of spots to other advertisers since her presence may attract more Internet users to the platform. Ignoring these effects may underestimate the value of an advertiser; however, the opposite may also be true. When a prestigious advertiser is at present, smaller advertisers may be deterred from bidding by the following concerns: (1) the probability of winning a spot is too low (2) upon winning, most traffic will be attracted to the top advertiser’s site; (3) traffic will not convert into purchases since most customers decide to purchase from the prestigious advertiser. As a consequence, the removal of a prestigious advertiser from the market may attract smaller advertisers to the auction and hence increase the search engine’s revenue.

In short, more research should be devoted to accurately measuring customer value in two-sided markets such as the sponsored search advertising market.

3.5.5 Price Dispersion Among Advertisers’ Goods

Search costs have long been used to explain price dispersion among otherwise homogeneous products. Stahl (1989) suggests that the magnitude of price dispersion should decrease when search cost drops. With the assistance of search engines, researchers have predicted that search costs drop dramatically. This implies that advertisers should see more intensive price competition. However, the opposite argument may also be true. With the existence of sponsored search auctions, retailers have an additional “product attribute” for differentiation: their ranking in the auctions. Thus, price dispersion may become even more severe. This is because: (1) a winning advertiser is able to charge a higher price given that she is more likely to
be included in the consumers consideration set (consider the search model in section 3.3) and (2) consumers may interpret the ad as a high quality (or relevance) signal of the product (Chen and He, 2006; Athey and Ellison, 2008), which justifies a quality (or relevance) premium for the product. Some studies support this conjecture of sustained online price dispersion. For example, Ellison and Ellison (2005) report significant price dispersion in their data, which contain pricing information for small retailers selling homogenous computer parts through an online B2C website,11 where search costs are low.

From the perspective of a search engine, price dispersion among advertisers is beneficial. The fact that a winning advertiser can charge higher price may lead to more aggressive bidding and hence increase the search engine’s revenue. A strategic move by a search engine is thus to stimulate an environment that facilitates price dispersion so some advertisers bid more aggressively. For example, one strategy is to prime consumers so that they become less sensitive to price. It is well established in the experimental literature that priming can influence consumer behavior. For example, Mandel and Johnson (2002) design an experiment to show that consumers’ preferences change when they are shown webpages with the same information but different backgrounds. At a website selling sofas, if the background is blue with clouds, consumers care more about sofa’s comfort and become less price sensitive. Whether this strategy can improve search engine’s revenue can be tested empirically or in experiment. More important, it presents interesting strategic choices for search engines in their webpage design.

11 The study focuses on small retailers so that the branding or prestige has immaterial effects on pricing.
3.5.6 Click Fraud

Click fraud refers to the practice of clicking on an advertisement without any intention of product purchase or information exploration. The main purposes of this fraud are (1) creating a false impression of a high click-through rate as well as a high level of exposures and/or (2) exhausting competing firms’ advertising budgets. Estimates indicate that about 10-15% of all clicks are fake, representing roughly $1B annual expenditures in search advertising.\(^{12}\) Click fraud is especially problematic because it affects advertiser bidding strategy to the detriment of the search engine, advertisers and consumers alike. For example advertisers may be reticent to bid if they reasonably expect that competitors will click excessively on their links because this could prove highly costly and generate little revenue. Means of controlling this problem include mechanism design and information technology (e.g., Anupam et al., 1999; Metwally et al., 2005; Majumdar et al., 2007). We consider the following topics may be interesting to pursue:

- What is the effect of click fraud on a search engine’s revenue? On the one hand, detecting and punishing click fraud is costly for search engines. Indeed, all else equal, click fraud may increase the revenue since winning advertisers are still paying even though those clicks are fake. On the other hand, a high level of click fraud may drive away advertisers to other search engines, placing a downward pressure on revenue. The equilibrium level of click fraud from the perspective of the engine is probably a result of the trade-off between the two forces as well as the cost of detecting/punishing click fraud. Research on the equilibrium level of click fraud can not only enable us to better regulate click fraud, but also allow a more concrete welfare analysis for consumers and advertisers under click fraud.

\(^{12}\) “Click fraud—the dark side of online advertising,” Business Week, October 2nd, 2006.
• What is the optimal level of information that the search engine should reveal about its click fraud detection? Major search engines such as Google invest great efforts in fighting click fraud to protect advertisers. As discussed in Wilbur and Zhu (2009), search engines who fully disclose click fraud entirely mitigate any negative effects on advertiser welfare. Though fraudulent clicks may lead to high payments for advertisers, informed advertisers lower their bids to offset these effects. However, information disclosure imposes a dilemma for the search engine. On one hand, revealing the detection method/algorithm may help advertisers to adjust their bidding strategy. On the other hand, it may also allow those who commit click fraud to circumvent the detection. A trade-off strategy may be to reveal some noisy information to help advertisers and confuse perpetrators of click fraud. How to design such noisy signals is of interest.

3.6 Conclusion

Sponsored search advertising is a newly developed but powerful marketing tool. It appeals to marketers due to its efficiency and low cost. In 2005, search engine marketing was a $5.75 billion industry in North America and the expected volume is $11.1 billion in 2010.13

On one hand, the complexity of the sponsored search auction imposes difficulties for researchers. On the other hand, it presents substantial opportunities for research that will result in great insights about consumer and firm behavior. In this paper, we reviewed the current literature on the topic of sponsored search auctions; we summarize the possible research avenues in Table 3.1. As shown in Table 3.1, there are plenty of issues left to investigate. We hope this article inspires further work that

Table 3.1: Research Opportunities of Sponsored Search Auctions

<table>
<thead>
<tr>
<th>Research Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Users</td>
</tr>
<tr>
<td>1. Discrete choice of search engines and keywords.</td>
</tr>
<tr>
<td>2. Sequential search vs. nonsequential search:</td>
</tr>
<tr>
<td>a. how many websites to search?</td>
</tr>
<tr>
<td>b. the welfare implication of sponsored search ads on consumers.</td>
</tr>
<tr>
<td>c. under what conditions, one of the two models is more realistic?</td>
</tr>
<tr>
<td>3. Discrete choice of links for investigation.</td>
</tr>
<tr>
<td>Advertisers</td>
</tr>
<tr>
<td>1. Discrete choice of search engines/keywords to bid.</td>
</tr>
<tr>
<td>a. network effect among sponsored ads.</td>
</tr>
<tr>
<td>b. design of sponsored ads.</td>
</tr>
<tr>
<td>c. general algorithms for optimizing advertising campaigns</td>
</tr>
<tr>
<td>d. search engine optimization</td>
</tr>
<tr>
<td>2. How to measure the value of an advertising spot?</td>
</tr>
<tr>
<td>a. the number of clicks (online traffic).</td>
</tr>
<tr>
<td>b. the number of impressions.</td>
</tr>
<tr>
<td>3. How much to bid?</td>
</tr>
<tr>
<td>a. modifications to the strategies of first-price and second-price auctions.</td>
</tr>
<tr>
<td>b. dynamics in bidding strategies.</td>
</tr>
<tr>
<td>c. competition between sponsored search ads and organic search results.</td>
</tr>
<tr>
<td>d. dynamic learning about the value of an advertising spot.</td>
</tr>
<tr>
<td>4. Bidding strategies in multi-item auctions (across keywords and engines):</td>
</tr>
<tr>
<td>a. bidding strategies across multi-item auctions with multiple demands.</td>
</tr>
<tr>
<td>b. the complementarity and substitutability among multiple items.</td>
</tr>
<tr>
<td>5. Other aspects of bidding strategies.</td>
</tr>
<tr>
<td>a. private value vs. common value.</td>
</tr>
<tr>
<td>b. the winner’s curse.</td>
</tr>
<tr>
<td>c. collusion among bidders.</td>
</tr>
<tr>
<td>Search Engines</td>
</tr>
<tr>
<td>1. Optimal mechanism design.</td>
</tr>
<tr>
<td>2. Product differentiation across search engines.</td>
</tr>
<tr>
<td>3. Targeted marketing–product differentiation across Internet users.</td>
</tr>
<tr>
<td>6. Click fraud</td>
</tr>
<tr>
<td>7. The effect of search engine strategy on consumer and firm welfare.</td>
</tr>
</tbody>
</table>
4.1 Appendices for “Online Auction Demand”

4.1.1 Proof of Theorem 1.1

In a second-price sealed bid auction with independent private values (IPV), the optimal equilibrium bidding strategy is for participants to bid their respective valuations (Milgrom and Weber, 1982). Thus, the second highest bid and the price paid by the winner to the seller is equivalent to the second highest valuation of participants (or the seller chosen minimum bid if the second highest bid is below the seller minimum). Accordingly, the winning bidder receives a return equal to their valuation less the price paid to the seller (i.e., the second highest bid or the minimum bid, whichever is greater) and less the bidder’s latent cost of participating in the auction. Losing bidders receive no surplus and pay only their latent costs of participation. Bidder j’s expected return for participating in an auction is therefore given by

$$E(\pi_{ijtn})$$

$$= \int_{-\infty}^{v_{ijtn}} (v_{ijtn} - \max(\alpha_j, MinBid_{it}))f(\alpha_j)\,d\alpha_j - C_{ijtn}$$
where α_j is the highest rival’s bid and $f(\alpha_j)$ is its density. The first term represents the expected revenue accruing to bidder j from participating in the auction, the second term is the expected payment to the seller and the third term is the bidding cost. Note that, when $\alpha_j > v_{ijtn}$, bidder j loses the auction and receives no revenue and makes no payment to the seller. Hence the integral of α_j in equation 4.1 has an upper limit of v_{ijtn}. Bidder j will participate in the auction if and only if $E(\pi_{ijtn}) \geq 0$.

We claim that $E(\pi_{ijtn})$ is increasing in v_{ijtn}. This insight is necessary to establish the existence of a minimum bidding threshold below which a bidder will not participate in an auction and above which it becomes always profitable to do so. To show this, note that the partial derivative of equation 4.1 is

$$\frac{\partial E(\pi_{ijtn})}{\partial v_{ijtn}} = \int_{-\infty}^{v_{ijtn}} f(\alpha_j)d\alpha_j + v_{ijtn} \cdot f(v_{ijtn}) - v_{ijtn} \cdot f(v_{ijtn})$$

$$= \int_{-\infty}^{v_{ijtn}} f(\alpha_j)d\alpha_j > 0$$

As this expression is positive, a bidder’s expected return always increases with their valuation. This implies that there exists a bidding threshold x_{ijtn}^* such that bidder j will enter the auction for any $v_{ijtn} \geq x_{ijtn}^*$ where x_{ijtn}^* is the root of $E(\pi_{ijtn}|\cdot) = 0$. Accordingly, one can obtain x_{ijtn}^* in the form of an implicit function by setting equation 4.1 to zero:

$$\int_{-\infty}^{x_{ijtn}^*} (x_{ijtn}^* - \max(\alpha_j, MinBid_{it})) f(\alpha_j)d\alpha_j - C^b_{ijtn} = 0 \quad (4.3)$$

1 Note that the formula for derivative with respect to the upper bound of an integral is

$$\frac{\partial \int_{x_1}^{x_2} f(t)dt}{\partial x_2} = f(x_2)$$
Equation (4.3) is incumbent upon the distribution for α_j, which is given as follows:

$$f(\alpha_j) = (J - 1) \left\{ \int_{C_{ij'tn}} \left\{ \left[G(\alpha_j | \mu_{it}, \sigma) - G(x_{ij'tn}^* | \mu_{it}, \sigma) \right] F_x^*(\alpha_j) - G(x_{ij'tn}^* | \mu_{it}, \sigma) \right\} f(C_{ij'tn}^b) dC_{ij'tn} \right\}^{J - 2}$$

$$\int_{C_{ij'tn}} g(\alpha_j | \mu_{it}, \sigma) F_x^*(\alpha_j) f(C_{ij'tn}^b) dC_{ij'tn}$$

(4.4)

where $F_x^*(\cdot)$ is the distribution of x^*. Equation 4.4 can be explained as follows. Letting j' index the $J - 1$ bidders excluding the focal bidder j, α_j must be drawn from $\int_{C_{ij'tn}} g(\alpha_j | \mu_{it}, \sigma) F_x^*(\alpha_j) f(C_{ij'tn}^b) dC_{ij'tn}$ (the third row), i.e., the highest rival bidder has a value drawn from the distribution $g(\alpha_j | \cdot)$ and the draw is higher than the threshold $x_{ij'tn}^*$ to be a positive bid. The integral over $C_{ij'tn}^b$ arises from bidder j’s uncertainty about other bidders’ costs. Further, for α_j to be the highest rival bid among the $J - 1$ bidders, the remaining $J - 2$ bidders (other than bidder j and the bidder with value α_j) must have values a) greater than their respective bidding thresholds $x_{ij'tn}^*$ but lower than α_j or b) less than their respective bidding thresholds but higher than α_j, or c) less than their respective bidding thresholds but lower than α_j. Condition a) gives the first row in the set of braces; condition b) and c) together give the second row in the set of braces. Hence we obtain the integral in the second row of equation 4.4

$$\left\{ \int_{C_{ij'tn}} \left\{ \left[G(\alpha_j | \mu_{it}, \sigma) - G(x_{ij'tn}^* | \mu_{it}, \sigma) \right] F_x^*(\alpha_j) - G(x_{ij'tn}^* | \mu_{it}, \sigma) \right\} f(C_{ij'tn}^b) dC_{ij'tn} \right\}^{J - 2}$$

where $F_x^*(\cdot)$ is the distribution of x^*. Because $x_{ij'tn}^*$ is define by an implicit function it is difficult to write this distribution in closed form. Hence we approximate this

\(^2\) When there is a secret reserve price, the seller themselves can be considered as an additional “bidder”.

154
distribution by using the sample population distribution of x_{ijtn}^*. This distribution can be obtained by first making draws from the distribution of C_{ijtn}^b, then computing $x_{ijtn}^*(C_{ijtn}^b)$. The integral over $C_{ij'tn}^b$ again arises from bidder j’s uncertainty about other bidders’ costs. Further, since any of the $J - 1$ bidders can offer the highest rival bid, we need to multiply the result by $\binom{J - 1}{1} = J - 1$.

Note that bidders face a different distribution for α_j (the highest competing bid) when making bidding decisions (equation 4.4) than sellers face α (the second highest bid) when making listing decision (equation 1.8). This is mainly because the bidder calculates a first order statistics while the seller considers a second order statistics.

4.1.2 Proof of Theorem 1.2

The second highest bid α has the distribution density

$$\int_{C_{ijtn}^b} g(\alpha|\mu_{it}, \sigma, \alpha \geq x_{\alpha}^*) f(C_{ijtn}^b) dC_{ijtn}^b,$$

i.e., the bidder has a draw from the valuation distribution $g(\alpha|\cdot)$ and the draw is higher than the bidding threshold x_{α}^*. The integral over C_{ijtn}^b is due to the assumption that the seller only has knowledge regarding the distribution of bidders disutilities but is uncertain about the exact costs for each bidder. Therefore seller forms expectations about x_{α}^* by integrating over C_{ijtn}^b. Further, for α to be the second highest bid, the following two constraints must be satisfied:

1. Among the J bidders, in addition to the top two highest bidders (the winning bid and the second highest bid, α), there remain $J - 2$ competitive bidders whose valuations are either a) higher than their bidding thresholds x_{α}^* but lower than α, or b) below their bidding thresholds, x_{α}^*;

2. Among the J bidders, there exists exactly one bidder whose valuation exceeds both α and their bidding threshold, x_{α}^*.

155
The first constraint yields the first set of braces in Theorem 1.2:

\[
\left\{ \int_{C_{ijtn}} \{ [G(\alpha | \mu_{it}, \sigma) - G(x^*_{ijtn} | \mu_{it}, \sigma)] \cdot F_{x^*} (\alpha) \\
+ G(x^*_{ijtn} | \mu_{it}, \sigma) \cdot f(C_{ijtn}) dC_{ijtn} \} \right\}^{J-2}
\]

where \(F_{x^*} (\cdot) \) is the distribution of \(x^*_{ijtn} \). Because \(x^*_{ijtn} \) is define by an implicit function it is difficult to write this distribution in closed form. Hence we approximate this distribution by using the sample population distribution of \(x^*_{ijtn} \). This distribution can be obtained by first making draws from the distribution of \(C_{ijtn}^b \), then computing \(x^*_{ijtn}(C_{ijtn}^b) \). Note that the two terms essentially “break up” the value distribution into a) those values that lie between \(\alpha \) and \(x^* \) and b) those values that lie between \(x^* \) and the lower bound of the value distribution.

The second constraint leads to

\[
1 - \int_{C_{ijtn}} \{ [G(\alpha | \mu_{it}, \sigma) - G(x^*_{ijtn} | \mu_{it}, \sigma)] \cdot F_{x^*} (\alpha) \\
+ G(x^*_{ijtn} | \mu_{it}, \sigma) \cdot f(C_{ijtn}) dC_{ijtn} \}
\]

i.e., the complement of events represented by terms in the braces of equation 4.5. This becomes the second set of braces in Theorem 1.2. Again, the integrals in both constraints are due to the randomness of \(C_{ijtn}^b \). Further, since any of the \(J \) bidders can be the second highest bidder, we need to multiply the result by \(\left(\binom{J}{1} \right) = J \).

Similarly, any of the \((J - 1) \) bidders (other than the second highest one) can be the highest bidder, we also need to multiply the result by \(\left(\binom{J - 1}{1} \right) = J - 1 \).

4.1.3 MCMC Sampling Chain

Priors

We run the sampling chain for 20,000 iterations; the first 10,000 iterations are used for burn-in and the remaining 10,000 are used for sampling. Based on inspection of the
plots of the draws against iterations, we conclude the chain converges after around 4,000 iterations. The priors use a diffused variance of 100; examination of the final results shows that the choice of the variance is at least the order of magnitude greater than the variance of posterior distributions, which assures a proper but diffused prior (Spiegelhalter et al., 1996; Gelman et al., 2004). We now detail the priors for the sampling chain in Table 4.1.

\[
\begin{array}{l|l|l}
\text{Valuation Distribution} & \text{Priors} & \text{Selected Value} \\
\hline
\mu & \beta^\mu_1 \sim N \left(\mu_{\beta_1}, \sigma^2_{\beta_1} \right) & \mu_{\beta_1} = 0, \sigma^2_{\beta_1} = 100 \\
\text{Book Value, } \beta^\mu_2 & \beta^\mu_2 \sim N \left(\mu_{\beta_2}, \sigma^2_{\beta_2} \right) & \mu_{\beta_2} = 1, \sigma^2_{\beta_2} = 100 \\
\text{Seller Feedback/100, } \beta^\mu_3 & \beta^\mu_3 \sim N \left(\mu_{\beta_3}, \sigma^2_{\beta_3} \right) & \mu_{\beta_3} = 0, \sigma^2_{\beta_3} = 100 \\
\text{Minimum Bid, } \beta^\mu_4 & \beta^\mu_4 \sim N \left(\mu_{\beta_4}, \sigma^2_{\beta_4} \right) & \mu_{\beta_4} = 0, \sigma^2_{\beta_4} = 100 \\
\text{Secret Reserve Dummy, } \beta^\mu_5 & \beta^\mu_5 \sim N \left(\mu_{\beta_5}, \sigma^2_{\beta_5} \right) & \mu_{\beta_5} = 0, \sigma^2_{\beta_5} = 100 \\
\text{Online Store Dummy, } \beta^\mu_6 & \beta^\mu_6 \sim N \left(\mu_{\beta_6}, \sigma^2_{\beta_6} \right) & \mu_{\beta_6} = 0, \sigma^2_{\beta_6} = 100 \\
\text{Gallery Picture Dummy, } \beta^\mu_7 & \beta^\mu_7 \sim N \left(\mu_{\beta_7}, \sigma^2_{\beta_7} \right) & \mu_{\beta_7} = 0, \sigma^2_{\beta_7} = 100 \\
\text{Subtitle Dummy, } \beta^\mu_8 & \beta^\mu_8 \sim N \left(\mu_{\beta_8}, \sigma^2_{\beta_8} \right) & \mu_{\beta_8} = 0, \sigma^2_{\beta_8} = 100 \\
\sigma & \sigma \sim TN \left(\mu_\sigma, \sigma^2_\sigma \right) & \mu_\sigma = 1, \sigma^2_\sigma = 100 \\
\text{Bidder Disutility} & & \\
\text{Bidder specific constant } \beta^{Cb}_{0j} & \beta^{Cb}_{0j} \sim N \left(\beta^{Cb}_0, \left(\phi^{Cb}_0 \right)^{-1} \right) & \\
\text{Hierarchical parameter } \beta^{Cb}_0 & \beta^{Cb}_0 \sim N \left(\bar{\beta}^{Cb}_0, \sigma^2_{\beta^{Cb}_0} \right) & \bar{\beta}^{Cb}_0 = 1, \sigma^2_{\beta^{Cb}_0} = 100 \\
\text{Hierarchical parameter } \phi^{Cb}_0 & \phi^{Cb}_0 \sim Gamma(a_0^{Cb}, b_0^{Cb}) & a_0^{Cb} = 0.01, b_0^{Cb} = 100 \\
\text{Number of Auctions Attended, } \beta^{Cb}_{1} & \beta^{Cb}_{1} \sim N \left(\mu^{Cb}_{1}, \sigma^2_{\beta^{Cb}_{1}} \right) & \mu^{Cb}_{1} = 1, \sigma^2_{\beta^{Cb}_{1}} = 100 \\
\text{Lapse since last winning, } \beta^{Cb}_{2} & \beta^{Cb}_{2} \sim N \left(\mu^{Cb}_{2}, \sigma^2_{\beta^{Cb}_{2}} \right) & \mu^{Cb}_{2} = -0.5, \sigma^2_{\beta^{Cb}_{2}} = 100 \\
\text{Seller Acquisition Cost} & & \\
\text{Seller specific constant } \beta^{Cs}_{0i} & \beta^{Cs}_{0i} \sim N \left(\bar{\beta}^{Cs}_0, \left(\phi^{Cs}_0 \right)^{-1} \right) & \\
\text{Hierarchical parameter } \beta^{Cs}_{0} & \beta^{Cs}_{0} \sim N \left(\bar{\beta}^{Cs}_0, \sigma^2_{\beta^{Cs}_0} \right) & \bar{\beta}^{Cs}_0 = 0, \sigma^2_{\beta^{Cs}_0} = 100 \\
\text{Hierarchical parameter } \phi^{Cs}_0 & \phi^{Cs}_0 \sim Gamma(a_0^{Cs}, b_0^{Cs}) & a_0^{Cs} = 0.01, b_0^{Cs} = 100 \\
\text{Book value, } \beta^{Cs}_{1} & \beta^{Cs}_{1} \sim N \left(\mu^{Cs}_{1}, \sigma^2_{\beta^{Cs}_{1}} \right) & \mu^{Cs}_{1} = 1, \sigma^2_{\beta^{Cs}_{1}} = 100 \\
\text{Number of Listings, } \beta^{Cs}_{2} & \beta^{Cs}_{2} \sim TN \left(\mu^{Cs}_{2}, \sigma^2_{\beta^{Cs}_{2}} \right) & \mu^{Cs}_{2} = 3, \sigma^2_{\beta^{Cs}_{2}} = 100 \\
\text{Cost Error Variance } \theta & \theta \sim Gamma \left(a_\theta, b_\theta \right) & a_\theta = 0.01, b_\theta = 100 \\
\end{array}
\]

Table 4.1: The Specification of the Priors
The Conditional Posterior for the Seller Acquisition Costs: β^C_0, β^C_s, ϕ^C_s, β^C_1, β^C_2; θ and π_{it}

- Let $X_{it} = BOOKVAL_{it}^{C_s} q_{it}^{C_s}$, $Y_{it} = q_{it} \cdot (1 - commission) E(R^n_{itn}) - q_{it} \cdot fee_{it}$ and $\epsilon_{it} = -e_i^{C_s}$. Then equation (1.12) can be written as

$$\pi_{it}(q_{it}) = q_{it} \cdot (1 - commission) E(R^n_{itn}) - C_{it}^{s} + q_{it} \cdot fee_{it} \quad (4.6)$$

Similarly, for a deviation from q_{it}, the profit would be

$$\pi_{it}(\tilde{q}_{it}) = \tilde{q}_{it} \cdot (1 - commission) E(R^n_{itn}) - C_{it}^{s} + \tilde{q}_{it} \cdot fee_{it} \quad (4.7)$$

For each iteration through the sampling chain, a set of latent $\pi(q_{it})$ will be drawn from a normal distribution with mean $Y_{it} - \beta^C_0 X_{it} + \epsilon_{it}$ and variance $(\theta)^{-1}$. A set of deviated profits $\pi(\tilde{q}_{it})$ will be drawn from a truncated normal distribution with mean $Y_{it} - \beta^C_0 X_{it} + \epsilon_{it}$, variance $(\theta)^{-1}$ and right truncation at $\pi(q_{it})$. We consider 20 such \tilde{q}_{it} and have found results to be robust to this choice.
• $\beta_{0i}^{C_s}$

Prior $\beta_{0i}^{C_s} \sim N(\bar{\beta}_{0i}^{C_s}, (\phi^{C_s})^{-1})$ (4.8)

Likelihood $L \propto \prod_{i=1}^{T_i} \exp \left(-\frac{[\pi_{it}(q_{it}) - (Y_{q_{it}} - \beta_{0i}^{C_s} X_{q_{it}})]^2 \theta}{2} \right) $ (4.9)

Posterior $(\beta_{0i}^{C_s} | \cdot) \sim N(\hat{\mu}_{0i}^{C_s}, \hat{\Sigma}_{0i}^{C_s})$ (4.10)

\begin{align*}
\hat{\Sigma}_{0i}^{C_s} &= [(X_{q_{i}}, q_{i})' (X_{q_{i}}, q_{i}) + \phi^{C_s}]^{-1} \\
\hat{\mu}_{0i}^{C_s} &= \hat{\Sigma}_{0i}^{C_s} ([\pi_{i}(q_{i}, \tilde{q}_{i}) - Y_{q_{i}, \tilde{q}_{i}}] \theta + \tilde{\beta}_{0i}^{C_s} \phi^{C_s})
\end{align*} (4.11)

where T_i is the total number of items listed by seller i; $(X_{q_{i}}, q_{i})$ is the vector containing $X_{q_{i}}$ and $X_{\tilde{q}_{i}}$ of seller i; $(\pi_{i}(q_{i}, \tilde{q}_{i}) - Y_{q_{i}, \tilde{q}_{i}})$ is a vector containing all $(\pi_{it}(q_{it}) - Y_{q_{it}})$ and $(\pi_{it}(\tilde{q}_{it}) - Y_{q_{it}})$ of seller i.

• $\bar{\beta}_{0}^{C_s}$

Prior $\bar{\beta}_{0}^{C_s} \sim N(\bar{\beta}_{0}^{C_s}, \sigma_{0C_s}^2)$ (4.13)

Likelihood $L \propto \prod_{i=1}^{I} \exp \left(-\frac{(\beta_{0i}^{C_s} - \bar{\beta}_{0}^{C_s})^2 \phi^{C_s}}{2} \right) $ (4.14)

Posterior $(\bar{\beta}_{0}^{C_s} | \cdot) \sim N(\lambda^{C_s}, \Lambda^{C_s})$ (4.15)

\begin{align*}
\Lambda^{C_s} &= [\sigma_{0C_s}^{-2} + \phi^{C_s}]^{-1} \\
\lambda^{C_s} &= \Lambda^{C_s} \sum_{i} \beta_{0i}^{C_s} \phi^{C_s} + \bar{\beta}_{0}^{C_s} / \sigma_{0C_s}^2
\end{align*} (4.16)

where I is the total number of sellers observed.
\begin{itemize}
 \item $φ^{C_s}$

 Prior $φ^{C_s} \sim \text{Gamma}(a_0^{C_s}, b_0^{C_s})$ \hfill (4.18)

 Likelihood $L \propto \prod_{i=1}^{I} (φ^{C_s})^{1/2} \exp \left(-\frac{(β_0^{C_s} - β_1^{C_s})^2 φ^{C_s}}{2} \right)$ \hfill (4.19)

 Posterior $(φ^{C_s}|·) \sim \text{Gamma}(\tilde{a}^{C_s}, \tilde{b}^{C_s})$ \hfill (4.20)

 \begin{align*}
 \tilde{a}^{C_s} &= I/2 + a_0^{C_s} \\
 \tilde{b}^{C_s} &= 2b_0^{C_s}[2 + b_0^{C_s} \cdot s]^{-1} \\
 s &= \sum_{i=1}^{I} (β_0^{C_s} - β_1^{C_s})^2
 \end{align*} \hfill (4.21-22)

 \item An updated $β_1^{C_s(k)}$ in the k–th iteration is obtained with a random walk proposal density. For this we use a normal distribution with mean of $β_1^{C_s(k−1)}$ from last iteration, variance $σ^{C_s}$. The value of $σ^{C_s}$ is determined such that the acceptance rate of proposed values is between 15%-50% (Roberts, 1996). The proposed $β_1^{C_s(k)}$ is accepted with the probability of $κ* = \min\{1, κ\}$, where

 \begin{equation}
 κ = \frac{L(β_1^{C_s(k)}|·)p(β_1^{C_s(k)}|μ_1^{C_s}, σ_1^{2 C_s})}{L(β_1^{C_s(k−1)}|·)p(β_1^{C_s(k−1)}|μ_1^{C_s}, σ_1^{2 C_s})} \hfill (4.24)
 \end{equation}

 $L(β_1^{C_s(·)}|·)$ denotes the conditional likelihood and

 \begin{equation}
 L(β_1^{C_s(·)}|·) \propto \prod_{t,i, \tilde{q}_{it} \neq q_{it}} \exp \left(-\frac{[π_{it}^u(\tilde{q}_{it}) - (Y_{q_{it}} - β_0^{C_s} X_{q_{it}})]^2 θ}{2} \right) \hfill (4.25)
 \end{equation}

 \begin{equation}
 \prod_{t,i} \exp \left(-\frac{[π_{it}^u(q_{it}) - (Y_{q_{it}} - β_0^{C_s} X_{q_{it}})]^2 θ}{2} \right) \hfill (4.26)
 \end{equation}

 $p(β_1^{C_s(·)}|μ_1^{C_s}, σ_1^{2 C_s})$ is the prior density evaluated at $β_1^{C_s(·)}$.\hfill 160
\end{itemize}
An updated $\beta_{2s}^{C_s(k)}$ in the k–th iteration is obtained with a random walk proposal density. For this we use a truncated normal distribution with mean of $\beta_{2s}^{C_s(k-1)}$ from last iteration, variance $\sigma_{\beta_{2s}}^2$ and left truncated at 1. The value of $\sigma_{\beta_{2s}}^2$ is determined such that the acceptance rate of proposed values is between 15%–50% (Roberts, 1996). The proposed $\beta_{2s}^{C_s(k)}$ is accepted with the probability of

$$\kappa^* = \min\{1, \kappa\},$$

where

$$\kappa = \frac{L(\beta_{2s}^{C_s(k)}|\cdot)p\left(\beta_{2s}^{C_s(k)}|\mu_{2s}, \sigma_{2Cs}^2\right)\rho(\beta_{2s}^{C_s(k-1)}|\beta_{2s}^{C_s(k)}, \sigma_{\beta_{2s}})}{L(\beta_{2s}^{C_s(k-1)}|\cdot)p\left(\beta_{2s}^{C_s(k-1)}|\mu_{2s}, \sigma_{2Cs}^2\right)\rho(\beta_{2s}^{C_s(k)}|\beta_{2s}^{C_s(k-1)}, \sigma_{\beta_{2s}})}$$

(4.27)

where $L(\beta_{2s}^{C_s(i)}|\cdot)$ denotes the conditional likelihood and

$$L(\beta_{2s}^{C_s(i)}|\cdot) \propto \prod_{t,i,\tilde{q}_{it} \neq q_{it}} \exp \left(-\frac{\left[\pi_{it}(\tilde{q}_{it}) - (Y_{q_{it}} - \beta_{0i}^{C_s}X_{q_{it}})\right]^2 \theta}{2} \right)$$

(4.28)

$$\prod_{t,i} \exp \left(-\frac{\left[\pi_{it}(q_{it}) - (Y_{q_{it}} - \beta_{0i}^{C_s}X_{q_{it}})\right]^2 \theta}{2} \right)$$

(4.29)

$p\left(\beta_{2s}^{C_s(i)}|\mu_{2s}, \sigma_{2Cs}^2\right)$ is the prior density evaluated at $\beta_{2s}^{C_s(i)}$.

$\rho(\cdot|\cdot)$ represents the density of the proposal distribution evaluated with

$$\beta_{2s}^{C_s(k)}, \beta_{2s}^{C_s(k-1)}, \sigma_{\beta_{2s}}$$

as input and parameters. For example, $\rho(\beta_{2s}^{C_s(k-1)}|\beta_{2s}^{C_s(k)}, \sigma_{\beta_{2s}})$ is the density evaluated at $\beta_{2s}^{C_s(k-1)}$ with $\beta_{2s}^{C_s(k)}$ and $\sigma_{\beta_{2s}}$ as mean and variance, respectively. Note that since the proposal distribution is truncated at 1 and thus asymmetric, the ratio between the two densities is used as a weight to obtain the correct acceptance probability.
\[\theta \]

Prior \(\theta \sim \text{Gamma}(a_0^\theta, b_0^\theta) \) \hspace{1cm} (4.30)

Likelihood \(L \propto \prod_{i,t,e \neq q_{it}} (\theta)^{1/2} \exp \left(-\frac{\left[\pi_{it}(\tilde{q}_{it}) - (Y_{q_{it}} - \beta_{0i} X_{q_{it}}) \right]^2}{2} \right) \)

\[\prod_{i,t} (\theta)^{1/2} \exp \left(-\frac{\left[\pi_{it}(q_{it}) - (Y_{q_{it}} - \beta_{0i} X_{q_{it}}) \right]^2}{2} \right) \]

Posterior \((\theta|\cdot) \sim \text{Gamma}(\tilde{a}^\pi, b_0^\theta) \) \hspace{1cm} (4.31)

\[\tilde{a}^\pi = IT \left(\tilde{Q} + 1 \right) / 2 + a_0^\theta \] \hspace{1cm} (4.32)

\[b_0^\theta = 2b_0^\theta [2 + b_0^\theta \cdot s]^{-1} \] \hspace{1cm} (4.33)

\[s = \sum_{i,t,\tilde{q}_{it} \neq q_{it}} \left[\pi_{it}(\tilde{q}_{it}) - (Y_{q_{it}} - \beta_{0i} X_{q_{it}}) \right]^2 \]

\[+ \sum_{i,t} \left[\pi_{it}(q_{it}) - (Y_{q_{it}} - \beta_{0i} X_{q_{it}}) \right]^2 \] \hspace{1cm} (4.34)

The Conditional Posterior for the Bidder Valuation Model, \(\beta^\mu, \mu, \sigma, v^*_{ijtn} | I^{bid} \)

\[\beta^\mu \]

Prior: \(\beta^\mu \sim N(\mu_{\beta^\mu}, \Sigma_{\beta^\mu}) \) \hspace{1cm} (4.36)

Likelihood \(L \propto \prod_{i,t,n} \exp \left(-\frac{(\mu_{it} - Z_{it}^{\mu} \beta^\mu)^2}{2} \right) \) \hspace{1cm} (4.37)

Posterior: \((\beta^\mu|\cdot) \sim N(\hat{\mu}_{\beta^\mu}, \hat{\Sigma}_{\beta^\mu}) \) \hspace{1cm} (4.38)

with \(\hat{\Sigma}_{\beta^\mu} = \{ \Sigma_{\beta^\mu}^{-1} + Z^{\mu} \cdot Z^{\mu} \}^{-1} \) \hspace{1cm} (4.39)

\[\hat{\mu}_{\beta^\mu} = \Sigma_{\beta^\mu} \{ Z^{\mu} \cdot \mu + \Sigma_{\beta^\mu}^{-1} \beta^\mu \} \] \hspace{1cm} (4.40)
where $\mu_{\beta\mu}$ is a column vector of dimension 8 containing all prior means for β^μ; $\Sigma_{\beta\mu}$ is a 8×8 matrix with the prior variances of β^μ on the diagonal and 0 as off-diagonal elements; μ is a column vector of the μ_{it} across itn with a dimension of ITN; Z^μ is a the matrix in the dimension of $ITN \times 8$, containing independent variables determining the valuation distribution mean, μ.

• $v^*_{ijtn}|I^{bid}$

For observations where $I^{bid} = 0$ (see Section (1.4.1)), Theorem 1.1 indicates that v^*_{ijtn} is drawn from a right truncated $N(\mu_{it}, \sigma)$ with truncation level x^*_{ijtn}. This becomes the v^*_{ijtn} for all subsequent items of the same type.

• μ and σ

There is no closed form density for the conditional posterior of μ_{it} so we use a random walk Metropolis algorithm to obtain updated draws through the MCMC chain. A normal distribution is used as the proposal density. The proposal density has mean $\mu_{it}^{(k-1)}$ from $(k-1)$-th iteration and a variance of Σ_{μ}. The value of Σ_{μ} is determined such that the acceptance rate of proposed values is between 15%-50%. With the proposal density, an updated value is generated and denoted as $\mu_{it}^{(k)}$.

The proposed $\mu_{it}^{(k)}$ is accepted with the probability κ^*, where

$$\kappa^* = \min\{1, \kappa\}$$

$$\kappa = \frac{L(\mu_{it}^{(k)}|\cdot)}{L(\mu_{it}^{(k-1)}|\cdot)}$$ \hspace{1cm} \text{(4.41)}$$

where the conditional likelihood

$$L(\mu_{it}^{(c)}|\cdot) \propto L^{bidder}L^{seller}p(\mu_{it}|Z^\mu_{it}, \beta^\mu)$$ \hspace{1cm} \text{(4.42)}$$

$L(\mu_{it}^{(k)}|\cdot)$ denotes the conditional likelihood evaluated at $\mu_{it}^{(k)}$ and $L(\mu_{it}^{(k-1)}|\cdot)$ is the analogy.
For the sampling of an updated \(\sigma \), a truncated normal distribution is used as the proposal density as the variance must be positive. The proposal density has mean \(\sigma^{(k-1)} \), variance \(\Sigma_\sigma \) and left truncated at zero.

\[
\kappa^* = \min\{1, \kappa\}
\]

\[
\kappa = \frac{L(\sigma^{(k)}|\cdot)p\left(\sigma^{(k)}|\mu_\sigma, \sigma^2_{\sigma_\mu}\right)\rho(\sigma^{(k-1)}|\sigma^{(k)}, \Sigma_\sigma)}{L(\sigma^{(k-1)}|\cdot)p\left(\sigma^{(k-1)}|\mu_\sigma, \sigma^2_{\sigma_\mu}\right)\rho(\sigma^{(k)}|\sigma^{(k-1)}, \Sigma_\sigma)}
\]

(4.43)

where the conditional likelihood

\[
L(\sigma^{(k)}|\cdot) \propto L^{\text{bidder}} L^{\text{seller}}
\]

(4.44)

\(L(\sigma^{(k)}|\cdot) \) is the posterior likelihood evaluated at \(\sigma^{(k)} \) and \(L(\sigma^{(k-1)}|\cdot) \) is the analog for \(\sigma^{(k-1)} \). \(p\left(\sigma^{(k)}|\mu_\sigma, \sigma^2_{\sigma_\mu}\right) \) is the prior density evaluated at \(\sigma^{(k)} \) and \(p\left(\sigma^{(k-1)}|\mu_\sigma, \sigma^2_{\sigma_\mu}\right) \) is the analog for \(\sigma^{(k-1)} \). \(\rho(\cdot|\cdot) \) represents the density of the proposal distribution evaluated with \(\sigma^{(k)} \), \(\sigma^{(k-1)} \) and \(\Sigma_\sigma \) as input and parameters. For example, \(\rho(\sigma^{(k-1)}|\sigma^{(k)}, \Sigma_\sigma) \) is the density evaluated at \(\sigma^{(k-1)} \) with \(\sigma^{(k)} \) and \(\Sigma_\sigma \) as mean and variance, respectively. Note that since the proposal distribution is truncated at zero and thus asymmetric, the ratio between the two densities is used as a weight to obtain the correct acceptance probability.
The Conditional Posterior for the Bidder Cost Model, β_{0j}^{Cb}, $\bar{\beta}_{0j}^{Cb}$, ϕ^{Cb}, β^{Cb} and C_{ijtn}^{b}

- β_{0j}^{Cb}

Prior $\beta_{0j}^{Cb} \sim N\left(\bar{\beta}_{0j}^{Cb}, (\phi^{Cb})^{-1}\right)$ (4.45)

Likelihood $L \propto \prod_{j} \exp\left(-\frac{(\log C_{ijtn}^{b} - \beta_{0j}^{Cb} - Z_{ijtn}^{Cb}\beta^{Cb})^2}{2}\right)$ (4.46)

Posterior $(\beta_{0j}^{Cb}|\cdot) \sim N(\hat{\mu}_{j}^{Cb}, \hat{\Sigma}_{j}^{Cb})$ (4.47)

\[
\hat{\Sigma}_{j}^{Cb} = [ITN + \phi^{Cb}]^{-1}
\] (4.48)

\[
\hat{\mu}_{j}^{Cb} = \hat{\Sigma}_{j}^{Cb}[1'_{ITN} \left(C_{j}^{Cb} - Z_{j}^{Cb}\beta^{Cb}\right) + \bar{\beta}_{0j}^{Cb}\phi^{Cb}]
\] (4.49)

where ITN is the total number of auctions across itn; C_{j}^{b} is the vector of the latent (log) costs of bidder j, having a length of ITN; Z_{j}^{Cb} is an $2 \times ITN$ matrix containing $AttendedAuction$ and $Lapse$; β^{Cb} is the vector of parameters associated with Z_{j}^{Cb}; $1'_{ITN}$ is a vector of 1’s with the length of ITN; and $\text{var}(\log C_{ijtn}^{b}) = 1$.

- $\bar{\beta}_{0j}^{Cb}$

Prior $\bar{\beta}_{0j}^{Cb} \sim N(\bar{\beta}_{0j}^{Cb}, \sigma_{0Cb}^{2})$ (4.50)

Likelihood $L \propto \prod_{j=1}^{J} \exp\left(-\frac{(\beta_{0j}^{Cb} - \bar{\beta}_{0j}^{Cb})^2}{2\phi^{Cb}}\right)$ (4.51)

Posterior $(\bar{\beta}_{0j}^{Cb}|\cdot) \sim N(\lambda^{Cb}, \Lambda^{Cb})$ (4.52)

\[
\Lambda^{Cb} = [\sigma_{0Cb}^{2} + \phi^{Cb}]^{-1}
\] (4.53)

\[
\lambda^{Cb} = \Lambda^{Cb}[\sum_{j} \beta_{0j}^{Cb}\phi^{Cb} + \bar{\beta}_{0j}^{Cb}/\sigma_{0Cb}^{2}]
\] (4.54)
where \(J \) is the total number of bidders observed.

- \(\phi^{C_b} \)

Prior \(\phi^{C_b} \sim \Gamma(a_0^{C_b}, b_0^{C_b}) \) \hspace{1cm} (4.55)

\[L \propto \prod_{j=1}^{J} (\phi^{C_b})^{1/2} \exp\left(-\frac{(\beta_0^{C_b} - \beta_0^{C_b})^2 \phi^{C_b}}{2}\right) \] \hspace{1cm} (4.56)

Posterior \((\phi^{C_b}|\cdot) \sim \Gamma(\tilde{a}^{C_b}, \tilde{b}^{C_b}) \) \hspace{1cm} (4.57)

\[\tilde{a}^{C_b} = J/2 + a_0^{C_b} \] \hspace{1cm} (4.58)

\[\tilde{b}^{C_b} = 2b_0^{C_b}[2 + b_0^{C_b} \cdot s]^{-1} \] \hspace{1cm} (4.59)

\[s = \sum_{j=1}^{J} (\beta_0^{C_b} - \beta_0^{C_b})^2 \] \hspace{1cm} (4.60)

- \(\beta^{C_b} \)

Prior: \(\beta^{C_b} \sim N(\mu^{C_b}, \Sigma^{C_b}) \) \hspace{1cm} (4.61)

\[L \propto \prod_{ijtn} \exp\left(-\frac{(\log C_{ijtn}^{C_b} - \beta_0^{C_b} - Z_{ijtn}^{C_b} \beta^{C_b})^2}{2}\right) \] \hspace{1cm} (4.62)

Posterior: \((\beta^{C_b}|\cdot) \sim N(\hat{\mu}_{\beta^{C_b}}, \hat{\Sigma}_{\beta^{C_b}}) \) \hspace{1cm} (4.63)

with \(\hat{\Sigma}_{\beta^{C_b}} = \{\Sigma_{\beta^{C_b}}^{-1} + Z^{C_b'} \cdot Z^{C_b}\}^{-1} \) \hspace{1cm} (4.64)

\[\hat{\mu}_{\beta^{C_b}} = \hat{\Sigma}_{\beta^{C_b}} \{Z^{C_b'} \cdot (C^{C_b} - \beta_0^{C_b}) + \Sigma_{C_b}^{-1} \times \mu^{C_b}\} \] \hspace{1cm} (4.65)

where \(Z^{C_b} \) is a matrix containing all the \(Z_{ijtn}^{C_b} \) across \(ijtn \) and is dimensioned \(IJTN \) by \(2 \); \(C^{b} \) is a column vector containing all log bidder costs across \(ijtn \) with a length of \(IJTN \); \(\beta_0^{C_b} \) is a column vector with a length of \(IJTN \) (where \(\beta_0^{C_b} \) can be construed as \(J \) stacked sub-vectors where the \(j \)-th sub-vector has dimension \(ITN \))
and β_{0j}^b as its elements); μ^b is a 2 by 1 vector of whose elements contain the prior means for parameters corresponding to Z^b (Attended Auction and Lapse); and Σ^b is a 2 by 2 matrix whose diagonal elements contain the prior variances and whose off-diagonals are zeroes.

- C^b_{ijtn}

An updated C^b_{ijtn} in the k-th iteration is obtained with a random walk proposal density with mean C^b_{ijtn} from iteration $k-1$ and variance σ^b. The candidate draw C^b_{ijtn} is accepted with the probability of $\kappa^* = \min\{1, \kappa\}$, where

$$
\kappa = \frac{L(C^b_{ijtn} | \cdot) \rho(C^b_{ijtn} | C^b_{ijtn}, \sigma^b)}{L(C^b_{ijtn} | \cdot) \rho(C^b_{ijtn} | C^b_{ijtn}, \sigma^b)}
$$

(4.66)

where $L(C^b_{ijtn} | \cdot)$ denotes the conditional likelihood and

$$
L(C^b_{ijtn} | \cdot) \propto L^{bidder} L^{seller} p(C^b_{ijtn} | \beta^b, Z^b)
$$

(4.67)

Thus, $L(C^b_{ijtn} | \cdot)$ is the conditional likelihood evaluated at C^b_{ijtn} and $L(C^b_{ijtn} | \cdot)$ is the analog at iteration $k-1$.

$\rho(\cdot | \cdot)$ connotes the density of the proposal distribution evaluated with C^b_{ijtn}, $C_{ijtn}^{b(k-1)}$, and σ^b as inputs. As the proposal distribution is truncated and asymmetric, the ratio between the two densities of $\rho(C_{ijtn}^{b(k-1)} | C_{ijtn}^{b(k)} \sigma^b)$ and $\rho(C_{ijtn}^{b(k)} | C_{ijtn}^{b(k-1)} \sigma^b)$ is used as a weight to obtain the correct acceptance probability.

4.1.4 Monte Carlo Simulation

We develop a simulated data set designed to reflect our model and data in order to assess whether the proposed estimation approach can recover true parameters.

3 Note that a seller makes decision in Stage 1 before bidder’s decisions. The seller takes the bidder costs distribution into account when he calculates the expected return. Thus L^{seller} also appears in the conditional likelihood of C^b_{ijtn}.
for an arbitrary set of values. The simulated data have 10 sellers and 100 bidders. Each seller has 2-4 items for sale and makes decisions about the optimal number of auctions for each item. The sellers’ optimization results in a total of 213 auctions in the market. Each bidder then makes decisions about bidding activities. The true values and estimates of parameters are presented in Table 4.2 and indicate that the model is capable of recovering parameters with reasonable accuracy.

Table 4.2: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>Valuation Distribution</th>
<th>True Value</th>
<th>Median</th>
<th>95% Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-4</td>
<td>-3.89*</td>
<td>(-4.18, -3.51)</td>
</tr>
<tr>
<td>Book Value</td>
<td>1</td>
<td>0.99*</td>
<td>(0.83, 1.15)</td>
</tr>
<tr>
<td>(Seller Feedback)</td>
<td>0.5</td>
<td>0.49*</td>
<td>(0.06, 0.89)</td>
</tr>
<tr>
<td>Minimum Bid</td>
<td>0.5</td>
<td>0.51*</td>
<td>(0.09, 0.91)</td>
</tr>
<tr>
<td>Secret Reserve Dummy</td>
<td>0.5</td>
<td>0.49*</td>
<td>(0.25, 0.72)</td>
</tr>
<tr>
<td>Store Dummy</td>
<td>0.5</td>
<td>0.50*</td>
<td>(0.29, 0.75)</td>
</tr>
<tr>
<td>Gallery Picture</td>
<td>0.5</td>
<td>0.50*</td>
<td>(0.24, 0.72)</td>
</tr>
<tr>
<td>Subtitle</td>
<td>0.5</td>
<td>0.51*</td>
<td>(0.32, 0.67)</td>
</tr>
<tr>
<td>σ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2</td>
<td>2.09*</td>
<td>(1.98, 2.20)</td>
</tr>
</tbody>
</table>

Bidder Disutility

Number of Auctions Attended	1	0.99*	(0.96, 1.02)
Lapse Since Last Winning	-0.4	-0.39*	(-0.37, -0.41)
Mean of the Individual Constant	2	2.08*	(1.36, 2.83)

Seller Acquisition Cost

Book Value	1	0.99*	(0.94, 1.05)
Number of Listings	1.5	1.51*	(1.44, 1.55)
Cost Error Variance	1	1.10*	(0.91, 1.22)
Mean of the Individual Constant	0.50	0.56*	(0.36, 0.88)
4.2 Appendices for “A Dynamic Model of Sponsored Search Advertising”

4.2.1 Two Step Estimator

First Step Estimation

Estimating the Advertiser’s Policy Function

The Partial Policy Function The partial policy function links states (s) and characteristics (X) to decisions (b). Ideally this relation can be captured by a relatively flexible parametric form and estimated via methods such as maximum likelihood or MCMC to obtain the partial policy function parameter estimates. The exact functional form is typically determined by model fit comparison among multiple specifications (e.g. Jofre-Bonet and Pesendorfer, 2003). We considered several different specifications for the distribution of bids and found the truncated normal distribution gives the best fit in terms of marginal likelihoods.\(^4\) Specifically, we allow

\[
b^t_j = \begin{cases}
y^t*_{j} & \text{if } y^t*_{j} \geq \chi \\
0 & \text{otherwise}
\end{cases}
\]

\[
y^t*_{j} \sim N([s^t, X^t_j] \cdot \varphi + \varphi_j, \tau^2)
\]

where \([s^t, X^t_j]\) is the vector of independent variables; \(\tau\) is the standard deviation of \(y^t_j\); \(\varphi_j\) is a bidder specific constant term due to the fixed effect \(f_j\) in valuations (equation 2.15); and \(\chi\) is the truncation point, which is set at 15 to be consistent with the 15c minimum bid requirement of the search engine.

One possible concern when estimating the partial policy function \(\tilde{\sigma}(s, X)\) (and the full policy function \(\sigma(s, X, r^t_j)\) next) is that there may be multiple equilibrium strategies; and the observed data are generated by multiple equilibria. If this were

\(^4\) We experimented with alternative specifications including a Beta distribution and a Weibull distribution whose scale, shape, and location parameters are functions of \((s, X)\). The current specification gives the best fit in terms of marginal likelihoods.
the case, the policy function would not lead to a unique decision and would be of limited use in predicting advertiser behavior. It is therefore necessary to invoke the following assumption (BBL).

Assumption 2 (Equilibrium Selection): The data are generated by a single Markov perfect equilibrium profile σ.

Assumption 2 is relatively unrestrictive since our data is generated by auctions of one keyword and from one search engine. Given data are from a single market, the likelihood is diminished that different equilibria from different markets are confounded. We note that this assumption is often employed in such contexts (e.g., Dubé et al., 2008).

This partial policy function is then used to impute the full policy function $b_j = \sigma_j(s, X, r_j^t)$ as detailed below based on r_j^t's distribution parameter ψ.

Full Policy Functions $\sigma_j^t(s^t, X^t, r_j^t)$ To evaluate the value function of this dynamic game, we need to calculate bids as a function of not only (s^t, X^t) but also the unobserved shocks r_j^t (see section 2.4.2). To infer this full policy function $\sigma_j(s^t, X^t, r_j^t)$ from the estimated partial policy function, $\tilde{\sigma}_j(s^t, X^t)$, we introduce one additional assumption.

Assumption 3 (Monotone Choice): For each bidder j, its equilibrium strategy $\sigma_j(s^t, X^t, r_j^t)$ is increasing in r_j^t (BBL).

Assumption 3 implies that bidders who draw higher private valuation shocks r_j^t will bid more aggressively.

To explore these two assumptions, note that the partial policy function $\tilde{\sigma}(s^t, X^t)$ presents distributions for bid b_j^t and the latent $y_j^*\ast$, whose CDF’s we denote as $F_b(b_j^t|s^t, X^t)$ and $F(y_j^*\ast|s^t, X^t)$, respectively.\(^5\) According to the model in equation

\(^5\) To be more specific, we estimate a continuous distribution $F(y_j^*\ast|s^t, X^t)$ for $y_j^*\ast$ from equation 4.68; then conditional on the truncation point χ, we can back out the (discontinuous) distribution
4.68, the population mean of y_{jt}^* across bidders and periods is $[s^t, X^t] \cdot \varphi + \varphi_j$. Around this mean, the variation across bidders and periods can be captured by the variance term τ^2. With assumption 3, we can attribute τ^2 to the random shocks r_{jt}^t.

Given the normal distribution assumption of the random shock $r_{jt}^t \sim N(0, \psi^2)$, we may impute the y_{jt}^* (and hence b_{jt}^t) for each combination of (s^t, X^t, r_{jt}^t), i.e., the full policy function. To see this, note that since $\sigma_j(s^t, X^t, r_{jt}^t)$ is increasing in r_{jt}^t,

$$ F(y_{jt}^*|s^t, X^t) = \Pr(\sigma_j(s^t, X^t, r_{jt}^t) \leq y_{jt}^*|s^t, X^t) = \Phi\left(\frac{\sigma_j^{-1}(y_{jt}^*, s^t, X^t)}{\psi}\right) \tag{4.69} $$

where $\sigma_j^{-1}(y_{jt}^*, s^t, X^t)$ is the inverse function of $\sigma_j(s^t, X^t, r_{jt}^t)$ with respect to r_{jt}^t and $\Phi(\cdot)$ is the CDF of standard normal distribution. In equilibrium, we have $\sigma_j(s^t, X^t, r_{jt}^t) = y_{jt}^*$.

By substitution and rearrangement we get

$$ y_{jt}^* = \sigma_j(s^t, X^t, r_{jt}^t) \tag{4.69} $$

$$ = F^{-1}\left(\Phi\left(\frac{\sigma_j^{-1}(y_{jt}^*, s^t, X^t)}{\psi}\right) \big| s^t, X^t\right) $$

$$ = F^{-1}\left(\Phi\left(r_{jt}^t/\psi\right) \big| s^t, X^t\right) $$

where $\sigma_j^{-1}(y_{jt}^*, s^t, X^t) = r_{jt}^t$; r_{jt}^t/ψ has a standard normal distribution.

Therefore there is a unique mapping between the likelihood of observing a given valuation shock r_{jt}^t and the y_{jt}^*. Each r_{jt}^t drawn by a firm implies a corresponding quantile on the r_{jt}^t’s distribution; this quantile in turn implies a y_{jt}^* from the distribution represented by that firm’s partial bidding function $\tilde{\sigma}_j(s^t, X^t)$. However, because

$$ F_b(b_{jt}^t|s^t, X^t) \text{ for } b_{jt}^t. \tag{4.69} $$

In this Appendix, we are abusing the notation of $\sigma_j(s^t, X^t, r_{jt}^t)$. For the purpose of a clear exposition, we define $\sigma_j(s^t, X^t, r_{jt}^t) = b_{jt}^t$ in the paper. To match the bidding function estimated in equation 4.68, the more accurate definition should be

$$ b_{jt}^t = \begin{cases} y_{jt}^* & \text{if } y_{jt}^* \geq \chi \\ 0 & \text{otherwise} \end{cases} $$

$$ y_{jt}^* = \sigma_j(s^t, X^t, r_{jt}^t) $$

171
we do not know \(\psi \) and, thus, the distribution of \(r_j^t \), we have to make draws from an alternative distribution \(r_j^t/\psi \) that has a one-one quantile mapping to \(r_j^t \). To do this, we first draw a random shock \(r_j^t/\psi \) from \(N(0,1) \) for each advertiser \(i \) in period \(t \). Next, we determine \(F(y_j^{t*}|s^t, X^t) \) using results estimated in 4.68 and looking at the distribution of its residuals to determine \(F \). That is, for each value of \(y_j^{t*} \), we should be able to compute its probability for a given \(s^t \) and \(X^t \) using \(F \). Accordingly, \(F^{-1} \) links probabilities to \(y_j^{t*} \) (therefore \(b_j^t \)) for a given \(s^t \) and \(X^t \). We then use \(F^{-1} \) to link the probability \(\Phi(r_j^t/\psi) \) to \(b_j^t \) for a particular \(s^t \) and \(X^t \). In this manner we ensure the bids and valuations in equation (4.78) comport. In Appendix 4.2.1, when evaluating the value function for a set of given parameter values of \(\psi \) in equation 4.78 or evaluating base functions defined in equation 4.79, we integrate out over the unobserved shocks \(r_j^t \) by drawing many \(r_j^t/\psi \) from \(N(0,1) \).

Consumer Model Estimation We derive the consumer model conditioned on the information state of the advertiser as described in section 2.4.1. Given that advertisers do not observe what each person downloaded or the characteristics of these persons, they must infer consumer behavior from aggregate instead of individual level data.

Advertisers do observe the aggregate data in the form of download counts \(d_j^t = \{d_1^t, d_2^t, ..., d_N^t\} \) in period \(t \). A single \(d_j^t \) follow a binomial distribution. Given the download probabilities \(P_j^t \) in equation 2.12, a single \(d_j^t \)'s probability mass function is

\[
\binom{M_t}{d_j^t} [P_j^t]^{d_j^t} [1 - P_j^t]^{M_t - d_j^t}
\]

where \(M_t \) is the consumer population size in period \(t \). Hence the likelihood of observing \(d^t \) is

\[
L(d^t|\Omega_c) = \prod_j \binom{M_t}{d_j^t} [P_j^t]^{d_j^t} [1 - P_j^t]^{M_t - d_j^t}
\]

where \(\Omega_c \equiv \{\alpha^g, \beta^g, \delta^g, \gamma^g, \lambda_0^g, \lambda_1^g\} \) are parameters to be estimated.

Naturally, the full posterior distribution of the model will be the product of
\(L(d^t|\Omega_c) \) across periods and \(p(\Omega_c) \), the prior distributions of parameters, i.e.,

\[
p(\Omega_c|data) \propto \prod_t L(d^t|\Omega_c) \cdot p(\Omega_c) \tag{4.70}
\]

An advertiser’s predicted downloads \(d_j^t(k, X_j^t; \Omega_c) \) can readily be constructed using the parameter estimates as shown in equation 2.13

\[
d_j^t(k, X_j^t; \hat{\Omega}_c) = M_j \hat{P}_j^t \tag{4.71}
\]

This prediction is then used to forecast expectations of future downloads and slot positions in the firm’s value function in the second step estimation.

State Transition Function \(P \left(s'|b_j, b_{-j}, s, X \right) \) To compute the state transition, note that the marginal number of expected downloads is given by the expected downloads given a slot position multiplied by the probability of appearing in that slot position and then summed across all positions:

\[
P \left(s'|b_j, b_{-j}, s, X \right) = \sum_k d(k, X; \Omega_c) \Pr \left(k|b_j, b_{-j}, s, X \right) \tag{4.72}
\]

The expected downloads given a slot position in 4.72 is defined in 2.13. We can decompose the likelihood of appearing in slot \(k \) as follows

\[
\Pr(k|b_j, b_{-j}, s, X) \tag{4.73}
\]

\[
= \Pr_{\{k \leq K\}}(k|b_j, b_{-j}, s, X) I\{k \leq K\} + \Pr_{\{k > K\}}(k|b_j, b_{-j}, s, X) I\{k > K\}
\]

where \(\Pr_{\{k \leq K\}}(k|b_j, b_{-j}, s, X) \) is the probability of appearing in slot \(k \) of the sponsored search section (i.e., \(k \leq K \)), and \(\Pr_{\{k > K\}}(k|b_j, b_{-j}, s, X) \) is the likelihood of appearing in slot \(k \) of the organic search section (i.e., \(k > K \)). We discuss these two probabilities next.
Likelihood of Premium Slot $k \leq K$ Let us first consider the likelihood of winning one of the premium slots k $(k \leq K$), $\Pr_{\{k \leq K\}}(k|b_j, b_{-j}, s, X)$ as an order statistic reflecting the relative quality of the advertiser’s bid, which is defined as $b_j d_j^{(-1)}$. Higher quality bids are more likely to be assigned to better slots. Denote $\Psi_{bd}(b_j d_j^{(-1)}|s, X)$ as the distribution CDF of $b_j d_j^{(-1)}, \forall j'$, where $d_j^{(-1)}$ is from the state vector and b_j has a distribution depending on the strategy profile $\sigma(\cdot)$.\footnote{It is difficult to write a closed form solution for Ψ_{bd}, but we may use the sample population distribution to approximate Ψ_{bd}.} For bidder j to win a premium slot k by bidding b_j, it implies that (1) among all of the other $N-1$ competing bidders, there are $k-1$ bidders who have a higher ranking than j in terms of $b_j d_j^{(-1)}$ and (2) the other ones have a lower ranking than j. The probability of having a higher ranking than j is $[1 - \Psi_{bd}(b_j d_j^{(-1)}|s, X)]$. Thus the probability of bidder j winning slot k by bidding b_j is simply an order statistics as shown below; note that the combination $\binom{N-1}{k-1}$ in the equation is because any $(k-1)$ out of the $(N-1)$ competing bidders can have a higher ranking than j.\footnote{An alternative interpretation of equation 4.74 is the probability mass function (PMF) of a binomial distribution. Among $N-1$ competing bidders, there are $k-1$ higher than bidder j and $(N-1)-(k-1)$ lower than j; and the probability of higher than j is $[1 - \Psi_{bd}(b_j d_j^{(-1)}|s, X)]$. Hence we may consider the expression in 4.74 as the PMF of a binomial distribution.}

\[
\Pr_{\{k \leq K\}}(k|b_j, b_{-j}, s, X) = \binom{N-1}{k-1} [1 - \Psi_{bd}(b_j d_j^{(-1)}|s, X)]^{k-1} [\Psi_{bd}(b_j d_j^{(-1)}|s, X)]^{(N-1)-(k-1)}
\]

Likelihood of Organic Slot $k > K$ Next we consider what happens when an advertiser does not win this auction and is placed in the organic search section. In this case, by the rules of the auction, the bidder’s slot is determined by its update
recency compared to all products in the organic search section. For bidder \(j \) to be placed in organic slot \(k > K \) it implies that (1) there are \(K \) bidders who have a higher ranking of \(b_jd_j^{(-1)} \) than bidder \(j \) (i.e., \(j \) loses the auction) and (2) among the other \(N - K - 1 \) products (i.e., all products at the search engine less those who win premium slots and \(j \) itself), there are \(k - K - 1 \) products that have a higher update recency than \(j \) and (3) the other ones have a lower ranking than \(j \). Hence,

\[
\Pr_{(k > K)}(k|b_j, b_{-j}, s, X) = \Pr(k > K|b_j, b_{-j}, s, X) \cdot \Pr(k|b_j, b_{-j}, s, X, k > K)
\]

(4.75)

where the first term is the probability of losing the auction (condition 1) and the second term denotes the likelihood of appearing in position \(k > K \) (condition 2 and 3). Note that the main reason for the difference between 4.74 and 4.75 is the change of ranking mechanisms. The ranking is based on \(b_jd_j^{(-1)} \) for \(k \leq K \) and update recency when \(k > K \). The first term in 4.75 does not appear as an order statistics (as shown below) since when \(k > K \) the order of \(b_jd_j^{(-1)} \) becomes meaningless. Instead, the update recency is affecting the ranking. The two terms in 4.75 can be expressed as follows.

Losing the auction implies that among \(j \)’s \(N - 1 \) opponents, there are \(K \) bidders who have a higher ranking than \(j \) in terms of \(b_jd_j^{(-1)} \). Hence,

\[
\Pr(k > K|b_j, b_{-j}, s, X) = \binom{N - 1}{K} [1 - \Psi_{bd}(b_jd_j^{(-1)}|s, X)]^K
\]

(4.76)

The conditional probability of being placed in an organic slot \(k > K \) (condition 2 and 3) is, again, an order statistics.\(^9\) This distribution is incumbent upon the update recency of all \(\overline{N} \) products exclusive of the \(K \) winners in the sponsored search

\(^9\) This order statistics can, again, be interpreted as the PMF of a binomial distribution similar to 4.74.
section. Denoting the distribution of update recency of all products as Ψ_{up}, which can be approximated from the sample population distribution observed in the data, we obtain the following:

$$
\Pr(k|b_j, b_{-j}, s, X, k > K) = \binom{N-K-1}{k-K-1}[1 - \Psi_{up}]^{k-K-1}[\Psi_{up}]^{(N-K-1)-(k-K-1)}
$$

Combining equations 4.77 and 4.76 into 4.75, and then 4.75 and 4.74 into 4.73, yields the state transition equation.

Given that we have detailed the estimation of the first step functions ($\sigma_j (s, X, r_j^t)$, $d_j^t(k, X_j^t; \Omega_c)$, $P(s'|b, s, X)$), we now turn to the second step estimator, which is incumbent upon these first step functions.

Second Step Estimation of Bidder Model

In this Appendix we detail how to estimate the parameters in the value function. This is done in two phases; first, we simulate the value function conditioned on Ω_a, and second, we construct the likelihood using the simulated value function conditioned on Ω_a.

Phase 1: Simulation of Value Functions Given Ω_a To construct the value function we first simplify its computation by linearization, and second using this simplification, we simulate the expected value function conditioned on Ω_a by integrating out over draws for s^t, X^t, and r_j^t.

Linearize the Value Function We simplify the estimation procedure by relying on the fact that equation 2.16 is linear in the parameters Ω_a. We can rewrite equation
2.16 by factoring out Ω_a.

\[
\mathbb{E}_{\pi_j}(b^t, s^t, X^t, r_j^t; \Omega_a) = \sum_{k=1}^{K} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot (v(X_j^t; \theta) + f_j + r_j^t - b_j^t) \cdot d_j^t(k, X_j^t; \Omega_c) \\
+ \sum_{k=K+1}^{N} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot (v(X_j^t; \theta) + f_j + r_j^t) \cdot d_j^t(k, X_j^t; \Omega_c) \\
= \left[\sum_{k=1}^{N} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \cdot X_j^t \right] \cdot \theta \\
+ \left[\sum_{k=1}^{N} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \right] \cdot f_j \\
+ \left[\sum_{k=1}^{N} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \cdot \bar{r}_j^t \right] \cdot \psi \\
b_j^t \sum_{k=1}^{K} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \\
= \text{Base}_{j1}^t[\theta^t, f_j] + \text{Base}_{j2}^t[\psi] - \text{Base}_{j3}^t
\]

where

\[
\text{Base}_{j1}^t \equiv \left[\sum_{k=1}^{N} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \cdot X_j^t \right] \right] \right]^{t}
\]

\[
\text{Base}_{j2}^t \equiv \left[\sum_{k=1}^{N} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \cdot \bar{r}_j^t \right]
\]

\[
\text{Base}_{j3}^t \equiv b_j^t \sum_{k=1}^{K} \Pr(k|b_{j}^t, b_{-j}^t, s^t, X^t) \cdot d_j^t(k, X_j^t; \Omega_c) \\
\bar{r}_j^t = r_j^t/\psi \sim N(0, 1)
\]

Note that the values of $\{\text{Base}_{j1}^t, \text{Base}_{j2}^t, \text{Base}_{j3}^t\}_{t}$ are conditionally independent of θ, f_j and ψ. This enables us to first evaluate $\{\text{Base}_{j1}^t, \text{Base}_{j2}^t, \text{Base}_{j3}^t\}_{t}$ and keep them constant when drawing θ, f_j and ψ from their posterior distributions. By doing so, we reduce the computational burden of estimation as described next.
Simulate the Value Functions Given \(\Omega_a \)
After the linearization, given a set of advertiser parameters \(\Omega_a = \{ \theta, f_j=1,2,...,N, \psi \} \) and equation 4.78, the value function depicted in equation 2.18 can also be written as the following with period index \(t \) invoked:

\[
V_j(s^0, X^0; \sigma; \Omega_a) = \mathbb{E}_{s,X,R} \left[\sum_{t=0}^{\infty} \rho^t \pi_j(\sigma, s^t, X_t, r^t_j; \Omega_a) \right] \quad (4.80)
\]

\[
= \mathbb{E} \left[\sum_{t=0}^{\infty} \rho^t \text{Base}_{j1}^t \left[\frac{\theta}{f_j} \right] + \text{Base}_{j2}^t \psi - \text{Base}_{j3}^t \right]
\]

\[
= \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}_{j1}^t \left[\frac{\theta}{f_j} \right] \right] + \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}_{j2}^t \psi \right] - \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}_{j3}^t \right]
\]

where the expectation is taken over current and future private shocks, future states \(s^t \), future \(X_t \) and \(R_t \).

An estimated value function \(\hat{V}_j(s^0, X^0, \sigma; \Omega_a) \) can then be obtained by the following steps:

1. Draw private shocks \(\tilde{r}^t_j \) from \(N(0,1) \) for all bidders \(j \) in period 0; draw initial choice of \(s^0 \) from the distribution of state variables derived from the observed data; draw \(X^0 \) from the observed distribution of product attributes.

2. Starting with the initial state \(s^0, X^0 \) and the \(\tilde{r}^t_j \) step 1, calculate \(\hat{b}_j^0 \) for all bidders using the inversion (equation 4.69) described in Appendix 4.2.1.

3. Use \(s^0, X^0 \) and \(\hat{b}_0 \) to determine the slot ranking, whose distribution is

\[
\Pr \left(k|b^t_j, b^t_{-j}, s^t, X^t \right)
\]

in equation 4.73 in Appendix 4.2.1; using \(d(k, X^0; \Omega_c) \) in equation 2.13, obtain a new state vector \(s^1 \), whose distribution is \(P(s^1|\hat{b}_0, s^0, X^0) \) in equation 4.72 in Appendix 4.2.1; draw \(X^1 \) from the observed distribution of product attributes.
4. Repeat steps 1-3 for T periods for all bidders to compute all $s_t, X_t, \tilde{r}_t^j, \text{ and } b_t$ for all periods; T is large enough so that the discount factor ρ^T approaches 0.

5. Using $s^t, X^t, \tilde{r}^t, d^t_j(k, X^t_j; \Omega_c)$, and b^t, evaluate $\{\text{Base}^t_{j1}, \text{Base}^t_{j2}, \text{Base}^t_{j3}\}_{t=0, \ldots, T}$ and $\left\{\left[\sum_{t=0}^{T} \rho^t \text{Base}^t_{j1}\right], \left[\sum_{t=0}^{T} \rho^t \text{Base}^t_{j2}\right], \left[\sum_{t=0}^{T} \rho^t \text{Base}^t_{j3}\right]\right\}$.

6. The resulting values of $\{\text{Base}^t_{j1}, \text{Base}^t_{j2}, \text{Base}^t_{j3}\}_{t=0, \ldots, T}$ and $\left\{\left[\sum_{t=0}^{T} \rho^t \text{Base}^t_{j1}\right], \left[\sum_{t=0}^{T} \rho^t \text{Base}^t_{j2}\right], \left[\sum_{t=0}^{T} \rho^t \text{Base}^t_{j3}\right]\right\}$ depend on the random draws of s^t, X^t, r^t. To compute $\left\{\left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j1}\right], \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j2}\right], \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j3}\right]\right\}$, repeat steps 1-6 for NR times so as to integrate out over the draws. Note that when T is large enough $[\mathbb{E} \sum_{t=0}^{T} \rho^t \text{Base}^t_{j}]]$ is a good approximation of $[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j}]$ since ρ^T approaches 0.

7. Conditional on a set of parameters Ω_a and $\left\{\left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j1}\right], \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j2}\right], \left[\mathbb{E} \sum_{t=0}^{\infty} \rho^t \text{Base}^t_{j3}\right]\right\}$, we may evaluate $\hat{V}_j(s^0, X^0; \sigma; \Omega_a)$ from equation 4.80.

An estimated deviation value function $\hat{V}_j(s^0, X^0; \sigma'; \sigma_{-j}; \Omega_a)$ with an alternative strategy σ'_j other than σ_j can be constructed by following the same procedure.
draw a deviated strategy σ_j' by adding disturbance to the estimated policy function from Step 1. In particular, we add a normally distributed random variable ($mean = 0$; $s.d. = 0.3$) to each parameter.

We implement this process by first drawing $NS = 10$ initial states for each bidder and $\{X_t\}_{t=0,1,...,T}$ of all $T = 200$ periods. Then for each combination of bidder and initial state, we use this process to compute the base value functions and $ND = 100$ perturbed base functions. In Step 6, we use $NR = 100$. The discount factor ρ is fixed as 0.95.

The computational burden is reduced tremendously since we have linearized the value functions and factored out the parameters Ω_a. We do not need to re-evaluate the value functions for each set of parameters Ω_a. Instead, we only evaluate the base functions in equation 4.79 once using step 1-6 and keep them fixed. Then for each draw of Ω_a from the posterior distribution we may evaluate the value functions (step 7) so as to recover Ω_a as described below.

Phase 2: Recover Ω_a
Recall our goal is to assess the likelihood that 2.19 holds. Define $P_j \left(s_{(ns)}^0, X^0; \sigma, \sigma_j'; \Omega_a \right)$ as the probability of the event

$$\left\{ \hat{V}_j(s_{(ns)}^0, X^0; \sigma_j, \sigma_{-j}; \Omega_a) \geq \hat{V}_j(s_{(ns)}^0, X^0; \sigma_j', \sigma_{-j}; \Omega_a) \right\},$$

(4.81)

where $s_{(ns)}^0$ stands for the ns-th initial state of bidder j. This event means that the estimated value function for the given initial state $s_{(ns)}^0$ with observed strategy σ_j is greater than the estimated value function with a deviation σ_j'. For observed data to be rational, we should have $P_j \left(s_{(ns)}^0, X^0; \sigma, \sigma_j'; \Omega_a \right)$ converging to 1 under the true parameters, in the sense that all ND draws should result in the event of equation 4.81.

Note that $P_j \left(s_{(ns)}^0, X^0; \sigma, \sigma_j'; \Omega_a \right)$ is not observed, but it can be approximated
with the sample analog from the simulated ND draws of $\hat{V}_j(s^0_{(ns)}, X^0; \sigma'_j, \sigma_{-j}; \Omega_a)$ as the follows:

$$P_j(s^0_{(ns)}, X^0; \sigma, \sigma'_j; \Omega_a)$$

$$= \frac{1}{ND} \sum_{nd=1}^{ND} I \left\{ \hat{V}_j(s^0_{(ns)}, X^0; \sigma_{j}, \sigma_{-j}; \Omega_a) \geq \hat{V}_j(s^0_{(ns)}, X^0; \sigma'_j, \sigma_{-j}; \Omega_a)_{(nd)} \right\}$$

where the subscript (nd) indices the nd-th simulated $\hat{V}_j(s^0_{(ns)}, X^0; \sigma'_j, \sigma_{-j}; \Omega_a)$.

By pooling together all $P_j(s^0_{(ns)}, X^0; \sigma, \sigma'_j; \Omega_a)$'s across bidders and (ns), we are able to construct a simulated likelihood function as the following

$$L = \prod_{j,(ns)} \hat{P}_j(s^0_{(ns)}, X^0; \sigma, \sigma'_j; \Omega_a)$$

(4.83)

Denoting the prior of Ω_a as $p(\Omega_a)$, the posterior can be written as

$$p(\Omega_a|\text{data}) \propto \prod_{j,(ns)} \hat{P}_j(s^0_{(ns)}, X^0; \sigma, \sigma'_j; \Omega_a) p(\Omega_a)$$

(4.84)

There may be some efficiency loss by using Bayesian method in estimation since the differences between $V_j(s^0_{(ns)}, X^0; \sigma_{j}, \sigma_{-j}; \Omega_a)$ and $V_j(s^0_{(ns)}, X^0; \sigma'_j, \sigma_{-j}; \Omega_a)$ also provide some information about the estimates and are not utilized (BBL). However, Bayesian method provides desirable small sample properties, increases statistical efficiency, and enables the estimation of a wide array of functional forms (Rossi et al., 2005). We consider the benefits of Bayesian method to outweigh the loss of efficiency.

4.2.2 MCMC Sampling Chain

Advertiser Model

Priors The specification of advertiser model priors is listed in Table 4.3.

To facilitate explication denote the vector $[s^t', X^t_j] \equiv Z^t_j$ the matrix $[Z^t_j]_{\nu,t} \equiv Z$ and the vector $[y^t_{\nu}]_{\nu,t} \equiv y^t$. We also denote the number of bidders as N and the
number of observations for bidder \(j \) as \(N_j \). So the total number of observations is \(\sum_j N_j \); the dimension of \(Z_j' \) is 1 by \(d \) (the dimension of \([s', X_j']\)); the dimension of \(Z \) is \(\sum_j N_j \) by \(d \); and the dimension of \(y^* \) is \(\sum_j N_j \). The vector of bidder specific fixed effects, \(\varphi^{fe} \), is a column vector with a length of the number of bidders. \(\Lambda \) is a matrix whose dimension is \(\sum_j N_j \) by \(N \). Suppose rows \(a \) to \(b \) of matrix \(Z \) are the observations of bidder \(j \), then rows \(a \) to \(b \) of the \(j \)-th column of \(\Lambda \) are 1. Other elements of \(\Lambda \) are 0. Also denote \(\Gamma \equiv [\Lambda, Z] \), whose dimension is \(\sum_j N_j \) by \((N + d) \).

The advertiser model is specified as

\[
\begin{align*}
b_j^t &= \begin{cases}
y_j^t & \text{if } y_j^t \geq \chi \\
0 & \text{otherwise} \end{cases} \\
y_j^t &\sim N([s', X_j'] \cdot \varphi + \varphi_j, \tau^2)
\end{align*}
\]

We iterate the sampling chain for 20,000 and use the second half of the chain to make inference. The priors use a diffused variance of 100; examinations of the posteriors shows that the choice of the variance is the order of magnitude greater than posterior distributions, which assures a proper but diffused prior (Spiegelhalter et al., 1996; Gelman et al., 2004).

Table 4.3: The Specification of the Priors for Advertiser Bidding Model

<table>
<thead>
<tr>
<th>Priors</th>
<th>Selected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi = {\varphi', \varphi_1, ..., \varphi_N}') (\sim \mathcal{N}(\varphi_0, I_\varphi \sigma^2_\varphi))</td>
<td>(\varphi_0): estimates of a classical Tobit model of bids on (\Gamma = [\Lambda, Z]) with the truncation at 15. (\sigma^2_\varphi = 100) (I_\varphi) is an identity matrix with the dimension of (N + d).</td>
</tr>
<tr>
<td>(\tau) (\sim \mathcal{T}(0, +\infty)(\mu_\tau, \sigma^2_\tau))</td>
<td>(\mu_\tau = 5, \sigma^2_\tau = 100)</td>
</tr>
</tbody>
</table>

Conditional Posteriors

- \(y_j^t \)
\(y_j^{*} \) is determined by the following

\[
y_j^{*} = b_j^t, \text{ if } b_j^t > 0
\]

\[
y_j^{*} \sim TN(-\infty, 15)(Z_j^t \varphi + \varphi_j, \tau^2), \text{ if } b_j^t = 0
\]

\(y_j^{*} \) is right truncated at 15 when \(b_j^t = 0 \); this is consistent with the 15c minimum bid requirement of the search engine.

- **\(\varphi \)**

Prior \(\varphi \sim N(\varphi_0, I_\varphi \sigma_\varphi^2) \) \hfill (4.86)

Likelihood \(L \propto \prod_{j,t} \exp\left(\frac{-(y_j^{*} - (Z_j^t \varphi + \varphi_j))^2}{2\tau^2}\right) \)

Posterior \((\varphi|\cdot) \sim N(\mu_\varphi, \Sigma_\varphi) \)

\[
\Sigma_\varphi = [\Gamma \Gamma^{-1} + \sigma_\varphi^{-2}]^{-1}
\]

\[
\mu_\varphi = \Sigma_\varphi \cdot \{\Gamma^t \cdot y^* \tau^{-2} + \varphi_0 \sigma_\varphi^{-2}\}
\]

- **\(\tau \)**

Prior \(\tau \sim TN(0, +\infty)(\mu_\tau, \sigma_\tau^2) \)

A random walk proposal density is used in the \((r) \)-th iteration,

\[
\tau^{(r)} \sim TN(0, +\infty)(\tau^{(r-1)}, \sigma_p^2)
\]

where \(\tau^{(r-1)} \) is the value from the \((r-1) \)-th iteration; \(\sigma_p^2 \) is the tuning variance which is chosen so that the acceptance rate is between 15\% - 50\%.

The acceptance probability \(pr^{*} = \min(1, pr) \) and

\[
pr = \frac{L(\tau^{(r)}|\cdot)p(\tau^{(r)}|\mu_\tau, \sigma_\tau^2)\eta(\tau^{(r-1)}|\tau^{(r)}, \sigma_p^2)}{L(\tau^{(r-1)}|\cdot)p(\tau^{(r-1)}|\mu_\tau, \sigma_\tau^2)\eta(\tau^{(r)}|\tau^{(r-1)}, \sigma_p^2)}
\]
where \(p(\tau^{(i)} | \mu_\tau, \sigma^2_\tau) \) is the density of \(\tau^{(i)} \) evaluated using the prior. \(L(\tau^{(i)} | \cdot) \) is the likelihood evaluated at \(\tau^{(i)} \). To be specific

\[
L(\tau^{(i)} | \cdot) \propto \prod_{j,t} \pi(y^{ts}_j; Z^t_j \varphi + \varphi_j, \tau^{(i)})
\]

where \(\pi(y^{ts}_j; Z^t_j \varphi + \varphi_j, \tau^{(i)}) \) is the normal density of \(y^{ts}_j \) evaluated with mean \(Z^t_j \varphi + \varphi_j \) and standard deviation \(\tau^{(i)} \).

Consumer Model

Priors The specification of consumer model priors is listed in Table 4.4.

Table 4.4: The Specification of the Priors for Consumer Model

<table>
<thead>
<tr>
<th>Priors</th>
<th>Selected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^g \equiv {\alpha^g_j}{ij}, {\beta^g_a}{ta})</td>
<td>(B^g \sim N(0, I_B \cdot \sigma^2_B))</td>
</tr>
<tr>
<td>(\delta^g)</td>
<td>(\delta^g \sim TN(0, +\infty)(1, \sigma^2_\delta))</td>
</tr>
<tr>
<td>(\lambda^g_0)</td>
<td>(\lambda^g_0 \sim N(0, \sigma^2_\lambda))</td>
</tr>
<tr>
<td>(\lambda^g_1)</td>
<td>(\lambda^g_1 \sim TN(0,1)(0.5, \sigma^2_\lambda))</td>
</tr>
<tr>
<td>(\gamma^g_0)</td>
<td>(\gamma^g_0 \sim N(0, \sigma^2_\gamma))</td>
</tr>
<tr>
<td>(\gamma^g)</td>
<td>(\gamma^g \sim N(0, I_3 \cdot \sigma^2_\gamma))</td>
</tr>
</tbody>
</table>

where \(I_3 \) is an identity matrix of dimension 3; \(\sigma^2_\gamma = 100 \)

Conditional Posteriors

- \(B^g = \{\alpha^g_j\}_{ij}, \{\beta^g_a\}_{ta} \)

Prior \(B^g \sim N(0, I_B \cdot \sigma^2_B) \)

A random walk proposal density is used in the \((r)\)-th iteration,

\[
B^{g(r)} \sim N(B^{g(r-1)}, \sigma^2_{pB})
\]

where \(B^{g(r-1)} \) is the value from the \((r-1)\)-th iteration; \(\sigma^2_{pB} \) is the tuning variance which is chosen so that the acceptance rate is between \(15\% - 50\% \).
The acceptance probability \(pr^* = \min(1, pr) \) and

\[
pr = \frac{L(B^g(r)|\cdot)p(B^g(r)|0, I_B \cdot \sigma^2_B)}{L(B^g(r-1)|\cdot)p(B^g(r-1)|0, I_B \cdot \sigma^2_B)}
\]

where \(p(B^g(0)|0, I_B \cdot \sigma^2_B) \) is the density of \(B^g(0) \) evaluated using the prior. \(L(B^g(\cdot)|\cdot) \) is the likelihood evaluated at \(B^g(\cdot) \). To be specific

\[
L(B^g(\cdot)|\cdot) \propto \prod_{j,t} \left(\frac{M_t}{d^i_j} \right) \left[P^i_{j}\cdot d^i_j \right] [1 - P^i_{j}]^{M_t - d^i_j}
\]

where \(P^i_{j} \) is defined in equation 2.12 and evaluated at \(B^g(\cdot) \). \(d^i_j \) is the actual downloads observed in the data and \(M_t \) is the market size. We set this to the mean total monthly number of visitors to the search engine and all other Internet properties owned by its parent (hence \(M_t = M \)).

- \(\delta^g \)

Prior \(\delta^g \sim TN(0, +\infty)(1, \sigma^2_{\delta}) \)

A random walk proposal density is used in the \((r)\)-th iteration,

\(\delta^g(r) \sim TN(0, +\infty)(\delta^g(r-1), \sigma^2_{p\delta}). \)

The acceptance probability \(pr^* = \min(1, pr) \) and

\[
pr = \frac{L(\delta^g(r)|\cdot)p(\delta^g(r)|1, \sigma^2_{\delta})\eta(\delta^g(r-1)|\delta^g(r), \sigma^2_{p\delta})}{L(\delta^g(r-1)|\cdot)p(\delta^g(r-1)|1, \sigma^2_{\delta})\eta(\delta^g(r)|\delta^g(r-1), \sigma^2_{p\delta})}
\]

where \(p(\delta^g(\cdot)|1, \sigma^2_{\delta}) \) is the density of \(\delta^g(\cdot) \) evaluated using the prior. \(L(\delta^g(\cdot)|\cdot) \) is the likelihood evaluated at \(\delta^g(\cdot) \). \(\eta(\delta^g(r-1)|\delta^g(r), \sigma^2_{p\delta})/\eta(\delta^g(r)|\delta^g(r-1), \sigma^2_{p\delta}) \) is the correction ratio since the proposal density is asymmetric.
• λ_0^g

Prior $\lambda_0^g \sim N(0, \sigma_\lambda^2)$

A random walk proposal density is used in the (r)-th iteration,

$\lambda_0^{g(r)} \sim N(\lambda_0^{g(r-1)}, \sigma_{\mu \lambda}^2)$.

The acceptance probability $pr^* = \min(1, pr)$ and

$$pr = \frac{L(\lambda_0^{g(r)}|\cdot)p(\lambda_0^{g(r)}|1, \sigma_\lambda^2)}{L(\lambda_0^{g(r-1)}|\cdot)p(\lambda_0^{g(r-1)}|1, \sigma_\lambda^2)}$$

where $p(\lambda_0^{g(r)}|1, \sigma_\lambda^2)$ is the density of $\lambda_0^{g(r)}$ evaluated using the prior. $L(\lambda_0^{g(r)}|\cdot)$ is the likelihood evaluated at $\lambda_0^{g(r)}$.

• λ_1^g

Prior $\lambda_1^g \sim TN_{(0,1)}(0.5, \sigma_\lambda^2)$

A random walk proposal density is used in the (r)-th iteration,

$\lambda_1^{g(r)} \sim TN_{(0,1)}(\lambda_1^{g(r-1)}, \sigma_{\mu \lambda}^2)$.

The acceptance probability $pr^* = \min(1, pr)$ and

$$pr = \frac{L(\lambda_1^{g(r)}|\cdot)p(\lambda_1^{g(r)}|0.5, \sigma_\lambda^2)\eta(\lambda_1^{g(r-1)}|\lambda_1^{g(r)}, \sigma_{\mu \lambda}^2)}{L(\lambda_1^{g(r-1)}|\cdot)p(\lambda_1^{g(r-1)}|0.5, \sigma_\lambda^2)\eta(\lambda_1^{g(r)}|\lambda_1^{g(r-1)}, \sigma_{\mu \lambda}^2)}$$

where $p(\lambda_1^{g(r)}|1, \sigma_\lambda^2)$ is the density of $\lambda_1^{g(r)}$ evaluated using the prior. $10 L(\lambda_1^{g(r)}|\cdot)$ is the likelihood evaluated at $\lambda_1^{g(r)}$. $\eta(\lambda_1^{g(r-1)}|\lambda_1^{g(r)}, \sigma_{\mu \lambda}^2)/\eta(\lambda_1^{g(r)}|\lambda_1^{g(r-1)}, \sigma_{\mu \lambda}^2)$ is the correction ratio since the proposal density is asymmetric.

10 Note that λ_1^g is truncated to $(0, 1)$ and has a large variance (100) for its prior. Hence the prior is essentially an uninformative uniform distribution.
Prior $\gamma_0^g \sim N(0, \sigma_\gamma^2)$

A random walk proposal density is used in the (r)-th iteration,

$$\gamma_0^{g(r)} \sim N(\gamma_0^{g(r-1)}, \sigma_\gamma^2).$$

The acceptance probability $p_{r^*} = \min(1, pr)$ and

$$pr = \frac{L(\gamma_0^{g(r)}|\cdot)p(\gamma_0^{g(r)}|0, \sigma_\gamma^2)}{L(\gamma_0^{g(r-1)}|\cdot)p(\gamma_0^{g(r-1)}|0, \sigma_\gamma^2)}$$

where $p(\gamma_0^{g(\cdot)}|0, \sigma_\gamma^2)$ is the density of $\gamma_0^{g(\cdot)}$ evaluated using the prior. $L(\gamma_0^{g(\cdot)}|\cdot)$ is the likelihood evaluated at $\gamma_0^{g(\cdot)}$.

Prior $\gamma^g \sim N(0, I_\gamma \cdot \sigma_\gamma^2)$

A random walk proposal density is used in the (r)-th iteration,

$$\gamma^{g(r)} \sim N(\gamma^{g(r-1)}, I_\gamma \cdot \sigma_\gamma^2).$$

The acceptance probability $p_{r^*} = \min(1, pr)$ and

$$pr = \frac{L(\gamma^{g(r)}|\cdot)p(\gamma^{g(r)}|0, I_\gamma \cdot \sigma_\gamma^2)}{L(\gamma^{g(r-1)}|\cdot)p(\gamma^{g(r-1)}|0, I_\gamma \cdot \sigma_\gamma^2)}$$

where $p(\gamma^{g(\cdot)}|0, I_\gamma \cdot \sigma_\gamma^2)$ is the density of $\gamma^{g(\cdot)}$ evaluated using the prior. $L(\gamma^{g(\cdot)}|\cdot)$ is the likelihood evaluated at $\gamma^{g(\cdot)}$.

187
Second Step Estimation

Priors To facilitate explication denote the vector \([\theta', f_1, f_2, ..., f_N]'\) as \(\Delta\). The specification of priors is detailed in Table 4.5.

Table 4.5: The Specification of the Priors for Second Step Estimation

<table>
<thead>
<tr>
<th>Priors</th>
<th>Selected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta)</td>
<td>(\Delta \sim N(\Delta_0, I_\Delta \sigma^2_\Delta))</td>
</tr>
<tr>
<td>(\psi)</td>
<td>(\psi \sim TN_{(0, +\infty)}(\mu_\psi, \sigma^2_\psi))</td>
</tr>
<tr>
<td>(\Delta_0): a vector of zeros with the length of the number of product attributes plus (N), the number of bidders.</td>
<td></td>
</tr>
<tr>
<td>(\sigma^2_\Delta = 100)</td>
<td></td>
</tr>
<tr>
<td>(I_\Delta) is an identity matrix with the dimension of the number of product attributes plus (N).</td>
<td></td>
</tr>
<tr>
<td>(\mu'\psi = 1, \sigma^2\psi = 100.)</td>
<td></td>
</tr>
</tbody>
</table>

Conditional Posteriors

- \(\Delta\)

Prior \(\Delta \sim N(\Delta_0, I_\Delta \sigma^2_\Delta)\)

A random walk proposal density is used in the \((r)\)-th iteration,

\[\Delta^{(r)} \sim N(\Delta^{(r-1)}, I_\Delta \sigma^2_{\Delta^{(r)}})\]

where \(\Delta^{(r-1)}\) is the value from the \((r - 1)\)-th iteration; \(\sigma^2_{\Delta^{(r)}}\) is a scalar and functions as the tuning variance.

The acceptance probability \(pr^* = \min(1, pr)\) and

\[pr = \frac{L(\Delta^{(r)}|\cdot)p(\Delta^{(r)}|\Delta_0, I_\Delta \sigma^2_\Delta)}{L(\Delta^{(r-1)}|\cdot)p(\Delta^{(r-1)}|\Delta_0, I_\Delta \sigma^2_\Delta)}\]

where \(p(\Delta^{(i)}|\Delta_0, I_\Delta \sigma^2_\Delta)\) is the density of \(\Delta^{(i)}\) evaluated using the prior. \(L(\Delta^{(i)}|\cdot)\) is the likelihood evaluated at \(\Delta^{(i)}\). The likelihood is defined in equation 4.83.
A random walk proposal density is used in the \((r)-\)th iteration,

\[
\psi^{(r)} \sim TN(0, +\infty)\left(\psi^{(r-1)}, 2\sigma^2_{\psi}\right)
\]

where \(\psi^{(r-1)}\) is the value from the \((r - 1)-\)th iteration; \(2\sigma^2_{\psi}\) is a scalar and functions as the tuning variance.

The acceptance probability \(pr^* = \min(1, pr)\) and

\[
pr = \frac{L(\psi^{(r)}|\cdot)p(\psi^{(r)}|\mu_\psi, 2\sigma^2_{\psi})\eta(\psi^{(r-1)}|\psi^{(r)}, 2\sigma^2_{\psi})}{L(\psi^{(r-1)}|\cdot)p(\psi^{(r-1)}|\mu_\psi, 2\sigma^2_{\psi})\eta(\psi^{(r)}|\psi^{(r-1)}, 2\sigma^2_{\psi})}
\]

where \(p(\psi^{(c)}|\mu_\psi, 2\sigma^2_{\psi})\) is the density of \(\psi^{(c)}\) evaluated using the prior. \(L(\psi^{(c)}|\cdot)\) is the likelihood evaluated at \(\psi^{(c)}\). The likelihood is defined in equation 4.83. Since the proposal density is asymmetric, the ratio \(\frac{\eta(\psi^{(r-1)}|\psi^{(r)}, 2\sigma^2_{\psi})}{\eta(\psi^{(r)}|\psi^{(r-1)}, 2\sigma^2_{\psi})}\) is used to adjust the acceptance probability.

4.2.3 Policy Simulations

It is reasonable to expect that advertisers will change their bidding strategy in response to changes in search engine’s policy. Thus, the advertiser bidding rules estimated in the first stage of our analysis are not likely to reflect advertiser behavior under the new policy. Hence we need to solve the new optimal bidding strategy for advertisers conditional on the primitives estimated off the data (\(\Omega\)). This requires explicitly solving the dynamic programming problem (DP) for advertisers. Because of the dimension of the state space and the interaction across advertisers, solving the DP imposes tremendous a computational burden. In this appendix, we first outline our general approach to solving this dynamic advertiser bidding problem and then detail the manipulations underpinning each specific policy simulation.
Computational Considerations

We use Approximate DP approach (cf. Judd, 1998; Powell, 2007) to solve the advertiser bidding problem. To be specific, we impose a parametric decision rule to reflect the optimal bidding policy for advertisers and then find the parameters of the bidding rule that maximize the advertisers profits. Specifically, we proceed as follows:

1. Specify a parametric form for the bidding function of advertisers. We use the same functional form as the one estimated in the advertiser model (equation 4.68).

2. Suppose r^t_j, $t = 1, ..., T$, $j = 1, ..., N$ is a sequence of random shocks drawn from the distribution $N(0, \psi)$. Also, randomly seed an initial state s^0 and X^0. For an initial guess of the bidding rule parameters $\varphi^{new} = [\varphi_1^{new}, \varphi_2^{new}, ..., \varphi_N^{new}]$, we can approximate the advertiser value functions (as the initial guess, we choose the estimates of φ from the first stage advertiser model)

$$
\hat{V}_j \left(s^0, X^0, r^0_j; \varphi^{new} \right) = \pi_j \left(\sigma^{new}(\varphi^{new}), s^0, X^0, r^0_j; \Omega_a \right)
$$

$$
+ \sum_{t=1}^{T} \rho^t \pi_j \left(\sigma^{new}(\varphi^{new}), s^t, X^t, r^t_j; \Omega_a \right) P(s^t | b^{t-1}, s^{t-1}, X^{t-1})
$$

3. Repeat step 2 for $NR = 100$ draws of r^t_j sequence, and take the average; then we have a good approximation of value functions for advertisers

$$
\hat{V}_j \left(s^0, X^0, \sigma^{new}, \Omega_a \right) = \frac{1}{NR} \sum_{nr=1}^{NR} \hat{V}_j \left(s^0, X^0, r^{(nr)}_j; \sigma^{new}; \Omega_a \right)
$$

4. Optimize φ^{new} to get the new bidding policy. The optimization rule we use is choosing φ^{new} to maximize the mean of the value functions across all advertisers. As a robustness check, we also consider maximizing the value function of
(i) the most frequent bidder in the data, (ii) the least frequent bidder in the data, and (iii) a randomly picked bidder. For each policy simulation, we check the difference across these optimization rules and the results are all similar.

5. To ascertain that the estimated φ_{new} are not sensitive to the choice of s^0 and X^0, as another robustness check we consider 3 alternative draws for s^0 and X^0. Changes to the results are minimal.

Policy Simulation: Segmentation and Targeting

Neither the search engine nor advertisers actually observes the segment memberships of consumers to help with targeting. However, it is possible for the advertiser to infer the posterior probability of consumer i’s segment membership conditional on its choices. These estimates can then be used to improve the accuracy and effectiveness of targeting.

More specifically, suppose the search engine observes consumer i in several periods. Let us consider consumer i’s binary choices over downloading, sorting/filtering, and searching in those periods. Denote these observations as $H_i(\{y_{ijt}\}_{j,t}, \{\kappa_{it}\}_t, \{\text{search}_{it}\}_t)$.

The likelihood of observing $H_i(\{y_{ijt}\}_{j,t}, \{\kappa_{it}\}_t, \{\text{search}_{it}\}_t)$ is

$$L(H_i(\{y_{ijt}\}_{j,t}, \{\kappa_{it}\}_t, \{\text{search}_{it}\}_t))$$

$$= \sum_g \prod_t L(H_i(\{y_{ijt}\}_j, \{\kappa_{it}\}_t, \{\text{search}_{it}\}_t)|g_{it}) \cdot pg_{it}^g$$

where

$$L(H_i(\{y_{ijt}\}_j, \{\kappa_{it}\}_t, \{\text{search}_{it}\}_t)|g_{it})$$

$$= \prod_j \int_{u_{ijt}} \int_{z_{it}} \pi(y_{ijt}|u_{ijt}, \kappa_{it}, g_{it}) \pi(\kappa_{it}|z_{it}, g_{it}) du_{ijt} dz_{it} \Pr(\text{search}_{it}^g)$$

Hence, the posterior probability of segment membership for consumer i can be up-
dated in a Bayesian fashion,

$$\Pr(i \in g|H_i(\{y_{ijt}\}_j, \{\kappa_{it}\}_t, \{\text{search}_{it}\})) = \frac{\prod_t L(H_i(\{y_{ijt}\}_j, \{\kappa_{it}\}_t, \{\text{search}_{it}\})|g_{it}) \cdot p_{g_{it}}}{\sum_{g'} \prod_t L(H_i(\{y_{ijt}\}_j, \{\kappa_{it}\}_t, \{\text{search}_{it}\})|g'_{it}) \cdot p_{g'_{it}}} \quad (4.89)$$

As a consequence, the engine will have a more accurate evaluation about the segment membership of that consumer.

On the other hand, suppose some consumers only visit the engine once. Before they make the product choices, the search engine cannot obtain a posterior distribution outlined in Equation 4.89 since their choices of products are still unavailable. Still, it is possible to establish a more informative prediction about their memberships based on their κ_{it}'s before their product choices. Similar to Equation 4.89, the posterior in this case is

$$\Pr(i \in g|H_i(\kappa_{it})) = \frac{L(H_i(\kappa_{it})|g_{it}) \cdot p_{g_{it}}}{\sum_{g'} L(H_i(\kappa_{it})|g'_{it}) \cdot p_{g'_{it}}} \quad (4.90)$$

where

$$L(H_i(\kappa_{it})|g_{it}) = \int_{z_{it}^g} \pi(\kappa_{it}|z_{it}^g, g_{it}) dz_{it}^{\kappa_{it}}$$

We can construct an analysis to consider the benefits of targeting as follows. First, we compute the return to advertisers when advertisers can only bid on keywords for all segments. Second, we compute the return accruing to advertisers when they can bid for key words at the segment level using the approach detailed in section 4.2.3. The difference between the two returns can be considered as a measure for the benefits of targeting. At the same time, we may calculate the advertisers’ returns under the two scenarios and the difference may be a measure for the value of market intelligence.
Bibliography

195

Biography

Song Yao was born in Beijing, China on December 6, 1976. On August 27, 2002, he married Hong Ke. Song earned his B.A. in Economics at the Renmin University of China in Beijing in 1999 and his M.A. in Economics at the University of California, Los Angeles in 2004. He began his Ph.D. studies at Duke University in 2004. Song received multiple fellowships and grants, including the UCLA Graduate Fellowship, Duke University Graduate Fellowship, NET Institute Research Grant. His work has appeared in *Marketing Science*.

Song has accepted the position of Assistant Professor of Marketing at the Kellogg School of Management at Northwestern University.