Some Things are Better Left Unsaid:

How Word of Mouth Influences the Speaker

by

Sarah G. Moore

Department of Business Administration
Duke University

Date:_______________________

Approved:

Gavan J. Fitzsimons, Co-chair

James R. Bettman, Co-chair

John G. Lynch, Jr.

Elizabeth J. Marsh

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Business Administration in the Graduate School of Duke University

2009
ABSTRACT

Some Things are Better Left Unsaid:

How Word of Mouth Influences the Speaker

by

Sarah G. Moore

Department of Business Administration
Duke University

Date:_______________________

Approved:

Gavan J. Fitzsimons, Co-chair

James R. Bettman, Co-chair

John G. Lynch, Jr.

Elizabeth J. Marsh

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Business Administration in the Graduate School of Duke University

2009
Abstract

Consumers frequently share stories about consumption experiences with others through word of mouth (WOM). Past research has focused on how hearing WOM influences the listener; I examine how sharing WOM influences the speaker. My proposed model outlines variables that determine storytelling language, predicts how specific language influences speakers’ evaluations of experiences, and identifies the process through which language influences speakers. I test this model in five experimental studies and in a field study using Amazon.com data. I find that stories containing relatively more explaining language influence speakers through a process of sense-making. Sense-making helps consumers understand and recover from experiences by allowing them to figure out why experiences occurred and why they liked or disliked them. Making sense of experiences through explaining language has several consequences for consumers. Explaining language can cause paradoxical effects of WOM in terms of consumers’ evaluations of experiences and their intentions to repeat and recommend experiences. Explaining positive experiences can decrease speakers’ evaluations of experiences, making experiences less positive and decreasing consumers’ willingness to repeat and recommend these experiences. Conversely, explaining negative experiences can increase speakers’ evaluations of experiences, making experiences less negative and increasing consumers’ willingness to repeat and recommend these experiences. In addition, making sense of and explaining experiences decreases consumers’ intentions to spread future word of mouth about their experiences.
Dedication

To Jim and Gavan, the best co-chairs I can imagine: thank you for freely and enthusiastically sharing your time, thoughts, questions, and ideas. Thank you for your constant encouragement, your unwavering support, and your invaluable advice. I could not have done this without you.

To John and Beth: thank you for your time, comments, and insightful questions throughout the dissertation process, and John: thank you for advice on statistics.

To the Duke marketing faculty: thank you for all of your support, for teaching me what I needed to know, and for providing an outstanding intellectual home.

To Darren and Chuck: thank you for starting me on this path, for giving me every opportunity, and for encouraging, believing, and advising all the way through.

To dear friends and PhD colleagues past and present, near and far, especially Yael, Eugenia, Lisa, and Abhi: thank you for everything—working, playing, laughing, crying, stressing, and celebrating. I could not have done this without you either.

To Kevin, Annie, Beth, Mom, Dad, and family and friends at home: thank you for loving and supporting me from afar. Thank you to my parents for believing, and for raising me to believe, that I really could be whatever I wanted. Thank you to Annie for listening to endless presentations and reading endless iterations of the dissertation, for coming to San Diego, for everything. Thank you to Beth for making me laugh and for distracting me when I needed it. Thank you most of all to Kevin for believing in me, for encouraging me to follow my dreams, and for waiting.
Contents

Abstract .. iv

Dedication ... v

Contents ... vi

List of Figures .. ix

Acknowledgements ... x

General Introduction ... 1

Word of Mouth ... 2

How Word of Mouth Influences the Speaker ... 3
 Antecedent Variables .. 4
 The Sense-Making Process ... 4
 Consequences of Speaking ... 6

Current Research ... 8

Study 1 .. 9

 Method .. 10

 Results ... 12

 Dependent measures ... 12

 Language use .. 13

 Evaluations .. 13

 Mediation .. 14

 Discussion ... 16

Study 2 .. 19
List of Figures

Figure 1: Evaluations by experience valence and proportion of explaining language, study 1. ... 14

Figure 2: Path diagram of the direct effect of explaining language and the indirect (mediating) effect of sense-making on evaluations, moderated by experience valence... 15

Figure 3: Evaluations by writing manipulation and picture valence, study 2.............. 22

Figure 4: Evaluations by proportion of explaining language and picture valence, study 2. 23

Figure 5: Evaluations by video clip and proportion of explaining language, study 3. 30

Figure 6: Positive and disgust-related emotions by video clip and proportion of explaining language, study 3... 31

Figure 7: Proportion of explaining language by Amazon.com star ratings, study 4a...... 35

Figure 8: Proportion of explaining language by Amazon.com star ratings, study 4b. 37

Figure 9: Evaluations by experience valence and prime, study 5............................... 43

Figure 10: Proportion of explaining language by valence and prime, study 5. 45

Figure 11: Mediation model, study 5... 46

Figure 12: Evaluation by valence and story shell, study 6. ... 52
Acknowledgements

The author gratefully acknowledges the support provided by a Doctoral Fellowship from the Social Sciences and Humanities Research Council of Canada.
General Introduction

The universe is made of stories, not of atoms.

— Muriel Rukeyser (1968, 111)

Telling stories is a universal and fundamental human activity (Schank and Abelson 1995). Through stories, we translate and interpret our experiences, both to understand them and to communicate them to others. Stories are told in many ways, for different purposes, to various audiences, about a multitude of experiences (Pasupathi 2001). Word of mouth (WOM) stories about consumption experiences such as purchasing groceries, eating a sublime dessert, or attending a concert are the focus of much research in marketing, which shows that hearing such stories strongly influences listeners (Katz and Lazarsfeld 1955). However, less research has focused on the other side of the story: how does WOM about consumption experiences influence the speaker?

I propose and test a model of how storytelling language influences speakers’ evaluations of past consumption experiences, their intentions to repeat and recommend these experiences, and their likelihood of telling others about these experiences. I find that some ways of expressing events have paradoxical consequences. Specific types of language can rob experiences of their emotional impact through a process of sense-making or explaining, such that explaining a positive experience decreases evaluations of the experience while explaining a negative experience increases evaluations of the experience. Thus, while storytelling is fundamental and universal, it may have some unintended effects on the speaker. Below, I briefly review past work on WOM, develop a model of how speaking might influence the speaker, and test my model in six studies.
Word of Mouth

Word of mouth occurs when one individual communicates information about a consumption experience to another individual(s) (Godes et al. 2005). This definition encompasses traditional WOM, or one-on-one, spoken communication (generally face-to-face), as well as non-traditional WOM, which includes spoken and written communication to others through various media such as email, text messaging, or online reviews. Whether it is transmitted traditionally or not, WOM has long been recognized as an important process in marketing and communication (Katz and Lazarsfeld 1955) and it remains so today: 61% of consumers still rely on communication with friends and family to guide their purchases (Hampton 2006) and 15% of our everyday conversations contain references to products, brands, or services (Carl 2006).

Past work clearly demonstrates that WOM influences those who hear it: positive and negative WOM influences listeners’ trial and adoption behavior (Arndt 1967), switching behavior (Wangenheim and Bayon 2004), and attitudes (Bone 1995). Other work has focused on those who transmit WOM. Speakers tend to share unusual or emotional experiences (Anderson 1998; Heath, Bell, and Sternberg 2001; Richins 1983) with individuals they know well (Brown and Reingen 1987) and tell stories for diverse reasons: to self-enhance (Wojnicki and Godes 2008), to share knowledge or enthusiasm about a product (Dichter 1966), or to interact with others (Dichter 1966; Ritson and Elliott 1999). Finally, WOM significantly impacts firms. Positive and negative online book reviews influence book sales (Chevalier and Mayzlin 2006) and movie reviews influence movie revenues (Dellarocas, Zhang, and Awad 2007).
Despite this body of work, a fundamental question remains unanswered: how does WOM influence the speaker? In existing WOM research “the possibility that the changer can be changed as well is not entertained” (Ozcan and Ramaswamy 2003; but see Cowley 2007). If the changer can be changed, however, and speakers are indeed influenced by sharing WOM, this will have important implications for firms and consumers.

How Word of Mouth Influences the Speaker

I propose a comprehensive model of how speaking affects the speaker. I argue that it is not simply the act of speaking that influences individuals sharing WOM, but that it is story content or how things are said that strongly influences storytellers. I synthesize past research from psychology and linguistics to develop a new model that incorporates: 1) antecedent variables that influence what speakers say; 2) the process by which language influences speakers; and 3) consequences of speaking about experiences.

To preview briefly, I focus specifically on explaining language in WOM stories and how this type of language influences speakers. By explaining language, I mean language that helps individuals figure out why events occurred or why they feel the way they do about experiences. I suggest that antecedent variables such as experience valence (positive or negative) will influence how much explaining language individuals use in their stories. The use of explaining language is then hypothesized to change individuals’ evaluations of consumption experiences through a process of sense-making, where individuals come to understand experiences and consequently find them less compelling, resulting in decreased evaluations of positive and increased evaluations of negative experiences. Below, I outline the model in detail and provide specific hypotheses.
Antecedent Variables

First, I predict that story content is determined by a number of variables, including characteristics of the experience (valence, type), the speaker (expectations, expertise, goals in sharing (Dudukovic, Marsh, and Tversky 2004)), and the audience (goals in listening, expertise (Isaacs and Clark 1987)). For example, if a speaker wants to persuade a listener to share their evaluation of an experience, they may use a lot of explaining language to provide arguments in favor of their evaluation. Alternately, if a speaker’s goal is to savor the experience, they may provide vivid descriptions of the experience and use less explaining language. These two goals prompt individuals to tell stories using different language.

In study 1, I investigate two experience-related variables that should influence the amount of explaining language individuals use when telling stories: the valence (positive/negative) and type (usual/unusual) of experiences. Individuals have a natural motivation to make sense of the world (Heider 1958) that is particularly strong for negative and unusual or unexpected events (Wong and Weiner 1981); thus, individuals should use more explaining language when sharing stories about negative and unusual events than when sharing stories about positive or usual events.

H1: Speakers will use relatively more explaining language when telling stories about negative or unusual experiences than when telling stories about positive or usual experiences.

The Sense-Making Process

Central to my model is the idea that sense-making, or the act of understanding experiences, is one process through which verbalizing impacts speakers. Gilbert, Wilson
and Centerbar (2003) describe sense-making as “a cognitive process whereby an event is transformed psychologically from one that is surprising, novel, and attention-demanding to one that is common-place, ordinary, and not attention-demanding” (p. 221). They argue that “recovery from emotional events can be sped up or slowed down by facilitating or inhibiting … sense-making” (p. 222), which can occur through various mechanisms. For example, sense-making is facilitated when individuals label the emotions they see displayed on target faces, as labeling shifts brain processing from areas related to emotion to areas related to cognition (Lieberman et al. 2007). Similarly, individuals can make sense of and recover from a traumatic experience by building a coherent narrative around the event and explaining why it occurred, leading to improved health and well-being (Pennebaker and Seagal 1999). Conversely, when individuals do not know why an event occurred and can engage in counterfactual thinking about reasons for the event, the emotional impact of the event persists until it is explained or made sense of (Wilson et al. 2005).

I explore language as an additional pathway to sense-making. I argue that language can facilitate or inhibit sense-making about past consumption experiences and that sense-making, in turn, influences speakers’ evaluations. My focus on language provides a concrete way to observe and measure a part of the sense-making process (Wilson and Gilbert 2008), allowing me to test sense-making as a mediating variable in my model. In addition to exploring language, I focus on two concrete ways that individuals can make sense of experiences: by explaining why experiences occurred (e.g. I bought the cookies for his birthday) and by explaining their reactions to experiences
(e.g. I liked the cookies because they were soft). Past work generally focuses on sense-making through the former; I also consider the latter, and suggest that both types of understanding should facilitate sense-making and help individuals view past experiences as ordinary and explainable.

What specific language might facilitate or inhibit sense-making? Work in psychology suggests that individuals can reflect upon past experiences either by using cognitive words (e.g. realize) to make sense of them (Pennebaker 1997) or by reliving or savoring experiences, maintaining their emotional tenor and not making sense of them (Bryant and Veroff 2006; Lyubomirsky, Sousa, and Dickerhoof 2006). I suggest that when individuals explain why they like events or why events occurred and use cognitive language to understand their experiences, they should start to make sense of the experience. However, if individuals focus on how they felt or what the experience was like and use concrete, expressive language to relive but not explain their experiences, they should not make sense of the experience. Thus, WOM stories that focus on explaining should facilitate sense-making, while stories that focus on reliving should inhibit sense-making, with important consequences for storytellers.

H2: Language influences evaluations through a sense-making process in which explaining language facilitates sense-making.

Consequences of Speaking

Telling stories using explaining language should facilitate sense-making and thereby influence individuals’ evaluations of experiences, their intentions to repeat and recommend experiences, and their likelihood of spreading future WOM. Some of these
consequences will differ for positive versus negative experiences. In essence, sense-making helps individuals recover from experiences by making them less extreme, such that making sense of a negative experience makes it less negative while making sense of a positive experience makes it less positive. Thus, individuals who make sense of positive experiences by using relatively more explaining language should evaluate experiences less positively than individuals who use less explaining language. Conversely, individuals who make sense of negative experiences by using relatively more explaining language should evaluate experiences less negatively than individuals who use less explaining language. Further, when individuals like experiences less, they should be less willing to repeat them in the future and less willing to recommend them to other consumers, and vice versa when they like experiences more. Therefore, differences in language use may create paradoxical effects of WOM whereby explaining language harms the speaker’s evaluations and behavioral intentions regarding positive experiences, but improves the speaker’s evaluations and behavioral intentions regarding negative experiences. This general pattern is examined in all six studies.

H3: Speakers using relatively more explaining language in their stories will evaluate positive experiences less positively and negative experiences less negatively than speakers using relatively less explaining language.

H4: Speakers using relatively more explaining language in their stories will be less likely to repeat and recommend positive experiences and more likely to repeat and recommend negative experiences than speakers using relatively less explaining language.

I also predict that sense-making is related to an important WOM-related consequence: individuals’ likelihood of sharing future WOM. Individuals are most likely to spread WOM about extremely satisfying or dissatisfying experiences (Anderson 1998),
or about recent, emotional, or unusual experiences (Heath, Bell, and Sternberg 2001; Tversky and Marsh 2000) that others have not heard before (Grice 1975). In other words, individuals are more likely to talk about experiences they have not made sense of. Thus, once individuals have made sense of positive or negative experiences by using explaining language, they should be less likely to share these experiences with others in future, decreasing the spread of WOM.

H5: Individuals who have made sense of experiences (by using explaining language) will be less likely to tell stories about these events in the future.

Current Research

Below, I present six studies that test my model. I examine how antecedent variables influence speakers’ language use when sharing experiences, measure the impact of language on speakers’ evaluations of experiences and other downstream consequences, and demonstrate that language influences individuals via sense-making. I report five experimental studies and a field study (using Amazon.com data) that test my model; these studies examine various combinations of hypotheses 1 through 5.

Participants in each of my studies share WOM through writing about their experiences. Thus, these studies correspond to non-traditional WOM that is spread in online reviews, blogs, email, or text messages, all of which are important new forms of consumer-to-consumer communication (Godes et al., 2005). There are, of course, structural differences between spoken and written language, such as speed (Chafe and Tannen 1987). However, work in linguistics emphasizes that language use is more dependent on the type (e.g. formal versus informal) and the goal of the communication
than on the medium, and that there is a great deal of overlap between the characteristics and structure of written and oral communication (Barton 1994). In essence, “[written and spoken language] are both language: and language is more important than either” (Halliday 1985). Thus, the differences between written and spoken language are not essential to my focus on the effects of WOM on the speaker, and I would not expect my findings to differ if I had examined spoken instead of written communication.

Study 1

In study 1, I investigated how experience valence (positive or negative) and type (usual or unusual) influenced explaining language use and how language use affected speaker’s evaluations. I also examined sense-making as a mediating process between language use and evaluations. Participants recalled a positive or negative consumption experience that was either usual (ordinary, frequent) or unusual (extraordinary, infrequent) and wrote a story about their experience. Since individuals are particularly motivated to make sense of negative and unusual experiences (Wong and Weiner 1981), as outlined in hypothesis 1, they should use more explaining language when describing negative compared to positive and unusual compared to usual experiences. Second, regardless of experience valence and type, a higher proportion of explaining language in a story should facilitate sense-making (hypothesis 2). Finally, high levels of explaining language and sense-making should influence individuals’ evaluations and intentions (hypotheses 3 and 4), such that positive experiences should be evaluated less positively and be less likely to be repeated and recommended, while negative experiences should be evaluated less negatively and be more likely to be repeated and recommended.
Method

Seventy-two undergraduates were asked to think of a specific positive or negative consumption experience that was either usual or unusual and had occurred in the past six months. Thus, the study was a 2 (valence: positive or negative) by 2 (type: usual or unusual) between-subjects design. Participants were given the following definition of a consumption experience:

A consumption experience is a personal experience you have that involves a product or service of any kind. For example, you might have had a cup of coffee; listened to a CD; gone out for dinner; gone to a movie; gone on vacation; read a book; gone to a concert; purchased a product; had a problem with something you bought; solved a problem with something you bought, etc.

After reading this definition, participants read further details about the specific type of experience they were to recall (positive/negative, usual/unusual), recalled a particular experience of that type, and wrote a story about it. Writing instructions were drawn from Pennebaker’s (1997) work on narrative building: participants were assured their writing was confidential and were instructed to explore their thoughts and feelings about the experience, not to worry about spelling or grammar, and to write until they had said everything they needed to say about the experience.

After writing, individuals reported their evaluation of the experience on four nine-point scales anchored at good/bad, appealing/unappealing, positive/negative, and liked/disliked. They also reported how likely they were to repeat and recommend the experience on nine-point scales anchored from “not at all” to “very much.” Sense-making
was measured by asking participants how unusual, surprising, attention-grabbing, emotional, and interesting the experience was on seven-point scales anchored from “not at all” to “very much.” The sense-making items were based on Gilbert and colleagues’ hypotheses that, for example, events that have not been made sense of should be more attention-grabbing than those that have (Gilbert, Wilson, and Centerbar 2003). Finally, participants indicated how many months ago their experience had taken place.

To measure participants’ language use, two independent coders classified the sentences in each story as neutral, reliving, or explaining (see coding instructions in Appendix A). Neutral sentences provided non-evaluative background or contextual information (e.g. I went to New York). Reliving sentences were evaluative and vivid, concrete, or exaggerated descriptions of the event or individuals’ reactions to the event (e.g. an incredible looking filet mignon grilled to perfection). Explaining sentences were evaluative and descriptive but also included explanations for individuals’ choices or actions (e.g. I bought the yummy cookies because they were his favorite) or explanations for their evaluations (e.g. Dinner last night was great because I had ice cream for dessert). Note that both reliving and explaining sentences are generally evaluative (e.g. Dinner last night was great…) but that explaining sentences layer an explanation on top of the evaluation (e.g. Dinner last night was great because…). Initial agreement across the three categories was good (\(\kappa = 0.70\)); disagreements were resolved through discussion to yield a final coding scheme.

From this coding, I calculated an explaining index (EI) that measured the proportion of explaining sentences in each story. I divided the number of explaining
sentences by the total number of explaining and reliving sentences in the story ($\frac{\text{number}_{E}}{\text{number}_{E} + \text{number}_{R}}$) so that a higher EI indicated a higher proportion of explaining language in a story. To further verify the content coding, a third independent coder classified each story overall as either reliving or explaining; this coding predicted EI ($F(1, 70) = 83.75, p < .001$). Neutral sentences were excluded from the EI because they constituted a small proportion of the total number of sentences in all studies (study 1 prop$_N = 0.16$) and they were not expected to influence evaluations. Including neutral sentences in the EI does not affect the results below.

Results

First, I examined several control variables (number of months, word count, and experience category) to see whether these differed by experience valence or type and whether they influenced the expected relationship between language and evaluations. I found that unusual experiences occurred farther in the past, stories about unusual experiences were marginally longer than stories about usual experiences, and the most frequently written about experiences were food-related (46%), entertainment (15%) or other hedonic experiences (13%), and goods (11%). Service experiences were uniformly negative, but hedonic and entertainment experiences were more likely to be positive. Including number of months, word count, and experience categories in the models below does not change the reported results.

Dependent measures

A factor analysis (using promax rotation) on the dependent measures revealed two factors: evaluation (eigenvalue = 5.22; items: good/bad, appealing/unappealing,
positive/negative, liked/disliked, willingness to repeat and recommend; $\alpha = 0.97$) and sense-making (eigenvalue = 2.90; items: unusual, surprising, emotional, attention-grabbing, interesting; $\alpha = 0.81$). Individuals’ intentions to repeat and recommend the experience, both behavior-oriented variables, were associated with evaluations. In my analyses, I standardized the evaluation and intention measures and combined them into one dependent variable for brevity; analyzing evaluations and intentions as separate dependent variables yielded results identical to those reported below.

Language use

The mean of the explaining index (EI) was 0.49 (SD = 0.27). I used experience valence and type to predict EI and test whether individuals used different language to talk about different experiences (hypothesis 1). I found significant effects of valence ($F(1, 68) = 4.27, p < .04$) and type ($F(1, 68) = 4.37, p < .04$) on EI, such that individuals used a higher proportion of explaining language when writing about negative than positive experiences ($M_{\text{negative}} = 0.55$, $M_{\text{positive}} = 0.43$) and usual than unusual experiences ($M_{\text{usual}} = 0.55$, $M_{\text{unusual}} = 0.42$). Although I predicted more explaining for unusual experiences, the opposite pattern emerged; perhaps individuals were not as motivated to explain these unusual consumption experiences as they would be to explain truly traumatic events.

Evaluations

To examine hypotheses 3 and 4, I tested whether individuals’ evaluations of experiences were influenced by language use. I used valence, type, EI, and their interactions to predict evaluations; recall that this evaluation measure includes individuals’ intentions to repeat and recommend the experience. First, there was a main
effect of valence \((F(1, 64) = 274.39, p < .001)\) such that individuals preferred positive to negative experiences. More importantly, supporting hypotheses 3 and 4, there was a significant interaction between valence and EI \((F(1, 64) = 12.36, p < .001)\) (figure 1). Regardless of experience type (usual or unusual), individuals who used a higher proportion of explaining language in their stories evaluated positive experiences less positively \((t(1, 64) = -2.81, p < .01)\) and negative experiences less negatively \((t(1, 64) = 2.43, p < .02)\). No other effects were significant.

![Figure 1: Evaluations by experience valence and proportion of explaining language, study 1.](image)

Mediation

To test hypothesis 2, I analyzed whether explaining language influenced evaluations through sense-making. Generally, regardless of experience valence, a story with a higher proportion of explaining language should facilitate sense-making. However,
both the direct effect of language on evaluations and the indirect (mediating) effect of sense-making on evaluations are moderated by experience valence, such that increased explaining language and increased sense-making decrease evaluations of positive but increase evaluations of negative experiences (figure 2). To test this model, I conducted a path analysis to see if the moderated indirect effect of sense-making on evaluations (the sense-making by valence interaction) was significant when controlling for the moderated direct effect of language on evaluations (the language by valence interaction) (Edwards and Lambert 2007).

Figure 2: Path diagram of the direct effect of explaining language and the indirect (mediating) effect of sense-making on evaluations, moderated by experience valence.

First, as reported above, the moderated direct effect of language (the language by valence interaction) significantly predicted evaluations ($\beta = -0.267, t(66) = -3.55, p < .001$) such that explaining decreased evaluations of positive but increased evaluations of
negative experiences. Second, increased use of explaining language increased sense-making ($\beta = -0.373$, $t(66) = -2.51$, $p < .001$) such that, regardless of experience valence, explaining language helped individuals make sense of their experiences. In the critical test of mediation, the indirect effect of language through sense-making was moderated by valence, and this sense-making by valence interaction significantly predicted evaluations ($\beta = 0.313$, $t(66) = 3.14$, $p < .001$) even when controlling for the moderated direct effect of language on evaluations (the language by valence interaction). Thus, sense-making partially mediated the impact of explaining language on evaluations and this mediation was moderated by experience valence. The mediation pathway, the sense-making by valence interaction, was significant for both positive and negative experiences ($\beta_{\text{positive}} = 0.105$, $\beta_{\text{negative}} = -0.164$, $p < .05$), such that individuals who made sense of positive experiences liked them less, while individuals who made sense of negative experiences liked them more.

Discussion

Study 1 demonstrated that individuals speak about different types of experiences in different ways by using more or less explaining language and that the proportion of explaining language used in stories influenced evaluations of experiences. The impact of language on evaluations depended on the valence of the experience: explaining language decreased evaluations of positive experiences and increased evaluations of negative experiences. Language use also influenced consumers’ likelihood of repeating and recommending experiences. Further, the mediation analysis confirmed that the influence of language on evaluations and intentions was driven by sense-making; explaining
language helped individuals make sense of their experiences, which decreased evaluations of positive events and increased evaluations of negative events.

Although study 1 suggested that sense-making mediated the effect of explaining language on evaluations, there is an alternative explanation: individuals’ evaluations may have been influenced by the ease or difficulty of expressing their experience. Metacognitive perceptions of the ease or difficulty of mental operations, such as generating reasons for choosing an object, can influence unrelated judgments such as liking of the object (Schwarz 2004; Wänke, Bohner, and Jurkowitsch 1997). Thus, if it is difficult to use explaining language to talk about an experience, individuals’ evaluations might be affected, leading to decreased positive evaluations and increased negative evaluations of experiences. To investigate this possibility, I measured difficulty of writing on a four-item scale ($\alpha = 0.85$) after individuals wrote their stories. Individuals who had used a higher proportion of explaining language in their stories did not report that writing was more difficult ($F(1, 70) = 0.99, p < .32$), and difficulty of writing did not predict evaluations ($F(1, 70) = 0.23, p < .63$). The studies below showed similar results, so I do not discuss difficulty of writing further. In short, I found evidence in support of sense-making as the process through which language influences evaluations, but found no evidence in support of metacognition as a similar intervening process.

A second alternative explanation for the reported findings is that individuals who used a higher proportion of explaining language were incorporating more pros and cons into their stories. Individuals telling positive explaining stories might have included negative aspects of the experience in their story, while individuals telling negative
explaining stories might have included positive aspects of the experience in their story (e.g. the food was horrible because it was cold, but at least the waiter was nice). The inclusion of such evaluation-inconsistent information would dampen evaluations, as found in past work on analyzing reasons (Wilson et al. 1993). To examine this possibility, two independent coders rated each story on a seven-point scale for how much positive and negative content it contained, from consistently positive or negative (scale endpoints) to balanced between positive and negative (scale midpoint) (Intraclass Correlation Coefficient = 0.85; Shrout and Fleiss 1979). Seventy percent of the stories were consistent, 20% included slight amounts of inconsistent information, and only 10% were balanced in terms of the amount of negative and positive information they contained. More importantly, story consistency was not correlated with explaining language ($r = 0.14, p < .25$). Thus, it appears that most participants were consistently positive or negative about their experiences, and that the act of explaining dampened evaluations rather than the expression of evaluation-inconsistent information.

Study 1 provided some initial evidence that evaluations of experiences were influenced by the language that individuals used to speak about their experiences. The findings in this study emerged across a range of usual and unusual experiences that transpired up to six months prior to the study; interestingly, then, even speaking about everyday consumption experiences such as purchasing coffee or groceries can influence individuals’ evaluations of these events. In study 2, I extended these results by examining the persistence of language effects on evaluations over time. I also investigated whether language impacted evaluations of more recent experiences instead of recalled past
experiences. Finally, study 2 ruled out some additional alternative explanations for the current results; it included a pre-writing measure of evaluations to control for extremity of evaluations as well as a no-writing control condition to confirm the role of language in driving the observed results.

Study 2

Study 2 used similar types of experiences (positive/negative, usual/unusual) as study 1, but instead of recalling a past experience, individuals were provided with a picture-viewing experience. I expected to replicate my findings from study 1, that individuals would use more explaining language for negative than positive and for usual than unusual experiences, and that a higher proportion of explaining language would dampen evaluations. In study 2, I also implemented a delay between when individuals wrote about their experience and when they evaluated their experience to examine how long the influence of language and sense-making would persist. The sense-making process can be viewed as an enduring re-construal of an event: via sense-making, individuals come to view experiences in a new way. Even after a delay, then, individuals who used a higher proportion of explaining language when writing about their picture-viewing experiences should rate positive experiences as less positive and negative experiences as less negative than individuals who used relatively less explaining language.

Finally, and most importantly, study 2 included a pre-writing measure of evaluations to ensure that the results observed in study 1 were not an artifact of pre-existing evaluations. In study 1, language use could have been influenced by the
extremity of initial evaluations, where initially extreme evaluations led both to using a low proportion of explaining language and to a final, similarly extreme evaluation, so that evaluations were not actually influenced by the act of writing. Related to these concerns, study 2 also included a within subjects writing manipulation (Write/No Write) to ensure that it was explaining language and verbalizing that dampened individuals’ evaluations. If this is the case, regardless of story content, there should be an overall effect of writing versus not writing on individuals’ evaluations, where writing dampens individuals’ evaluations.

Method

One hundred undergraduate participants viewed two photographs out of a set of eight for thirty seconds each. The photographs differed in valence (positive/negative), type (usual/unusual), and in the topics they depicted (e.g. a smiling baby, a bear in a cage, a sunset). Following the initial photo viewing, I collected Time 1 measures of valence (nine-point scales anchored: disliked/liked, unfavorable/favorable, displeased/pleased, not likeable/likeable) and type (seven-point scales from not at all to very: intense, emotional, unusual, attention-grabbing). Participants then wrote about one of the two pictures (this was counterbalanced) using the same instructions as study 1 and completed an unrelated filler task for 30 minutes (rating celebrity ages). Thus, the independent variables in the study were the measured valence and type of the two pictures at Time 1 plus the within subjects writing manipulation.

After the filler task, participants completed final (Time 2) evaluation and sense-making measures; these were the same scales developed in study 1. To measure story
content, as before, each story was coded to create the EI ($\kappa = 0.78$, $M = 0.58$, $SD = 0.22$). Again, a third independent coder’s classification of the stories as either explaining or reliving significantly predicted EI ($F(1, 98) = 33.31, p < .01$).

Results

Measures

The independent (Time 1) measures were factored and collapsed into two categories: valence (eigenvalue: 4.19; $\alpha = 0.92$) and type (eigenvalue: 2.80; $\alpha = 0.79$). The dependent (Time 2) measures factored as in study 1: the evaluation and intention items (eigenvalue: 4.14; $\alpha = 0.89$) and the sense-making items (eigenvalue: 2.58; $\alpha = 0.80$) loaded on two separate factors, with intentions to repeat and recommend experiences again factoring with evaluations.

Writing manipulation

First, I tested whether there was an overall effect of writing compared to not writing on individuals’ evaluations. As expected, there was an interaction between Time 1 valence and the within subjects writing manipulation that significantly predicted final evaluations ($F(1, 197) = 5.16, p < .02$). Positive pictures (one standard deviation above the mean of Time 1 valence) that participants wrote about were evaluated significantly less positively than positive pictures that were not written about ($t(1, 197) = -2.01, p < .05$). Conversely, negative pictures (one standard deviation below the mean of Time 1 valence) that participants wrote about were evaluated marginally less negatively ($t(1, 197) = 1.77, p < .07$) than negative pictures that were not written about (figure 3). This finding confirms that the act of writing influences individuals’ evaluations and suggests
that writing generally dampens evaluations; however, this analysis does not account for story content, a key concept in my model.

![Graph showing evaluations by writing manipulation and picture valence, study 2.](image)

Figure 3: Evaluations by writing manipulation and picture valence, study 2.

Language use

To examine story content, I considered the impact of experience valence and type on language use for pictures that were written about, using Time 1 valence and type to predict EI. Similar to study 1, individuals engaged in directionally more explaining for pictures they initially rated as more negative than positive ($t(1, 96) = -1.43, p < .15$). However, there were no differences in language use based on picture type ($p > 0.40$). Thus, hypothesis 1 is not supported in this study.
Evaluations

Next, using data only for pictures that were written about, I ran a model predicting final (Time 2) evaluations, using Time 1 valence and type, EI, and their interactions as independent variables; a dummy variable for picture topic was also included. There was a main effect of Time 1 valence, such that pictures initially rated as positive were evaluated more positively at Time 2 ($t(1, 85) = 80.19, p < .01$). Further, in support of hypotheses 3 and 4, there was an interaction between valence and EI ($F(1, 92) = 15.24, p < .01$). Regardless of experience type (usual or unusual), a higher proportion of explaining language decreased evaluations of positive ($t(1, 96) = -2.97, p < .01$) and increased evaluations of negative pictures ($t(1, 96) = 1.88, p < .06$) (the simple effects of EI were tested at one standard deviation above and below the mean of Time 1 valence; figure 4).

![Figure 4: Evaluations by proportion of explaining language and picture valence, study 2.](image-url)
Writing, language use, and evaluations

Finally, I examined how language use mediated the effect of the within subjects writing manipulation on evaluations. The significant impact of writing compared to not writing reported above confirms that language does impact evaluations. More specifically, I have predicted that it is the proportion of explaining language used in stories that drives changes in individuals’ evaluations. If this is the case, then individuals who did not write stories should have evaluations that are equivalent to those individuals who told a story but did not engage in any explaining while writing.

To test this conjecture, I created a new language use measure, EI₂. Individuals in the No Write condition were coded as having an EI₂ of zero; since they did not write a story, they did not engage in any explaining. Individuals in the Write condition were coded as having an EI₂ that was equivalent to their previously calculated EI. If individuals in the No-Write condition have evaluations that are equivalent to individuals in the Write condition who did not engage in explaining, then a model using EI₂ should completely account for the effect of writing versus not writing on evaluations, such that the writing manipulation does not significantly predict evaluations. That is, if one compares the predictions for the average subject in the No-Write condition to those in the Write condition with zero explaining, both should show the same simple effect of Time 1 valence on final evaluations.

To test this conjecture, I compared the fit of two nested models using standard model-comparison procedures. The “unconstrained” model had five degrees of freedom: Time 1 valence, EI₂, and Write versus No Write, plus the interactions of Time 1 valence
x EI₂ and Time 1 valence x Write/No Write.¹ The nested “constrained” model had three degrees of freedom: Time 1 valence, EI₂, and the interaction of Time 1 valence x EI₂. If these models do not differ significantly, then—consistent with my theorizing—the effect of the writing manipulation on evaluations can be completely explained by the effect of writing on EI₂. Put differently, if one plotted the forecast evaluations for the response surface for the Time 1 valence x EI₂ interaction in the Write condition, the predicted evaluations for EI₂ = 0 in the Write condition should correspond exactly to the evaluations of the average (EI₂ = 0) participant in the No Write condition. Supporting my hypotheses, a basic model comparison test revealed that there was no significant difference in the F-values of the two models ($F(2, 184) = 2.44, p > .10$). Further, the main effect of Write/No Write did not significantly increase the variance explained by the unconstrained model (R^2 change = 0.00241, $F = 1.593, p < .20$).

In sum, this analysis suggests that individuals in the No Write condition had evaluations that were equivalent to those individuals in the Write condition who had used no explaining language in their stories. In other words, the proportion of explaining language that individuals used in writing their stories caused the dampened evaluations observed for positive and negative experiences.

Mediation

Finally, using the same mediation model as in study 1, I analyzed whether language use (EI) in the writing conditions influenced evaluations through sense-making.

¹ Note that one cannot estimate all possible interaction terms; because EI varies only in the Write condition and is always 0 in the No Write condition, it is not possible to estimate different EI simple effects or Time 1 valence x EI simple interactions in the Write conditions than in the No Write conditions.
First, as reported above, explaining language use significantly impacted evaluations and this direct effect was moderated by valence ($\beta = -0.501$, $t(94) = -3.95$, $p < .01$); further, a higher proportion of explaining language significantly increased sense-making ($\beta = -0.218$, $t(96) = -2.15$, $p < .03$). In the crucial test of mediation, the indirect effect of language through sense-making on final evaluations was moderated by valence, and this sense-making by valence interaction was marginally significant ($\beta = -0.095$, $t(94) = 1.80$, $p < .07$) when controlling for the direct effect of language on evaluations (the language by valence interaction). As in study 1, the indirect pathway was significant for both positive and negative experiences, tested at plus and minus one standard deviation from the mean of Time 1 valence ($\beta_{\text{positive}} = 0.239$, $\beta_{\text{negative}} = -0.120$, $p < .05$) such that, as before, making sense of positive experiences decreased evaluations but making sense of negative experiences increased evaluations. Thus, I found additional evidence to support hypothesis 2: explaining language influenced evaluations through sense-making.

Discussion

These first two studies showed that the language used in WOM stories influenced individuals’ evaluations of consumption experiences, including their likelihood of repeating and recommending experiences. The writing manipulation in study 2 demonstrated that verbalizing (and not an individual difference or other variable) caused the observed changes in evaluations. Specifically, explaining language drove changes in evaluations, as individuals who had used no explaining language while writing stories had evaluations that were equivalent to those who did not write stories. Further, explaining language had a differential impact on positive and negative experiences:
individuals who used a higher proportion of explaining language to write about a positive experience had decreased evaluations of the experience, whereas individuals who used a higher proportion of explaining language to write about a negative experience had increased evaluations of the experience. That is, explaining language reduced the “sparkle” or positivity of positive events and helped individuals recover from negative events. Importantly, sense-making mediated the impact of language on evaluations, and the direction of this mediation depended on experience valence: the more that explaining language helped individuals make sense of positive experiences, the less they liked them, while the more that explaining language helped individuals make sense of negative experiences, the more they liked them. These evaluative changes corresponded to changes in individuals’ likelihood of repeating and recommending their experiences.

Study 2 also demonstrated that the effects of language persisted over time, as would be expected if sense-making instantiates lasting changes in the ways individuals understand their experiences or their reactions to experiences. Further, studies 1 and 2 suggested that the influence of language is robust and that the sense-making process operates across various aspects of consumption experiences. Regardless of the valence, type, extremity, recency, or category of experiences, explaining language still influenced evaluations through sense-making.

However, participants in studies 1 and 2 were writing about their experiences without any explicit information about their audience. Thus, they may not have written as “naturally” as they would if they were speaking to an audience—although the instructions emphasized the informal nature of the communication (e.g. not to worry about grammar
or spelling), participants may have written stories geared toward the experimenter as the audience, leading to different stories than might be observed in real WOM contexts. This raises the question of whether individuals using more natural language would experience changes in evaluations as shown in studies 1 and 2. My next two studies addressed these concerns. Study 3 used an experimental context and asked individuals to imagine they were speaking to friends, while Study 4 used actual Amazon.com reviews.

Study 3

I had two primary goals in conducting study 3. First, I wanted to investigate whether WOM stories to a specific audience would have the same influence on individuals as the (perhaps) more formal stories told in studies 1 and 2. In line with the previous discussion of speaking versus writing and formal versus informal communication, I expected that writing stories to an explicit audience would have the same influence on individuals as it did in studies 1 and 2, where no audience was specified. The key is the amount of explaining language used within the story, not the formality of the communication. Second, in addition to measuring evaluations, I examined individuals’ emotional reactions to experiences to provide further support for a sense-making perspective.

Method

Individuals \((N = 89)\) viewed one of two movie clips of similar length (approximately two minutes and 30 seconds long) that differed in valence. The positive clip depicted a humorous scene in a diner (from the movie *When Harry Met Sally*), while
the negative clip depicted an individual consuming a disgusting object (from the movie *Pink Flamingo*) (Gross and Levenson 1995). After watching the clip, participants imagined that they were speaking to some friends. They were asked to write exactly what they would say if they were talking about the movie clip to their friends. After writing, participants rated the clip using the six-item evaluation and intention measures developed in the first studies ($\alpha = 0.98$) and reported how they currently felt, in terms of positive and disgust-related emotions, when thinking about the clip. Positive emotions were measured using eight items ($\alpha = 0.96$; e.g. amused, entertained, happy) and disgust was measured using nine items ($\alpha = 0.94$; e.g. disgusted, nauseated, revolted). Using the same instructions as in previous studies, each sentence in the stories was coded to create the EI as a measure of story content ($\kappa = 0.74$, $M = 0.36$, $SD = 0.35$).

Results

Language use

First, several manipulation checks indicated that the stories in this study were less formal than the stories in the first two studies. In addition to being shorter ($WC_{study\ 1} = 230$, $WC_{study\ 2} = 209$, $WC_{study\ 3} = 159$), the study 3 stories used more colloquial language and read more like conversations directed toward an audience than the stories in studies 1 and 2 (e.g. “I saw the most disgusting video clip today!” vs. “A negative consumption experience I had in the last six months was…”). A comparison of word categories across the studies also suggested more colloquial language. Study 3 stories included a higher proportion of second person pronouns (e.g. you), socially-oriented words (e.g. family, friend), punctuation (e.g. question marks), swear words, agreement words (e.g. yeah, uh
huh) and words in the present tense. Finally, the average proportion of explaining language was lower in this study than in studies 1 and 2 ($EI_{study\ 1} = 0.49$, $EI_{study\ 2} = 0.58$, $EI_{study\ 3} = 0.36$), suggesting that participants were less oriented toward explaining when writing stories for friends rather than for an experimenter.

Evaluations and emotions

To examine the key dependent variables, I used video valence, EI, and their interactions to predict participants’ evaluations, positive emotions, and disgust-related emotions. In support of hypotheses 3 and 4, the valence by EI interaction predicted evaluations ($F(1, 85) = 15.50, p < .001$); individuals who had used a higher proportion of explaining language in their stories evaluated the positive clip less positively ($t(1, 85) = -2.55, p < .01$) and the negative clip less negatively ($t(1, 85) = 2.91, p < .005$).

![Figure 5: Evaluations by video clip and proportion of explaining language, study 3.](image)
The valence by EI interaction also predicted the positive ($F(1, 85) = 8.25, p < .005$) and disgust-related ($F(1, 85) = 7.21, p < .01$) emotions individuals felt when recalling the clip. Consistent with a sense-making perspective, individuals felt less intense positive emotions toward the positive clip ($t(1, 85) = -1.89, p < .05$) and less intense disgust-related emotions toward the negative clip ($t(1, 85) = -3.82, p < .001$) if they had used a higher proportion of explaining language in their stories. Explaining language did not predict positive emotions for those who saw the negative clip ($t(1, 85) = 1.21, p < .23$) or disgust-related emotions for those who saw the positive clip ($t(1, 85) = 1.29, p < .20$).

![Figure 6: Positive and disgust-related emotions by video clip and proportion of explaining language, study 3.](image)

Discussion

Study 3 demonstrated that the impact of language on evaluations is not limited to more formal communication or to communication without an explicit audience; when
individuals were asked to write stories to friends, this more informal WOM showed the same results as studies 1 and 2. The higher the proportion of explaining language individuals used in their stories, the less they liked the amusing clip and the more they liked the disgusting clip. As before, these evaluative changes were linked with changes in intentions to recommend the movie to others and to watch it again. Further, the influence of language extended to the emotions reported when individuals thought about the video clip afterwards. Consistent with a sense-making perspective, individuals who used a higher proportion of explaining language in their stories felt less amused by the positive clip and less disgusted by the negative clip. Study 4 extended these results by examining Amazon.com reviews, where consumers wrote WOM reviews for real audiences.

Studies 4a and 4b

Study 4 used a real-world WOM context to examine the relationship between language use and evaluations. I looked at star ratings and review language in Amazon.com book reviews. While this correlational design made it difficult to determine causality, it demonstrated the impact of WOM in a real-world, frequently encountered online setting.

In line with hypothesis 3, I expected that individuals rating books more extremely (one or five stars out of five) would use relatively less explaining language than individuals rating books at the mean (three stars), who would use more explaining language. Thus, there should be a positive linear relationship between the absolute value of the extremity of star ratings (the distance from the middle rating of three stars) and explaining language. While this design is correlational, such a pattern would suggest,
consistent with studies 1 through 3, that a higher proportion of explaining language can
dampen individuals’ evaluations of experiences.

I examined this hypothesis in two studies, 4a and 4b, both of which drew data
from Amazon.com. Study 4a used an across-reviewer data set drawn from reviews of ten
bestselling non-fiction books, while study 4b used a within reviewer data set drawn from
reviews of various products, both hedonic (books, movies) and utilitarian (software, self-
help books). While both studies were correlational, the within reviewer aspect of study 4b
helped to address some alternative explanations (i.e. a pure individual difference
explanation).

Study 4a

Method

One hundred reviews from Amazon.com were collected during the first two
weeks of May 2007, split among ten reviews from each of ten different books. To select
the books, I randomly chose one book per year between 1998 and 2007 from the
Publishers Weekly annual list of the top-ten fiction bestsellers. I randomly generated a
number between one and ten for each year and selected the book that corresponded to
that number from the bestseller list. If an author was selected whose book was already
included in the list, I drew again. The chosen books had a range of average star ratings
\(M = 3.43, SD = 0.64 \) and each had a sufficiently large number of reviews (between 150
and 1,300) to allow for a random sample of ten reviews from within each book. To ensure
that there was variability of evaluations within each book, I randomly selected two
reviews at each star level (one through five) for each book. For each review selected, the
full text was downloaded, as well as the star rating, the title of the review, the identity of the reviewer, the number of reviews the reviewer had completed, and the date the review was posted. As before, each sentence in the reviews was coded to create EI as a measure of review content ($\kappa = 0.69, M = 0.35, SD = 0.23$).

Results

To test the hypothesis that more extreme evaluations would be associated with less explaining language, the five star ratings were coded into three categories: the one and five star ratings were coded as extreme, the two and four star ratings were coded as mid-range, and the three star ratings were coded as baseline. If hypothesis 3 is supported, this analysis should reveal a linear relationship between proportion of explaining language and extremity. Regardless of valence, more extreme star ratings should contain a lower proportion of explaining language than less extreme star ratings.

I conducted an ordered logistic regression predicting the recoded star ratings with EI (language) as the independent variable. The number of reviews each reviewer had completed, the total length of the review, and a variable representing the book were included as control variables. As expected, I found a significant relationship between language use and star ratings ($\chi^2 (N = 100) = 19.75, p < .01$), such that less extreme star ratings were associated with a higher proportion of explaining language ($M_{\text{extreme}} = 0.19; M_{\text{mid}} = 0.44; M_{\text{base}} = 0.56$). This effect was significant for extreme (one and five stars compared to three stars; $\chi^2 (N = 60) = 5.18, p < .02$) and mid-range (two and four stars compared to three stars; $\chi^2 (N = 60) = 5.39, p < .02$) reviews. No other variables were significant.

Study 4b

Method

To develop the data set for study 4b, ten reviewers were randomly selected from the subset of reviewers in study 4a who had multiple reviews posted on Amazon.com. The selected reviewers were required to have more than ten reviews posted and to have a range of star ratings spread over the baseline (three star), mid-range (two or four star), and extreme (one or five star) categories used in study 4a. For each reviewer, the full text of up to 22 reviews was downloaded, along with the star rating for each review, the number of other reviews the reviewer had completed, the name of the product reviewed, and the product category the review fell into (e.g. fiction book, nonfiction book, music,
movie, software). For each of the ten reviewers, between 14 and 22 reviews were downloaded, resulting in a total sample of 187 reviews split amongst the ten. Each review was coded as in previous studies to determine EI ($\kappa = 0.67, M = 0.38, SD = 0.23$).

Results

First, to examine the pattern of results across reviewers, a repeated measures ordered logistic regression was conducted using EI to predict the extremity of star ratings (base, mid-range, extreme), with reviewer as a repeated measure. Total number of reviews, length of review, and reviewer identity were included as control variables. As in study 4a, there was a significant relationship between language and star ratings ($\chi^2 (N = 187) = 59.81, p < .001$), such that a higher proportion of explaining language was associated with less extreme star ratings ($M_{\text{extreme}} = 0.29; M_{\text{mid}} = 0.39; M_{\text{base}} = 0.61$). This effect was significant for extreme (one and five stars compared to three stars; $\chi^2 (N = 107) = 24.63, p < .001$) and mid-range reviews (two and four stars compared to three stars; $\chi^2 (N = 118) = 20.44, p < .001$). No other variables were significant.

A more specific within reviewer analysis revealed that for each of the ten reviewers, the proportion of explaining language was highest for baseline (three star) reviews (figure 8). A binomial test, based on an expected (chance) probability that the baseline category would have the highest proportion of explaining language one third of the time, revealed a significant effect ($Z = 4.50, p < .001$); thus, it is unlikely that the observed effects are due to chance. Despite small sample sizes (14 – 22 reviews per reviewer), individual-level analyses using ordered logistic regressions revealed that the proportion of explaining language in the baseline (three star) category was significantly
lower than the proportion of explaining language in the mid-range (two or four star) and extreme (one or five star) categories for six out of ten of the reviewers ($p < .10$), directional for two out of the ten ($p < .16$), and non-significant for the final two ($p < .20$).

To aggregate these reviewer-specific results, I conducted a meta-analysis, converting the chi-square contrast statistics for each reviewer to a correlation coefficient, r, to examine the overall relationship between language use and star ratings. The weighted effect size across reviewers was $r = 0.39$ and this effect was significant ($CI: 0.30, 0.45$, $t(9) = 2.82$, $p < .01$) (Lipsey and Wilson 2001; Rosenthal 1991), confirming that higher proportions of explaining language were associated with baseline (three star) reviews rather than mid-range (two or four star) or extreme (one or five star) reviews.

Figure 8: Proportion of explaining language by Amazon.com star ratings, study 4b.
Finally, I examined whether product category influenced the observed relationship between the extremity of star ratings and language use. Each review was categorized as being hedonic (fiction books, audio books, comic books, movies, music, video games) or utilitarian (software, nonfiction books, utilitarian products such as camera memory). I conducted a repeated measures ordered logistic regression on each product type, using EI to predict the extremity of star ratings, with reviewer as a repeated measure. Total number of reviews, review length, and reviewer identity were included as dummy variables. Proportion of explaining language significantly predicted the extremity of star ratings for both hedonic ($\chi^2 (N = 138) = 40.34, p < .001; M_{\text{extreme}} = 0.24; M_{\text{mid}} = 0.37; M_{\text{base}} = 0.59$) and utilitarian products ($\chi^2 (N = 49) = 7.45, p < .005; M_{\text{extreme}} = 0.39; M_{\text{mid}} = 0.47; M_{\text{base}} = 0.68$), such that for both product categories, a higher proportion of explaining language was associated with less extreme star ratings.

Discussion

While conclusions about causality cannot be drawn from studies 4a and 4b, the results mirrored those from studies 1 through 3 and suggested that explaining language was related to less extreme positive and negative book evaluations. Importantly, given the correlational nature of the Amazon.com data, study 4b replicated the results from study 4a using a within reviewer data set. These studies highlighted the important real-world setting of online reviews and suggested that WOM does indeed impact consumers who share their opinions.

In brief, Studies 1 through 4 demonstrated the impact of explaining language use on consumers’ evaluations of consumption experiences across a wide range of
experiences, with and without an explicit audience. While these studies strongly suggested that it is explaining language that contributes to the sense-making process and thereby influences evaluations, language use was measured in each of the studies above, leaving some alternative explanations open. Thus, I manipulated language use in studies 5 and 6 to provide further experimental support for my proposed model.

Study 5

Study 5 used a Scrambled Sentence Task (SST; Srull and Wyer 1979) to manipulate instead of measure storytelling language. Prior to writing a story about a consumption experience, participants completed either a control SST, or a SST that was designed to prime either reliving or explaining storytelling language. I expected the SST to influence language use, such that the explain prime would increase use of explaining language relative to the relive and control primes. As outlined in hypothesis 2, any increase in the use of explaining language due to priming should facilitate sense-making, which should mediate differences in evaluations between the priming conditions, as in studies 1 and 2. This was therefore a two-step mediation model, where explaining language was predicted to mediate the impact of prime on sense-making, and sense-making was predicted to mediate the influence of prime on evaluations. I discuss the mediation model and analysis in more detail below.

My specific hypotheses regarding the influence of prime on evaluations were as follows. In line with hypotheses 3 and 4, participants who completed the explain prime should have the least extreme positive or negative evaluations, while participants who completed the relive prime should have more extreme positive or negative evaluations;
these evaluations should be determined by differential use of explaining language between conditions, which should encourage different levels of sense-making between conditions. Similarly, control prime participants’ evaluations should be related to the language used in their stories, though unlike in the relive and explain prime conditions, their language use should not be influenced by the SST since they were primed only with control words. However, study 1 showed that individuals tend to explain negative but relive positive events; I should see evidence of this tendency in study 5’s control prime conditions. I expected that negative control prime participants would use as much explaining language as negative explain prime participants and therefore have similar evaluations, while positive control prime participants would use as little explaining language as positive relive prime participants and therefore have similar evaluations.

In study 5, I also examined hypothesis 5 about the relationship between sense-making and future WOM by asking participants how likely they were to tell their story in future. I expected that the more sense individuals had made of their experience, the less willing they would be to tell others about it.

Method

One hundred and nine graduate and professional students participated in the study in return for a cash payment. Participants were first asked to recall a positive or negative consumption experience that had occurred within the past six months, as in study 1. Then they wrote a one sentence description of their experience and rated how positive/negative and good/bad their experience was on two nine-point scales \(r = 0.98, p < .001 \). After these initial measures, participants completed the SST, which was comprised of 20 sets of
five words in a random order; each set of five words contained one prime word and each set was presented on a separate screen. Participants were asked to form these sets of words into coherent four word sentences. There were three SST conditions: explain, relive, and control. The explain prime contained words such as *because, think, insight,* and *realize;* the relive prime contained words such as *intense, feel, relive,* and *describe;* the control prime contained neutral words such as *purple, pencil,* and *chair.* Overall, the study was a 2 (valence: positive or negative) by 3 (SST: explain, relive, control) between subjects design.

After completing the SST, participants wrote a story about the consumption experience they had identified, following the same instructions as study 1. When they had finished writing, participants completed the evaluation and intention measures (\(\alpha = 0.99\)) and the sense-making measure (\(\alpha = 0.77\)) developed in the previous studies and reported how likely they were to tell someone about their experience in future (1 = not at all likely, 7 = very likely). In a factor analysis using promax rotation, the retelling measure loaded with the sense-making (eigenvalue: 2.56) and not the evaluation items (eigenvalue: 6.48), indicating that retelling is a unique outcome measure, separate from individuals’ evaluations of experiences. Finally, participants answered some questions to ensure that they had not guessed the hypotheses or the purpose of the SST (none had). As before, each sentence in the stories was coded to create the EI as a measure of story content (\(\kappa = 0.85, M = 0.34, SD = 0.24\)).
Results

Seven participants were excluded for not following instructions (e.g. not writing a story, not writing about a consumption experience), leaving a final sample of 102 participants. Below, I discuss the influence of the prime and valence manipulations on participants’ evaluations and language use, and then examine the mediation model. Last, I examine hypothesis 5, regarding the impact of sense-making on individuals’ propensity to spread future WOM.

Evaluations

Evaluations were predicted using valence, prime, and their interactions (a model controlling for participants’ initial evaluations yielded similar results). This model showed a marginal main effect of prime ($F(2, 96) = 2.60, p < .07$), a main effect of valence ($F(1, 96) = 844.01, p < .001$), and, most importantly, a prime by valence interaction ($F(2, 96) = 3.25, p < .04$). Follow-up analyses revealed the predicted pattern of means. Participants who wrote about negative experiences and who were in the relive prime condition showed the most extreme negative evaluations ($M = 1.64$) compared to both the explain ($M = 2.24, F(1, 96) = 3.59, p < .06$) and control ($M = 2.58, F(1, 96) = 8.35, p < .005$) prime conditions, which did not differ from one another ($F(1, 96) = 1.11, p < .29$). Participants who wrote about positive experiences and who were in the explain prime condition showed the least extreme positive evaluations ($M = 7.60$) compared to both the relive ($M = 8.54, F(1, 96) = 5.57, p < .02$) and control ($M = 8.38, F(1, 96) = 4.44, p < .04$) prime conditions, which did not differ from one another ($F(1, 96) = 0.15, p < .70$). Thus, the explain and relive primes influenced evaluations as predicted; as
discussed, I expected that these results would be driven by differences in explaining language use between conditions.

![Figure 9: Evaluations by experience valence and prime, study 5.](chart)

Language use

I examined whether the proportion of explaining language in participants’ stories differed between conditions. A model using valence and prime to predict EI revealed a main effect of prime \((F(2, 96) = 9.09, p < .001)\) and a directional effect of valence \((F(1, 96) = 2.31, p < .13)\). Participants in the explain prime condition used the highest proportion of explaining language \((M = 0.47)\) compared to those in the control \((M = 0.32, F(1, 96) = 6.62, p < .01)\) and relive conditions \((M = 0.23, F(1, 96) = 17.84, p < .01)\), which differed directionally from one another \((F(1, 96) = 2.76, p < .10)\). The directional
effect of valence showed that, as in study 1, individuals used more explaining language when writing about negative than positive experiences ($M_{\text{negative}} = 0.38, M_{\text{positive}} = 0.31$).

Next, I conducted more specific contrasts to determine if my a priori predictions about EI in the control prime conditions were correct. I expected that EI in the negative control prime condition would be equivalent to the negative explain prime condition, but that EI in the positive control prime condition would be equivalent to the positive relive prime condition. As predicted, when individuals were writing about negative experiences, EI in the control and explain conditions was equivalent ($M_{\text{control}} = 0.39, M_{\text{explain}} = 0.49, F(1, 96) = 1.70, p < .19$), while EI in the relive condition ($M_{\text{relive}} = 0.25$) was directionally lower than the control ($F(1, 96) = 2.85, p < .09$) and significantly lower than the explain ($F(1, 96) = 9.51, p < .001$) prime conditions. However, when individuals were writing about positive experiences, EI in the control and relive conditions was equivalent ($M_{\text{control}} = 0.26, M_{\text{relive}} = 0.21, F(1, 96) = 0.45, p < .50$), while EI in the explain condition ($M_{\text{explain}} = 0.45$) was higher than the control ($F(1, 96) = 5.50, p < .02$) and the relive ($F(2, 47) = 8.40, p < .005$) prime conditions. Thus, my predictions about language use in the control conditions were supported; control prime individuals tended to explain negative experiences but relive positive experiences. This is consistent with the previous findings that evaluations were equivalent in the negative explain and control conditions and in the positive relive and control conditions.
Mediation

Next, I conducted a path analysis to confirm the mediation model, which was similar to the model tested in studies 1 and 2. In study 5, sense-making remains the key mediator that should ultimately influence participants’ evaluations of their experiences. Thus, the influence of prime on evaluations should be mediated by sense-making. Further, the direct influence of prime on evaluations and the indirect influence of prime through sense-making on evaluations should both be moderated by experience valence. In other words, the overall mediation model was the same as study 1, with the prime manipulation replacing measured language use as the primary independent variable (figure 5). However, because prime was a manipulated variable in this study, the current
model involved an additional piece: explaining language (EI) should mediate the relationship between the prime manipulation and the measured sense-making mediator. Indeed, prime predicted sense-making ($F(2, 99) = 3.20, p < .04$) and EI ($F(2, 96) = 9.09, p < .001$), as shown above, and EI predicted sense-making ($F(2, 100) = 11.18, p < .001$). A standard mediation test showed a significant Sobel ($Z = 2.21, p < .03$), such that the influence of the prime manipulation on sense-making was mediated by participants’ use of explaining language (EI).

Figure 11: Mediation model, study 5.

To test the rest of the model, I followed Edwards and Lambert (2007). As in studies 1 and 2, I tested whether the indirect moderated effect of sense-making by valence predicted evaluations when controlling for the moderated direct effect of prime by valence on evaluations. My model was supported, with sense-making mediating the impact of the prime manipulation on evaluations. Specifically, the indirect moderated
effect of prime through sense-making, the valence by sense-making interaction, was a significant predictor of evaluations ($\beta = 0.490, p < .05$) when controlling for the moderated direct effect of prime on evaluations (the prime by valence interaction). The mediation pathway was significant for positive and negative experiences ($\beta_{\text{positive}} = 0.334$, $\beta_{\text{negative}} = -0.106, p < .05$), such that making sense of positive experiences decreased evaluations and making sense of negative experiences increased evaluations.

Retelling

Finally, I tested hypothesis 5, regarding the relationship between sense-making and individuals’ likelihood of spreading future WOM. I ran a model predicting likelihood of retelling with prime, valence, and sense-making as independent variables. I found main effects of prime ($F(2, 94) = 3.63, p < .03$), valence ($F(1, 94) = 4.44, p < .03$), and sense-making ($F(1, 94) = 5.24, p < .02$). First, individuals reported that they would be more likely to retell stories about positive ($M = 7.52$) compared to negative ($M = 6.51$) experiences. Participants also reported a higher likelihood of retelling stories in the relive compared to the explain prime conditions ($M_{\text{relive}} = 7.76$, $M_{\text{explain}} = 6.25$, $F(1, 94) = 7.25$, $p < .008$), while the control prime fell in between ($M = 7.03$) and differed directionally from the explain ($F(1, 94) = 1.99, p < .16$) and the relive prime conditions ($F(1, 94) = 1.71, p < .19$). As predicted, there was a main effect of sense-making, such that the more sense participants made of their experience, the less likely they were to retell it in future ($t(1, 94) = -2.29, p < .02$).

One might expect sense-making to mediate the impact of valence and prime on likelihood of retelling, as it did for evaluations. A significant Sobel for valence ($Z = 1.89$,
A marginally significant Sobel for prime \((Z = 1.72, p < .08)\) demonstrated that the impact of both variables on participants’ likelihood of spreading future WOM was mediated by how much sense they made of their experience.

Discussion

This study provided strong support for my theoretical model by manipulating instead of measuring language use and by demonstrating the mediating effect of sense-making on evaluations. In this study, priming individuals to use more explaining language in their stories led them to make more sense of their consumption experiences and sense-making led to increased evaluations of negative experiences but decreased evaluations of positive experiences. Study 5 also provided further support for the idea that experience valence influences the way individuals speak about experiences. Individuals in the negative control prime condition used as much explaining language as those in the negative explain prime condition, while individuals in the positive control prime condition used as little explaining language as those in the positive relive prime condition. Finally, study 5 demonstrated an important additional consequence of sense-making, beyond changes in individuals’ evaluations of experiences: participants who had made more sense of their experiences reported that they would be less likely to spread future WOM and talk about their experience with others.

While study 5 manipulated instead of measured language use, which removed some alternative explanations for the effect of explaining language on evaluations, participants were still allowed to write their own stories. Thus, it is possible that differences in participants’ stories other than the use of explaining language caused
changes in evaluations. For example, stories that contained a higher proportion of explaining language might have been less vivid, detailed, or emotional than stories with a lower proportion of explaining language; these differences in story content could have decreased evaluations in past studies instead of the act of explaining. In study 6, I controlled for this possibility by providing individuals with a story to complete.

Study 6

In study 6, I manipulated language as stringently as possible to control for content differences in stories beyond explaining language. I used a “mad libs” approach and constructed story shells that participants completed by filling in the blanks. I created a reliving and an explaining story shell, where the only difference between the shells was that some of the sentences in the explaining shell had explaining clauses. For example, one of the reliving sentences was: “The best part of the whole experience was _____,” while the explaining counterpart was: “The best part of the whole experience was _____, because ______.” The story shell was developed based on the consumption stories participants told in study 1. Since nearly 50% of the stories in study 1 were about food-related experiences, the story shell was written about a dining experience. The story shell included information that was commonly provided in past participants’ stories about eating out—where the experience took place, what was eaten, who was there, whether the food and the service were good, etc. (see Appendix B for story shells).

The study used a 2 (valence: positive or negative) by 3 (story shell: explain, relive, or none) between subjects design. Participants were asked to recall a dining experience from the past six months that was either positive or negative, and then
completed either the reliving or the explaining story shell before reporting their evaluation of the experience. In the no-writing control condition, participants recalled a positive or negative dining experience and then reported their evaluations. I expected to replicate my previous findings, such that individuals who completed the explaining story shell would have the least extreme positive or negative evaluations of their dining experience, while those who completed the relive story shell would have more extreme evaluations. In fact, relive shell participants’ evaluations should be equivalent to control condition participants’ evaluations; this would mirror the findings from study 2, where individuals in the no-writing condition had evaluations that were equivalent to individuals who wrote stories but did not use any explaining language.

Method

Seventy-two undergraduates participated in the study in return for a cash payment. The study was completed in a paper and pencil booklet with instructions on the first two pages and the story shell on the third page. On the first page, participants were asked to recall either a negative or a positive dining experience from the past six months where they went out to eat breakfast, lunch, dinner, dessert, etc. They were asked to think of a specific experience before turning the page. Participants were then asked to imagine that they were writing an online review about their experience and that the website they were using had a guided online review process, so they would be given a series of sentences with blanks to fill in about their experience. They were told that they could fill in the blanks using any words they wished and as many words as they wished as long as the final sentence was coherent. On the next page, participants saw either the explain or
the relive story shell. The relive shell had eleven sentences with twenty-two blanks to fill in, while the explain shell had twelve sentences with thirty blanks to fill in. Seven of the relive shell sentences had explanatory clauses added to them to create the explain shell. The additional sentence in the explain condition asked participants to further make sense of their experience: “This experience helped me realize ____, since ____.” Other than the additional sentence and the explanatory blanks to fill in, the story shells were identical.

On the final page of the booklet, after completing the story shell, participants reported their evaluations of the experience on six nine-point scales (like/dislike, positive/negative, pleasant/unpleasant, good/bad, appealing/unappealing, favorable/unfavorable), as well as their likelihood of repeating and recommending the experience on two seven-point scales marked “not at all” to “very much.” Control condition participants saw neither the second instruction page nor the story shell and simply reported their evaluations after recalling an experience. As before, the evaluation and intention measures loaded on a single factor (eigenvalue: 5.68; $\alpha = 0.97$), and were standardized and averaged to create an overall evaluation measure for each participant. Finally, participants rated how difficult it was to fill in the blanks about their experience (2 items, $r = 0.60$, $p < .001$).

Results

An ANOVA using valence and story shell to predict evaluations revealed the expected results. There was a main effect of valence ($F(1, 66) = 259.02$, $p < .001$) on evaluations that was qualified by a significant interaction between valence and story shell ($F(1, 66) = 6.74$, $p < .002$). Planned contrasts revealed the predicted pattern of means. For
negative dining experiences, participants in the explain story shell condition had less negative evaluations ($M = -0.67$) than participants in the relive story shell ($M = -1.13$, $F(1, 66) = 4.77, p < .03$) and the no-writing control conditions ($M = -1.13$, $F(1, 66) = 3.95, p < .05$), which did not differ from one another ($F(1, 66) = 0.00, p < .99$).

Conversely, for positive dining experiences, participants in the explain story shell condition had less positive evaluations ($M = 0.75$) than participants in the relive story shell ($M = 1.24$, $F(1, 66) = 5.98, p < .02$) and the no-writing control conditions ($M = 1.23$, $F(1, 66) = 4.65, p < .04$), which did not differ from one another ($F(1, 66) = 0.0, p < .96$).

There were no significant effects of valence or story shell on difficulty filling in the blanks (valence: $F(1, 66) = 1.66, p < .20$; story shell: $F(1, 66) = 1.12, p < .33$), and difficulty did not predict evaluations ($F(1, 70) = 0.79, p < .38$).

![Figure 12: Evaluation by valence and story shell, study 6.](image-url)
Discussion

This study demonstrated that the act of explaining is a key process in altering consumers’ evaluations of experiences. When controlling for story content other than explaining language, I replicated my findings from studies 1 through 5, weakening alternative explanations that these results arose because of differences in the vividness, detail, or consistency of stories that contained explaining language compared to those that did not. Further, as in study 2, I found that individuals who completed relive story shells had evaluations that were equivalent to individuals in the no-writing control condition, and only individuals who completed the explain story shells had dampened evaluations, confirming the unique impact of explaining in altering evaluations. More generally, studies 5 and 6 demonstrated that it is possible to guide consumer storytelling by manipulating language use, either through priming or providing a structured story.

General Discussion

Through these six studies, I proposed and tested a comprehensive model for understanding a critical but understudied issue in WOM: the impact of storytelling on the speaker. By combining literatures from marketing, linguistics, and psychology, I developed a new process model that predicts how speakers will be influenced by sharing consumption experiences. Together, my studies demonstrated how speaking influences the speaker, showing that language use depends on experiences and that explaining language impacts speakers’ evaluations, intentions to repeat and recommend experiences, and likelihood of spreading future WOM. Importantly, I demonstrated that explaining language influences speakers through facilitating the process of sense-making; explaining
language helps individuals understand experiences, making negative experiences less negative and positive experiences less positive.

Theoretical Contributions

These studies contribute theoretically to both marketing and psychology. I developed the first comprehensive model for how WOM influences the speaker and thus began to close an important gap in the WOM literature. In going beyond the prior focus on whether WOM occurs and what its valence is, I highlighted the importance of WOM content and demonstrated how that content influences critical downstream consequences. I contributed to the literature on sense-making by focusing specifically on language and how specific types of language facilitate or inhibit sense-making. My language measure clarified the concept of sense-making by focusing on two concrete types of statements: 1) *why* experiences occur (e.g. I went to Europe because the ticket was cheap) and 2) *why* experiences are *liked* (e.g. I like Europe because it’s got so much history), allowing me to use language as a window to examine and quantify sense-making. I developed a measure of sense-making that is predicted by the use of explaining language and that mediated the impact of language on speakers’ evaluations of experiences. I considered a broad range of experiences in my studies, where past work on sense-making and WOM has focused mainly on traumatic and simple experiences, respectively; importantly, I found that the influence of sense-making was robust across various types of experiences. Finally, I looked at how sense-making impacted individuals’ evaluations of experiences and their intentions to repeat, recommend, and talk about those experiences, all of which are fundamental consequences of WOM for firms and consumers.
Marketing Implications

Practically speaking, past research has indicated that measuring the spread of WOM is essential (Godes and Mayzlin 2004). In addition to understanding this outward ripple, it is vitally important for firms to know how WOM influences the speaker. My studies show that some things are, indeed, better left unsaid: sharing positive stories can be bad for the speaker, while sharing negative stories can be good for the speaker, depending on their storytelling language. Explaining language dampens evaluations of positive experiences and improves evaluations of negative experiences, and these evaluative changes are linked to changes in intentions to repeat and recommend experiences. Thus, while hearing positive WOM may positively influence listeners, sharing positive WOM can negatively impact speakers, and vice versa for negative WOM. Further, the sense-making process through which language influences evaluations can change the speakers’ likelihood of retelling the story and spreading WOM in future. Speakers are most likely to share experiences they have not made sense of, so listeners are most likely to hear extremely positive (good for marketers) and extremely negative stories (bad for marketers). Thus, firms need to balance the impact of WOM on the speaker with its impact on the listener.

Given that the content of WOM stories has such profound effects on storytellers, firms may wish to influence what consumers say when sharing WOM stories. To this end, firms could provide vocabularies to consumers via ads or other media, develop story schemas that highlight when consumers should tell stories and to whom, or manipulate aspects of experiences to encourage specific language. In situations where employees
interact with customers (e.g. call centers), employees can be trained to help customers relive positive and explain negative experiences by guiding them to talk about experiences in certain ways; the same technique could be used online to guide consumers through the review process, for example, by asking questions that would encourage or discourage explaining. Ultimately, this new look at WOM has many implications for firms that will help them manage its effects. Similarly, this model can help consumers understand and manage their emotional reactions to consumption experiences and the utility they derive from these experiences. By knowing what to say and what to leave unsaid when telling stories, consumers can recover from negative experiences by explaining them and savor positive experiences by reliving them.

Future Research

There are numerous avenues for research in this area. While I find no evidence in support of metacognitive difficulty as an explanation for the current results, future work could manipulate the difficulty of expressing experiences or individuals’ beliefs about the ease or difficulty of expressing experiences. Lay beliefs about the consequences of storytelling and specific language use could also be investigated. While individuals generally believe that expressing negative experiences is beneficial (Zech and Rimé 2005), it is unclear what individuals believe about sharing positive experiences. Some recent work suggests that individuals attempt to protect their memories of positive experiences (Zauberman, Ratner, and Kim 2009); a similar motive might discourage individuals from speaking about positive experiences under certain circumstances. Further, since language use differs at the individual level (Pennebaker and King 1999),
future research could identify individual differences that might influence the use of or the consequences of using explaining language, such as expertise (West, Brown, and Hoch 1996) or need for cognition (Cacioppo, Petty, and Chuan Feng 1984).

Additional work could investigate variables that moderate the dampening effect of explaining language on evaluations. Beyond the current paper’s focus on hedonic and consistently positive or negative experiences, utilitarian or mixed experiences could be examined to determine whether certain types of experiences are evaluated more extremely after explanation. In addition, more specific content analyses or language manipulations could examine different types of explanations (e.g. emotional versus cognitive) to see if these differentially influence sense-making (Wilson and Gilbert, 2008). I predict that any explaining would dampen evaluations, but that emotional explanations may lead to less dampening and sense-making than cognitive explanations. Future work could also examine when a lack of explaining might increase speakers’ evaluations above a no-writing control condition. While I found no such increases in my studies (2 and 6), past work has shown that attitude polarization does occur (Tesser and Conlee 1975); future research could reconcile these findings and clarify when evaluations are dampened versus polarized by focusing on language use and story content.

Finally, while this paper examines how speaking influences the speaker, it is also important to understand how being heard and having an audience influence the speaker. Future work could investigate how speakers’ language use and evaluations are influenced by listeners’ reactions to different types of stories, or how speakers alter their storytelling language in response to listeners.
Appendix A: Coding instructions

Each sentence in each story will be categorized into one of the three categories below.

Neutral

These sentences provide background information about context (where, what, who, when). They are neutral and do not involve any evaluations (e.g. I liked or disliked the experience).

Examples:

“I ate at a restaurant last night.”

“I finished reading the book last week.”

Reliving

These sentences help people recapture and re-experience the emotions, thoughts, and feelings they had during the original experience. These stories bring the experiences back to life, in terms of describing the event and its associated emotions, good or bad. These sentences are evaluative (I loved/hated it… It was awesome/horrible…) as well as descriptive. These sentences may end in exclamation marks and can sometimes be exaggerated (it was the worst dinner ever), etc.

Examples:

“Here it comes, an incredible looking filet mignon grilled to perfection – medium rare—with juice oozing from every square inch of the meat onto the mashed potatoes below…”
“When I was floating in the swimming pool, I could look up at the dome ceiling above. There was an enormous fresco painting on the ceiling, very Renaissance-like. The water was nice and cool, tingling my skin.”

Explaining

These sentences help people understand, analyze, and make sense of their reactions to experiences and help them learn why the experiences were positive or negative. These stories help the story teller figure out what made the experience good or bad—explaining sentences describe emotions or opinions and the reasons behind these emotions or opinions (I liked it because… I was angry because…). These sentences are also evaluative, but also have some cognitive component—people are being analytical about the experience, taking a step back and figuring out why, using words like “because”, “think”, “realize”, etc.

Examples:

“I had gotten the cookies because the person whose birthday part it was said that they were his favorite type of cookie from Duke… it was sweet but also a little tart, probably because of the key lime portion of the cookie…”

“I guess I didn’t really know what pumpkin was supposed to taste like… I ate it, only because I hate the idea of wasting food and money.”
Appendix B: Story shells from study 6

Relive shell

Last ______________________________, I had a ______________________________
dining experience, while I was at __
for _______________________________. I was there with ____________________________.
Overall, I was really ________________________________ with the experience—it was _______________________________. I ordered
_______________________________, which was _______________________________.
The food smelled _______________________ and tasted _______________________________.
My meal was _________________________________. I’d say the service was ________________________________ and I felt
_______________________________. The atmosphere was also ________________________________—I’d describe
it as ________________________________ and _________________________________. The best [worst] part of the whole
experience was _________________________________.
During the experience, I felt _______________________ and _________________________.
I would ________________________________ recommend this experience to others, it was ________________________________!
Explain shell

Last ______________________, I had a __________________________

dining experience, while I was at ______________________ for _____________________.

I was there with ______________ and we went because _________________________.

Overall, I was really ___________________________ with the experience—
it was ____________________________, especially because _______________________.

I ordered ____________________________, which was ____________________________,

which was _____________________________. The food smelled _______________________

tasted _____________________________. My meal was ____________________________
because _____________________________.

I’d say the service was ________________________ and I felt _______________________
since ____________________________. The atmosphere was also ____________________________—I’d describe it

as ________________________ and _____________________________.

The best [worst] part of the whole experience was ____________________________
because _____________________________.

During the experience, I felt ________________________ and ______________________
since _____________________________. This experience helped me realize that ________________________,
since _____________________________.

I would ____________________________ recommend this experience
to others, because _____________________________.

61
References

Biography

Sarah G. Moore was born in Vancouver, British Columbia, Canada, on May 12, 1981. In May 2004 she received a Bachelor of Commerce with honors from the University of British Columbia, where she majored in marketing and psychology. Sarah began studying for her PhD in Business Administration at Duke University in August 2004, and received a Doctoral Fellowship from the Humanities and Social Sciences Research Council of Canada while there. She has co-authored four articles and one book chapter, listed below.

