CODED MEASUREMENT FOR IMAGING AND SPECTROSCOPY

by

Andrew David Portnoy

Department of Electrical and Computer Engineering
Duke University

Date: __________________________

Approved:

David J. Brady, Supervisor

Jungsang Kim

David Smith

Xiaobai Sun

Rebecca Willett

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University

2009
ABSTRACT

CODED MEASUREMENT FOR IMAGING AND SPECTROSCOPY

by

Andrew David Portnoy

Department of Electrical and Computer Engineering
Duke University

Date: ______________________

Approved: ______________________

David J. Brady, Supervisor

Jungsang Kim

David Smith

Xiaobai Sun

Rebecca Willett

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University

2009
Abstract

This thesis describes three computational optical systems and their underlying coding strategies. These codes are useful in a variety of optical imaging and spectroscopic applications. Two multichannel cameras are described. They both use a lenslet array to generate multiple copies of a scene on the detector. Digital processing combines the measured data into a single image. The visible system uses focal plane coding, and the long wave infrared (LWIR) system uses shift coding. With proper calibration, the multichannel interpolation results recover contrast for targets at frequencies beyond the aliasing limit of the individual subimages. This thesis also describes a LWIR imaging system that simultaneously measures four wavelength channels each with narrow bandwidth. In this system, lenses, aperture masks, and dispersive optics implement a spatially varying spectral code.
Acknowledgements

The PhD process takes persistence. This has been a long journey, one that I have not traveled alone. Throughout my life, I have been fortunate to have great teachers, and I would not be here today if it were not for them. I wish to take this opportunity to thank everyone who has supported me along the way. My parents, Michael and Susan Portnoy, and my sister, Elizabeth Portnoy, have always given me encouragement, and I will always love them.

Dr. David Brady, has been a wonderful advisor, and his insight has truly shaped this research. He and the other faculty at Duke University have provided an outstanding environment to grow and discover. Much inspiration has also come from Dr. Kristina Johnson, who remains an outstanding mentor. I would like to thank my committee members, Dr. Jungsang Kim, Dr. David Smith, Dr. Xiaobai Sun, and Dr. Rebecca Willett, for their time and feedback throughout this process.

I want to thank the past and present members of DISP with whom I have formed fruitful collaborations and friendships. Thank you to Dr. Nikos Pitsianis, Dr. Bob Guenther, Dr. Mohan Shankar, Steve Feller, Dr. Scott McCain, Dr. Michael Gehm, Dr. Evan Cull, Christina Fernandez Cull, Dr. John Burchett, Ashwin Wagadarikar, Sehoon Lim, Paul Vosburgh, David Kittle, Nan Zheng, Dr. Yangqia Wang, Dr. Qi Hao, Dr. Unnikrishnan Gopinathan, and Dr. Jungpeng Guo. International collaborators Dr. Ken Hsu, Dr. Jason Fang, Satoru Irie, and Ryoichi Horisaki have helped me to see to the world. For both research and unrelated discussions, I also wish to extend thanks to fellow Duke graduate students including Dr. Vito Mecca, Kenny Morton, Dr. Josh Stohl, William Lee, Neera Desai, and Zac Harman.

For their support in administration and logistics, I thank Wendy Lesesne, Jennifer Dubow, Justin Bonaparte, Leah Goldsmith, Tasha Dawson, Ellen Currin, Samantha
Morton, Kristen Rogers, and Steve Ellis. WCPE Classical Radio always provides a relaxing voice. For their support to build CIEMAS, I thank, in particular, Michael and Patty Fitzpatrick, James Frey, and the Yoh Family. For their support to fund this research, I thank Dr. Dennis Healy, Dr. Ravi Athale, and Dr. Philip Perconti.

Lastly, I want to write a special acknowledgement to my dear friend, Greg Chion, who lost his 9-month battle with leukemia on October 26, 2000 our senior year of high school. Greg was everything from a fellow Cub Scout to a fellow drum major, and it is in his memory that this thesis is dedicated. Having such wonderful friends and family, I know that throughout my life, I will Never Walk Alone.
In memory of Greg Chion
3 Multichannel Shift Coding

3.1 Introduction ... 35
3.2 System Transfer Function and Noise 38
3.3 Optical Design and Experimental System 44
3.4 Image Reconstruction .. 48
 3.4.1 Registration ... 48
 3.4.2 Reconstruction ... 48
 3.4.3 Results .. 52
3.5 Experimental Results .. 55
 3.5.1 Noise Equivalent Temperature Difference 55
 3.5.2 Spatial Frequency Response 58
3.6 Conclusion .. 64

4 Multichannel Narrow Band Spatiospectral Coding

4.1 Introduction .. 66
4.2 Elementary Example ... 68
 4.2.1 Direct measurement of individual wavelength channels 71
4.3 System Architecture ... 73
4.4 Mathematical Model .. 75
4.5 System Implementation and Components 77
 4.5.1 Camera and Lenses 77
 4.5.2 Mask Design ... 78
 4.5.3 Prism Design ... 79
List of Tables

2.1 Condition numbers for the decoding process associated with the modified Hadamard coding on $K \times K$ lenslet arrays .. 17

2.2 The condition numbers associated with $P \times P$ partition of $N \times N$ detector arrays. ... 17

3.1 Experimentally calculated contrast, V, for 4 bar targets at 5 spatial frequencies. ... 64

4.1 Narrow band filters used to calibrate the monochromator. 84
List of Figures

1.1 Raw data from a computational imaging system 2
2.1 The focal plane coding masks. 12
2.2 Photographs of the COMP-I Focal Plane Coding Camera. 18
2.3 Magnified image of CMOS pixels. 19
2.4 The unmounted refractive lenslet array. 20
2.5 Microscope image of the imaging sensor with a focal plane coding element 22
2.6 The focal plane coding element under 100X magnification 22
2.7 Impulse response scan of four adjacent pixels 26
2.8 Coded Impulse Response Scan 27
2.9 2D Pixel Impulse Response 28
2.10 Masked 2D Pixel Impulse Response 29
2.11 Checkerboard Masked 2D Pixel Impulse Response 29
2.12 Raw captured image from focal plane coded camera 31
2.13 Focal Plane Coded Camera Reconstruction Comparison 32
2.14 Pixel Intensity Plot Comparison 33
3.1 Comparison of STF ... 40
3.2 Wiener filter error comparison 43
3.3 Designed LWIR optical train 45
3.4 Theoretical MTF performance of the LWIR system 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Diamond-turned germanium element</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Photograph of LWIR cameras used</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of 3 reconstruction algorithms</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>Comparison between conventional and multichannel cameras</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Long range LWIR comparison</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Copper targets used for collimator system</td>
<td>56</td>
</tr>
<tr>
<td>3.11</td>
<td>LWIR Testbed</td>
<td>56</td>
</tr>
<tr>
<td>3.12</td>
<td>Signal-to-noise ratio versus temperature</td>
<td>57</td>
</tr>
<tr>
<td>3.13</td>
<td>Registered pixel responses</td>
<td>60</td>
</tr>
<tr>
<td>3.14</td>
<td>Data and interpolation for target at 0.120 cy/mrad</td>
<td>62</td>
</tr>
<tr>
<td>3.15</td>
<td>Intensity plot for target at 0.120 cy/mrad</td>
<td>62</td>
</tr>
<tr>
<td>3.16</td>
<td>Data and interpolation for target at 0.192 cy/mrad</td>
<td>63</td>
</tr>
<tr>
<td>3.17</td>
<td>Intensity plot for target at 0.192 cy/mrad</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Datacube</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Bayer Pattern</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Datacube Transformations</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Dual-disperser hyperspectral imaging architecture</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Direct Measurement of Color Channels</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Direct Measurement of Narrow band Color Channels</td>
<td>74</td>
</tr>
<tr>
<td>4.7</td>
<td>LWIR Multispectral Camera</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Mask Details</td>
<td>78</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Computational Imaging

Photography is evolving. Digital imaging sensors replace film in an increasing number of applications, and there is no indication this trend will subside. The shift from analog to digital facilitates new opportunities because computers can now more naturally process image data. In this way, computers have essentially become consumers of photographs. Generally speaking, the trend in machine vision has been to acquire images pleasing to the human eye and pass them directly to the computer for processing. This paradigm is not necessarily optimal. The source data need not look conventional to a human for it to contain meaningful information. One example that exploits this freedom is data compression, which enables computers to store, process, and transmit the same information in different representations. Furthermore, image compression algorithms (like JPEG) represent photographs in significantly fewer bits which reduce storage and transmission demands. Even when discarding information, computers often will display for humans images indistinguishable from their original. Image compression algorithms allow for the tradeoff increased computational demands with greater storage efficiency. While image compression does not concern itself with the acquisition of image data, computational imaging systems explore the co-design of optical systems and digital processing.

Computational imaging is the next generation of digital imaging processing. It brings computation into the physical layer by using optical components to perform non-trivial data processing. This is in contrast to conventional photography which uses lenses to generate structurally identical copies of a scene on a film negative.
With computational optics, one can begin processing data before transducing photons into bits. A well designed system measures compressed data directly. In general, a computational system includes both hardware (optics and sensors) and software (algorithms). A co-design of these components enables novel hardware designs including multichannel or multiplex architectures. Multichannel systems sample in parallel; they measure multiple copies of a signal simultaneously. Multiplex systems sample the superposition of multiple signals in a single measurement. In fact, the prototype described in Chapter 2 combines both of these concepts. An example of the raw data acquired from this computational system is shown in Figure 1.1. The scene consists of a single soup can, and digital processing demultiplexes and combines multiple channels to recover a single image. The raw data from computational optical systems is not intended to be human readable. By design these systems rely on digital processing to extract meaningful information.

Figure 1.1: An example of raw data acquired from the computational imaging system. This image is taken from the multichannel camera described in Chapter 2. The source is a single can of soup, however, multiple images are acquired simultaneously.
1.2 Motivation

Coding strategies are the tools of computational optical systems. They facilitate mappings between the source field and the detector. And, a major theme of computational imaging is designing an elegant mapping. This dissertation explores coded measurement, developing an understanding for a collection of tools which may be used in a variety of applications. The motivation for Chapters 2 and 3 is thin digital imaging. Both implementation utilize a multichannel design, capturing many copies of a scene and combining them with post-processing. In this way, these techniques extend to a broader class of applications beyond just “thin” systems. At the core of Chapter 4 is designing a color (or multispectral) long wave infrared camera (LWIR). In particular, one that measures multiple narrow band channels simultaneously. Color digital cameras for the LWIR are not as readily available as they are for the visible band.

This thesis investigates coding strategies to better understand digital sampling. Standard focal plane arrays are used in the prototypes, however, their pixel sampling functions are modulated. This occurs in three major ways: spatial coding (Chapter 2), coding in sampling phase (Chapter 3), and spectral response coding (Chapter 4). Additionally, this thesis develops characterization tools to measure sampling functions.

Computational imaging system designers balance performance with instrument and algorithmic complexity. By providing descriptions of new coding strategies, this thesis empowers system designers with more tools. The coding principles described in this thesis may be applied to new applications. Regardless, the characterization tools developed are important because one can better interpret the data collected by an instrument by better understanding its sampling functions. The instrument’s transfer function filters the electromagnetic field when measurements are made and
that mechanism provides a context (or basis) for the collected data.

1.3 Organization

The focus of this dissertation is a description of three different coding strategies for optical imaging and spectroscopy systems as well as an instrument demonstrating each one. The first is focal plane coding, a technique which directly modulates the detector sampling functions. The second relies on subpixel shifts as a coding mechanism. Finally, the third explores coding in wavelength.

Chapter 2 describes a thin digital imaging system that uses a multichannel lenslet array. Multiple copies of the scene are generated on the detector plane and are processed to generate a single conventional image. The subpixel features on the focal plane coding element reduce redundancy between each image by modulating pixels differently in each region. This camera operates in the visible region.

Chapter 3 explores the design and implementation of a second multichannel camera. In contrast to the system described in Chapter 2, this one operates in the Long Wave Infrared (LWIR) band, which is also referred to as thermal imaging. Shift based coding reduces redundancy in this instrument. The performance is also extensively characterized and compared to that of a conventional LWIR camera.

Chapter 4 extends coding into the spectral domain. A snapshot spectral imager is developed and tested operating in the LWIR. This particular implementation measures multiple narrow spectral bands simultaneously by using image plane coding masks in combination with dispersive elements. This marks an improvement of the typical LWIR camera which is essentially an intensity detector because it is sensitive to broad band light.

The final chapter of this dissertation provides some general conclusions related to coding in imaging and spectroscopy. Some comments and observations are also
proposed which could further develop this evolving field.
Chapter 2

Focal Plane Coding

2.1 Background

The generalized sampling theory by Papoulis [1] has been applied in multiband or multichannel imaging [2–4]. In particular, several research groups have focused on the application of the theory to “super-resolved” optical imaging [5–8]. Previous implementations of multichannel sampling strategies have primarily utilized optical techniques to optimize specific system metrics. For example, multichannel sampling with multiple aperture lenslet arrays has been used in the TOMBO ¹ system [9] to substantially reduce imaging system thickness and volume. The TOMBO system is based on a compound-eye which uses multiple independent imaging lenses. The images are combined digitally with post processing. Broadly, there is considerable interest in improving or optimizing performance metrics for computational imagers on multichannel sampling. The Compressive Optical MONTAGE Photography Initiative (COMP-I) [10–12] has explored new strategies for multichannel imagers by a co-design of the optics, the electronic sampling strategy, and computational reconstruction scheme [13].

This chapter describes the formal basis of the focal-plane coding strategies. It specifically analyses and compares the TOMBO scheme and a multiplexing scheme developed for the COMP-I system [11]. Both systems utilize thin imaging optics using a lenslet array, multiapertures and computational integration of a single higher-resolution image from multiple images. They differ in two major ways. First, the COMP-I system uses an additional element, a focal plane mask. Second, the system’s

¹TOMBO stands for thin observation module by bound optics.
computational reconstruction procedures have differing complexity and stability. Because of computational resources are finite, it is an important concern to assess both the efficiency of a particular design as well as the errors introduced from its post processing algorithm. This chapter describes the COMP-I implementation of the coding schemes and presents experimental results.

The next section introduces a mathematical framework for both designing focal plane coding systems as well as comparing multichannel imaging systems. Section 2.3 details the components of the system built to demonstrated focal plane coding. The following two sections, 2.4 and 2.5, present the experimental results and image reconstructions obtained from the system. A discussion is provided in Section 2.6.

2.2 Multichannel Imaging System Analysis

Multichannel sampling is well understood in concept since the seminal work by Papoulis [1]. This section introduces a novel realization of the multi-channel sampling theory on optical system in order to reduce camera thickness without compromising image resolution. The following describes a framework of multichannel sampling as well as the algebraic procedures for decoding, i.e. constructing a single image without the loss of resolution.

First illustrated is a description of a multichannel system implemented with lenslet displacements only, the mechanism first demonstrated by TOBMO system [9]. Second, a multichannel system using coding masks is described which is implemented in the COMP-I system [14]. The two coding schemes have different numerical behaviors in computational image reconstruction. Both systems are explored under the following unifying framework of multichannel optical imaging systems.
2.2.1 System Model

In a typical image system, the object field, \(f(x, y) \), is blurred by a point spread function (PSF), which is a characteristic of the imaging system. In an ideal case, the PSF is shift invariant and can be represented by its impulse response \(h(x, y) \). The blurred image is electronically sampled by a two-dimensional detector array, \(G = [g_{ij}] \), where \(g_{ij} \) is the measurement at pixel \((i, j)\). Establishing the origin at the center of a rectangular focal plane, let the array limits be \([-X/2, X/2] \times [-Y/2, Y/2]\). In the case of incoherent imaging, the transformation from the source intensity \(f(x, y) \) in object space to the discrete data array \(G = [g_{ij}] \) measured by the detector may be modeled as follows.

\[
g_{ij} = \int_{-X/2}^{X/2} \int_{-Y/2}^{Y/2} s_{ij}(x, y, \tilde{f}(x, y)) \, dx \, dy,
\]

\[
\tilde{f}(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \eta) h(\alpha x - \xi, \alpha y - \eta) \, d\xi \, d\eta,
\]

where \(\tilde{f} \) is the blurred and scaled image at the focal plane, modeled by the convolution of the object function with the PSF, \(\alpha \) is a system-dependent scaling parameter which will be illustrated shortly, and the function \(s_{ij} \) characterizes the sampling at the \((i, j)\) pixel of the blurred image at the focal plane. The support of \(s_{ij}(x, y) \) may be limited to the geometry and location of the pixel at the detector.

All the pixels at the detector assume the same rectangular shape, \(\Delta_x \times \Delta_y \). In practice, square pixels are common, \(\Delta_x = \Delta_y = \Delta \). Each pixel is uniquely identified by its Cartesian location. Thus, the center of the \((i, j)\) pixel is at \((i\Delta_x, j\Delta_y)\), \(-M \leq i \leq M, -N \leq j \leq N\), with \((2M+1)\Delta_x = X, (2N+1)\Delta_y = Y\). The characteristic
function of the \((i, j)\) pixel at the detector array modeled as

\[
P_{ij}(x, y) = \text{rect}\left(\frac{x}{\Delta_x} - i\right) \text{rect}\left(\frac{y}{\Delta_y} - j\right)
\]

(2.2)

where \(\text{rect}(x) = 1\) if \(x \in [-1/2, 1/2]\) and \(\text{rect}(x) = 0\) otherwise. The pixel function, \(P_{i,j}\), described above represents a unity fill factor pixel. In practice, this ideal function has to be revised to describe incomplete fill factors in actual electronic pixels. In the case there is no additional coding at the focal plane, the pixel sampling function can be simply described by the multiplication of the pixel function and the function to sample from,

\[
s_{ij}(x, y, \tilde{f}(x, y)) = P_{ij}(x, y) \tilde{f}(x, y).
\]

With such a sampling function, the pixel at \((i, j)\) location is said to be clear. The following cases introduce non-trivial focal plane coding schemes used in conjunction with multichannel imaging systems. In the general case of multiple channels, the model in (2.1) applies to each channel individually.

2.2.2 Lenslet displacements

The TOMBO system [9] can be characterized as a special case of the system model (2.1). It aims at reducing the thickness of the optical system by replacing a single large aperture lens with an array of smaller aperture lenses or lenslets. The detector pixel array is accordingly partitioned so that each and every lenslet corresponds to a subarray. Let the image on a subarray be called a subimage, relative to the multiple copies of the scene on the entire array. In order to maintain the resolution of the system with a single large aperture lens, a diversity in the subimages is essential. Otherwise, the detector array carries redundant, identical subimages of lower resolution.
The TOMBO system exploits the relative non-uniform displacements of the lenslets at manufacture. Consider a 3×3 array of lenslets. There are 9 subimages at 3×3 sub-apertures, $G_{pq} = [g_{pq,ij}]$, $p, q = -1, 0, 1$. Here, the double-indices pq associated with G in the capital case specify the subarray or subimage corresponding to the lenslet at location p, q; the four-tuple indices (pq, ij) associated with g in small case specify the (i, j) pixel in the (p, q) subarray or subimage. The subimage at the center is G_{00}. The subimage G_{pq} is made different from G_{00} by the displacement of the (p, q) lenslet relative to the center one.

In concept, the lenslet displacement can be designed first and calibrated after system manufacturing. In terms of the framework in Section 2.2.1, the following model describes a multiple channel imaging system

$$g_{pq,ij} = \int_{-X/2}^{X/2} \int_{-Y/2}^{Y/2} s_{pq,ij}(x, y, \tilde{f}(x, y)) \, dx \, dy,$$

$$\tilde{f}(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \eta) h(\beta x - \xi, \beta y - \eta) \, d\xi \, d\eta,$$

(2.3)

where β is the scaling factor relating the object scene to the subapertures. The choice $\beta = 3\alpha$ is natural for 3×3 lenslet array, where α is the scaling factor for a comparison single entire aperture system. The sampling functions for lenslet displacements can be described as follows,

$$s_{pq,ij}(x, y, \tilde{f}(x, y)) = P_{ij}(x, y) E_{pq}(\tilde{f}(x, y)) = P_{ij}(x, y) \tilde{f}(x - \delta_p, y - \delta_q),$$

(2.4)

where E denotes the shift operator. Diversity is introduced when δ_p and δ_q are not multiples of Δ. By design, one may deliberately set $\delta_p = p \delta$, $\delta_q = q \delta$ with $\delta = \Delta/3$.

A couple of remarks are in order. It is assumed that the lenslets have the identical views of the same object at the scene. The lenslet shifting, which is non-circulant, requires the additional knowledge or assumption on the boundary conditions in nu-
merical reconstruction. Subsection 2.2.4 discusses the procedures for computational integration of the multiple images and the numerical properties of the problem. The following subsection shows extends the sampling function of the array model described in (2.3) to allow for the use of focal plane coding masks.

2.2.3 Focal Plane Masks

The model framework of (2.1) and (2.3) allows for various focal plane coding schemes. Mask-based codes are introduced here, which are implemented in COMP-I program. Each lenslet is associated with a mask representing a unique code. Consider, for example, a 4×4 lenslet array. Figure 2.1 shows all the 16 masks, one for each lenslet, based on the Hadamard matrix. Every channel has a unique mask, and each pixel in that region is masked with the same code. In other words each subimage is coded uniquely. The pixel-wise sampling function can be described as follows,

$$s_{pq,ij}(pq, ij)(x, y, \tilde{f}(x, y)) = P_{ij}(x, y) \mathcal{H}_{pq}(x, y) \tilde{f}(x, y), \quad (2.5)$$

where the function \mathcal{H}_{pq} represents the codeword implemented by the mask at the (p, q) lenslet or channel. The first channel is clear or un-masked.

The masks, or two-dimensional codewords, are drawn from Hadamard matrices. The masks on a 4×4 lenslet array are constructed as follows.

$$\mathcal{H}_{pq} = \frac{1}{2} \left((H_4 e_q)(H_4 e_p^T) + ee^T \right), \quad (2.6)$$

where H_4 is the 4×4 Hadamard matrix with elements in $\{-1, 1\}$ (see Appendix A), e_k is the k-th column of the identity matrix, e is the column vector with all elements equal to 1. In other words, first, the outer product of the q-th column and p-th row of H_4 is formed. Then all the -1's are replaced with 0's. This result is shown in
Figure 2.1: The focal plane coding masks used for the 4×4 lenslet array based on the Hadamard matrix.
Figure 2.1, where the black sub-pixels block the light and represent zero values in the codewords H_{pq}. Masks with binary patterns are relatively easy to manufacture, and the fabricated element is described in Section 2.3. The masks have the effect of partitioning every single pixel into 4×4 subpixels.

The order of Hadamard matrices is limited to powers of 2. This limitation is lifted by introducing the following 0-1 valued and well-conditioned matrices

$$H_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \quad H_5 = \begin{pmatrix} H_4 & e \\ e^T & -1 \end{pmatrix}. \quad (2.7)$$

These are the leading sub-matrices of H_4 and H_5, respectively.

The sampling function specified pixel-wise by (2.5) and (2.6) is well conditioned for numerical image reconstruction. The next subsection shows that how the modified Hadamard focal plane coding scheme is more efficient and more stable compared to the shift based codes.

2.2.4 Decoding analysis

This subsection analyzes the decoding or integrating process, which is an important step for computational construction of a single image at the subpixel level, compensating the coarse resolution with the thin optics.

Assume the lenslet array has $P \times Q$ individual lenses. The pixel array A is partitioned into $P \times Q$ blocks, each block corresponding to a subimage with $M \times N$ pixels. Let $A(p, q, i, j)$ specify the (i, j) element in the (p, q) subarray. Also, there is a related array \hat{A},

$$\hat{A}(i, j, p, q) = A(p, q, i, j). \quad (2.8)$$

This form is simply a pixel rearrangement so that the (i, j) block in \hat{A} is composed of all the (i, j) pixels from the subarrays in A. While the block array A is a multiplex
of the subimages, \hat{A} is the image indexed by channel (p, q).

If all the pixels in the (i, j) block of \hat{A} were measured without being shifted or masked, they would have assumed identical values in the absence of any distortion. The single image would be one at the coarse level with $P \times Q$ sensor pixel constituting an image pixel. Focal plane coding is a tool which can aid in recovering the high resolution image.

The process of decoding for a system with the modified Hadamard codes is highly computationally efficient. The integration of multiple subimages at a coarse resolution level to a single image of higher resolution is direct and local within each pixel block in \hat{A}.

Theorem 1 Assume a $P \times Q$ lenslet array with the modified Hadamard coding (2.6). Then, the sampling function $P_{ij}H_{pq}$ partitions the (i, j) pixel into $P \times Q$ sub-pixels. Denote by X_{ij} the pixel-wide image $P_{ij}\hat{f}$. Let M_{ij} be the corresponding $P \times Q$ pixel block in \hat{A}, $M_{i,j} = \hat{A}(i,j,:,:)$, where \hat{A} is defined in (2.8). Then,

$$2M_{ij} = H_pX_{ij}H_q + (e^TX_{ij}e)e^T,$$ \hspace{1cm} (2.9)

and

$$X_{ij} = H_p^{-1}(2M_{ij} - M_{ij}(1,1)ee^T)H_q^{-1}. \hspace{1cm} (2.10)$$

The block array $X = [X_{ij}]$ renders the single integrated image.

In the theorem, Equation (2.9) describes the coded measurements of each pixel-wide image, Equation (2.10) is for decoding per pixel block. In the inversion process, the fact that the pixel $M_{ij}(1,1)$ is clear and therefore $M_{ij}(1,1) = e^TX_{ij}e$.

In addition to the simplicity and efficiency, the decoding process is well conditioned. The condition number of a matrix is the ratio of its largest to smallest eigenvalues in absolute value. It is a metric that can be used to quantify the worst
case loss of precision with presence of noise in measured data and truncation errors in image construction. Smaller condition numbers indicate less sensitivity to noise or error in the image reconstruction. Large condition numbers on the other hand suggest the potential of severe degradation in image resolution. The condition number for the image reconstruction from a $P \times Q/2$ lenslet array is amazingly small; it is approximately PQ, a half of the number of lenslets.

Corollary 2 Assume the modified Hadamard focal-plane coding for a $P \times Q$ array with P and Q as powers of 2. Then the condition number for the modified Hadamard coding and single-image construction is

$$\text{cond}(S_{PQ}) = \frac{(PQ + 4) + \sqrt{(PQ + 4)^2 - 4^2}}{4}. \quad (2.11)$$

The proof is in Appendix A. Table 2.1 provides the condition numbers for $K \times K$ arrays with K from 2 to 8. Whenever K is not a power of 2, matrix H_K is the $K \times K$ leading submatrix of H_8. These condition numbers are all modest, depending only on the partition of the sensor array.

In comparison, the coding by lenslet displacements entails quite a different kind of decoding process. For simplicity in notation, the statements in the following theorem are for lenslet array with equally spaced sub-pixel displacements.

Theorem 3 Assume a $P \times Q$ lenslet array with lenslet displacements in step size $\delta_x = \Delta_x/P$ in x-dimension and $\delta_y = \Delta_y/Q$ in y-dimension. Assume the sensor array is composed of $M \times N$ pixels. Let \hat{A} be the entire sensor array permuted as in (2.8). Each pixel in the sensor array is partitioned by the sampling function into $P \times Q$ sub-pixels. Denote by X the entire image at the sub-pixel level.

Part I. The mapping between X and \hat{A} is globally coupled,

$$\hat{A} = B_{P,M} X B_{Q,N}, \quad (2.12)$$
where $B_{P,M}$ is an $M \times M$ Toeplitz 0-1-valued matrix with P diagonals when the boundary values are zero.

Part II. The condition number for the decoding process depends on not only the lenslet partition $P \times Q$, but also the size of the entire detector array $M \times N$ and the boundary condition.

Part I of Theorem 3 describes the global coupling relationship between \hat{A} and X induced by the lenslet displacements, in contrast to the pixel-wise coupling by the modified Hadamard coding. The bands of the coupling matrices in both dimensions may shift to the right or left, depending on the assumed location of the center subaperture. In addition, it assumes zero values at the shifted-in subpixels. The following corollary gives a special case of the statements in part-II.

Corollary 4 Assume the conditions of Theorem 3. Assume in addition that $P = Q = 3$, $M = N$, which is a multiple of 3, the lenslet array is centered at the middle lenslet, and the boundary values are zero. Then, $B_{3,N}$ is symmetric and tri-diagonal. The condition number for decoding is bounded as follows,

$$
\left(\frac{1 + 2 \cos\left(\frac{\pi}{N+1}\right)}{1 + 2 \cos\left(\frac{2(N+1)/3}{N+1}\pi\right)} \right)^2 < \text{cond}(B_{3,N} \otimes B_{3,N}) < \left(\frac{1 + 2 \cos\left(\frac{\pi}{N+1}\right)}{1 + 2 \cos\left(\frac{2(N+1)/3}{N+1}\pi\right)} \right)^2
$$

(2.13)

More detail is provided in Appendix A. Table 2.2 shows the condition numbers for a few cases, which increase with the number of pixels in a subimage.

The substantial difference in the sensitivity to noise in decoding between the two coding schemes, as shown in Table 2.1 and Table 2.2, has a significant implication. The decoding process for the lenslet-displacement scheme with large sensor array may have to resort to iterative methods, as in TOMBO [9,15], because the computation by
direct solvers takes more operations and memory space, with few exceptional cases. Thus, one needs to determine effective strategies for initial values, iteration steps, and termination. In this type of shift coded system, significantly large numerical errors may result from the decoding procedure, thus introducing an additional source of errors. Moreover, the decoding process is also sensitive to any change in the boundary condition. These problems do not exist in the image integration process with the modified Hadamard scheme, a direct method based on the explicit expression in Eq. 2.10.

Table 2.1: Condition numbers for the decoding process associated with the modified Hadamard coding on $K \times K$ lenslet arrays

<table>
<thead>
<tr>
<th>K</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition #</td>
<td>3.7</td>
<td>11.8</td>
<td>9.9</td>
<td>28.8</td>
<td>24.8</td>
<td>50.8</td>
<td>34.0</td>
</tr>
</tbody>
</table>

Table 2.2: The condition numbers associated with $P \times P$ partition of $N \times N$ detector arrays.

<table>
<thead>
<tr>
<th>$P \times N$</th>
<th>420 × 420</th>
<th>1260 × 1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 3</td>
<td>4.86e+05</td>
<td>4.4e+06</td>
</tr>
<tr>
<td>5 × 5</td>
<td>4.04e+05</td>
<td>3.6e+06</td>
</tr>
<tr>
<td>7 × 7</td>
<td>4.34e+05</td>
<td>3.9e+06</td>
</tr>
</tbody>
</table>

The coding analysis demonstrated in this section underlines the design of a focal-plane coding system from the aspect of computational image integration. In particular, it has added more to the understanding of the TOMBO system. The decoding process is only a step of the single-image reconstruction process, in addition to the conventional steps. The final reconstruction is discussed in more detail in Section 2.5.

2.3 System Implementation

There is a distance from the theoretical coding design to its implementation. This section describes the technical challenges and our resolutions. Briefly, a stock camera
board was modified with a customized focal-plane coding element. For the optics, a custom lenslet array was manufactured by Digital Optics Corporation, a subsidiary of Tessera Technologies. Photographs of the camera are shown in Figure 2.2.

![Figure 2.2: Three perspectives of the focal plane coding camera. The pitch between holes on the optical table is one inch.](image)

2.3.1 Focal Plane Array

A Lumenera Lu100 monochrome board level camera is used for data acquisition. Built on an Omnivision OV9121 imaging sensor, the focal plane array consists of 1280 × 1024 pixels, with each pixel of 5.2 µm × 5.2 µm in physical size. The camera uses complementary metal-oxide semiconductor (CMOS) technology where each pixel contains a photodiode and an individual charge to voltage circuitry. These additional electronics reduce the light sensitive area of a pixel. However, each pixel has a microlens that improves photon collection. These microlenses provide a non-uniform improvement as a function of field angle of the incident light. The proposed model in Equation 2.1 assumes a response independent of the light’s incident angle on the detector which is not necessarily the case in real systems. Figure 2.3 shows a magnified image of the Omnivision sensor.
The conventional imaging sensor is isolated from the environment with a thin piece of glass by the manufacturer. However, the focal plane coding element needs to be placed in direct contact with the imaging sensor. It was challenging to remove the glass without damaging the pixels underneath. A procedure was developed to dissolve the adhesive securing the cover glass. A mixture of acetone and ethyl ether was applied around the perimeter of the sensor. At the same time, a razor blade was used to remove the adhesive residue. Complete removal of the cover glass required multiple chemical applications.

2.3.2 Lenslet Array

The lenslet array used in the COMP-I imager is a hybrid of two refractive surfaces and one diffractive surface per lenslet. The refractive lenses are fabricated using lithographic means on two separate 150 mm wafers made of fused silica. The final lens shapes are aspheric. On the wafer surface opposite one of the lenses, an eight-phase level diffractive element is fabricated using the binary optics process. The diffractive
element primarily performs chromatic aberration correction. The two wafers, one refractive, and the other with a refractive and diffractive surface, are bonded together, with the two refractive surfaces facing away from each other, via an epoxy bonding process. A spin-coated and patterned spacer layer of 20 µm thickness controls the gap between the wafers. After bonding, a dicing process singulated the wafer. Figure 2.4 shows the unmounted lenslet array.

![Figure 2.4: The unmounted refractive lenslet array.](image)

When integrated, the distance from the front lens surface to the focal plane is approximately 2.2mm. The imaging system functions as an F/2.1 lens with an EFL of 1.5mm. Centered at 550 nm, the system operates principally over the green portion of the visible spectrum. A patterned chrome coating on the first refractive surface of the optic is the limiting aperture. Prior to chrome deposition, a dielectric coating placed on the first surface acts as an IR cut filter.
2.3.3 Focal Plane Coding Element

The focal plane coding element is a patterned chrome layer on a thin glass substrate fabricated with reduction lithography by Applied Image, Inc. The registration of the focal plane coding element with the pixel axis is important. Proper alignment with the pixel axis used the non-imaging perimeter pixels of the 1280 × 1024 sensor. Specifically, subpixel sized placement marks were designed and patterned on the border outside the central 1000 × 1000 pixels on the glass substrate. The feature size on the mask is 1.3 \(\mu \text{m} \), designed to be one quarter of the camera pixel. Figure 2.5 shows these marks under magnification. Figure 2.6 shows two coding regions of the focal plane element.

The following process was developed to affix the glass substrate to the imaging sensor. A vacuum aided to hold the mask stationary while the camera board was positioned directly under it. Newport AutoAlign positioning equipment with 100 nm accuracy was used in this procedure. First, the mask was positioned to completely reside within the active area of the imaging sensor. Next, the stages aided to decrease the gap between the glass and the detector, and the vacuum was then turned off. A small needle dispensed a drop of UV curable adhesive on the vertical edges of the glass. In sufficient time, capillary action drew a very thin layer of the viscous adhesive between the glass substrate and the imaging sensor. In an active alignment process, captured images guided the registration the mask features with the pixels. The tip of the adhesive distribution needle nudged the mask to its final position. Lastly, a high intensity ultra violet lamp cured the adhesive to secure the mask.

2.3.4 Lens Alignment

Alignment of the lenslet element with the focal plane is a major challenge in the system integration. With a focal length on the millimeter scale, the depth of focus
Figure 2.5: Microscope image of the imaging sensor with a focal plane coding element. The white dots and bars are alignment marks on the focal plane coding element.

Figure 2.6: The focal plane coding element is shown under 100X magnification. Two aperture patterns are visible. The period of the bottom grating is equal to the pixel pitch.
for these lenses is on the order of micrometers. This requires very precise translation methods and very narrow tolerances. Additionally, a second problem exists in that determining the system’s best focus is not trivial.

In order to hold the optics, a custom lens mount was designed with computer aided design software. An Objet Eden 330 rapid prototyping machine printed the part using a stereolithography technique. A 6-axis precision positioning system adjusted the camera board with respect to the stationary lens.

In order to align the focus, the lenslet array images a bright point source onto the detector. The source is placed on axis and in the far field at a distance of well over 100 focal lengths. One traditionally determines that a system is in focus when a point source in the object plane produces the most concise point spread function (PSF). In this system, the spatial extent of the PSF is smaller than a pixel. This lens design very nearly reaches the diffraction limit, with PSF radius equal to $1.22\lambda f/d$, where λ is the wavelength, f is the focal length and d is the lens diameter.

Determining the best focus for a system is challenging when the desired spot size is smaller than a pixel. The PSF width cannot be easily measured because the pixels electronically down sample the optical field. In order to attack this problem, sequential images were captured while translating the camera along the optical axis. Qualitatively, when the image is out of focus, one observes light intensity spread over multiple pixels, and as the focal spot becomes smaller, the intensity becomes more localized to a single pixel. Numerically, one metric employed is the calculation of the standard deviation of pixel value intensities in a cropped region surrounding the spot. When out of focus, one expects to see a lower standard deviation because of the more uniform distribution. If the spot is in focus, nearly all intensity is on a single pixel and the calculated standard deviation is much higher.

A potential complication is the possibility that the system is aligned in such a
way that, when in best focus, an impulse falls centered on the border between 2 (or 4) pixels. The resulting captured image would still show intensity split between those pixels, even though the spot size is smaller than a single pixel.

However, the more interesting problem is determining the best focus for apertures with a focal plane coding element. If a point source images to a masked region of the detector, one would expect to see minimal response when the system is in best focus. Furthermore, if the spot size grows, it could potentially increase the pixel response of a given camera, with minimal effect on neighboring pixels. Thus, the result would appear nearly identical to a situation where the system is in best focus imaging a point source to an unmasked region on the detector. In order to differentiate between the two, one needs to translate the image with respect to the camera pixels.

2.4 Impulse Response Measurement

The focal plane coding element modulates pixel responses differently in each aperture. Since the period of the mask pattern is equal to the pixel spacing, pixels in a given aperture all share identical modulation characteristics. However, determining the exact registration of the mask with the camera pixels requires calibration.

A point source is approximated by a fiber coupled white light source placed in the far field. When translating the focal plane array perpendicular to the optical axis, the image of the point source moves correspondingly. Images were captured at multiple point source locations. A computerized translation achieves subpixel positioning of the point source on the detector. In Equation 2.1, $f(x, y) \approx \delta(x, y)$ represents a point source. Thus, we essentially measure the convolution of the lens’s PSF with the sampling function of the detector.

First, consider the aperture with a binary grating with a 50% duty cycle. The pattern is uniform in the horizontal direction. Facing the camera, this code appears
in the lenslet just below the open aperture. Figure 2.1 shows the designed focal plane code on each pixel. For the scan, the center of the point source was translated vertically in increments of 0.2\(\mu \)m compared to the 5.2\(\mu \)m pixel pitch. Figure 2.7 shows four adjacent pixels’ impulse responses as a point source is translated. Each line plots the response of a pixel as a function of the relative movement of the point source on the detector. The response gradually shifts from one pixel to the next as the center of the point source tracks from one pixel to its neighbor. The width of the impulse response measurement is broader than the 5.2\(\mu \)m pixel pitch because of the finite extent of the PSF. Figure 2.8(a) shows the vertical impulse response scan data for Aperture 5 whose code is shown in Figure 2.8. The open aperture’s impulse response is modulated by the focal plane coding pattern into a two peaked response.

This same impulse response measurement was taken for a 2 dimensional array of point source locations. Here, translation stages positioned a point source perpendicular to the optical axis in a two dimensional grid as images are captured from the camera. A typical scan might consist of 100x100 object locations covering approximately a 5x5 pixel square in image space.

Figure 2.9 shows impulse response data captured from an unmasked pixel. The asymmetric nature of the CMOS pixel’s sampling is most likely a result of the pixel’s lack of sensitivity where the charge to voltage circuitry resides. As expected, there is only minimal variation between responses across apertures. This was verified by observing nearly identical responses for pixels within a single subaperture. While Figure 2.9 shows just a single pixel, data was collected for its neighbors and inspected visually for consistency. The impulse response is shift invariant on a macro scale from pixel to pixel, but shift variant within a single pixel.

Even more interesting, though, is the modulation of the impulse response shown in Figures 2.10 and 2.11. The focal plane coding element’s effect is clearly visible.
Figure 2.7: Impulse response scan of four adjacent pixels in the open aperture. Each line corresponds to a pixel’s intensity as a function of the relative position of a point source on the detector plane.
(a) Impulse response scan of four adjacent pixels in aperture 5. Each line corresponds to a pixel’s intensity as a function of the relative position of a point source on the detector plane.

(b) Focal Plane Code for Aperture 5

Figure 2.8: Coded Impulse Response Scan for Aperture 5
Figure 2.9: The 2D pixel impulse response as a function of image location on detector plane.

The pixel exhibits a modified response due to the subpixel mask features. It is important to note again that a precondition of this result is that the PSF of the optical system is smaller than the features on the coding mask. Without such a well confined spot, the mask would not have such a significant effect. A larger spot would imply a narrower extent in the Fourier domain and would essentially low pass filter the aperture sampling function. An impulse response shape similar to the open aperture would be observed because the mask features (at higher spatial frequencies) would be attenuated.

2.5 Single Image Construction

This section describes the computational construction of a single image from the multiple images on the sensor subarrays. In addition to the conventional steps of noise removal and deblurring, the reconstruction has the distinct decoding step for integrating multiple images into a single image. This illustrates the reconstruction procedure with the particular case of the modified Hadamard coding scheme.
Figure 2.10: Impulse response of a pixel masked with a 50% horizontal grating with period equal to the pixel pitch.

Figure 2.11: Impulse response of a pixel masked with a checkerboard with feature size equal to one quarter pixel.
By the model (2.1), the subimage registered at each subaperture is considered as a projection of the same optical information along a different sampling channel. The construction of a single image from the multiple projections is therefore a back projection for image integration. The single-image construction consists of three major stages. The first two stages prepare for the final back projection stage, or the decoding stage.

First, every subimage corresponding to a lenslet is individually cropped from the mosaic image captured at the sensor array. The subimage is registered according to the sensor pixels associated with the lenslet. This cropping step requires the calibration of the subarray partition and alignment. The calibration may be done once for all in an ideal case, or carried out periodically or adaptively otherwise. Figure 2.12 shows the raw mosaic image, captured by the camera, of the ISO-12233 Digital Still-Camera Resolution Chart.

Second, each and every subimage is processed individually for noise removal, deconvolution of the corresponding lenslet distortions, as in the conventional image processing. The additional task in this stage is the adjustment of the relative intensity (in numerical values) between the subimages.

The final decoding stage follows Theorem 1. In terms of procedural steps, the subimages are first integrated pixel block by pixel block. Specifically, for a $P \times P$ lenslet array, the (i,j) pixel block is composed of the (i,j) pixels from $P \times P$ subimages. Next, local to each and every pixel block, a block image of $P \times P$ subpixels is constructed by using the explicit formula (2.10). Both steps are local to each pixel block, or parallel among pixels blocks. This simple, deterministic and parallel process has the great potential to be easily embedded into the imaging systems, using for example Field Programmable Gate Array (FPGA) hardware. We omit the detailed discussion on such embedding because it is beyond the scope of this paper.
Figure 2.12: A raw captured image from the multiple aperture focal plane coded camera. Here, the target is a portion of an ISO-12233 Digital Still-Camera Resolution Chart.
Figure 2.13 shows details of a reconstructed image (on the left) compared to the bicubic spline interpolation of the clear aperture lenslet subimage (on the right). To better visualize the reconstruction performance, a cross sectional pixel intensity plot is shown in Figure 2.14. The target here is a chirped grating obtained by cropping a section of an ISO-12233 Digital Still-Camera Resolution Chart.

2.6 Discussion

The success of a high-resolution optical imaging system equipped with a focal-plane coding scheme relies on the integrated design and analysis of the coding and decoding schemes with full respect to the potential and limitation of the physical implementation and numerical computation. This chapter presents a framework of focal-plane coding schemes for multi-channel sampling in optical systems. Focal-plane coding is a sampling strategy that modulates the intrinsic pixel response function. Among other feasible schemes in the framework, we discussed lenslet displacements and coding masks. In the former scheme, the displacement pattern can be determined by
Figure 2.14: A comparison of performance between the clear aperture, the multichannel focal plane coded reconstruction. The result from a conventional camera is shown for reference. The target is a chirped grating.
primary design and further calibration. The latter scheme has advantages in computational efficiency and stability. While masks block photons, one could avoid this loss by designing more complex sampling functions in the focal plane. Both coding schemes in the COMP-I project were implemented.

Conventional systems image the scene onto the detector and sample that distribution with a pixel array. These systems typically use the raw pixel intensity as the estimate for the image in that location resulting in a sampling rate directly related to pixel pitch. The COMP-I system does not use this sampling approach. By integrating the multichannel data we can achieve a smaller effective pixel size than what is measured in the individual subimages. This system does not attempt to deconvolve the optical PSF. Further, the best image recoverable from this technique is the one that reaches the detector before any electronic sampling and after any optical blur. The goal is to virtually subdivide raw electronic pixels by applying a different coding pattern (or sampling function) to each lenslet (or channel). This is possible because the coding mask has features on the scale of this virtual pixel size.

This chapter details a thin camera with lenslet array and focal plane coding element to mask each lenslet differently. It also describes the physical system built using custom optics and its alignment procedures. The system was tested to show that the coding masks have the designed functionality.
Chapter 3

Multichannel Shift Coding

3.1 Introduction

This chapter describes thin cameras operating in the long-wave infrared (LWIR) band (8-12 \(\mu\)m) using a \(3 \times 3\) lenslet array instead of a thicker single aperture optic. Each of the nine individual sub-imaging systems are referred to as an aperture. The system designed integrates optical encoding with multiple apertures and digital decoding.

The goal of this system is to use multiple shorter focal length lenses to reduce camera thickness. Aperture size limits imaging quality in at least two aspects. The aperture diameter translates to a maximum transmittable spatial bandwidth which limits resolution. Also, the light collection efficiency, which affects sensitivity, is proportional to the aperture area. A lenslet array regains the sensitivity of a conventional system by combining data from all apertures. The lenslet array maintains a camera’s etendue while decreasing effective focal length. However, the spectral bandwidth is reduced.

The use of multiple apertures in imaging systems greatly extends design flexibility. The superior optical performance of smaller aperture optics is the first advantage of multiple aperture design. In an early study of lens scaling, Lohmann observed that \(f/\#\) tends to increase as \(f^{\frac{1}{3}}\), where \(f\) is the focal length in mm [16]. Accordingly, scaling a 5 cm \(f/1.0\) optical design to a 30 cm focal length system would increase the \(f/\#\) to 1.8. Of course one could counter this degradation by increasing the complexity of the optical system, but this would also increase system length and mass. Based on Lohmann’s scaling analysis, one expects the best aberration performance and thinnest optic using aperture sizes matching the diffraction limit for required
resolution. In conventional design, aperture sizes much greater than the diffraction limited requirement are often used to increase light collection. In multiaperture design, the light collection and resolution functions of a lens system may be decoupled.

A second advantage arises through the use of multiple apertures to implement generalized sampling strategies. In generalized sampling, a single continuously defined signal can be reconstructed from independently sampled data from multiple non-redundant channels of lower bandwidth. This advantage lies at the heart TOMBO-related designs.

Third, multiple aperture imaging enables more flexible sampling strategies. Multiple apertures may sample diverse fields of view, color, time and polarization projections. There is a great degree of variety and flexibility in the geometry of multiple aperture design, in terms of the relationships among the individual fields of views and their perspectives to the observed scene. We focus in this paper, however, on multiple aperture designs where every lens observes the same scene.

The COMP-I1 Infrared Camera (CIRC) uses digital super resolution to form an integrated image. Electronic pixels often undersample the optical field. For LWIR in particular, common pixel pitches exceed the size needed to sample at the diffraction limited optical resolution. In CIRC the pixel pitch is 25 μm which is larger than the diffraction limited Nyquist period of $0.5\lambda f/\#$. This chapter shows that downsampled images can be combined to recover higher resolution with a properly designed sampling scheme and digital post processing.

In recent years, digital superresolution devices and reconstruction techniques have been utilized for many kinds of imaging systems. In any situation, measurement channels must be non-degenerate or non-redundant to recover high resolution information. An overview of digital superresolution devices and reconstruction techniques

1COMP-I stands for the compressive optical MONTAGE photography initiative.
is provided by Park et al. [17]. While numerous superresolution approaches gather images sequentially from a conventional still or video camera, the TOMBO system by Tanida et al. [9] is distinctive in that multiple images are captured simultaneously with multiple apertures. Another data driven approach by Shekarforoush et al. [18] makes use of natural motion of the camera or scene. This chapter addresses digital superresolution which should not be confused with optical superresolution methods, such as structured illumination [19]. While digital superresolution can break the aliasing limit, only optical superresolution can exceed the diffraction limit of an optical system. The best possible resolution that can be obtained by CIRC cannot be better than the diffraction limit of each of the nine subapertures.

CIRC was inspired by the TOMBO approach but differs in the design methodology and in its spectral band. The diversity in multiple channel sampling with lenslets is produced primarily by design with minor adjustment by calibration [20], instead of relying solely on the inhomogeneity produced in fabricating the lenslets. CIRC operates in the long-wave infrared band rather than the visible band. The DISP group at Duke University has reported on the development and results of thin imaging systems in the visible [21] range and the LWIR band [22], respectively.

This chapter describes a thin multiple aperture LWIR camera that improves on previous work in a number of ways. It uses a more sensitive, larger focal plane array, an optical design with better resolution and a modification in subsequent image reconstruction. These changes give rise to significantly higher resolution reconstructions. Additionally this chapter provides a detailed noise analysis for these systems by describing noise performance of the multichannel and conventional systems in the spatial frequency domain.

The remainder of this chapter provides additional motivation for the use of multiple apertures in imaging systems. It outlines the main tradeoffs considered in our
system’s design and describe the experimental system. An algorithm to integrate
the measured subimages is presented, and sample reconstructions are included to
calculate performance against a conventional system. Finally, numerical performance
metrics are investigated. Results of both the noise equivalent temperature difference
as well as the system’s spatial frequency response of each system are presented.

3.2 System Transfer Function and Noise

This section describes how the architectural difference between the multiaperture
camera and the traditional camera results in differences in modulation transfer, alias-
ing and multiplexing noise. This section presents a system model and transfer func-
tion for multiaperture imaging systems. Noise arises from aliasing in systems where
the passband of the transfer function extends beyond the Nyquist frequency defined
by the detector sampling pitch. Multiaperture imaging systems may suffer less from
aliasing, however they are subject to multiplexing noise.

Digital superresolution requires diversity in each subimage. CIRC offsets the
optical axis of each lenslet with respect to the periodic pixel array. The lateral
lenslet spacing is not an integer number of pixels meaning the pixel sampling phase
is slightly different in each aperture. The detected measurement at the \((n, m)\) pixel
location for subaperture \(k\) may be modeled as

\[
g_{nmk} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) h_k(x' - x, y' - y) p_k(x' - n\Delta, y' - m\Delta) dx\, dy\, dx'\, dy'
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) t(x - n\Delta, y - m\Delta) dx\, dy
\]

(3.1)

where \(f(x, y)\) represents the object’s intensity distribution, \(h_k(x, y)\) and \(p_k(x, y)\) are
the optical point spread function (PSF) and the pixel sampling function for the \(k^{th}\)
subaperture. \(\Delta\) is the pixel pitch. Shankar, et al. [22] discuss multiple aperture
imaging systems based on coding \(h_k(x, y) \) as a function of \(k \), and Chapter 2 discusses systems based on coding \(p_k(x, y) \). The focus here is on the simpler situation in which the sampling function is independent of \(k \) and the difference between the images captured by the subsapertures is described by a shift in the optical axis relative to the pixel sampling grid, such that \(i.e. \ h_k(x, y) = h(x - \delta_{xk}, y - \delta_{yk}) \). In this case, Fourier analysis of the sampling function

\[
t(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_k(x', y') p(x - x', y - y') dx' dy'
\]

yields the system transfer function (STF)

\[
|\hat{t}(u, v)| = |\hat{h}(u, v)\hat{p}(u, v)|
\]

Neglecting lens scaling and performance issues, the difference between the multi-aperture and conventional single aperture design consists simply in the magnification of the optical transfer function with scale. Fig. 3.1 compares the STFs of a conventional single lens camera and a \(3 \times 3 \) multichannel system. The plots correspond to an \(f/1.0 \) imaging system with pixels that are 2.5 times larger than the wavelength, \(e.g. \) 25 \(\mu m \) pixels and a wavelength of 10 \(\mu m \). As in Equation 3.1, all apertures share identical fields of view. For this plot, pixels are modeled as uniform sampling sensors, and their corresponding pixel transfer function (PTF) has a Sinc based functional form. The differing magnifications result in the conventional PTF being wider than the multi-aperture case. Since the image space NA and the pixel size are the same in both cases, the aliasing limit remains fixed.

The conventional system aliases at a frequency \(u_{alias} = 1/(2\Delta) \). The aliasing limit for multichannel system is determined by the shift parameters. If \(\Delta_{xk} = \Delta_{yk} = k\Delta/3 \), then both systems achieve the same aliasing limit. The variation in sampling phases
Figure 3.1: Comparison in system transfer functions between a conventional system and a multiple aperture imager. The vertical line at 0.2 depict the aliasing limits for each sampling strategy.
allows the multiple aperture system to match the aliasing limit of the single aperture system. The difference between the two systems is that the pixel pitch and sampling pixel size are equal to each other in a single aperture system, but the sampling pixel size is effectively 3 times greater than the pixel pitch for the multiple aperture system.

Noise arises in the image estimated from g_{nnk} from optical and electronic sources and from aliasing. In this particular example, one may argue that undersampling of the conventional system means that aliasing is likely to be a primary noise source. A simple model accounting for both signal noise and aliasing based on Wiener filter image estimation produces the means square error as a function of spatial frequency given by

$$
\epsilon(u, v) = \frac{S_f(u, v)}{1 + |STF(u, v)|^2 S_n(u, v) + |STF_a(u, v)|^2 S_a(u, v)}
$$

(3.4)

where $S_f(u, v)$ and $S_n(u, v)$ are the signal and noise power spectra, and $STF_a(u, v)$ and $S_a(u, v)$ are the STF and signal spectrum for frequencies aliased into measured frequency (u, v). As demonstrated experimentally in section 3.5, the multichannel and baseline systems perform comparably for low spatial frequencies. Reconstruction becomes more challenging for higher spatial frequencies as the STF falls off quicker in the multichannel case (see Figure 3.1). If aliasing noise is not dominant, then there is a tradeoff between form factor and noise when reconstructing high spatial frequency components. Of course, nonlinear algorithms using image priors may substantially improve over the Wiener MSE.

The ratio of the error for a multiple aperture and single aperture system as a function of spatial frequency is plotted in Fig. 3.2. This plot assumes a uniform SNR of 100 across the spatial spectrum. The upper curve assumes that there is no aliasing noise, in which case the STF over the nonaliased range determines the image estimation fidelity. In this case, both systems achieve comparable error levels at low
frequencies but the error of the multiple aperture system is substantially higher near
the null in the MA STF and at higher frequencies. The middle curve assumes that
the signal level in the aliased band is 10% of the baseband signal. In this case, the
error for the multiple aperture system is somewhat better than the single aperture
case at low frequencies but is again worse at high frequencies. In the final example the
alias band signal level is comparable to the baseband. In this case, the lower transfer
function of the multiple aperture system in the aliased range yields substantially
better system performance at low frequencies relative to the single aperture case.

The point of this example is to illustrate that while the ideal sampling system
has a flat spectrum across the nonaliased band and null transfer in the aliased range,
this ideal is not obtainable in practice. Practical design must balance the desire to
push the spatial bandpass to the aliasing limit against the inevitable introduction of
aliasing noise. Multiple aperture design is a tool one can use to shape the effective
system transfer function. One can imagine improving on the current example by
using diverse aperture sizes or pixel sampling functions to reduce the impact of the
baseband null in the multiple aperture STF.

It is interesting to compare this noise analysis with an analysis of noise in multiple
aperture imaging systems developed by Haney [23]. Haney focuses on the merit
function

$$M = \frac{\Omega}{V S \delta \theta^2}$$

where Ω is the field of view, $\delta \theta$ is the ifov, V is the system volume and S is the frame
integration time. Due to excess noise arising in image estimation from multiplex
measurements, Haney predicts that the ratio of the multiple aperture merit function
to the single aperture covering the same total area is

$$\frac{M_{MA}}{M_{SA}} \approx \frac{1}{n^3(1 + \sigma^2)^2}$$
where σ^2 is a noise variance term and n^2 is the number of subapertures used. Haney’s result is based on signal degradation due to multiplex noise and on an increase in integration time to counter this noise. It is suggested that only one or the other of these factors need be counted, meaning that under Haney’s methodology the degradation factor is

$$\frac{M_{MA}}{M_{SA}} \approx \frac{1}{n(1 + \sigma^2)} \quad (3.7)$$

Haney’s result suggests that the SNR for the multiple aperture system should be degraded by approximately $3\times$ for our model system rather than our prediction of comparable or superior low frequency performance and greater than $3\times$ SNR loss near the aliasing limit. This discrepancy is primarily due to Haney’s assumption that the pixel sampling function for the multiple aperture system is designed to flatten the STF, using for example the Hadamard coded detectors described in Chapter 2. Such

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure3.2.png}
\caption{Ratio of the Wiener filter error for the multiple and single aperture systems of Fig. 3.1 across the nonaliased spatial bandwidth for various alias signal strengths.}
\end{figure}
coding strategies dramatically improve the high frequency response of the multiple aperture system at the cost of dramatic reductions in low frequency image fidelity. As illustrated in Fig. 3.1, simple shift codes provide poor high frequency response but match the single aperture low frequency response.

Of course, the assumption underlying this discussion that MSE is a good image metric can be challenged on many grounds. Numerous recent studies of feature specific and compressive sampling suggest that optimal sampling system design should focus on robust sampling of image structure rather than pixel-wise sampling or STF optimization. Rather than enter into a detailed discussion of the many denoising, nonlocal or feature analysis and nonlinear signal estimation strategies that might be considered here, we simply note that multiple aperture design appears to be a useful tool in balancing constraints in focal plane design and read-out, optical system design, system form factor and mass and imager performance.

3.3 Optical Design and Experimental System

Instead of a conventional lens, our system subdivides the aperture into a 3×3 lenslet array. Each of these nine lenses meet the system’s required f-number, but achieves a reduction in thickness by using shorter focal lengths. The position of each center of the nine lenses has a unique registration with the underlying pixel array. This creates measurement diversity which enables high resolution reconstruction. As was done by Shankar et. al. [22], this design places each center with a 1/3 pixel shift with respect to one another in two dimensions.

The underlying system goals motivated the design of the lenslet array: an ultra-thin system with low f-number and excellent imaging performance over a broad field of view. Each lenslet consists of a germanium meniscus lens and a silicon field flattener. Both surfaces of the germanium lens are aspheric as is the top surface of the
silicon element. The bottom surface of the silicon element is planar. The \(f/1.2 \) lens combination is 5 mm thick from the front surface of the lens to the detector package. The full optical train is shown in Figure 3.3. Modulation transfer function (MTF) plots of the designed system are shown in Figure 3.4.

![Figure 3.3: The designed optical layout of a single lenslet.](image)

The germanium element was diamond-turned on both surfaces, with the front and back registered to each other within a few microns. Each lens was turned individually and mechanically positioned such that the decentration error is less than a few microns. The silicon lens was made lithographically, using a gray scale High Energy Beam Sensitive (HEBS) glass mask. The process exposes and develops a starting shape in thick resist then uses reactive ion etching to transfer the shape into the silicon. Sub-micron accuracy was achieved for the silicon element lenses.

The optics were attached to a 12-bit, 640 \(\times \) 480 uncooled microbolometer array with 25 \(\mu \)m square pixels. Each of the 9 lenslets images onto an area of about 80 \(\times \) 80 pixels. This multiple aperture technique requires approximately one quarter of the total detector pixels for image reconstruction. This uses such a large array primarily because of its availability, but a commercial system would likely utilize a different
Figure 3.4: The polychromatic square wave modulation transfer function (MTF) performance of each lens in the multichannel lenslet array as designed.

design. For example, one might use a segmented approach with small imaging arrays integrated on a larger backplane.

The germanium and silicon elements were aligned and mounted in a custom designed aluminum holder that is secured in front of the detector package. To optimize focus, Mylar spacers were used to shim the lens package appropriately from the detector package in increments of 25 μm. A prototyped aluminum enclosure protects the camera and electronics from the environment while also providing mounting capabilities.

The packaged COMP-I multichannel LWIR camera is shown in Figure 3.6 along with a conventional single lens system.
Figure 3.5: The front and back (inset) surfaces of the diamond-turned germanium element.

Figure 3.6: LWIR cameras used including the COMP-I Multichannel Camera (left) and a conventional single lens LWIR imager (right).
3.4 Image Reconstruction

There are nine lower-resolution images produced by the 3×3 lenslet array. The reconstruction process consists of two stages, registration and integration.

3.4.1 Registration

It is critical to register sub-frames from the lower-resolution images. Due to parallax, the relative image locations on the detector is dependent on object distance. To register, one of the nine subimages is chosen as a reference. Then the two dimensional correlation of that image with respect to the other eight cropped subimages is maximized. This results in a coarse registration on the order of a pixel which greatly improves efficiency of the reconstruction stage. These parameters may be saved as calibration data because they are nominally constant for scenes of fixed depth. Coarse registration data is applied in a second fine registration step described below.

3.4.2 Reconstruction

The downsampled images are integrated into a single one by the measurement equations,

$$H_k f = g_k, \quad k = 1, 2, \ldots, 9$$

where f is the image of the scene at the resolution level targeted by the reconstruction, g_k is the image of lower resolution at the k-th sub-region of the detector array, H_k is the discrete measurement operator related to the k-th aperture, mapping f to g_k. For the CIRC system, each measurement operator by design can be described in the following more specific form

$$H_k = \left(D_{2,k}B_{2,k}S_{2,k}\right) \otimes \left(D_{1,k}B_{1,k}S_{1,k}\right),$$

(3.8)
where S_i, the displacement encoding at the aperture; $B_{i,k}$, $i = 1, 2$, describes optical diffusion or blurring along dimension i associated with the k-th sub-aperture system; and D_i, the down sampling at the detector.

Iterative methods are used for the solution to the linear system, because the number of equations is potentially as large as the total number of pixels on the detector. Some algorithms that seem to work in simulation will fail to produce reliable results with empirical data, primarily due to substantial discrepancy between ideal assumptions and practical deviations. The reconstruction from measurements at the early stage of a system development has to deal with insufficient calibration data on system-specific functions and parameters as well as noise characteristics.

The underlying reconstruction model is called the Least Gradient (LG) model [24]. In the LG approach, the system of measurement equations is embedded in the following reconstruction model,

$$\mathbf{f}_{LG} = \arg \min_{\mathbf{f}} \| \nabla \mathbf{f} \|_2 \quad \text{s.t.} \quad \mathbf{H}_k \mathbf{f} = \mathbf{g}_k, \quad k = 1, 2, \ldots, 9 \quad (3.9)$$

where ∇ denotes the discrete gradient operator and $\| \cdot \|_2$ is the Euclidean norm. This LG model permits under-determined measurement systems. Among multiple solutions, the LG solutions are smooth. In theory, the LG reconstruction model (3.9) can be recast into the unconstrained minimization problem as follows,

$$\mathbf{f}_{LG} = \arg \min_{\mathbf{f}} \| \nabla (\mathbf{f}_p - \mathbf{d}) \|_2, \quad (3.10)$$

where \mathbf{f}_p is a particular solution to the system of linear equations

$$\mathbf{H}_k \mathbf{f}_p = \mathbf{g}_k, \quad k = 1, 2, \ldots, 9,$$

and \mathcal{N} is the null space of the linear system. Denote by \mathbf{N} a basis of the null space.
Then the solution to (3.10) can be expressed as follows:

\[f_{LG} = f_p - N(N^T \nabla^T \nabla N)^{-1}(\nabla N)^T \nabla f_p. \]

Based on the separability of the measurement operator(s) as shown in (3.8), we apply the LG model to the subsystems partially and independently, i.e.,

\[f_{k, LG} = \arg \min_{f_k} \| \nabla f_k \|_2 \quad \text{s.t.} \quad H_k f_k = g_k \]

(3.11)

for each and every \(k, 1 \leq k \leq 9 \). The solution to each of the individual partial models can be obtained, using for example the explicit solution expression for the corresponding unconstrained minimization problem.

This approach is similar to the Jacobi method for solving a large linear or non-linear system of equations. While a sub-system is decoupled from the rest by partitions in the measurements and the unknowns in the Jacobi method, a subsystem in (3.11) is set by the natural partition in measurements \(g_k \), a separation in the objective function, an extension of the scalar-valued function \(f \) into the vector of partial estimates \(f_{k=1:9} \) and a substitution in the objective function. Simply stated, this approach yields a stack of nine smooth images at the sub-pixel level in reference to the detector pixels.

There is more than one way to integrate the stacked image estimates. There exist multiple mappings from the vector-valued function to the scalar-valued function. Technically, this mapping involves the alignment of the separate estimates \(f_k, 1 \leq k \leq 9 \), at the sub-pixel level. One shall notice that the relative displacements of the lenslets do not play a significant role in the solution to each individual subsystem. Practically, this sub-pixel alignment is carried out again by correlation, at the sub-pixel level. The current registration method aligns the brightest regions in the field.

50
of view to best maximize the correlation of the centers of the subimages. Misaligned regions due to parallax are blurred as if out of focus. The separate image estimates in alignment can then be integrated into one as a weighted sum, for example. When each of the separated estimates is normalized in intensity, the weights are equal over well-overlapped sub-pixels and unequal over non-overlapping sub-pixels. The estimate by integration of the partial LG solutions can be used as the initial estimate for an iterative method for the coupled system (3.9). Such initial estimates from empirical data and without further refinement are shown in the next section.

Different algorithms may be used to upsample and integrate the data from each channel. Figure 3.7 compare 3 different approaches. This image shows the reconstruction of a 4 bar target image. The top image uses the LG reconstruction algorithm described above and shows the highest amount of contrast. The middle and bottom images interpolate with a standard linear and bicubic algorithm respectively. Each of the 9 channels are upsampled individually, and then the same alignment and combination procedure as the LG approach is used to integrate the images.

The actual computation we perform for our current imaging system consists of solving the subproblems \(\hat{H}_k \hat{f}_k = g_k \) for \(\hat{f}_k \) as above in (3.11), where \(\hat{H}_k = (DB) \otimes (DB) \) with \(D = I \otimes [111]/3 \) a linear operator that averages three contiguous pixels down to a single pixel, \(B \) an approximate gaussian blurring operator common to all lenslets and \(\hat{f}_k = (S_{2,k} \otimes S_{1,k})f \). The shifts \(S_k \) are recovered with the correlation alignment of the separate estimates \(\hat{f}_k \).

In comparison to some other reconstruction algorithms, this approach via partial LG solutions is computationally efficient and numerically insensitive to the boundary conditions for the CIRC system.
3.4.3 Results

Results of the reconstruction algorithm demonstrate system performance. This section includes data sets acquired at varying target ranges. Figure 3.8 shows the reconstruction of human subjects in a laboratory setting. Along with the processed image this figure shows the raw data acquired directly off the camera. For comparison, a cubic spline interpolation upsamples a single lenslet image. Integration of the multiple channels shows a clear improvement over this image.

To ensure the reconstructions do not introduce erroneous artifacts we compare them to images taken with a conventional single lens LWIR camera. The comparison system uses a 320×240 pixel array corresponding to approximately the same number of imaging pixels used by the multichannel system. Both cameras share comparable fields of view and utilize similar $25\mu m$ microbolometer detector technology. For the comparison system, internal electronics automatically adjust the gain level and
Figure 3.8: Side by side comparison between conventional and multichannel cameras. The person is at a distance of 3 meters; the hand is at approximately 0.7 meters. Both objects appear in focus with the CIRC as opposed to the conventional system due to the multichannel camera’s increased depth of field. The images were taken simultaneously, so some parallax is visible.
output data through an analog RS-170 (black and white) video stream. A computer capture card digitizes these video frames for analysis. The digitizer is the VCE-PRO Flat PCMCIA card made by Imprex Incorporated. Unfortunately, direct digital acquisition of pixel data was not possible for the comparison camera. The camera was manually focused.

The images in Figure 3.8 also demonstrate the significantly larger depth of field obtained by the multichannel system. The microlens array’s effective focal length of 6.15 mm is about 4 times shorter than the 25 mm focal length $f/1.0$ optic used in the conventional camera. A shorter focal length translates to a much shorter hyperfocal distance meaning close objects will appear more in focus.

Field data results show comparable performance between systems for targets at a distance of 42 meters (i.e. long range). Figure 3.9 compares the multichannel results to images from the conventional LWIR camera.

![Conventional LWIR Camera](image1.png) ![Multichannel Reconstruction](image2.png)

Figure 3.9: Side by side comparison between conventional and multichannel cameras. Target distance is approximately 42m. Both cameras image with comparable quality.
3.5 Experimental Results

3.5.1 Noise Equivalent Temperature Difference

Thermal imaging systems are often calibrated to measure the equivalent blackbody temperature distribution of a scene. In this application better performance means better discrimination between two regions of different temperature. Noise Equivalent Temperature Difference [25] is a metric for characterizing a system’s effective temperature resolution. By definition, NETD is the temperature difference where the signal to noise ratio is unity. NETD translates pixel fluctuations resulting from system noise into an absolute temperature scale. As noise statistics vary with operating temperature, the corresponding NETD fluctuates.

To experimentally calculate NETD, we image a collimated target aperture illuminated with a blackbody source. The target projector optics consist of an all reflective off-axis Newtonian telescope with a 2.75 degree field of view. The blackbody source has a 52 mm clear aperture, and it illuminates a 37 mm diameter circular copper target. Arbitrary target designs such as those shown in Figure 3.10 are milled in small metal discs which are selected with a target wheel. The copper provides a sufficient thermal mass to mask the blackbody source. Thus, the temperature of the target and the background can be independently controlled. Figure 3.11 details the experimental setup.

Effective NETD calculations are performed on large regions of constant temperature to avoid a reduction in contrast by the camera’s optical system. Large targets minimize high spatial frequency components. A full sized semicircle target (half moon) is used for these measurements clearly segmenting two temperature regions. To calculate NETD we use the following equation:
Figure 3.10: Copper targets used for collimator system.

Figure 3.11: Top-view of the experimental setup used for NETD and spatial frequency response measurements. A blackbody source illuminates a copper target which is then collimated. The camera under test is positioned in front of the output aperture of the projector.
\[\text{NETD} = \frac{\Delta T}{\text{SNR}} = \frac{(T_H - T_B)}{\text{mean(data}|T_H| - \text{mean(data}|T_B|)} \frac{\text{std(data}|T_B|)}{3.12} \]

\(T_H \) and \(T_B \) represent the ‘hot’ and ambient temperature regions created by a black-body source and \(\Delta T = T_H - T_B \). The variables \(\text{data}|T_H| \) and \(\text{data}|T_B| \) represent arrays of pixel values corresponding to those temperature regions. Here, signal is defined as the difference between the mean pixel response in each area, and the noise is the standard deviation of pixel values in the background region.

![Graph showing signal-to-noise ratio (SNR) comparison as a function of target temperature difference. The circles and plus signs correspond to the conventional and multichannel data points respectively.](image)

Figure 3.12: Signal-to-noise ratio (SNR) comparison as a function of target temperature difference. The circles and plus signs correspond to the conventional and multichannel data points respectively.

Noise fluctuations influence NETD calculations, especially at low signal to noise ratios. This is why NETD is traditionally calculated using higher contrast temperature regions. However, it may become problematic to do this using a computational system because nonlinear processing will distort results using Equation 3.12.

The semicircle target was imaged at a number of different temperature contrast settings and the results are shown in Figure 3.12. A linear regression is performed.
on the data set to interpolate the temperature at which the SNR is unity. Using this procedure, the NETDs for the conventional and multichannel cameras are 121 mK and 131 mK, respectively. Since both cameras utilize similar uncooled focal plane technology these fairly comparable results are expected. This discrepancy is likely due to the different lens transmissions of the two systems. Their total area, number of elements, and anti-reflective coatings are not identical.

3.5.2 Spatial Frequency Response

This subsection outlines an alternate interpolation method to combine our multichannel data. Aliasing is removed to recover contrast from bar targets with spatial frequencies beyond the Nyquist limit defined by the pixel pitch. High resolution results are recovered by combining discrete samples from each subaperture with registration information. Characterization of the subpixel shift of each channel gives the crucial reference needed for these reconstructions. Using a collection of periodic targets, it is possible to experimentally measure the systems spatial frequency response.

The Whittaker-Shannon interpolation formula gives the following expansion to reconstruct a continuous signal from discrete samples:

\[
f(x) = \sum_{n=-\infty}^{\infty} f\left(\frac{n}{2B}\right)\text{sinc}(2Bx - n) \tag{3.13}
\]

The reconstructed bandwidth, \(B\), is related to the sampling interval \(\Delta\) as: \(\Delta = 1/2B\). This strategy of recovering a continuous signal from discrete samples provides the basis for combining our multichannel data.

For the \(3 \times 3\) system presented in section 3.3, the lenses are positioned with 1/3 pixel offsets in 2 dimensions and all share the same field of view. Thus, in the
absence of parallax, the individual subimage data could be interwoven on a grid with a sampling period equal to one third the nominal pixel size.

Generalizing Equation 3.13 to allow for multiple channels we obtain:

\[f(x) = \sum_{k=1}^{K} \sum_{n=-N/2}^{N/2} m_k[n] \text{sinc}(2B'x - n + \delta_k) \] (3.14)

Here, \(m_k \) represents the discrete samples measured from channel \(k \). The offset registration between each of these sampling train is accounted by the \(\delta_k \) parameter. Nominally, \(\delta_k = \frac{k\Delta}{K} \). Also recognize that \(B' \) can be increased to \(KB \) because an increased sampling rate extends system bandwidth. Any choice of \(B' < KB \) is equivalent to simply low pass filtering the reconstructed signal. With a 33% fill factor, one could directly interleave the multichannel data without the need for this sinc interpolation strategy. However, a higher fill factor does not directly imply limited resolution. The pixel’s sampling function acts as a spatial filter which limits reconstruction contrast in the presence of noise.

This system only approximates the designed 1/3 pixel lenslet shifts. What follows is the characterization procedure used to register the channels and arrive at slightly modified \(\delta_k \) parameters. Reconstruction on nonideally sampled data is a growing research area studied by Unser [26] and others [27,28]. This reconstruction approach would not be appropriate for significant misalignments. However, better reconstruction results are achieved by tuning the registration parameters to the physical system.

First, the camera is mounted on a motorized rotation stage in front of the target projector discussed in Section 3.5.1. An appropriate temperature setting is chosen for good contrast. The stage rotates the camera in regular controlled steps shifting the target on the detector a fraction of a pixel at each step. Simultaneously from each aperture we record data at every camera position. The full scan should result
in the target moving by a handful of pixels on the detector. This set of registered frames from each channel contains registration information.

To create diversity in each aperture, the lenslet pitch was designed to be a non-integer multiple of the pixel width. Each channel measures the same object, but it is recorded with a unique offset. More specifically the attempt is to prescribe a unique $1/3$ pixel stagger in x and y for each of the 9 lenslets. Through correlation or other strategies, shift information can be extracted from the position information. Figure 3.13 plots the responses from a pixel in each of 3 channels to a periodic bar target as a function of camera angle. The position based offset between signals is directly related to the subpixel registration of each channel.

![Normalized Pixel Responses](image)

Figure 3.13: Registered responses of a pixel in each aperture for a rotating target scene.

Interpolations are provided to demonstrate the recovery of higher resolution data from registered downsampled multichannel data. In the extreme cases, each downsampled channel samples below its corresponding “Nyquist” limit measuring aliased data. Reconstruction is contingent upon two major factors. First, the high perfor-
mance optical system must maintain the higher spatial frequencies (or resolution) when imaging onto the pixel array. Second, the subpixel shifts between each channel \(m_k \) must be adequately characterized.

The data from Equation 3.14 and the characterization information from Figure 3.13 is used to generate a resolution improvement in one dimension by processing data from three apertures on a row by row basis. Figure 3.14 shows a side by side comparison between the raw data and interpolation for a vertically placed 4 bar target. The bar width in the target aperture is 3.18 mm. Using the collimator focal length of 762 mm, the calculated spatial frequency is 0.120 cycles/mrad. High contrast levels are present in the subapertures as well as the reconstruction. This same approach is also used on a more aggressive target. The raw data and interpolation for a target with 1.98 mm features (0.192 cy/mrad) are shown in Figure 3.16. This target corresponds to a period of 32.2 \(\mu \)m on the focal plane. As this is smaller than twice the 25 \(\mu \)m pixel pitch, recovery of contrast demonstrates superresolution reconstruction. Figure 3.17 shows an intensity plot for one row. The 4 peaks in the interpolation (solid line) correspond to the 4 bars of the target. Using one subaperture alone (circles), it would be impossible to resolve these features. Further, the left 2 bars in the conventional systems response (dotted line) are nearly indistinguishable.

For these reconstructions \(B' = 1.7B \), which is slightly less than the theoretical factor of 3 improvement possible with this system. Misalignment fundamentally limits the full capability. As mentioned above, this conservative interpolation result is equivalent to low pass filtering. However, this choice of \(B' > B \) allows for demonstration of the alias removal capabilities of the process. Note that these results are generated from a single row vector from 3 apertures. While the approach is extendable to two dimensions, some experimental difficulties limit our abilities to provide them here. Subpixel alignment and registration challenges and nonuniformity are the
(a) Raw samples from one channel of the multiaperture camera. The bar target frequency is approximately equal to the critical frequency.

(b) Interpolation performed by combining data from 3 subapertures to improve contrast in the horizontal dimension.

Figure 3.14: Data and corresponding interpolation image for a 4 bar target with spatial frequency of 0.120 cy/mrad.

Figure 3.15: Cross sectional intensity plot from the fine 4 bar target reconstruction shown in Figure 3.14. The solid line shows interpolated result. Data points from one channel of the multiple aperture camera are indicated by circles. Data from the conventional system is shown by the dotted line.
(a) Raw samples from one channel of the multiaperture camera. Aliased data is measured because the bar target frequency exceeds the critical frequency.

(b) 3 channel interpolation demonstrating resolution improvement in the horizontal dimension.

Figure 3.16: Data and corresponding interpolation image for a 4 bar target with spatial frequency of 0.192 cy/mrad.

Figure 3.17: Cross sectional intensity plot from the fine 4 bar target reconstruction shown in Figure 3.16. The solid line shows interpolated result. Data points from one channel are indicated by circles. Data from the conventional system (dotted line) show that the target frequency approaches the aliasing limit.
major limiting factors.

This work demonstrates the recovery of contrast from aliased data samples. To quantify the results, fringe visibilities are calculated for multiple 4 bar targets with each one corresponding to a different spatial frequency. The following formula is used to quantify the contrast:

\[V = \frac{\bar{I}_{\text{max}} - \bar{I}_{\text{min}}}{\bar{I}_{\text{max}} + \bar{I}_{\text{min}}} \]

(3.15)

where \(\bar{I}_{\text{max}} \) and \(\bar{I}_{\text{min}} \) represent the average of intensities of the 4 local maxima and 3 local minima, respectively. Table 3.1 compares these calculated values to the response of a single lenslet in the multichannel system as well as a conventional imaging system.

<table>
<thead>
<tr>
<th>Calculated Target Spatial Frequency (cy/mrad)</th>
<th>Conventional System Contrast</th>
<th>Single Lenslet Contrast</th>
<th>Multichannel Reconstruction Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.120</td>
<td>77%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>0.136</td>
<td>55%</td>
<td>20%</td>
<td>28%</td>
</tr>
<tr>
<td>0.150</td>
<td>55%</td>
<td>aliased</td>
<td>18%</td>
</tr>
<tr>
<td>0.167</td>
<td>40%</td>
<td>aliased</td>
<td>14%</td>
</tr>
<tr>
<td>0.192</td>
<td>31%</td>
<td>aliased</td>
<td>11%</td>
</tr>
</tbody>
</table>

3.6 Conclusion

This chapter extends the field of multiple aperture imaging by describing the design and implementation of a thin LWIR camera using a \(3 \times 3 \) lenslet array. The multiple aperture approach provides a thickness and volume reduction in comparison to a conventional single lens approach. To form a single image, the 9 subimages are combined computationally in post processing.

A working prototype has been constructed, and its data has been extensively
analyzed. A LG image reconstruction algorithm has been implemented that shows better results than linear and spline interpolation. The quality of natural scene imagery appears comparable to that produced by a conventional single lens camera. Quantitatively, similar Noise Equivalent Temperature Difference results are obtained between these two systems. Reconstruction requires system characterization that involved determining the relative subpixel registration of each lenslet by scanning a high frequency target with subpixel precision. Bar target data at multiple spatial frequencies was reconstructed using these registration parameters. This chapter shows the combination of aliased data from multiple subapertures to reconstruct high frequency bar targets. Joint post processing of the subimages improves resolution beyond the limit of a single lenslet.
Chapter 4

Multichannel Narrow Band Spatiospectral Coding

4.1 Introduction

Spectral imaging results in a one dimensional spectrum vector at every point in a two dimensional image, thus forming a three dimensional “datacube”. The spatial and spectral content of a scene can be analyzed to perform object identification and recognition, and wide-area chemical analysis. There are numerous applications in the fields of environmental sensing, military targeting and tracking, medical diagnostics, and industrial process control.

![Datacube](image)

Figure 4.1: Datacube
A graphical representation of the datacube depicting 2 dimensions of spatial information and 1 dimension of spectral information

Traditional color digital cameras are essentially three channel (red, green, and blue) broadband spectral cameras. Consumer focal planes commonly accomplish this differentiation by incorporating a mosaic of color filters directly on the pixels.
Bayer of Eastman Kodak was the first to introduce this technique [29]. Figure 4.2 depicts a common arrangement utilizing 50% green, 25% red, and 25% blue, and alternate patterns exist.

![Figure 4.2: Bayer Pattern](source: http://en.wikipedia.org/wiki/File:Bayer_pattern_on_sensor.svg)

This paradigm is widespread for visible color imaging, and the strategy is compelling for mass production. Interference filters are not common on cameras sensitive in other wavelength bands due to limited demand and increased design complexity. In addition, specific applications require different spectral ranges and resolutions. In these situations, custom thin film color filters would likely not be practical.

This chapter presents a novel technique to perform multichannel narrow band spectral imaging. It uses a collection of optical elements to spectrally filter a scene differently at each pixel location. Similar color mosaic data is obtained, but the generation is different.

The sampling of narrow band spectral channels represents one major departure from conventional color imaging. Narrow band sampling becomes much more complex if it were implemented using traditional pixel filtering methods such as organic dye
or dielectric stacks. Sharper spectral responses require more dielectric layers than required for broadband designs.

This method provides a much more inexpensive and robust way to perform spectral imaging than other approaches. It makes it much more feasible to operate in non-visible wavelength bands since it requires only lenses, prisms, and aperture masks in combination with a broadband focal plane array. A prototype system in the long wave infrared is constructed to demonstrate four channel spectral imaging in this challenging light band. This is a relatively low cost system in comparison to a two band spectral imaging with thin-film interference filters by Gluck et. al. [30] which requires a custom focal plane array.

Spectral imaging in the LWIR opens the possibilities to extract much more information about a scene. Traditional LWIR cameras only measure the relative intensity at each pixel location. A false color may be applied to the images by coloring regions radiating more power as hot. These methods assume that all objects share the same emissivity; they do not necessarily reflect an object’s absolute temperature or spectrum. A blackbody radiator’s temperature defines the spectrum of light emitted, however, the total power radiated is also a function of emissivity. Multispectral imaging enables joint estimation of an object’s temperature and emissivity. Furthermore, it enables differentiation of traditional blackbody sources from those with more complex radiation or reflective spectra.

4.2 Elementary Example

Spectral imaging relies on building optical systems that provide the ability to create an impulse response that varies in wavelength. This is achieved by manipulating the datacube. Fortunately, tools are available to manipulate the datacube with known transformations. Three fundamental transformation are:
Punch operations are performed with aperture masks. Placed in an imaging plane, masks either block or transmit incident on them. Masks sometimes reside in a Fourier plane, and in this case they operate as spatial filters. Lenses guide light from one imaging plane to the next. Sheer operations may be obtained by introducing a dispersive element in between lenses. The implementation described in this chapter uses a prism in collimated space. Gratings are another commonly used dispersive element. Smash is simply a shorthand description of light detection. Broadband detectors integrate all light incident on them, so essentially each pixel operates as an individual windowed smasher. These transformations are depicted in Figure 4.3.

The following subsection describes an elementary example to aid in understanding the narrow band architecture. All of these systems rely on a dual dispersive architecture which has been described by Gehm et. al. [31]. Figure 4.4 shows a design overview. A primary lens images a scene onto an intermediate image plane. The image is relayed onto a second intermediate imaging plane and then a third time onto the detector. Both of these relays contain dispersive elements which sheer the datacube in opposite directions to one another. The opportunity to introduce coding masks exists at both intermediate image planes.

In these dual dispersive systems, the primary lens is the only adjustment which should be left to the end user (once the system is aligned). Everything behind that lens essentially acts as a universal spectral imaging platform which may replace any conventional focal plane.
Figure 4.3: 3 fundamental datacube transformations.

Figure 4.4: Dual-disperser hyperspectral imaging architecture.
4.2.1 Direct measurement of individual wavelength channels

The implementation of the example can be achieved with two equal and opposite dispersive elements and one coding mask. This is a non-multiplexed simplification of the system proposed by Gehm et. al. [31]. The system produces a color filtered image on the detector. Analogous to the Bayer pattern, each detector pixel measures only one color band. However, the filtering here is achieved through dispersive optics and a modulating mask aperture instead of wavelength filters on each pixel.

It may be helpful to imagine the system’s performance if the coding mask was removed. In this situation, the dispersive stages cancel each other, and an image of the first intermediate image plane is relayed onto the detector. The detector pixels integrate a conventional broadband image.

Introducing the mask punches holes through a sheered datacube which imposes a spatially varying spectral filter on the scene. And the mask is designed to block all but one spectral channel per object location. Since the center wavelength of this bandpass filter varies spatially, a different channel is passed based depending on the pixel’s spatial location.

In more detail, a scene is imaged onto a coding mask through dispersive optics. This dispersion introduces a lateral shift in the scene based on wavelength. Along this dispersive direction, the coding mask contains regularly spaced openings with period equal to the dispersion distance for the full system bandwidth on the coding mask. There is only one opening per period, and the duty cycle of the mask is equal to the reciprocal of the number of channels. A second stage relays the image of the mask onto the pixel array. This set of optics removes all the dispersion introduced by the first set of optics so that the resulting image on the detector is registered. Since the mask selectively transmits only one wavelength channel at each pixel, the resulting measured image is essentially a color filtered image.
The full bandwidth of light incident on an element is dispersed on the intermediate image plane.

Periodic slits on the mask selectively transmit only one wavelength channel for each location.

A second set of optics relays the light onto the detector, removing the dispersion introduced.

Every detector pixel corresponds to a registered location on the intermediate image plane.

A scene is imaged onto the intermediate image plane by an objective lens.

Light originating from adjacent locations on the intermediate image plane overlaps on the mask, but there is no ambiguity on the detector.

The linewidth of each channel is approximately the total system bandwidth divided by the number of channels.

Figure 4.5: A one dimensional (cross section) diagram detailing the direct measurement of individual spectral channels. This graphic superimposes the light path from 3 object locations. White light illuminates each pixel. The overlap shows how red light from one object location and blue light from another map to the same location on the coding mask.
4.3 System Architecture

The overall goal of the prototype system built is to measure four narrow band channels of LWIR light centered at 8.25, 9.2, 10, and 10.75 µm. This section describes the overall architecture and section 4.5 specifies the design parameters in more detail.

The introduction of more than one patterned aperture mask in spectral imagers offers greater flexibility to design more complex spectral sampling functions. This design includes two coded apertures to selectively measure narrow spectral bands at periodic spatial locations in 2 dimensions. However, the technique extends to the use of 2 or more cascaded stages of dispersive optics and coding masks.

The effective system here maps all spectral channels of interest from a spatial location to adjacent pixel locations on the detector. This group of pixels corresponds to a single object 'pixel' whose full spectrum is measured in a single time step. Each detector pixel measures exactly one spectral channel in a single object location. The spectral channels are not coupled or multiplexed on the detector in this implementation. Since the spectral channels from a given object location are split across multiple pixels and measured individually, not every spatial location can be measured. The spatial sampling structure of this system is periodic. Additionally, the system can be designed to accommodate a full range of fields of view.

There are two intermediate image planes in this system in addition to the image plane at the detector. A coded aperture mask is introduced at each intermediate image plane, modulating the intensity transmittance. An objective lens images the scene of interest onto the first mask. The aperture code selectively transmits certain object locations and blocks other points in the object. This mask acts solely as a spatial filter. The next stage of the system images this plane through a dispersive element onto a second intermediate image plane. This dispersion introduces a lateral shift in the object based on wavelength. Thus only the spectra from certain object
The full bandwidth of light incident on a slit in the primary mask is dispersed on the second mask. Periodic slits on the second mask selectively transmit only certain wavelength channels. A second set of optics relays the light onto the detector. Most, but not all of the dispersion is removed. The detector samples spectral channels with narrow linewidth across a broad bandwidth. Light originating from adjacent slits on the primary aperture overlaps on the second mask, but there is no ambiguity on the detector. A scene is imaged onto the primary mask by an objective lens.

Figure 4.6: A one dimensional (cross section) diagram detailing the direct measurement of individual spectral channels. This graphic superimposes the light path from 2 object locations. White light illuminates each pixel. The mask feature size corresponds to 2 detector pixels.
locations get dispersed onto the second intermediate image plane.

At the second intermediate image plane, a mask spatially modulates the light. However, because of the dispersion introduced, the second mask acts as a spatiotemporal filter on the original source datacube. For the design disclosed, the second mask’s transmittance is identical to the first mask. The periodic structure of this element essentially combs the dispersed spectra and is responsible for creating very sharp linewidths associated with each channel. The exact designs of the masks are functions of the desired spectral response.

The implemented design introduces a relatively larger amount of dispersion in comparison to the system designed in Section 4.2.1. Because of this, an equivalent sized opening on the secondary mask introduces a very sharp spectral response. The last set of relay optics images the transmitted light from the second intermediate image plane onto the detector plane. In this design, the dispersive optics remove most, but not all of the dispersion. The wavelength channels do not all return to a single pixel, rather they map to a linear group of pixels. This makes it possible to directly measure each wavelength channel individually. With the disclosed design there is no ambiguity on the detector because the dispersive amounts are chosen in conjunction with the period of the first coded aperture to ensure channels from one spatial location do not overlap their neighbor.

4.4 Mathematical Model

This transfer function analysis models the intensity of each spectral channel at each image plane. The masks, dispersive elements, and optics are all considered ideal for this basic analysis.

The primary lens of this system focuses the source onto the first mask aperture. The object distribution is modeled as a 3 dimensional function $S(x, y; \lambda)$. Since
masks solely act as spatial filters, they modulate all spectral channels at a given spatial location equally. The intensity distribution immediately after transmission through the first mask can be described as

$$S_0(x, y; \lambda) = S(x, y; \lambda)T_1(x, y)$$ \hspace{1cm} (4.1)$$

where $T_1(x, y)$ is the transmittance of the first mask.

The spectral density just prior to the second intermediate image plane is given by

$$S_1(x, y; \lambda) = \int \int dx' dy' \delta(x' - [x + \alpha(\lambda - \lambda_c)])\delta(y' - y)S_0(x', y'; \lambda)
= S(x + \alpha(\lambda - \lambda_c), y; \lambda)T_1(x + \alpha(\lambda - \lambda_c), y)$$ \hspace{1cm} (4.2)$$

Here the Dirac delta functions describe propagation through unity-magnification imaging optics and a dispersive element with linear dispersion α and center wavelength λ_c. Note this model assumes linear dispersion, which is approximately true only over limited wavelength ranges.

In general, letting $T_2(x, y)$ represent the transmittance of the second mask, the spectral density just after the second intermediate image plane is

$$S_2(x, y; \lambda) = S_1(x, y; \lambda)T_2(x, y)
= S(x + \alpha(\lambda - \lambda_c), y; \lambda)T_1(x + \alpha(\lambda - \lambda_c), y)T_2(x, y)$$ \hspace{1cm} (4.3)$$

Finally, a second set of optics relay the image through another dispersive element with a different linear dispersion β and equal center wavelength λ_c. The spectral
density at the detector, \(S_3(x, y; \lambda) \) is given by

\[
S_3(x, y; \lambda) = \int \int dx' dy' \delta(x' - [x + \beta(\lambda - \lambda_c)]) \delta(y' - y) S_2(x', y'; \lambda) \\
= S_2(x - \beta(\lambda - \lambda_c), y; \lambda) \\
= S(x + (\alpha - \beta)(\lambda - \lambda_c), y; \lambda) \\
\times T_1(x + (\alpha - \beta)(\lambda - \lambda_c), y) T_2(x - \beta(\lambda - \lambda_c), y)
\]

(4.4)

4.5 System Implementation and Components

The following section describes the components used to implement the multichannel narrow band spectral camera. Figure 4.7 shows the fully integrated system.

![Figure 4.7: A photograph of the fully integrated LWIR multispectral system.](image)

4.5.1 Camera and Lenses

The system is built on a 640 × 480 uncooled microbolometer array manufactured by Raytheon Company. This focal plane array has 25 \(\mu \)m square pixels. Since digital output of this camera was unavailable, a VCE-PRO Flat PCMCIA card made
by Imprex Incorporated digitized the analog video output. A software interface to
the camera allows for tuning of the gain and offset parameters as well as resetting
the nonuniformity correction (NUC). Variations in the pixel to pixel response are
minimized through the use of NUC.

4.5.2 Mask Design

Two identical masks are used in this system. The duty cycle of the periodic square
wave pattern (in the dispersion direction) is 25% which reflects the desire to measure
4 spectral bands. This system uses horizontal dispersion, so all the rows operate
independently. One mask implementation could be a series of vertical slits. However,
the masks chosen for this system staggered the mask features, and Figure 4.8 shows
the pattern. The stagger creates a more uniform spatial sampling pattern.

The use of 2×2 pixels per mask feature reduces the MTF requirements on the
lenses and reduces the cross-talk between the spectral channels. This leads to $50 \mu m$
features given the $25 \mu m$ pixel pitch.

![Figure 4.8: Cropped region of designed mask aperture showing repeated pattern
with $50 \mu m$ feature size.](image)

78
4.5.3 Prism Design

Two sets of two-element prisms provide the dispersion. A two-element design keeps the system coaxial, reduces the mounting complexity, and allows the lenses to be placed very close to the prisms to reduce vignetting. The dispersion characteristics of germanium and zinc sulfide provide adequate dispersion with 50 mm focal length lenses (germanium has a very low variation of its index with wavelength, zinc sulfide has a very high variation). The design of the prisms is driven by the requirement for 4 mask features (200 \(\mu \)m) of dispersion between the first two spectral channels (8.25 and 9.2 \(\mu \)m). The second set of prisms provides 3 mask features (150 \(\mu \)m) of dispersion between the first two spectral channels. An effective 2 pixel shift is implemented for the 9.2 \(\mu \)m band in reference to the 8.25 \(\mu \)m at the detector plane for a given spatial location. ZEMAX optical design software is used to model the system and determine the exact prism angles.

![Prism Design](image)

Figure 4.9: The two element prism designed with the aid of ZEMAX. This is the prism from the first stage, comprising of a germanium and a zinc sulfide wedge.

The other spectral channels passed by the system are determined from the ray-tracing software to be 10.0 and 10.75 \(\mu \)m. Further spectral channels can be blocked
by a short-pass filter in the system if needed. This is shown in Figure 4.10.

Figure 4.10: ZEMAX ray trace showing the spot diagram of one stage of the LWIR system. The dispersion introduces a lateral shift of 200 µm between channels.

4.5.4 Mechanical Design

Components are secured to dovetail clamps which fasten onto a Thorlabs XT34 Single Dovetail rail. This platform provides both convenient alignment capability and significant structural rigidity making it a desirable prototyping system.

Two machined aluminum modules each hold a mask and two lenses. The lenses are secured with threaded holes in this module. The mask is mounted in a 2-axis stage (Newport model LV1-xy) for alignment.
4.6 Calibration

This section describes the equipment and procedures used to align the components of this LWIR hyperspectral camera.

4.6.1 Noise Equivalent Temperature Difference

The constructed hyperspectral system is built on a conventional microbolometer array sensitive to broad band LWIR light. The optical system relays a wavelength filtered image onto the detector plane. Roughly speaking, the components of this instrument were aligned individually starting with the microbolometer back end and working toward the objective lens. The first step is focusing the back lens L5 at infinity with the aid of the collimator system. At this stage, traditional LWIR metrics set an upper bound on camera performance.

The NETD was tested according to the same procedure detailed in Chapter 4, and Figure 4.11 shows the SNR as a function of temperature difference. A NETD of 101 mK was obtained for this imaging system.

4.6.2 Monochromator Calibration

A slit monochromator provides a pure arbitrary narrow band illumination source. These experiments use an iHR320 Imaging Spectrometer manufactured by Horiba Jobin Yvon which has a focal length of 320 mm and f/4.1 optics. For LWIR band measurements, a glowbar source is imaged onto the input slit and is dispersed internally by a 60 lp/mm ruled grating. Figure 4.12 shows the spectral response of the grating. Computer controllable entrance and exit slits are adjustable up to a maximum of 7 mm. Wavelength selection is also automated by rotating the grating turret.
Figure 4.11: Signal-to-noise ratio (SNR) comparison as a function of target temperature difference. The circles represent the data captured from the LWIR hyperspectral backend imaging system.

Figure 4.12: Spectral Efficiency Curve for the 60 lp/mm ruled grating
The Newport 6363 glowbar source illuminates the entrance slit of the monochromator. Its nominal radiating area is $6.4 \times 17.5\text{ mm}$. Nominally this operates at up to 12 V/12 A (140 W typical). The source approximates a very high emissivity blackbody radiator with operating characteristics detailed in Figure 4.13. The spectral radiance for a blackbody radiator [32] varies as a function of wavelength (λ) and temperature (T in kelvin) as

$$I(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$ \hspace{1cm} (4.5)$$

where h is Planck’s constant and k is the Boltzmann constant. Figure 4.14 shows the calculated relative spectral intensities for a typical source temperature ($1000^\circ C$).

![Figure 4.13: Operating Characteristics for the Newport 6363 Glowbar source](image)

The monochromator’s automated turret is a repeatable instrument, however, it requires calibration to verify the wavelength targeted is properly outputted. Three bandpass filters aid in monochromator calibration and their vendor provided calibration information is detailed in Table 4.1. The circular thin film filters, purchased from Spectrogon, are 1 mm thick and have a diameter of 25.4 mm. Specifically, they
verify the accuracy and linearity of the wavelength selection mechanism. One at a time, each filter is positioned at the output slit of the monochromator and data is acquired for a series of wavelength settings. The bandpass filters provided an absolute reference to determine the appropriate monochromator setting to guarantee the desired spectral output. Figure 4.15 shows side by side photos of this configuration in both the visible and LWIR wavelength bands.

Table 4.1: Narrow band filters used to calibrate the monochromator.

<table>
<thead>
<tr>
<th>Center Wavelength</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>8200 nm</td>
<td>174 nm</td>
</tr>
<tr>
<td>10461 nm</td>
<td>234 nm</td>
</tr>
<tr>
<td>12163 nm</td>
<td>190 nm</td>
</tr>
</tbody>
</table>

4.6.3 Prism Characterization

The dispersion of each prism was independently verified with the monochromator source prior to full system integration. For single prism characterization, the optical train consisted of the first mask module (L1, M1, and L2) followed by the prism under
Figure 4.15: Images of the monochromator coupled with a narrow band filter.
test. This light was then focused with lens L5 onto the detector. The flexibility of
the modular rail system facilitated these experiments. With the system focused on
the monochromator’s exit slit, data was acquired at a series of wavelengths. The
detected images showed the same small portion of the mask shifting horizontally as
a function of wavelength.

The mask locations corresponding to the key system wavelengths were investi-
gated. Using the 8.25 µm image as a reference, the coordinates of the slit’s location
in the 9.2 µm image were examined. For prism P1, the relative shift was found to
be 7.59 pixels horizontally and 0.03 pixels vertically. For prism P2, the relative shift
was found to be 5.75 pixels horizontally and 0.17 pixels vertically. These results
are slightly less than the designed values (8 and 6 pixels, respectively) meaning the
dispersion of the prisms was slightly less than the targeted. This discrepancy would
imply that the measured spectral bands deviate slightly from those targeted.

4.6.4 Spectral Impulse Response Measurements

The monochromator’s exit slit was imaged with the system. As the wavelength was
scanned, spectral impulse response data was acquired for every illuminated pixel.
Due to the limited output power and exit slit dimensions (typically on the order of
1 mm), this data could only be acquired for a small number of pixels simultaneously.
Distributing the transmitted light over more pixels would reduce the signal to noise
ratio for each pixel under measurement. The entrance and exit slits could also be
widened, but this would decrease the monochromator’s spectral resolution.

Ensuring adequate spectral resolution of the calibration source, requires estimat-
ing the bandwidth of light exiting the monochromator. The following analysis starts
with the well known grating equation (Equation 4.6) and derives the spectral band-
width, \(\Delta \lambda \), as a function of the monochromator’s focal length, \(F \), grating period, \(\Lambda \),
and slit width, \(s \).

\[
\sin \theta_i + \sin \theta_r = \frac{\lambda}{\Lambda} \tag{4.6}
\]

Here, \(\lambda \) is the wavelength, \(\Lambda \) is the pitch of the grating, and \(\theta_i \) and \(\theta_r \) are the incident and first-order reflected ray angles, respectively. Differentiating with respect to wavelength, and holding the \(\theta_r \) constant yields:

\[
\cos \theta_i \frac{d \theta}{d \lambda} = \frac{1}{\Lambda} \tag{4.7}
\]

The small angle approximation relates lateral displacement, \(x \), to obliquely incident light with angle \(\theta \) as

\[
\frac{x}{F} = \theta \tag{4.8}
\]

Differentiating Equation 4.8 with respect to \(\lambda \) gives

\[
\frac{1}{F} \frac{d x}{d \lambda} = \frac{d \theta}{d \lambda} \tag{4.9}
\]

Substituting Equation 4.9 into Equation 4.7 yields

\[
\frac{\cos \theta_i}{F} \frac{d x}{d \lambda} = \frac{1}{\Lambda} \tag{4.10}
\]

With approximation, this equation can be rearranged to arrive at the desired result:

\[
\Delta \lambda = \frac{s \Lambda}{F} \tag{4.11}
\]

Using the monochromator parameters (320 mm focal length and 60 lp/mm grating) and a slit size of 1 mm, the transmitted spectral bandwidth is approximately 0.05 \(\mu m \). This is adequately small to demonstrate pixel spectral impulse responses.
with high resolution.

Since the multispectral camera built disperses horizontally, it is convenient to illuminate one or more rows on the instrument. However, the monochromator’s exit slit produces a vertically uniform spectral response. The following spectral impulse response measurements were acquired with the camera rotated on its side so that the source appeared as a horizontal line.

The slit illuminates a number of pixels in a given row on the first intermediate image plane. Data is acquired for a series of wavelengths, with a typical scan ranging from 7.5 \(\mu m \) to 11.5 \(\mu m \) in steps of 0.05 \(\mu m \). Figure 4.16 shows the spectral response of four pairs of adjacent pixels. The mask feature width is equal to two detector pixels, so groups of detector pixels should experience the same response. Nominally this means a two-by-two block of pixels, but since the monochromator slit strongly illuminates only one row of detector pixels, the plots correspond to pixel pairs. Vertical lines depict the targeted spectral bands of 8.25, 9.2, 10, and 10.75 \(\mu m \).

The instrument is sensitive to the bands of interest, however it is imperfect in rejecting unwanted spectral bands. For example, the channel 1 pixels are additionally sensitive to light at around 9.5 \(\mu m \), which is an undesirable band. The incomplete rejection of light outside the bands of interest is likely due to a variety of factors including the non-ideal optical design. Stock camera lenses are used for this system due to their availability, however, the materials and surface curvatures are not optimized for this application. Abberations and blurring in the optical system lead to larger than expected PSFs. In these cases, unwanted light from one row might be transmitted through an opening in a different row of the mask where it would have otherwise been blocked.

Another visualization of the instrument’s response to these key wavelengths is shown in Figure 4.17. In this figure, the same region of the detector is shown for
Figure 4.16: The spectral response of 4 pairs of adjacent detector pixels. The vertical line represents the targeted spectral band. Since there are two detector pixels per mask feature, the sum of pairs of pixels are plotted.

four different incident wavelengths. The lines correspond to the cross sectional pixel intensity plots for the middle row of pixels. For each wavelength channel, a different pair of pixels are illuminated. Unfortunately, the calibration source has a very low power output at the 10.75 µm wavelength. The glowbar source, operating at temperatures around 1000°C outputs the smallest amount of power into this band as indicated by Figure 4.14. In addition, the monochromator grating’s diffraction efficiency peaks at 10 µm. The two factors limit the signal to noise ratio.
Figure 4.17: The same region of the detector responding to an image of the monochromator slit at the 4 key designed wavelengths. The white line plots the intensity of the middle row of pixels on the same horizontal axis. The 10.75 µm response is difficult to see partially due to the source’s limited output at that wavelength.
4.6.5 Wide Field Calibration

Imaging the monochromator slit is useful for characterizing the spectral response, however it is not very practical to use this technique for calibrating a large area of the detector. The geometry and power output of the monochromator limits the number of pixel which can be illuminated simultaneously.

For wide field calibration, a different technique is used. For this experiment, a soldering iron source is used in conjunction with the 8190 thin film filter (bandwidth of 170 nm). Together these generate a large amount of narrow band light which corresponds to one of the system’s measured channels. The center of the first channel is designed for 8.25 µm.

The soldering iron is placed approximately at the back focal length of a camera lens. The apertures of this camera lens and the primary lens of the system are aligned, and a significant amount of light illuminates a large portion of the first mask. The detected image of this is shown in Figure 4.18(a).

The importance of this image is that it shows the pixels responding to 8.25 µ light. The expected result would be seeing a copy of the mask on the detector, but there is some variation due to slight misalignments. To sharpen the raw data, 2D Fourier domain filtering is used to generate the image in Figure 4.18. A basic thresholding was applied to the 2D Fourier transform data, setting elements to zero if their magnitude was less than the threshold value. The result plotted is the magnitude of the filtered data after appling the inverse 2D Fourier transform.

A radially varying threshold was applied to the filtered data to obtain a binary mask corresponding to the channel 1 (8.25 µm) pixels. The threshold value was higher in the middle than on the edges to better fit the nonuniformity of the data. The soldering iron illuminated the detector with a radius of about 80 pixels, so outside of this, the calibration data has limited validity. More calibration data could be taken.
Figure 4.18: Raw and Fourier domain filtered data obtained with 8190nm illumination. This data is used for wide field calibration.
illuminating larger or different regions of the detector. However, the current results are still sufficient for reconstructing a large central region of the detector.

A pixel mask for channels 2, 3, and 4 are generated from the binary mask corresponding to channel 1. Assuming the system responds consistently, the two pixels immediately to the right of the channel 1 pixels respond to channel 2. The next two pixels respond to channel 3, and the two pixels to the right of them are channel 4. In practice, masks for channels 3 and 4 were generated by shifting the channel 1 mask up two pixels and left two pixels, respectively. Again, since the calibration data only yeild valid results within the central 80 pixel radius, default mask patterns were used outside this region. Section 4.7 shows reconstructions generated from this calibration data.

4.7 Results

Masking the detector pixels with a given channel’s mask generated in section 4.6.5 creates a sparse set of data point across an image. Reconstructing the full data cube requires interpolating the spectrum at every location, and this process parallels reconstruct of color images from a sensor with the Bayer filter. What makes this data different from Bayer coded images is that groups of detector pixels correspond to light transmitted from a single spatial location at the object. The Bayer filter produces purely spectrally filtered images that are perfectly spatially correlated. In the case of a point source, this dual disperser system either measures the full spectrum or nothing depending on location. The difference is whether the source images to an open or closed region on mask M1.

To do this reconstruction, the griddata function in MATLAB is used. The procedure essentially takes sparsely measured data for a wavelength channel and interpolates values for the missing locations. In this approach, each channel is processed
independently. Two sample multichannel reconstructions are shown in Figures 4.19 and 4.20. Each Figure shows a full image of the scene at each of the four spectral bands. The heat source for these two reconstructions is a soldering iron. However, a different narrow band filter is used for each reconstruction. The first scene uses the 8190 nm filter creating a region emitting light which corresponds to channel 1. The central region of Figure 4.20 depicts a source radiating light energy primarily in channel 2. The filter used to generate this scene was a 10500 nm narrow bandpass filter tilted at approximately 30 degrees. Tilting a thin film filter shifts the center wavelength lower. For small angles, this blue shift follows a cosine relationship where \(\lambda = \lambda_0 \cos(\theta) \). Tilting the filter by 30 degrees puts the peak transmission in the neighborhood of 9.2 \(\mu \)m or channel 2. The mean values calculated are for the region of pixels where the filtered soldering iron appears, meaning they represent the mean spectrum of the filtered sources. These results demonstrate that the system is performing as expected. A single data frame is processed to yield a four channel spectral image in the LWIR.
Figure 4.19: Four channel reconstruction of soldering iron with the 8190nm filter. The strongest response is in Channel 1 as expected. Mean values correspond to the region of pixels where the filtered soldering iron appears. Spectral reconstruction only valid within the white ring.
Figure 4.20: Four channel reconstruction of soldering iron with the 10500nm filter tilted at approximately 30 degrees. The tilt shifts the passband of the filter to about 9.2 µm, which corresponds to Channel 2. Mean values correspond to the region of pixels where the filtered soldering iron appears. Spectral reconstruction only valid within the white ring.
Chapter 5

Conclusions

This dissertation describes three coding strategies and implements each of them in a novel computational imaging system.

Focal plane coding was presented in Chapter 2. This coding strategy was used to develop a thin multichannel imaging system operating in the visible wavelength band. Digital processing is used to combine multiple subimages. Each channel implements a unique code by using a different pattern mask. Coding increases diversity which leads to a better conditioned image synthesis problem. The focal plane codes are characterized and subpixel modulation is observed.

A second thin camera is described in Chapter 3. Also a multichannel system, this system is sensitive to the long wave infrared (thermal) band. Here, subpixel shift codes create the diversity necessary for high resolution reconstruction. Procedures are developed to characterize this system, and reconstructions demonstrate high resolution performance.

Chapter 4 continues development in the long wave infrared band and build a novel multispectral camera. Four narrow band wavelength channels are imaged simultaneously by this instrument. The spectral responses have been verified, and sample reconstructions are provided to demonstrate its performance.

Focal plane coding and the shift based coding are implemented in systems where the optical spot size is smaller than a pixel. Both codes leverage this optical resolution. In contrast, the multispectral system uses a mask feature size larger than the detector pixels. This system trades off some spatial resolution for spectral resolution. The needs of a particular application will always guide the selection of an appropriate
strategy. When implemented correctly, coding can be used to more efficiently sample electromagnetic fields. In the future, the tools described in this dissertation may prove to be very useful in developing the next generation of computational imaging systems.
Chapter 6

APPENDIX A

THE KRONECKER PRODUCT. Let A be an m-by-n matrix and let B be a p-by-q matrix. Then the Kronecker product $A \otimes B$ is defined as the mp-by-nq block matrix

$$A \otimes B = \begin{bmatrix}
 a_{11}B & \cdots & a_{1n}B \\
 \vdots & \ddots & \vdots \\
 a_{m1}B & \cdots & a_{mn}B
 \end{bmatrix} \quad (6.1)$$

HADAMARD MATRICES. The Hadamard matrices are conventionally defined at powers of 2 in the matrix order by the recursion,

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad H_{2n} = H_2 \otimes H_n, \quad n = 2^k, \quad k \geq 1. \quad (6.2)$$

PROOF OF COROLLARY 2. First, the system of linear equations in (2.9) can be expressed equivalently in the one-dimensional format as follows

$$\text{vec}[M_{ij}] = \frac{1}{2} \left[(H_P \otimes H_Q) + ee^T \right] \text{vec}[X_{ij}],$$

where $\text{vec}[\cdot]$ sequentializes a two-dimensional array column by column into a one-dimensional vector. When P and Q are powers of 2, $H_P \times H_Q$ is a conventional Hadamard matrix. It remains to determine the singular values of the modified Hadamard matrix $\tilde{H}_N = (H_N + ee^T)/2$ where N is a power of 2. We have

$$\tilde{H}_N = \frac{1}{2} H_N \left(I + \frac{1}{N} H_N^T ee^T \right) = \frac{1}{2} H_N \left(I + e_1 e_1^T \right).$$

The condition number of \tilde{H}_N is the same as that of $(I + e_1 e_1^T)$, or the square root
of the condition number of \((I + e_1e_1^T)(I + ee_1^T)\). The symmetric and positive definite matrix is similar by orthogonal transformation to the following matrix

\[
\begin{pmatrix}
N + 3 & \sqrt{N - 1} & 0 \\
\sqrt{N - 1} & 1 & 0 \\
0 & 0 & I_{N-2}
\end{pmatrix}.
\]

It is then straightforward to verify that the two extreme eigenvalues are

\[
\lambda_{\text{max}} = \frac{N + 4 + \sqrt{(N + 4)^2 - 4^2}}{2} > 1 > \lambda_{\text{min}} = \frac{N + 4 - \sqrt{(N + 4)^2 - 4^2}}{2} > 0.
\]

Taking the square root of \(\lambda_{\text{max}}/\lambda_{\text{min}}\) we have the condition number of \(\tilde{H}_N\) as given in Corollary 2.

Proof of Corollary 4. The eigenvalues of the \(N \times N\) tridiagonal matrix with \(-2\) on the diagonal and 1 on the super-diagonal and subdiagonal are known analytically as \(-4\sin^2(j\pi/2(N + 1))\), \(j = 1, 2, \cdots, N\), see reference [33] for example. The eigenvalues shifted by 3 are those of the tridiagonal matrix \(B_{3,N}\).
Bibliography

Biography

Andrew Portnoy was born in Danbury Hospital in Connecticut on October 4, 1982. He grew up in Newtown and graduated from Newtown High School. During high school, Andrew earned college credit from Western Connecticut State University and Johns Hopkins University.

In the fall of 2001, Andrew began his undergraduate studies at Duke University joining the class of 2005. While an undergraduate, he was awarded an Addy Fellowship to research with Prof. David J. Brady in the summer of 2003. Andrew graduated early receiving a B.S.E. in Electrical and Computer Engineering with a double major in Computer Science.

The summer of 2004, Andrew began his graduate studies at Duke under the guidance of Prof. Brady. In 2006, he received the M.S. degree in Electrical Engineering for his thesis “Coded Sampling in Optical Imaging Systems.” Andrew received a National Science Foundation grant to study at National Chiao Tung University in Hsinchu, Taiwan for the summer of 2007.

While outside the laboratory and classroom, Andrew played trombone for the Duke University Marching Band, and served as drum major. He had also done the same with the Newtown High School Marching Band. In addition, he has been very active raising money for cancer research. Andrew served as the graduate school representative to the Duke Annual Fund Executive Committee and as an officer in the Engineering Graduate Student Council.

He will receive the degree of Ph.D. in May 2009.
Publications

Conference Talks

