Into the Bends of Time and Musical Forces in Jazz: Group Interaction and Double-time in “My Foolish Heart” as performed by the Bill Evans Trio with Scott LaFaro and Paul Motian.

by

Jamie Keesecker

Department of Music
Duke University

Date:_______________________

Approved:

Stephen Jaffe, Supervisor

Scott Lindroth

Philip Rupprecht

Paul Berliner

Stephen Anderson

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Music in the Graduate School of Duke University

2016
ABSTRACT

Into the Bends of Time and Musical Forces in Jazz: Group Interaction and Double-time in “My Foolish Heart” as performed by the Bill Evans Trio with Scott LaFaro and Paul Motian.

by

Jamie Keesecker

Department of Music
Duke University

Date:_______________________

Approved:

Stephen Jaffe, Supervisor

Scott Lindroth

Philip Rupprecht

Paul Berliner

Stephen Anderson

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Music in the Graduate School of Duke University

2016
Abstract

The Bill Evans Trio featuring bassist Scott LaFaro and drummer Paul Motian is widely regarded as one of the most important and influential piano trios in the history of jazz, lauded for its unparalleled level of group interaction. Most analyses of Bill Evans’ recordings focus on his playing alone and fail to take group interaction into account. This paper examines one performance in particular, of Victor Young’s “My Foolish Heart” as recorded in a live performance by the Bill Evans Trio in 1961. In Part One, I discuss Steve Larson’s theory of musical forces (expanded by Robert S. Hatten) and its applicability to jazz performance. I examine other recordings of ballads by this same trio in order to draw observations about normative ballad performance practice. I discuss meter and phrase structure and show how the relationship between the two is fixed in a formal structure of repeated choruses. I then develop a model of perpetual motion based on the musical forces inherent in this structure. In Part Two, I offer a full transcription and close analysis of “My Foolish Heart,” showing how elements of group interaction work with and against the musical forces inherent in the model of perpetual motion to achieve an unconventional, dynamic use of double-time. I explore the concept of a unified agential persona and discuss its role in imparting the song’s inherent rhetorical tension to the instrumental musical discourse.
Contents

Abstract

List of Musical Excerpts

List of Figures

Introduction

1. Part One

1.1 Theory of musical forces (Larson, Hatten)

1.2 Defining double-time in a jazz context

1.3 Double-time vs double-time feel in an ensemble context

1.4 Ambiguity of time inference and feeling of swing

1.5 Ambiguity of composite feel

1.6 Ballad performance practice

1.7 Double-time in four ballad performances by the Bill Evans Trio: “Haunted Heart”, “I Loves You Porgy”, “Some Other Time”, and “Detour Ahead”

1.7.1 “Haunted Heart” from Explorations (1961)

1.7.2 “I Loves You, Porgy” from The Complete Village Vanguard Recordings, 1961 (2005)

1.7.3 “Some Other Time” from Waltz for Debby (1962)

1.7.4 “Detour Ahead” (take 1) from More from the Vanguard (1984)

1.8 General observations about the use of double-time in ballads

1.9 Musical forces in jazz structure

1.9.1 Theories of research on metrical cognition

1.9.2 Metric hierarchy and hypermeter

1.9.3 Relationship between hypermeter and grouping structure in tonal music

1.10 Jazz Chorus and Turnaround Structures, Background, and Applicability of Larson’s Model of Musical Forces
1.10.1 Jazz chorus structure ... 35
1.10.2 Turnarounds ... 36
1.10.3 Propulsive effect of repeated choruses ... 38
1.10.4 Speculation on Musical forces at work in turnarounds and chorus structure 39
1.10.5 A model of perpetual motion ... 41
1.10.6 Turnaround as a place of increased activity .. 43
1.10.7 Refined definition of double-time .. 44

2. Part Two ... 45

2.1 Analysis and Transcription of “My Foolish Heart,” as Performed by the Bill Evans Trio at the Village Vanguard 45
 2.1.1 Overview of form .. 45
 2.1.2 Overview of performance .. 47
 2.1.3 Note on drumset notation .. 48

2.2 Close analysis of specific sections ... 49
 2.2.1 Seeds of double-time, doubly-embedded anacrusis .. 49
 mm. 26-27 ... 49
 m. 30 .. 51
 mm. 31-33 ... 51
 2.2.2 Musical forces at work in mm. 30-33 .. 52
 2.2.3 Musical friction and agency in motivated gestures .. 53
 2.2.4 Double-time as an elevated metric stratus .. 57
 mm. 33-34 ... 58
 mm. 35-37 ... 59
 mm. 38-41 ... 60
 mm. 41-43 ... 61
2.2.5 Analogy to elided physical gestures ... 65

mm. 45-46 .. 67

mm. 47-48 .. 68

mm. 49 ... 68

mm. 51 - 52 .. 69

mm. 53-56 .. 70

mm. 57-63 .. 71

mm. 63-66 .. 73

2.2.6 Cycles of activity within hypermetric units (4-bar hypermeasures)........... 74

mm. 1-32 (hmm. 1-8) [first chorus] ... 74

mm. 33-40 (hmm. 9-10) [first A of 2nd Chorus] ... 75

mm. 41-44 (hm. 11) ... 76

mm. 45-48 (hm. 12) ... 77

mm. 49-52 (hm. 13) ... 77

mm. 53-56 (hm. 14) ... 78

2.3 General observations about “My Foolish Heart” ... 78

2.3.1 Comparison of double-time-suggesting passages 78

2.3.2 Significance of hypermetric sections ... 79

2.4 Rhetorical interpretation .. 82

2.4.1 Thematic and rhetorical gestures ... 82

2.4.2 Melodic contour and spatial metaphor ... 83

2.4.3 Thematic undercutting .. 84

2.4.4 Content of lyrics .. 85

2.4.5 Inner conflict of “heart” vs “head” ... 85

2.4.6 Larger concepts of agency and persona ... 87
2.4.7 Knowledge of lyrics ... 92
2.5 Summary / conclusions ... 93
Appendix A: Full transcription of “My Foolish Heart” 94
Appendix B: Discography of Cited Recordings 102
Biography ... 105
List of Musical Excerpts

Excerpt 1: mm. 26-27 of the Bill Evans Trio performance of "My Foolish Heart" 49
Excerpt 2: mm. 30-32 of the Bill Evans Trio performance of "My Foolish Heart" 51
Excerpt 3: mm. 33-36 of the Bill Evans Trio performance of "My Foolish Heart" 59
Excerpt 4: mm. 37-40 of the Bill Evans Trio performance of "My Foolish Heart" 60
Excerpt 5: mm. 41-43 of the Bill Evans Trio performance of "My Foolish Heart" 62
Excerpt 6: mm. 45-48 of the Bill Evans Trio performance of "My Foolish Heart" 68
Excerpt 7: mm. 49-52 of the Bill Evans Trio performance of "My Foolish Heart" 69
Excerpt 8: mm. 53-56 of the Bill Evans Trio performance of "My Foolish Heart" 70
Excerpt 9: mm. 57-63 of the Bill Evans Trio performance of "My Foolish Heart" 72
Excerpt 10: mm. 63-67 of the Bill Evans Trio performance of "My Foolish Heart" 74
List of Figures

Figure 1: The same rhythm notated two different ways ... 18
Figure 2: Nested vs. unsynchronized rhythms ... 19
Figure 3: Formal outline of "Haunted Heart" .. 24
Figure 4: Formal outline of "I Loves You, Porgy" .. 25
Figure 5: Formal outline of "Some Other Time" .. 28
Figure 6: Formal outline of "Detour Ahead" (Take 1) ... 29
Figure 7: Combined musical motions creating a cycle of perpetual motion 42
Figure 8: Melodic reduction of "My Foolish Heart," mm. 1-16 ... 46
Figure 9: Melodic reduction of "My Foolish Heart," mm. 17-32 ... 46
Figure 10: Formal outline of "My Foolish Heart" .. 48
Figure 11: Drumset notation ... 48
Figure 12: Doubly-embedded anacrusis ... 50
Figure 13: Metric displacement in mm. 41-42 in the piano .. 64
Figure 14: Overlapping cycles of activity between Bass and Drums in hmm. 8-10 76
Figure 15: Cycles of activity between Bass and Drums in hmm. 11-12 .. 77
Figure 16: Cycles of activity between Bass and Drums in hmm. 13-14 ... 78
Figure 17: Patterns of activity between Bass and Drums throughout entire performance of "My Foolish Heart" ... 79
Musical Forces in Jazz: Analyzing Group Interaction in “My Foolish Heart” as performed by the Bill Evans Trio with Scott LaFaro and Paul Motian

Introduction

When Bill Evans formed a steady piano trio with bassist Scott LaFaro and drummer Paul Motian in 1959, he envisioned an approach to small-group jazz that differed from the typical performance style of small group jazz in the late 1950s. Stating that “the men I’ll work with have learned how to do the regular kind of playing, and so I think we now have the license to change it,” Evans wanted to explore a new kind of musical territory in which the performers engaged in an exchange of musical ideas that liberated the bass and drums from their traditional accompanimental roles (Pettinger 91). Making his goals explicit, Evans commented that “I’m hoping the trio will grow in the direction of simultaneous improvisation rather than one guy blowing followed by another guy blowing. If the bass player, for example, hears an idea that he wants to answer, why should he just keep playing a 4/4 background?”1

Between 1959 and 1961, The Evans-LaFaro-Motian trio recorded two studio albums and one live performance (initially issued on two separate albums). Orrin Keepnews, who produced the recordings for Riverside Records, later commented on the musical success of this trio, remarking, “there was much emphasis on collective improvisation and a constantly growing rapport that, at its most successful, simply reached levels of performance interaction that no other trio has ever equaled” (Keepnews 1988 213).

The live recording session took place on Sunday, June 25, 1961 at The Village Vanguard in Greenwich Village in New York, where the Evans trio had been playing over the course of the previous week. Keepnews later explained that engagements at the Village Vanguard included a Sunday afternoon matinee in addition to evening sets, so the choice to record on a Sunday would produce enough of material for a full album (Keepnews 1988, 173-174). Lorraine Gordon of the Village Vanguard later said that “Sundays for us was a time when he had a relaxed crowd,” making for more ideal recording conditions (Gopnik 2001, 32). The recording of these performances would prove to be significant for reasons beyond the quality of the performances themselves. This would mark the last time this trio would play together, as bassist Scott LaFaro was killed in a car accident just ten days later. (Pettinger 1998, 113-114)

The two albums containing material recorded at the Village Vanguard live performance, Sunday at the Village Vanguard and Waltz for Debby are generally regarded as some of the finest contributions to the jazz piano trio repertory. Evans biographer Peter Pettinger calls these recordings “a certain apogee in the development of the jazz piano trio,” and claims, “for depth of feeling, in-group affinity, and beauty of conception with a pliant touch, these records will be forever peerless” (113). Keith Shadwick remarks of the recordings, “there are simply no stretches of playing where the musicians are vamping in wait for something to happen, never a feeling that one member of the trio is off on a musical quest of his own. Everything is integrated and has meaning as part of a greater whole” (Shadwick 2002, 90). Ted Gioia, in The History of Jazz (2011), writes of the Village Vanguard recording sessions:

The piano work, the bass line, the percussion part weave together in a marvelous, continuous conversation. Such a description might make it seem that the music is busy, filled with content. Nothing could be further from the truth. The marvel was how this music could say so much while leaving so much unsaid. One would struggle to find a jazz recording from the day with a slower
tempo than ‘My Foolish Heart’ yet the performance never lags; indeed it could serve as a textbook case in how to use space and silence to accentuate the forward momentum of jazz music. (274)

Pettinger and Shadwick likewise laud the performance of “My Foolish Heart,” with Shadwick calling it “heartbreakingly beautiful” (90), and Pettinger acclaiming it “one of the all-time classic Bill Evans Trio tracks” (111).

Despite the critical enthusiasm for this trio’s approach to group interaction and simultaneous improvisation as recorded in the Village Vanguard performances, nearly all of the research related to Bill Evans is focused on his style and contributions as a jazz pianist without much regard to the other members of the trio. Research on group interaction of the Bill Evans Trio remains scarce. Paul Rinzler (1988) has written about the type of abstracted analysis (of solos, basslines, voicings, etc.) that makes no reference to group interaction, and its implied assumptions about the lack of interactivity occurring in the analyzed performance (156).

In my own experience with these recordings, it was not until several repeated listenings that I began to pick up on an unusual phenomenon of group interplay in the performance of “My Foolish Heart,” in line with Gioia’s observations about space, silence, and forward momentum. At several points throughout the performance, the trio creates an expectation of going into double-time, consistent with small group ballad performance practice, but in every instance, the move to double-time is thwarted. After becoming acutely aware of the group interaction that leads to this phenomenon, I find it difficult not to hear the collective motion toward double-time and its subsequent abandonment as the most salient feature of the performance. The ensemble conception of time (i.e., double-time or regular time) seems to play with listeners’ expectations, creating a kind of rhetorical tension in which a desire is left unfulfilled.
In order to explain interactions between the members of the trio that contribute to the use of double-time as a dynamic rhetorical element, I aim to provide an analysis rooted in concepts of tonal music theory with a particular focus on rhythm, texture, time, and meter. For that purpose, I turn to recent research that establishes a contemporary theory of musical forces, based primarily on the work of Steve Larson, and expanded by Robert S. Hatten. I will support the theory of musical forces and its application to jazz performance with evidence from traditional theories of phrase rhythm in tonal music, as explored by Lerdahl, Rothstein, and others, music cognition (particularly of meter), jazz theory, and ethnographic research on jazz, specifically as it relates to group interaction.

The paper consists of two main parts: Part One will examine the Larson-Hatten theory of musical forces and its application to jazz performance, and jazz ballad performance practice in particular. I will summarize the theory of musical forces, define double-time as an ensemble concept and discuss cognition of meter, examine typical jazz ballad arrangements, discuss the relationship of jazz structure to musical forces, and develop a model of perpetual motion based on musical forces inherent in jazz formal structures.

Part Two will provide an in-depth analysis of the Bill Evans Trio’s performance of Victor Young’s “My Foolish Heart,” as recorded at the Village Vanguard in June of 1961 and first released on the Riverside Records album Waltz for Debby. The analysis will be based on the model of perpetual motion and the theory of musical forces explained in Part One. Finally, I will explore concepts of agency and draw rhetorical conclusions about group interaction and the collaborative use of double-time in the performance.

2 for complete discographical information, see Appendix B: Discography of Cited Recordings.
1. Part One

1.1 Theory of musical forces (Larson, Hatten)

Steve Larson, in his book *Musical Forces: Motion, Metaphor, and Meaning in Music* (2012), presents a theory of musical forces to serve as a metaphor for the motions of tonal music. He argues that listeners often experience and conceptualize musical motion in ways that mirror our embodied experience of motion in the physical world, and that the same forces that act upon objects in the physical realm can help us better understand musical tendencies and listener expectations in tonal music. Larson focuses on three primary forces: gravity, magnetism, and inertia. He argues that, like the forces operating in the physical realm, all three musical versions of these forces constantly work in tandem, exerting their influence on the musical landscape. These forces are perhaps most easily demonstrated through their effects on simple melodic motions, but Larson explains that they also operate in the harmonic and rhythmic domains as well, and that they are not limited to motion from one singular note to the next, but guide the motions of patterns as well. Robert S. Hatten (2012) has argued for an expansion of Larson’s model to include forces of momentum, repulsion, and friction. Whereas Larson’s accounts of musical motion more closely mirror our abstracted understanding of physical forces, Hatten’s forces rely on a more nuanced level of interaction between physical forces and notions of agency. William Rothstein (2005) has contributed similar ideas of friction and viscosity to the discussion of musical forces.

The understanding of musical forces as developed by these theorists (in addition to earlier contributions by Lerdahl, Jackendoff, and Krebs, among others), specifically with regard to how they act upon rhythmic patterns, provides an analytic framework through which to interpret and explain the interaction of gestures that contribute to an ensemble conception of double-time in an ensemble context.
1.2 Defining double-time in a jazz context

For the purposes of this article, it is necessary to define exactly what is meant by the term “double-time,” as it is a term that jazz musicians tend to use to describe a variety of different phenomena. As a general term, it refers to a doubling of the rate of rhythmic musical activity. It can apply to the material being performed by either an individual, such as a soloist in the course of improvising, or to an ensemble, particularly the rhythm section in their roles as timekeepers making regular reference to the perceived beat. In the former case, it is understood that a soloist is generally afforded the freedom within an improvisation to move in and out of rhythmic patterns that emphasize a subdivided beat in such a manner that suggests double-time, while the accompanying ensemble maintains the regular, slower time. In the latter case, the ensemble as a whole adopts a rhythmic interpretation that implies a more profound change in which the tempo is doubled. Stefan Love (2011) describes the ensemble conception of double-time as a “tactus-shift” in which the perceived beat is shifted from the quarter-note level to the eighth-note level (15). A soloist playing over this type of double-time change may play melodic patterns that infer either interpretation of the beat, but the compulsion to emphasize the double-time pattern adopted by the rhythm section is typically strong enough to encourage full ensemble participation. In practice, it is often the soloist who initiates a change into double-time by gradually introducing double-time patterns that serve as musical cues to the rhythm section. The New Grove Dictionary of Jazz notes that the change often occurs “in a recognizable four-, eight-, or 16-bar section of a piece,” indicating the significant role that the form of a piece plays in influencing the point at which an ensemble goes into double-time.³

1.3 Double-time vs double-time feel in an ensemble context

It should be noted that within the context of an ensemble going into double-time, there is a distinction between a true doubling of the tempo, and what is sometimes called “double-time feel”. In a true doubling of the tempo, the harmonic rhythm is also doubled. That is, all structural elements of a tune proceed at twice the original rate, so that the durations of the chord changes are halved at the same time that the duration of the perceived beat is halved. By contrast, in a double-time feel, only the duration of the beat is altered while the duration of the chord changes remains the same, so that there are twice as many beats per chord as before. A piece with a 32-bar form, for instance, becomes in essence a 64-bar form if one is grouping bars according to passage of the perceived beats, yet the duration of one entire chorus is maintained. However, as this is a phenomenon that occurs in performance, the transcription and notation of such is likely to maintain the same time signature and tempo, but indicate that the perceived beat has shifted to the level of the eighth note, rather than the quarter note. An ensemble transitioning into double-time may go into either a true doubling of the tempo, or a double-time feel. In mainstream jazz ballad performance, a move to double-time feel during the solo section is the norm, followed by a return to the original time at the return of the head. In jazz discourse, the term double-time can be used to describe either of these variants. The New Grove Dictionary of Jazz, for example, makes no distinction between double-time and double-time feel. Barry Kernfeld, in What to Listen for in Jazz, likewise describes double-time as “a doubling of tempo in the rhythm section, a doubling of the general speed of the melody line, or both” (1995 8), but makes no mention of double-time feel as a separate concept. Because the scope of this paper does not involve an examination of any instances of double-time as a true doubling of the tempo, the term double-time will hereafter be used to mean double-time feel, in that it
refers to a doubling of the perceived beat, while the pace of the harmonic rhythm remains unchanged.

1.4 Ambiguity of time inference and feeling of swing

Interpretation of any given gesture with regard to its inference of the time can be subjective. In his discussion of meter, Love (2011) notes that a move to double-time does not just shift the tactus to a different metric level, but that the feeling of swing is also shifted. Eighth notes in the original meter (assuming the beat is taking place at the quarter-note level) are consequently played straight (i.e., not swung) while divisions of the eighth-note become swung (15).

A melodic or rhythmic gesture can ambiguously lie in either the metric subdivision of the original time or the meter suggested by a doubling of the time. An example of this can be seen in Figure 1 below.

A single gesture (such as a single-note or a sustained chord) that sounds after an eighth-note rest of an eighth-note triplet may sound as though it infers the original quarter-note-based meter (example 1a). However, in some instances it could also be heard as a syncopated entry on the swung “and of two” in the eighth-note-based meter implied by double-time (example 1b). If one accepts that swung subdivisions of the
double-time beat are close enough to the one-to-two ratio to be notated as sixteenth-note triplets, then the two options for interpretation and notation are durationally equivalent.

Joel Lester (1986) distinguishes between “nested” and “unsynchronized” metric levels (145). Nested metric levels are related by simple whole-number subdivisions whereas unsynchronized metric levels are not. For example, eighth-note triplet and eighth-note divisions of a beat are unsynchronized, but both nest within quarter notes.

![Figure 2: Nested vs. unsynchronized rhythms](image)

Within the context of a jazz performance in which all eighth-notes are swung, resulting in a consistent 12/8 metric feel (Figure 2b), a move to double-time would shift the pulse of the beat to the level of “straight” eighth-notes (Figure 2a), meaning the double-time rhythms would not easily nest within the perceived beat of the original time. A complication arises however, when one considers that in the performance of slow jazz ballads, the division of the quarter-note beat is relatively fluid in that it can shift between eighth-note and triplet eighth-note divisions readily. As a result, an increase in the
possibility for rhythmic nesting leads to increased ambiguity. The rhythm presented in Figure 1, for instance, could be said to nest within either interpretation of the meter. London (2012) refers to such metrically neutral (i.e., capable of evoking more that one metric framework) passages as being “metrically malleable,” noting, “context disambiguates metrically malleable figures” (75). In the transcription and analysis of “My Foolish Heart” that follow, the determination as to which metric level a given gesture belongs is based primarily on context, taking into account the rhythmic and melodic activity immediately preceding and following it in the same part as well as the activity of the material played by the other members of the performing ensemble.

1.5 Ambiguity of composite feel

A corresponding ambiguity exists in the interpretation of the composite effect of the ensemble. As I will demonstrate in my analysis of the Village Vanguard performance of “My Foolish Heart,” the point at which an ensemble goes into double-time can be amorphous, and certain factors can call into question whether the double-time effect is ever achieved. Kernfeld (2005) describes such a possibility, noting, “by using simultaneously differing levels of rhythmic activity . . . performers can leave open the issue of distinguishing between time and double-time” (8).

Not all instrumental roles are considered equally in this regard. Of particular importance to the concept of ensemble double-time is the drumset, especially in the rhythmic placement of the closing of the hi-hats with the foot, which typically signifies the backbeat. The bass can also contribute explicitly to an overall feeling of double-time when constricted to a more traditional role. However, when the rhythm section consists of players known for their inventiveness and experimentation outside of traditional time-keeping roles, as is the case with bassist Scott LaFaro and drummer Paul Motian, the concept of ensemble double-time becomes harder to define. Again, there is a certain
amount of subjectivity, and determination has to be made based on a sort of “critical mass” of gestural activity across the group. Additionally, there is a middle ground, in which the ensemble’s implication of the meter might be interpreted either in the original time or in double-time, or even in some instances, both. Walter Bishop Jr., as quoted in Paul Berliner’s *Thinking in Jazz* (1994), uses the term “polytime” to describe the feel achieved when one member of an ensemble states or implies the time while others play something that works against it (353). Justin London, in his book, *Hearing in Time: Psychological Aspects of Musical Meter* (2012 [2004]), acknowledges that, in complex rhythmic textures, not all figures can be accommodated within a single meter. London argues against the consideration of polymeter, claiming that one rhythmic layer will be dominant while others are heard against it (75). Krebs (1999) takes a similar position. He defines meter as “the union of all layers of motion” (23), and suggests that coinciding patterns in separate rhythmic layers “collaborat[e] in the creation of a single interpretive layer” (25), a perceived meter to which all rhythmic activity refers.

Walter Bishop Jr.’s evocation and description of polytime draw attention to the danger of being too rigid or simplistic in interpreting the time implied by any one member of the ensemble at a given point as being unequivocally suggestive of a single interpretation of time inference, or of assuming that a player is necessarily conceptualizing their musical gestures as existing in only one subdivision of the time. In the ensuing analysis of “My Foolish Heart,” I will interpret the time implied by individual gestures with the understanding that jazz musicians can be fluid in their reference to the time, and can take an intentionally ambiguous approach.

1.6 Ballad performance practice

Berliner (1994) has discussed some of the ways in which performers approach the performance of a ballad differently from that of an “up-tempo” tune, particularly
with regard to rhythm section roles (353). Another area of concern is that of arrangement. Within the context of small-group jazz of the 1950s and early 1960s, there are a variety of ways in which the arrangement of a ballad may be structured, but most examples, particularly slower ballads, exhibit a similar general framework. That is, they tend to consist of a statement of the head in a slow initial tempo, a solo section in which the ensemble goes into double-time, and a restatement of the head (or a portion thereof) accompanied by a return to the initial time. As the New Grove Dictionary of Jazz definition of double-time implies, the move to double-time is generally expected to occur at a structural point within the form, such as the beginning of a new chorus, and continue until throughout a given section until the arrival of another significant structural marker allows for a transition back to the original time values. Since ballads often feature just one soloist, it is not uncommon for the solo section to occur over the first portion of the form and for the head to be restated only in its last iteration within the form (so in an ABAC form, the second half of the head would be repeated, while in an AABA form, only for the last A would the head return). As will be demonstrated below, an entire performance may be constructed out of just two passes through the chorus form of a tune.

1.7 Double-time in four ballad performances by the Bill Evans Trio: “Haunted Heart”, “I Loves You Porgy”, “Some Other Time”, and “Detour Ahead”

There are enumerable examples from the jazz repertory that could illustrate this formula for ballad arrangement, but for the sake of later comparison to the Bill Evans Trio recording of “My Foolish Heart”, it is worth examining other ballads recorded by this same group that adhere more rigidly (in varying degrees) to expected conventions of performance.
1.7.1 “Haunted Heart” from *Explorations* (1961)*4*

Less than five months prior to the Village Vanguard date, the Evans-LaFaro-Motian iteration of the Bill Evans Trio recorded its last studio album, *Explorations*, for Riverside Records (Keepnews 1988, 171-72). Among the tracks recorded was “Haunted Heart” by Arthur Schwarz (with lyrics by Howard Dietz). Though it is a 36-bar tune (similar to a 32-bar ABAC “16 and 16” with an extended 12-bar C section), this performance begins in half-time, turning it into an 18-bar form. Evans plays the first two sections of the head unaccompanied in relatively free time before LaFaro and Motian join in on the second A, establishing a regular pulse. The last bar (last 2 bars of the 36-bar form) serves as a turnaround. As the melody resolves on the downbeat of that bar, Motian immediately doubles the beat of the drum pattern, implying an eighth-note tactus and initiating the shift into double-time at the start of the new chorus. LaFaro maintains a two-beat pattern in the bass (in the new tempo) as Evans fashions a solo around the head melody, adopting double-time patterns by the end of the first bar and continuing into the second. As LaFaro abandons the two-beat pattern in favor of a freer line to complement Evans’ solo, and Evans hangs back on longer note values, the feeling of an ensemble in double-time is maintained through Motian’s consistency.

Upon the arrival of the second A section, there is a quasi-stop-time in the drums as Motian hits a crash cymbal and lets it ring as LaFaro articulates a tonic pedal. Evans states the melody more explicitly here as Motian provides gentle accompaniment in the original tempo, but then shifts back into double-time beginning at the downbeat of the C section. Double-time continues for four bars until Motian stops marking time and sustains cymbal rolls over the remaining two bars of the form and into the ending. Evans carries his accompanimental pattern over the barline and into a slight ritardando.

4 for complete discographical information, see Appendix B: Discography of Cited Recordings.
for the final resolution of the melody before adding a tonic-elongating tag that closes out
the arrangement. The effect is one of the double-time seeming to evaporate, exposing the
slower original tempo underneath, particularly because the drums play such an
important role in initiating and establishing the double-time sections in this recording. It
also serves as a complement to the first chorus, as the turnaround is the point at which
the double-time gestures originated.

Chorus 1:	A (4 bars)	B (4 bars)	A (4 bars)	C (6 bars)
content/texture:	head statement in unaccompanied piano	sparse rhythm section accompaniment	transition to double-time begins on turnaround (last bar of C)	
time:	free time	in time \(q = 45\)		

Chorus 2:	A	B	A	C
content/texture:	piano solo/elaborated head	head melody out	double-time for 4 bars, transition to ending	
time:	double-time	quasi-stop-time and return to original time		

Figure 3: Formal outline of "Haunted Heart"

If we consider the initiation of the double-time in the turnaround of the first
chorus to be transitional in nature and suggest that the ensemble does not achieve the
goal of being in double-time until the arrival of the second chorus, then there are two
double-time sections in this arrangement, both in the second chorus, the first eight bars
in length, and the second four bars. Indeed, Evans appears to have conceived of
turnarounds in precisely this way. Bassist Chuck Israels, who would succeed Scott
LaFaro as bassist in the Bill Evans Trio, recalled after Bill Evans’ death that “Evans’ view
of the turnaround was that it belonged to the following chorus, rather than to the one
just ending. In practice this meant that a new idea introduced at the turnaround could be
carried over into the next chorus.” (1985 112-113)

1.7.2 “I Loves You, Porgy” from *The Complete Village Vanguard Recordings, 1961 (2005)*

Recorded on the same day as the material that would make up *Sunday at the Village Vanguard* and *Waltz for Debby*, the Evans Trio’s rendition of the Gershwin standard “I Loves You, Porgy” would remain unavailable to the public until the release of the *The Village Vanguard Sessions* on Milestone Records in 1973.⁵

Evans’ trio takes “I Loves You, Porgy” from its original ABA form and adapts it to a 34-bar form AABA (a common treatment of tunes taken from Broadway), essentially treating it like a 32-bar song form but with an extended 10-bar bridge.

<table>
<thead>
<tr>
<th>Chorus 1:</th>
<th>A (8 bars)</th>
<th>A (8 bars)</th>
<th>B (10 bars)</th>
<th>A (8 bars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>head statement in piano with sparse rhythm section accompaniment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>in slow time (q = 44-48)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chorus 2:</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>piano solo with double-time figurations over the double-time meter</td>
<td>head out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>double-time</td>
<td></td>
<td>original time</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Formal outline of "I Loves You, Porgy"

Evans begins with three quarter-note pickups to the melody in very slow time (44 bpm gradually increasing to 48 bpm upon arrival at the bridge). Through the A section (and its repeat), Motian limits his gestures to long swells of brushed cymbal rolls while LaFaro mostly sticks to articulating two notes to the bar. The measure before the

25
bridge, he plays a note on each beat, providing a gentle push into the bridge, where Motian incorporates the snare drum for the first time, with an articulation and stir of the brushes on each beat. At the statement of the last A, Motian returns to using cymbals to mark the beat, while subtly maintaining long patterns of brushwork on the snare drum. Thus, the bridge is varied texturally from the rest of the head.

Going into the second chorus, Evans’ right-hand line ascends and breaks into busier melodic motion indicative of double-time on the downbeat of the new A section. LaFaro responds by strumming a pattern that feels like a swung upbeat into a two-beat feel in double-time. Evans answers on the next beat with the same gesture in his left hand, but articulates the next two beats, insinuating a quarter-note pulse in double-time. LaFaro responds in kind again on the next beat, and double-time is established. The exchange happens quickly, and Motian supplements the additional energy with cymbal roll crescendo and holds out for three bars of double-time before introducing the hi-hat foot on the newly-established backbeat. It should be noted that Evans’ solo makes frequent use of double-time figurations in this section, that is, double-time over the ensemble time. Motian again provides a textural variation by incorporating the snare drum more forcefully than before on the bridge, perhaps in response to the increase of activity in Evans’ solo. The extended bars of the bridge (10 bars instead of the more common 8 bars), along with the harmonic repetition at the bridge’s end provide the space for a transition out of double-time for the final statement of the head, which consists of just the last A. The performance wraps up with a paraphrased statement of the melody’s opening over a tonic pedal.

1.7.3 “Some Other Time” from *Waltz for Debby* (1962)

Leonard Bernstein’s “Some Other Time” provides another example of a ballad recorded at the Village Vanguard session, and it too features a shift into double-time.
Unlike the two previous examples, this one starts at a more moderate tempo of 62 bpm. The tune is a 32-bar AABA, and this performance begins with an introductory vamp on the accompanimental material that opens the A section. LaFaro plays a pickup note into the vamp and alternates gestures two-note quarter-note gestures with Evans. As soon as the A section begins, LaFaro starts elaborating the two-note gesture, shifting its metric placement and adding notes to it as the head progresses. Halfway through the bridge he executes a gesture strongly indicative of double-time, and upon the return of the last A, he continues the process of adding elaborative elements to the vamp-like gesture, which continues into the next chorus. Evans’ piano solo relies heavily on double-time rhythmic gestures. Two bars before the bridge, he plays a locked-hands pattern that imbues a sense of urgency and drive going forward. LaFaro and Motian respond by laying down a double-time two-beat feel, only Motian avoids a straight-ahead double-time pattern. Motian clearly indicates a rhythmic pulse on the level of the double-time quarter-note, made especially explicit by his snare drum accents off the (double-time) beat, but his placement of the hi-hat foot drifts between articulating the backbeat of the original time and that of the double-time feel. The result is a kind of “hybrid beat,” but between the emphasis on the double-time pulse and LaFaro’s bassline swinging on the level of the double-time quarter note, the composite feel is inarguably double-time. The 7th bar of the bridge (in original time numbering) features a short stop-time where LaFaro performs a pizzicato tremolo under Motian’s sustaining sizzle cymbal before articulating two half notes in the last bar, back in original time. This leads to a brief interlude in the same vein as the opening vamp before the final head statement on the last A of the form.
1.7.4 “Detour Ahead” (take 1) from *More from the Vanguard* (1984)

One final ballad performance worthy of examination is the first take of “Detour Ahead,” with co-writing credits to Herb Ellis, John Frigo, and Lou Carter, also recorded during this same Village Vanguard session. A different take was issued on the original LP version of *Waltz for Debby*, but this alternate take was included on the CD reissue as well as the Milestones “twofer” released in 1973. (Presumably this take was passed up for consideration because of a small amount of tape warble during Evans’ very first notes). “Detour Ahead” has a 34-bar form, essentially a 32-bar AABA song form but with an extended 10-bar A at the end. The performance opens with a head statement in the piano over simple support from LaFaro. Motian adds touches of color on the cymbals during the opening bars of both A sections before he starts marking the beat in the 5th bar, but the second time through he imparts a subtle rhythmic gesture suggestive of double-time.
Chorus 1:

<table>
<thead>
<tr>
<th>A (8 bars)</th>
<th>A (8 bars)</th>
<th>B (10 bars)</th>
<th>A (8 bars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>head statement in piano</td>
<td>implications of double-time in drums</td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>in slow time ($\downarrow = 56$)</td>
<td>quasi-double-time, but composite activity suggests regular time</td>
<td>regular time until drums initiate double-time on turnaround</td>
</tr>
</tbody>
</table>

Chorus 2:

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>piano solo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>double-time (slightly faster, $\downarrow = 126$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chorus 3:

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>bass solo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>double-time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chorus 4:

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>bass solo, cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>double-time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chorus 5:

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>content/texture:</td>
<td>head out elaborated melody in piano</td>
<td>head out followed by short tag as outro</td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td>double-time</td>
<td>original time with double-time insinuation going into the outro</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Formal outline of "Detour Ahead" (Take 1)

During the first 6 bars of the bridge, Motian makes use of an ambiguous hybrid beat (as observed in “Some Other Time,” though this instance feels more heavily weighted to the tactus of the original time). The last two bars of the bridge are again transitional in nature, as Motian’s cymbal roll gives way to a simple demarcation of the quarter-note pulse in original time. The last A section is unambiguously in original time until the last
four bars, where Motian immediately increases activity to push the ensemble into double-time going into the next chorus. (With a quarter-note tempo at approximately 126 bpm, the new tempo is actually slightly faster than double the original time). A solo piano chorus is followed by two bass solo choruses, and double-time is maintained throughout. Evans returns to the head for the final chorus over the double-time feel, which continues until the end of the bridge (a point analogous to the spot where Motian transitioned back into regular time during the first chorus). The final A section is played in regular time, but upon arrival at the final four bars (the same point where Motion initiated the double-time in an earlier chorus), Evans and Motian play a little back-and-forth with double-time insinuation, but without pushing the feel completely into double-time. It feels like a reflection upon where the tune has been, rhythmically speaking, as the trio heads into a short tag that closes the performance.

1.8 General observations about the use of double-time in ballads

Based on the above examples, we can construct a list of general observations governing this trio’s use of double-time in ballad performance:

(1) Double-time is usually maintained for an entire section (such as a bridge or an entire chorus, or half-chorus).
(2) Double-time is often initiated in the 2 or 4 bars preceding a section, but not always. It can also occur at the beginning of a section, or even a few beats into a new section.
(3) An ensemble-wide shift to double-time can be initiated by any member of the group, though the drummer is the most strongly capable member of the ensemble.
(4) Double-time is often presaged by “seeds” of double-time surface activity in one or more parts, occurring long before the transition to double-time.
(5) Certain sonic cues are especially significant in suggesting, confirming, or signaling to others a move to double-time. e.g., hi-hat foot, snare drum accent on an offbeat, locked-hands piano gestures, comping rhythm/accent, bassline
rhythmic patterns, and accentuation and metric placement of bass notes, among others.

(6) Regular time usually resumes upon return to the head (or a portion of the head, such as the last A or last half of the form), but not always. It can also occur at a significant rhetorical point within the chorus form.

(7) Ballads taken at an exceptionally slow tempo can consist of just two choruses, in which the first chorus is a complete head statement, and the second chorus consists of a solo section followed by a return to a portion of the head (usually last A section).

(8) Time can be ambiguous, but is usually discernable based on the consideration of composite rhythmic activity.

(9) The initial time feel is usually straight (i.e., not swung), while divisions of the pulse in double-time are swung.

1.9 Musical forces in jazz structure

1.9.1 Theories of research on metrical cognition

Several important theorists have written about the process by which a listener identifies and detects subsequent changes in the meter of a given passage of music. Fred Lerdahl and Ray Jackendoff (1983) suggest that there are multiple metric levels in any given piece, and that a listener “tends to focus primarily on one (or two) intermediate level(s) in which the beats pass by at a moderate rate,” i.e. the tactus (20-21). Lester (1986) refers to this intermediate level as the “primary metric level,” defining it as the “one level we perceive as ‘the’ meter of the passage,” and points out that in notated music, this is usually (but not always) the level indicated by the meter signature (50). Larson (2012) notes that meter functions as a byproduct of rhythmic inertia, that is, the “tendency of a rhythmic pattern to continue in the same fashion” is what establishes meter (163, 184). He also, like Lester, makes a distinction between experienced meter and meter signature, noting that the former is more distinctive, and thus more relevant.
to the listening experience (184). Harald Krebs (1999) borrows Lester's terminology in calling this the "primary metric layer" (30).

Regarding the determination of meter, Jackendoff (1992) writes of a "selection function" in a listener's cognitive process, which he defines as "a device that continuously evaluates the currently active analyses for relative plausibility and designates one of them as the currently most salient" (141). He describes a phenomenon of "prospective hearing" in which a listener "uses principles of musical grammar to assign multiple possible analyses to the fragment of music heard thus far," thereby creating musical expectations for what is to follow (149). (This supports Larson's viewpoint that the expectation for a pattern to continue, i.e., inertia, plays a significant role in our cognition of meter.) Jackendoff suggests that the selection function jumps to a different analysis when "events in the musical surface lead to a relative reweighting of the analyses being computed by the processor" (150).

Justin London and Danuta Mirka have expanded upon Jackendoff's selection function model. London (2012 [2004]) refers to a process of "entrainment" that works to determine meter (12). He describes it as having two parts, "finding the meter" and "keeping the meter going" (67-70), noting that upon establishing a perceived meter, listeners go into a stage of reinforcing and confirming the meter, but "remain open to reconfiguring [their] metric expectations according to a new or different pattern of invariance" (70). Mirka (2009) presents a similar theory, in which a listener unconsciously compares interpretations of meter until a new sense of regularity crosses a threshold to make the listener conscious of the change (19). She describes a "multiple-analysis processor," modeled after Jackendoff's selection function, but makes the distinction that the process happens outside of the listener's realm of consciousness until sufficient musical events trigger it to restart.
These theories suggest that the determination of whether or not a jazz performance has gone into double-time is subjective and dependent upon a number of factors. They also suggest that the meter-determining cognitive process occurs over a transitional period of time. This establishes a firm theoretical basis for the earlier observation that a shift to double-time is not fully realized if it is not maintained for a sufficient amount of time. It also points to the significance of metrical hierarchy.

1.9.2 Metric hierarchy and hypermeter

The acknowledgement of a metric hierarchy makes the concept of hypermeter a natural corollary. Lester (1986) defines hypermeter collectively as the “metric levels above that of the measure” (51). Larson (2012) attributes the existence of a hierarchy of metric levels to the comparative nature of the notion of “metric stability.” He explains that metric stability “gives a note or moment the quality of a goal,” and that the “desire to move to that goal becomes stronger the closer we get to that goal.” Relating stability to metric hierarchy, he argues, “to say that a time point is more rhythmically stable is to say that it belongs to a deeper level of meter” (148). This serves as the basis of Larson’s evidence for the force of metric magnetism, a concept supported by Lerdahl’s observations about metrical attractions. Lerdahl (2004) comments on the nature of weak beats to tend toward successive strong beats more than strong beats tends to successive weak beats (288) and the resulting expectation that a rhythmic gesture stopping on a weak beat will continue to the following downbeat.

Lester and others note the considerable debate about the nature and existence of hypermeter. Cone (1968) and Komar (1971) caution against hypermetric abstraction to higher levels. Komar concedes that tonal music of the common-practice period is usually based on an expectation of hypermetric regularity, but that in practice composers lengthen and shorten phrases in unexpected ways, resulting in pieces that do not break
down into sections with numbers of bars corresponding to powers of 2 (155). The tendency of tonal music to deviate from such structure motivates Cone to reason that large-level hypermetric abstraction “is not informed by musical energy” (26).

1.9.3 Relationship between hypermeter and grouping structure in tonal music

Lerdahl and Jackendoff (1983) deal with large-level abstraction by accounting for two different types of higher-level structures: grouping structure and metrical structure. Grouping structure involves “hierarchical segmentation of the piece into motives, phrases, and sections,” while metrical structure involves a regular alternation of strong and weak beats at multiple hierarchical levels (8). In other words, grouping structure is related to pitch events, such as the launching of a new section, the return of a tonal region, or the articulation of a cadence. Lerdahl and Jackendoff call such events “structural accents,” citing their importance as “pillars of tonal organization” and harmonic or melodic “points of gravity” (17, 30). A relatively strong beat in a given metrical context they call a “metric accent.” Metric structure, they argue, is inherently periodic, meaning that the beats must be equally spaced. This leads to the same complications raised by Cone and Komar, that phrases of irregular length cannot be said to maintain periodic, equally spaced hypermetric downbeats.

However, an examination of the formal structure of common jazz performance practice will show that elements of phrase structure and hypermeter are more rigidly anchored to the formal scheme than they are in classical music, and as such, they cause musical forces to interact in more predictable ways.
1.10 Jazz Chorus and Turnaround Structures, Background, and Applicability of Larson’s Model of Musical Forces

1.10.1 Jazz chorus structure

Modern jazz performances practice of the 1950s and early 1960s is predicated on the use of a repeating cyclic form, the chorus, which provides a basic framework for the chord changes and hypermetric structure of a piece. Love (2011) brings attention to what he calls the “unusually powerful conventions of jazz meter” in discussing the practice of cycling through choruses. Jazz performances that are organized around the repetition of a chorus form feature persistent metric regularity up to and including the level of the chorus (17), (differentiating them from pieces of the classical period that are often the focus of theoretical discussions of hypermeter). In typical jazz forms, hypermetrical units can be said to exist at the level of 4-bar and 8-bar sections, the half-chorus, and even the whole chorus. In a 12-bar blues, the 12-bar chorus could be said to consist of three 4-bar hypermetric units. In the two common varieties of 32-bar forms (AABA and ABAC), each section can be considered an 8-bar hypermetric unit, and particularly in the case of the ABAC form (sometimes called “sixteen and sixteen”), a 16-bar hypermetric unit is likewise conceivable in addition to the chorus-level 32-bar hypermetric unit. Love argues that these hypermetric units are more than just abstractions for the purpose of large-scale analysis, but that trained jazz musicians actually learn to feel them.

The hypermetric regularity found in jazz, then, dispenses with the concerns raised by Cone, Komar and others about the periodicity of metric accents. Within a sequence of repeated choruses, hypermetric accents that begin each section occur with regularity (every four or eight bars), as do the hypermetric accents at the next highest

An argument could even be made for a 24-bar hypermetric unit made up of two passes through a chorus, due to the overwhelmingly common practice of playing a 12-bar head twice.
level, those that mark the beginning of a new chorus (usually occurring every 12 or 32 bars).

1.10.2 Turnarounds

Nearly every standard jazz tune includes a distinctive feature akin to what Lerhdahl and Jackendoff describe as structural accent, and that is a melodic and harmonic cadential point that occurs just before the end of the chorus form, usually two bars in length (but sometimes four). The fragment between this cadential point and the end of the chorus is what jazz musicians call a “turnaround.” Mark Levine (1995) defines a turnaround as “a chord progression occurring (1) at the end of a repeated section of a tune, leading back to the repeat; (2) at the end of a tune, leading back to the top.” The New Grove Dictionary of Jazz describes it similarly as “a chord pattern at the end of the final phrase of a chorus which leads back to the beginning of the theme” (The New Grove Dictionary of Jazz, 2nd ed., s.v. “turnaround”). Both definitions privilege harmonic concerns above all other musical parameters, presumably because during the solo section of an arrangement, which may consist of any number of choruses, rhythm section players would follow the chord changes, but an improvising soloist would not necessarily feel compelled to synchronize a resolution of the melodic line with the precise moment of resolution to tonic harmony. If we think of the typical jazz arrangement consisting of head-in, solo section, head-out, as a sort of theme-and-variation, then we must take the melodic line into consideration as well. Steven Strunk’s entry on “harmony” in the New Grove Dictionary of Jazz mentions the relationship of melody to turnarounds. He states that “composed melodies usually rest during a turnaround, and the turnaround at the end of the first chorus of a jazz performance is usually the occasion for an improvised solo break, during which the rhythm section rests” (ibid. s.v. “Harmony”, Strunk). This is partially correct. Strunk is correct that
composed melodies usually rest after the first bar of a turnaround, but they typically resolve on the tonic note on the downbeat of the first measure (or the immediately preceding upbeat). Since lead sheets tend to favor notational simplicity, the note of resolution in the melody is usually written as a whole note, followed by a tie or a rest in the following bar.

Lerdahl and Jackendoff note that grouping structure and metric structure can be “out of phase,” meaning that structural accents and metric accents do not always fall in the same place (30). Rothstein (1989) discusses the relationship of hypermeter and phrase similarly. He claims that hypermeter is beginning-accented, while phrases are goal-oriented, and that the two concepts coexists in a state of creative tension, especially when phrase motion and hypermeter are “out of phase” (28-29).

A jazz chorus that features a melodic and harmonic cadence on the downbeat of a turnaround two bars before the end (and subsequent repeat) of a chorus is a perfect model for illustrating the relationship between phrase structure (akin to Lerdahl and Jackendoff’s grouping structure) and hypermetric structure. Rothstein notes that phrases can end “very comfortably in relatively weak metrical positions” (28). If we consider the cadential point that marks the beginning of a turnaround to be a structural accent, and the beginning of the next chorus to be a metric accent, then the turnaround can be seen as functioning as a “structural anacrusis” to the following chorus. This is particularly applicable to tunes from the standard jazz repertory that begin with pickup gestures of more than one beat.\(^7\) In performance, at the conclusion of a solo section, it is necessary to “leave room” at the end of the turnaround for the pickup gesture into the head-out chorus. Rothstein (1989) accounts for this by noting that patterns of upbeat beginnings (usually less than a bar in length), once established, are usually repeated with each new

\(^7\) for example, Duke Jordan’s “Jordu” features a 3-and-a-half bar anacrusis.
phrase (29). When ensemble performs a head chorus twice in succession (as is common with 12-bar blues heads because they contain no internal large-scale repetition), the pattern of upbeat beginnings is indeed repeated. The same is true of pickup gestures in tunes of any form going into the final head statement.

1.10.3 Propulsive effect of repeated choruses

We can think of a turnaround as fulfilling a dual function. In its role as a harmonic and melodic goal, it provides a temporary sense of stability; in acting as a structural anacrusis to the hypermetric downbeat of the next chorus, it provides a sense of forward motion. Rothstein (1989) notes that the experience of reaching a tonal goal is not the same as the experience of reaching a metrical downbeat (28). This observation reinforces Larson’s theory of musical forces in its suggestion that the attainment of each goal is motivated primarily by a different force. It should be emphasized that Larson’s theory of musical forces posits that all musical forces are acting in tandem rather than taking turns (254), even if the observable results suggest that a series of events are primarily attributed to a different force in turn.

When Rothstein speaks of increased tension resulting from the out-of-phase relationship of phrase to meter, it can be inferred that the tension lies in that relatively brief moment between the cadential arrival and the expected metric accent that marks the beginning of the next chorus. The structural anacrusis function of the turnaround thus adds an element of inertia going into the hypermetric accent. Consider Kernfeld’s (1995) description of the phenomenon. “Every chorus . . . has a common element: the design allows it to repeat,” he explains.

This is achieved through a lack of coincidence between two points of arrival—the cadence on a tonic chord, which falls 2 (sometimes 4) bars before the end of a chorus, and the strongest metric downbeat, which falls on the first bar of the next chorus. The result is a formal instability that perpetually energizes a piece,
pushing it toward a simultaneous resolution of harmony and rhythm but never allowing it to reach that resolution” (41).

Kernfeld’s observations are in line with Hatten’s (2004) description of “gestural character” as something “emerg[ing] for the listener from an interaction with tonality and meter as environmental fields with implied forces and orientations” (117). On the issue of orientation, Rothstein (1989 28) and Love (2011 40) are of the viewpoint that metrical structures are beginning-oriented, and thus provide what Love calls a “propulsive effect” (94). Rothstein contrasts this feature of metrical structures with the goal-oriented nature of phrases. Cone (1968) offers a similar assessment of implications of motion associated with each. He suggests that “an initial downbeat is marked by a kind of accent that implies a following diminuendo; a cadential downbeat suggests rather the goal of a crescendo” (27). I interpret Cone’s use of the terms “diminuendo” and “crescendo” as referring to a broader notion of energy rather than strictly dynamics. In any case, he seems to agree with Rothstein that the two phenomena suggest different notions of orientation.

1.10.4 Speculation on Musical forces at work in turnarounds and chorus structure

The various implied motions and expectations described by theorists are rife with metaphors of physical forces. Adapting their terminology to a contemporary theory of musical forces, we can conceptualize the model of perpetual motion created by repetitions of choruses suggested by Kernfeld. The beginning-oriented nature of metrical structures mentioned by Rothstein et al implies a type of instantaneous impulse of propulsion forward imparted onto a musical passage at the moment it reaches a hypermetric accent. On a hypermetric level, we can attribute this to a large-scale sense of rhythmic inertia. The arrival of the hypermetric downbeat confirms the repetition of the larger pattern (i.e. the repetition of the chorus), suggesting that the stability provided by
its periodicity will continue and be reaffirmed at an analogous point in the future. By contrast, the nature of goal-orientation (i.e., with regard to phrases) implies that the relevant force fields are located on the opposite side of a singular point in time, but still act to propel the music forward. The difference is one of “pushing” versus “pulling.” A metrical accent pushes music forward away from its location in time; a melodic or harmonic structural accent pulls music (in a forward direction) toward its location in time.

Within the jazz chorus form, as a harmonic progression approaches the cadential point that signifies the arrival of the turnaround, our expectation for harmonic resolution grows stronger. Larson’s discussion of magnetism in the pitch domain is limited to melodic magnetism, though he does reference the stepwise resolution of dissonances in species counterpoint that form the basis of our rules for harmonic voice-leading (90). Lerdahl and Jackendoff include harmonic phenomena as entities that can be considered structural accents, which they compare to “points of gravity” (30). The metaphor of magnetism seems more appropriate than gravity in this instance, as the underlying desire for parsimonious voice-leading assumes that primary factor of attraction from a given pitch to its resolution is that of proximity (of pitch), rather than an up-and-down pitch scaling of gravity. In other words, the movement of tendency tones is occasionally governed by magnetism that negates the effect of gravity, such as the upward resolution of a leading-tone. It may be useful to adapt Larson’s concept of magnetism to a harmonic domain. Could the expectation for harmonic resolution be explained by "harmonic magnetism" (or the aggregate effect of multiple inner-voice magnets?) A concept of harmonic magnetism could then imply that cadential motion featuring the resolution of multiple voices in harmony exhibits a significant level of magnetic pull that, together with the forces of melodic magnetism and melodic gravity,
comprise the goal-oriented forces that exert a pull toward the downbeat of the turnaround.\(^8\)

The beginning-oriented forces associated with the metric accent at the beginning of the chorus have already been mentioned, but I posit that a more thorough understanding of the theory of musical forces suggests the existence of additional goal-oriented forces that exert a pull toward the metric accent. Metric magnetism (supported by Lerdahl’s (2004) “metrical attractions”) experienced on the hypermetric level gives the metric accent the quality of a goal, which grows stronger as it approaches. This effect is amplified by the out-of-phase relationship of phrase and meter mentioned by Rothstein et al.

1.10.5 A model of perpetual motion

Larson suggests that just as physical motions are gracefully elided by an inertial transfer of energy from one motion to the next, so too are musical motions. He theorizes that musical inertia carries motion to a goal beyond that goal (2012 255), allowing that energy to be transferred to subsequent musical motions, and augmenting the musical forces contained therein. Consequently, musical patterns are combined in ways that are analogous to smoothly connected physical motions (157). Lester (1986) comments on the complementary effect on the interaction of separate forces, noting that “the predictability of regular meter,” which is the basis of rhythmic inertia, “intensifies the linear and harmonic drive of tonal pitch structures.” (52) While he does not explicitly claim that the forward motion created by a predictable metric pattern is transferred to a goal-oriented linear and harmonic drive, Lester’s phrasing does appear to imply a causal

\(^8\) Jackendoff’s (1992) discussion of “prospective hearing” and its reliance on “principles of musical grammar” bears repeating here (149). While the concept of harmonic magnetism could imply that cadences featuring multiple voices whose resolutions are achieved by half-step motion (e.g. phrygian half-cadence or the tonic resolution of a “tritone sub” dominant) exhibit a higher level of magnetic pull, centuries of tonal music have elevated the common-practice authentic cadence to a more prominent stature than, say, that of the double leading-tone cadence common in the fourteenth and early fifteenth century.
relationship, in which an increase in one force is attributed to that of an already established force. Applying these concepts to the previously mentioned musical forces present in a jazz chorus structure, we can develop a model of perpetual musical motion based on a regular repetition of choruses.

Figure 7: Combined musical motions creating a cycle of perpetual motion

The above figure demonstrates a cycle of perpetual motion created by musical forces within repeated jazz choruses that smoothly elide from one into the next. The colors indicate the relationship between the various forces and the points (either the downbeat of the turnaround or the downbeat at the top of the chorus) they move toward or from which they emanate. The metric accent at the top of the chorus creates a propulsive effect that is carried forward by rhythmic inertia. As the music progresses
and approaches the turnaround, the forces of harmonic magnetism, melodic magnetism, and melodic gravity exert an increased pull toward the cadential goal. The structural cadential accent acts as a structural anacrusis to the top of the form, and is pulled by the force of metric magnetism, augmented by the tension created by the out-of-phase relationship between phrase and metric structure, to the downbeat of the next iteration of the chorus. The cycle can comfortably repeat any number of times, though it must be broken in order for a piece to come to an end. Kernfeld (1995) addresses this noting the “heavy reliance in jazz on abrupt, tentative, awkward, corny, nebulous, and dissonant endings,” and attributes the phenomenon to the perpetual forward motion inherent in repeated chorus form (43). Kernfeld continues, noting that, “by its very nature, the chorus does not allow itself to end neatly.”

It is important to note that the above model is a representation of the musical forces working at the highest level of metrical abstraction, i.e., the chorus. These are not the only places where these forces can be factored into the form. An intermediate level of analysis might, for example, account for the beginning-oriented accent inherent in each 8-bar section of a 32-bar form, as well as each resolution to tonic harmony.

1.10.6 Turnaround as a place of increased activity

Multiple jazz scholars have commented on the prevalence in jazz performance of an increase in musical activity occurring at the turnaround. Paul Rinzler (1988) writes of strong tendency “to highlight in some manner the end of a formal unit and beginning of the next” (156). He says that a formal unit can be a chorus or a phrase. Berliner (1994) focuses on the relationship between formal structure and accompanimental density, noting “shared expectations” among ensemble members for certain events to occur at “particular locations within the time cycle,” and goes on to emphasize the last two bars of sections (372). Ingrid Monson (1996) uses the term “intensification,” which she
describes as “a deliberately amorphous term” to talk about musical events that contribute to a feeling a climax (139). Among the parameters she considers are dynamics, rhythmic density, register, timbre, melody, harmony, interaction, and style of groove. Monson specifically mentions the end of a chorus as the “syntactically expected position” for such intensification (171).

These observations reinforce a phenomenon highlighted by the earlier examination of double-time examples: that the turnaround, acting as a structural anacrusis to the next repetition of a chorus, is an ideal location for a performance to transition into double-time, due to the presence of musical forces that can provide an extra boost to shift the primary metric level (i.e., the time) to a faster subdivision of hypermetric beats. Going back to the topic of perception of meter, Jackendoff (1992) proposes that cadential boundaries are points where less stable analyses of meter cognition are “pruned” (141, 145). That is to say, upon the arrival of a cadence, a listener’s selection function that monitors alternative interpretations of the meter discards the alternative options, having accepted the cadence as confirmation of the correct analysis. If the selection function is then refreshed and started anew, then the turnaround, which marks the time-span between a cadential boundary and the subsequent hypermetric downbeat, is an exceptionally appropriate location for a shift into double-time.

1.10. 7 Refined definition of double-time

Taking these ideas about meter and phrase structure into account, along with the general observations collected by examining examples of recorded ballad performances that feature a move to double-time, we can form a refined definition of double-time:

Double-time is typically tied to a structural section (chorus, half-chorus, or 8-bar section within the chorus), is usually maintained until arrival of a hypermetric
downbeat, (or in some instances a specific place within the form preceding a hypermetric downbeat), and is often initiated in the turnaround. In order for a passage within a given performance to be considered as having “gone into” double-time, it should behave according to these traits. If it does not, then I do not believe it has truly achieved double-time, but merely suggested it.

2. Part Two

2.1 Analysis and Transcription of “My Foolish Heart,” as Performed by the Bill Evans Trio at the Village Vanguard

2.1.1 Overview of form

Victor Young’s “My Foolish Heart” is constructed around a 32-bar ABAC form, also known as the “16 and 16” form, distinguishing it from the common 32-bar AABA song form, and highlighting the bipartite quality of the chorus form, marked by the repetition of the second A section that divides it into two clearly discernable halves.

The melody is characterized by alternating phrases of rising and falling lines. A long melodic ascent from scale-degree 5 to scale-degree 3 extends over the entire duration of the A section, balanced by a descent back down to scale-degree 5 over the B section. The last bar of the B section features a frustrated leading-tone resolution that, rather than moving up to the tonic scale degree, descends stepwise to scale-degree 5 for the second statement of the A section. In terms of musical forces, melodic inertia and gravity can be said to overpower the melodic magnetism inherent in the relationship between the leading-tone and tonic. The second A section consists of a similar melodic ascent that leaps a third to reach scale-degree 3 just before the start of the C section. The third scale degree is then elongated over the first five bars of the C section before descending stepwise to the tonic.
Figure 8: Melodic reduction of "My Foolish Heart," mm. 1-16

Figure 9: Melodic reduction of "My Foolish Heart," mm. 17-32
The melodic reduction in Figures 8 and 9 above illustrates the alternating rise and fall of the melodic contour. A traditional Schenkerian analysis would identify the rising melodic line over the first A section as the initial ascent to the primary tone (scale-degree 3) of the fundamental line. The end of the B section marks an interruption in the fundamental line, followed by an ascent in the repetition of the A section back to the primary tone, after which the fundamental line descends to the tonic.

2.1.2 Overview of performance

The Bill Evans Trio’s performance of “My Foolish Heart” begins with a single pickup note to the head in the piano. Evans’ left hand accompaniment on beat two of the first measure establishes the very slow tempo of 56 bpm. Scott LaFaro and Paul Motian provide a sparse, understated accompaniment throughout the opening chorus. Evans solos on the first half of the second chorus, and then goes back to the head melody for the second half. Upon resolution of the final cadence, the group plays a short coda consisting of a diminution paraphrase of the melody’s opening leading to the distinctive harmonic device of ii-V of bIII (flattened third scale degree) from the fourth bar of the C section, which leads to a final vi-iii-ii-V cadential figure in the tonic key. The entire performance consists of two passes through the chorus form, followed by the coda that begins at the turnaround of the second chorus. Whereas the first chorus is performed entirely in regular time up to the turnaround, the second chorus features an oscillation between primary metric levels, alternately recognizing the quarter-note pulse and the eighth-note pulse as the tactus.
Chorus 1:

<table>
<thead>
<tr>
<th>A (8 bars)</th>
<th>B (8 bars)</th>
<th>A (8 bars)</th>
<th>C (8 bars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>head statement in piano</td>
<td>sparse drumset accompaniment</td>
<td>unusually reserved bass</td>
<td>transition to double-time in turnaround</td>
</tr>
</tbody>
</table>

Chorus 2:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A (truncated)</th>
<th>outro</th>
</tr>
</thead>
<tbody>
<tr>
<td>piano solo</td>
<td>head out truncated by outro</td>
<td>paraphrase of head</td>
<td></td>
</tr>
<tr>
<td>oscillation between metric levels</td>
<td>original time</td>
<td>free time</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10: Formal outline of "My Foolish Heart"

2.1.3 Note on drumset notation

In the transcription of “My Foolish Heart,” snare drum activity is notated to represent resultant sounds rather than the technique involved in achieving them. I will not attempt to get into a detailed description of the wide palette of brush techniques available to a drummer of Paul Motian’s caliber. Instead, I have assigned the sounds of two different gestures to two separate locations on the staff. The notes in the third space (from the bottom) of the drumset staff represent a stroke of the brush coming into contact with the drum head (hereafter a *stroke*); the notes in the second space represent a stir of a brush on the snare drum head (a *stir*).

Figure 11: Drumset notation
When not accompanied by a stroke, and not preceded by a slur, a new stir note implies that the brush is pulled across the head after already having been immobile but in contact with the drumhead. Slurred notes indicate a sonic shift caused by either a change of direction of one or both brushes, or an out-of-phase alternation of strokes and stirs between the two hands. In either case the resulting shift in sound can range between overtly noticeable and extremely subtle. Attentive listeners may not necessarily agree with every rhythmic nuance of the transcription.

2.2 Close analysis of specific sections

2.2.1 Seeds of double-time, doubly-embedded anacrusis

mm. 26-27

The first suggestion of double-time on the surface level of an individual part occurs in Evans’ right-hand melodic line on beat 4 of measure 26.

Excerpt 1: mm. 26-27 of the Bill Evans Trio performance of "My Foolish Heart"

Lerdahl and Jackendoff describe “embedding” as a feature of anacruses that exhibit rhythmic units representative of multiple metric levels. A “doubly-embedded”
anacrusis is a gesture that contains a pickup note at one metric level which is itself preceded by a pickup note at the smaller metric level subdivision.

\[
\text{doubly-embedded anacrusis}
\]

Figure 12: Doubly-embedded anacrusis

Evans’ gesture on beat 4 of measure 26 is an example of a doubly-embedded anacrusis. The eighth note at the end of the bar (B4) serves as an anacrusis to the following downbeat on the quarter-note level while the preceding note (A4) serves in a similar capacity to the eighth note that follows, but on a metric level that divides the eighth-note pulse into swung 16th notes. As noted in the observations about ballads above, a double-time pulse is usually swung, while the original pulse is not. When Evans’ plays this gesture in m. 26, it introduces for the first time an implication of swung subdivisions of a double-time pulse.

From the performance’s opening, Motian’s snare drum stir gestures oscillate between the quarter-note pulse and subtly imbued eighth-note divisions of the beat, creating a sort of cyclical textural wave of underlying metric activity. The subdivision first comes into regularity as early as m. 14, but not until mm. 19-23 does the gesture extend through multiple adjacent bars. Additionally, not until m. 26 does Motian begin to utilize the hi-hat (close with foot) in a regular pattern that exceeds 3 bars. Motian had been loosely cycling through various permutations of beat demarcation, altering the pattern every 3-4 bars.
m. 30

Measure 30 (immediately preceding the 2-bar turnaround at the end of the chorus) marks a point of a significant textural shift. The floating, sparse, sustained texture of the opening chorus feels like it collapses onto the quarter-note beats. LaFaro articulates the first two beats of the bar for the first time, while only a single tenor line in Evans’ left hand, offset by a triplet-eighth-note, provides any subdivision of the beat before being held as a 4-3 suspension that resolves over the dominant E7 harmony on the fourth beat. At that point, Motian draws out the snare drum stir over the entire duration of the beat, which, along with the resolution of the suspension in Evans’ left hand over LaFaro’s freely sustaining open E of the bass, creates an anticipatory effect going into the turnaround in the next bar.

Excerpt 2: mm. 30-32 of the Bill Evans Trio performance of "My Foolish Heart"

mm. 31-33

As I note above, the beginning of the turnaround marks a structural accent by the simultaneous resolution of the harmonic progression to tonic harmony with the melodic resolution to the tonic scale degree. Paul Motian begins a double-time pattern in the drums starting on the downbeat of the turnaround. Evans moves to a locked-hands texture, utilizing 16-note-triplet divisions of the double-time pulse. (The first beat of m.
31 could be notated as an 8th-note triplet divided between the hands, but the pattern in the drums makes it feel like swung anticipations of an eighth-note tactus. This interpretation is confirmed by the presence of 16th-note triplet divisions.) LaFaro plays a melodic eighth-note-triplet line emphasizing a G# in the upper register of the bass over the resonating open A string.

Measure 33 marks the beginning of a new chorus, but expectations are thwarted on multiple levels. The transition to double-time, initiated in a traditional fashion during the turnaround, feels like it hits a wall, as Motian immediately reverts back to a triplet-based four pattern in the original time. At the same time, LaFaro supports the tonic harmony with a low E in the bass. Not only is this a less-stable 6/4 inversion of the harmony, but the open E string is the lowest possible note on the double bass (in standard tuning).

2.2.2 Musical forces at work in mm. 30-33

The melodic and harmonic resolution in bar 31 mark the structural accent that serves as the target for the goal-oriented forces of harmonic magnetism, melodic magnetism, and melodic gravity. The rhythmic values of the melodic line fall into a passage of metric stability, articulating the four quarter-note beats of the measure just before the cadence. I hear this as a type of rhythmic gravitation to the tactus that works in concert with force of melodic gravity, like the alternating back-and-forth motions reminiscent of a falling feather just before coming to rest on the ground. Jackendoff’s (1992) suggestion that less stable analyses are “pruned” at cadential points, and the increased expectation for resolution approaching a cadence, may explain the phenomenon found throughout tonal music in which melodic and harmonic rhythm become more regular approaching a cadence. The local force of rhythmic gravity is not merely limited to the melody, however. The entire ensemble, after existing in an
ethereal, floating texture for the first 29 bars of the head, appears to coalesce into the pattern of regular quarter-note beat demarcation going into the cadence. The increased explicit emphasis on the beat adds a dimension of rhythmic inertia that carries into the turnaround. Monson talks about rhythmic elements played by jazz drummers as being “solid” or “liquid,” using terminology picked up from drummer Michael Carvin (1996 55,174). Rhythmic gestures are relatively fixed are considered solid, while freer gestures are liquid. If we extend the analogy to describe the rhythmic gestures of the whole group, then the gradual shift toward articulation of the quarter-note beat can be interpreted as a solidification of the composite texture, an analogy that pairs well with the notion of rhythmic inertia, as we expect solid objects to be affected by inertia more predictably than liquids.

Texturally, the very subtle change Motian induces on the fourth beat of measure 30, stretching out the snare drum stir over an entire beat in contrast to the subdivision of the previous several beats, contributes a special sense of tension to the moment. The collaborative effects of harmonic magnetism, melodic gravity, rhythmic gravity, and rhythmic inertia create a strong expectation of resolution on the downbeat of m. 31 that feels all but inevitable. So how can we explain Motian’s augmentation of the stir gesture on the fourth beat of m. 30, when it seems as though it is working against the forward push instilled by the combined musical forces at work in this passage?

2.2.3 Musical friction and agency in motivated gestures

William Rothstein (2005) introduces the concept of “friction” as a metaphor for rubato, pointing out specific instances (such as a particularly dissonant melodic note or a motivic statement in an inner voice) in which he feels compelled to give a note more time to sound in performance. If an unencumbered expression of rubato is, as Rothstein suggests, analogous to falling off a log, then this additional friction equates to “a
protruding bit of bark, so to speak, that slows our fall” (21). Lerdahl (2004), while not mentioning friction specifically, notes “on a gravitational analogy, one might suppose that a high attraction would cause a shortening in the microtiming of events. But expressive timing often goes against prevailing tendencies, precisely in order to draw attention to them” (296). Hatten, in his 2012 expansion of Larson’s model, suggests the recognition of friction as an additional musical force. But he also expands the breadth of Larson’s model, which focuses on the musical material being shaped by forces in a purely sonic realm, to a model that can be affected by the “motivating force of an implied musical agent” (2004 115). He writes of “agential energy” as a potential source of musical friction that can initiate changes that a listener correlates with an expressive shift. (2012 11-12, 23) This is in line with Rothstein’s concept of friction and Lerdahl’s “expressive timing,” but where Rothstein and Lerdahl imply a type of performer-as-agent, Hatten’s conception of agency is more open-ended, in the vein of agency discussed by Cone (1974) and Fred Maus (1988). Agency is not limited to individual instruments or performers, but can be recognized more broadly, as in Cone’s “implicit virtual agent.” Cone writes that agency can be inferred from the “unanimity of action and expression” of any given passage, noting that it can arise from “any recognizably continuous or distinctively articulated component of the texture” (1974 90, 95), an idea to which I will return. However, for the purposes of close analysis of individual gestures among an ensemble in which each member is continually improvising in some degree, it is fitting for the time being to think of the individual performers as agents capable of communicating and contributing to the composite musical fabric motivated gestures imbued with agential energy. Berliner (1994) writes of the various musical cues jazz musicians use to communicate intention to one another in group performances (365-366), and Monson likewise discusses jazz musicians in small-group settings as
“compositional participants who may ‘say’ unexpected things or elicit responses from other musicians” (81). Applying Hatten’s ideas about agency and its relation to musical forces provides a convenient way to account for such musical cues, particularly when viewed as gestures exchanged between performer-agents.

Hatten notes that in the physical world, inertia is not a force, but a tendency of objects to behave in a certain way when encountering other forces. “The inertia of an object in motion” he writes, “may be understood as the result (not the cause) of sufficient energy having been invested earlier by an agent such that the object could have initially achieved the very motion that can then be continued” (9). He calls this energy “momentum,” and states that “an agent cannot ‘enhance’ inertia”, but may increase momentum by musical means (20). Alternatively, an agent can introduce friction, which impedes an opposing force (11-12).

Going back to the fourth beat of m. 30, Motian’s elongated brush stir on the snare drum can be interpreted as an example of agentially injected friction that acts against the combination of forces exerting a pull toward the next bar. The analogy of friction feels right here, perhaps because of the direct parallel to the physical motion involved in slowly drawing a brush across a textured drum head. Motian is not alone, however, in creating this sensation. LaFaro’s sustained half-note E on beat three of m. 30 (and the lack of rearticulation before the cadence) has an analogous effect, and the fact that the entire ensemble sustains through beat four of m. 30 without any surface subdivision of the beat (the first of such an occurrence since the first A section), makes it a group-wide phenomenon.

The induced friction is not substantial enough to break to forward momentum though. In fact, the opposite is true. It is because of the strength and inevitability of the forward pull that the gesture is effective in momentarily creating a feeling of increased
tension. The friction is subordinate to the forces it opposes and is only applied
temporarily, so that when the music continues into the next bar, giving in to the forces
pulling it into the turnaround, the release of frictional tension actually adds a small
factor of propulsion, the same way that pulling a string taut and then releasing one end
will cause it to be propelled toward the other end.

The effect is comparable to a familiar device used in Warner Brothers cartoons, in
which Wile. E Coyote, in his endless pursuit of The Road Runner, unwittingly runs over
the edge of a high cliff, but remains at an elevated height until becoming aware of his
situation, at which point he gives into gravity and falls a tremendous distance in
hilarious fashion. In such a case, gravity is still in play, but there exists a moment of
heightened suspense before the inevitable fall that increases the comedic effect. Notice
too that “heightened suspense” is a metaphor related to our conception of forces in the
physical world, one that implies a relationship between gravity and potential energy. So
perhaps another plausible interpretation is that Motian’s elongation of the stir infuses
that moment with potential energy, thereby increasing the gravitational pull into the
following downbeat.

In either interpretation, we are acknowledging a net increase in energy as the
music progresses into the turnaround, which manifests itself in an immediate
intensification (to use Monson’s term) of the texture on the part of all three musicians.
Just as Motian moves to a double-time pattern, Evans thickens his voicings and joins in
the double-time insinuation. The contrapuntal and registrally expansive nature of
LaFaro’s high melodic line over the open A string offer yet a different implementation of
“heightened suspense” going into the top of the form.
2.2.4 Double-time as an elevated metric stratus

In his discussion of metaphor, Larson notes the wide variety of musical parameters to which listeners ascribe qualities of “up” and “down.” Larson’s own description of rhythmic and metric stability and the resulting hierarchical levels invokes the same metaphor when he states that a point in time that feels more rhythmically stable than another indicates that it belongs to a “deeper” level of meter. He shows how “up” and “down” can be mapped ways that reflect metric and rhythmic stability (2012 148-149). Since double-time imposes a doubling of the tempo of a deeper underlying metric structure, it can be seen as existing above the original meter. Henry Cowell (1930) uses overtone ratios to incorporate ideas about ordered systems of harmony and counterpoint into the domain of rhythm and notes that “times” can be regarded as being “in harmony” if they are related by the same whole-number ratios that govern the harmonic series (46-50). In that sense, double-time could be said to function as the first overtone above a fundamental meter. The correlation of pitch and rhythm is appropriate since the first overtone of the harmonic series exhibits a frequency exactly twice that of its fundamental tone. For instruments in which basic technique depends on a navigation of the harmonic series, as is the case with brass instruments, a player intending to move from a fundamental pitch to the first overtone above must increase the intensity of his or her air support until it reaches a sort of critical mass sufficient to trigger a shift to the higher note.

The very notion of a harmonic series of “overtones” reinforces this mapping of “up” and “down,” a mapping that implies that the entities it describes are susceptible to the effects of gravity. As is generally the case with large-scale melodic contours, the effects of gravity can be overcome for relatively long stretches of time, but eventually give in to the attraction toward a more stable state, behaving in accordance with the
aphorism that “whatever goes up must come down.” Our observations about typical double-time use in jazz ballads shows that to also be the case. What goes up (as in an excited state of articulation of a less stable primary metric level), must come down (returning to the original primary metric level) at some later point in the performance.

With this view of double-time existing in an elevated metric stratus in mind, the intensification of multiple musical parameters in the turnaround of this performance of “My Foolish Heart” has the effect of “building up” or “ramping up” to double-time approaching the metric accent. (Notice that both metaphors depict means of ascent to a destination point.) It coincides with the part of the form that exhibits the greatest concentration of musical forces providing a sense of forward propulsion. In this sense, a transition to double-time that begins in the turnaround does not work against the musical forces inherent in the chorus structure, but with them. Though we might talk about the injection of agential energy by a performer as an investment of additional effort, there is a sense in which performers transitioning to double-time can be said to be passively giving in to the forward propulsion, riding it rather than fighting it. An appropriate analogy in the physical realm is that of a person walking a dog on a leash. If the dog becomes overly excited and begins pulling the leash ahead of its owner, at a certain point it is easier for the owner to give into the forward pull by increasing his or her gait to a jog than to continue to resist.

mm. 33-34

That the expectations of double-time realization and stable tonic harmonic resolution are so severely thwarted at the top of the second chorus gives measure 33 a feeling as though the bottom has fallen out. LaFaro’s bass line plummets from a sounding G#3 to an E1 an octave and a third below. (The bass part sounds an octave lower than it appears in the transcription, keeping with traditional notation of the
double bass.) The notion of “letting go” is appropriate not just metaphorically, but as a literal description of technique here, as the downbeat E and subsequent A of the bass line represent the two lowest open strings of the bass.

Evans’ left hand assertively emphasizes the quarter-note pulse in conjunction with Motian’s 12/8 feel. Remarkably, Motian’s articulation of the last eighth note of the bar aligns neatly with Evans’ even-eighth subdivision on the beat in a deviation from the strong triplet-based subdivision of the previous beats.

Excerpt 3: mm. 33-36 of the Bill Evans Trio performance of "My Foolish Heart"

mm. 35-37

Perhaps influenced by Evans’ articulation of double-time offbeats going into m. 35, Motian makes a pointed offbeat accent on the snare drum just before the third eighth note of the bar. The accented offbeat and the snare drum stir that follows give the combined effect of the same doubly-embedded anacrusis figure found in m. 26 (Evans’ right hand on beat 4). The placement of the accent marks this as a musical cue, signaling a move to a double-time pattern in the drums upon the arrival of the next beat. LaFaro and Evans respond in kind, basing their gestures in m. 36 off of the double-time insinuation, and the trio once again begins to reach a critical mass of double-time inference.
However, with the arrival of m. 37, the expectation for a continuation of double-time is again frustrated as the group immediately retreats to the original time, confirmed by Evans’ emphasis on eighth-note triplets.

Excerpt 4: mm. 37-40 of the Bill Evans Trio performance of "My Foolish Heart"

mm. 38-41

In measure 38, LaFaro begins to strum the bass on an open fifth, putting an emphasis on the second half of each beat, thereby accentuating the afterbeats in a double-time feel. Evans is quick to play off this subdivision, articulating double-time offbeats in a locked-hands voicing pattern at the end of m. 38 going into m. 39. The gesture broadens into eighth-note triplets in m. 39 before again emphasizing double-time offbeats in m. 40. Evans’ use of locked-hands, as examined in the performance of “Some Other Time,” often serves as a musical cue, communicating a transition to a more active texture, such as double-time or a more driving sense of groove. Note that the locked-hands gesture closes on beat 3, serving as a momentary place of rest before Evans’ right hand line plays an anacrusis figure going into the next measure. As Motian moves into a double-time pattern with the afterbeat placement of the hi-hat, LaFaro once again expands his contributions to the texture, contrapuntally and registrally, with afterbeat gestures on a G#-D tritone over a sustained open E string. There are many parallels here to the turnaround that led into this chorus. Formally, these bars constitute
the end of one formal section (the first A), leading to the next (the B section), thereby exhibiting a sense of metric magnetism pulling toward the hypermetric beat that begins the next section. Texturally, the process of intensification is similar, across the ensemble, to that of the earlier turnaround. The players are, in the words of Rinzler (1988), “[using] widely different musical techniques, idiomatic to a particular instrument, in order to achieve the same broad, collective purpose” (157), an appropriate description for this passage, as the trio once again works toward the collective purpose of pushing the music into double-time.

mm. 41-43

The downbeat of m. 41 marks a significant hypermetric downbeat that coincides, yet again, with the sensation of the “bottom falling out” of the texture as the double-time insinuation is immediately halted. This moment is harmonically more stable than the analogous point at the top of the chorus, as LaFaro lands on the root of the tonic harmony, but once again the concept of “letting go” is appropriate, since the open A string is allowed to sustain for two full beats. Motian introduces a timbral change here as well. Up until this point in the performance, the snare drum had been a significant factor in every instance of double-time suggestion, but upon the arrival of the downbeat of m. 41, he abandons it completely in favor of the cymbals and hi-hat.

Evans’ anacrusis gesture into m. 41 and the passage that follows represent the first breakout of his characteristic right-hand solo line above a comping left hand. There were hints of this in mm. 21-23, but this time the change is highlighted by Evans’ use of rhythmic displacement, which, together with the rhythm section’s frustration of double-time realization, creates a feeling of the piano lines being catapulted into the air, up and away.
The melodic motion through the A major pentatonic collection in Evans’ right hand has a feeling of lightness and effortlessness, contributing to the heightened effect. But does this run counter to the notion of tonic harmony as a place of stability, and the association of stability with a sense of groundedness? Not necessarily. First of all, the melodic gesture is imbued with significant energy, aided by the beginning-oriented forces of the hypermetric accent, to form a melodic ascent consistent with this metaphor. Secondly, interval content and can be seen to play a role here as well. Rothstein (2005) mentions “temporal viscosity” as an element to a musical texture has an effect on musical friction (23-24). Noting that “a viscous medium offers more resistance to a falling body than a non-viscous one,” Rothstein theorizes that certain descending chromatic sequences in Chopin’s music feel like they move through a viscous medium than ascending diatonic sequences. The fewer notes per octave, the less viscous the medium. Though this is a bit of an oversimplification of Rothstein’s theory, it demonstrates a way that interval content plays a role in contributing to the metaphor. Since measures 41-43 exhibit melodic motion through a pentatonic collection (with the exception of the D# grace note), it can be said to move through a less viscous medium than a diatonic passage. If the latter is moving through air, then the former is moving through a medium lighter than air (or perhaps thinner air at a higher altitude?).

Excerpt 5: mm. 41-43 of the Bill Evans Trio performance of "My Foolish Heart"
The rhythmic displacement of the Evans’ piano gestures against the tactus in m. 41 is likely a more significant gravity-defying factor than interval content, however. Krebs (1999) and others have discussed the concept of metric consonance and dissonance. Krebs defines metric consonance as a “metrical state resulting from the alignment of interpretive layers” (29). Larson (2012) similarly states that durational patterns that are “simply nested so that one is a subset of the other” are consonant, and notes that we expect metric dissonance to resolve, i.e., “we expect conflicting rhythms to be followed by durational patterns that are more simply nested” (165). In this sense the idea of a resolution of metric dissonance does not resolve in a single point in time the way that harmonic dissonance resolves, but there is a necessary period of adjustment to a realignment of rhythmic layers. Krebs divides metric dissonance into two types, direct and indirect. An direct dissonance is created by a superimposition of metric layers, i.e., a simultaneous metric clash, while an indirect dissonance occurs when there is a juxtaposition of rhythmic values, i.e., occurring in sequence. Krebs accounts for the extended time involved in a resolution of metric dissonance by claiming that indirect dissonance is inherent in all direct dissonance as the listener’s ear adjust to the resolution of conflicting rhythms, and that the duration of dissonance varies from listener to listener (45).

The rhythmic profile of Evans’ playing in measure 41 is remarkably similar to that of m. 42, except that it is displaced by one 16th-note-triplet 16th note (one-sixth of the beat), beginning just before the barline. In fact, the second half of the displaced gesture is the same, rhythmically speaking, as the first two beats of the “on the beat” version in m. 42. This is demonstrated in Figure 13 below. Note that both hands of the piano part are operating together in this regard.
The displaced gesture in m. 41 comes to rest (aided by a local sense of melodic gravity) on the “and” of beat four. This eighth note almost seems to function as a pivot note, leading to a realignment of the piano gestures onto the beat. Just as Larson described, the metric dissonance in m. 41 (offset triplets over a clear 4/4) is indeed followed by durational patterns (in this case the same durational pattern) that are more simply nested within the beat, allowing the metric dissonance to resolve over the course of m. 42. The resolution of this dissonance gives a feeling of giving in to rhythmic gravity, as the shift from the offset triplets (which nest more neatly into a double-time conception of meter) appears to “fall into” alignment in the next measure. A sense of forward motion is maintained, however.

On the fourth beat of m. 42, Evans reflects on the offset triplet again before reaching, on the downbeat of m. 43, an accented passing tone that resolves to the tonic on the following beat, while his left hand sustains the harmony over two whole beats,
the longest duration of any held piano gestures since this chorus began. After the stasis of the first two beats of m. 43, Evans again plays a figuration that flirts with the insinuation of double-time before locking into 8th-note triplets, albeit with some elaboration, in the next bar. I hear this gesture, along with the offset triplet on beat 4 of m. 42 as being analogous to the physical action of a person skipping.

2.2.5 Analogy to elided physical gestures

The combined gestures of both of Evans’ hands suggest a winding down, or gradual release of momentum following the propulsive effect of the hypermetric downbeat of m. 41. I have already mentioned Larson’s observations about the tendency of musical patterns to combine in ways that are analogous to gracefully elided physical motions. To explain these four bars (mm. 40-43), I offer a metaphor consisting of a series of analogous physical gestures. The aforementioned temporary place of rest, where Evans’ closes the locked-hands gesture (m. 40 b. 3), is akin to a preparational crouch before a leap. The melodic anacrusis on the next beat represents a leap just before a moment of impact. One can imagine an action-movie sequence starring Steven Seagal (or Chuck Norris, or the protagonist of your choice) in which he needs to jump from a moving vehicle or platform to avoid imminent doom before it smashes into a wall or a train, or goes flying over the edge of a cliff or bridge that is out. Anyone well versed in action movies knows that you don’t wait for the moment of impact to jump, but that you time your jump immediately before, delaying it until the last possible moment. (Notice that Evans’ left hand articulates the very last 16-note triplet subdivision of the bar.)

\[9\] Notice that Evans’ voicing of this harmony omits the third of the chord, an atypical phenomenon, but that LaFaro has it covered by the tenth in the bass. This marks this third time in this performance that LaFaro has played that D–F# tenth. In terms of bass technique, it is relatively easy to play since the D is an open string. In fact, LaFaro shows a predilection for playing wide harmonic intervals over open strings on multiple occasions during this performance, no doubt due to the A major key, in which the tonic, dominant, and subdominant can all be played on open strings. In each instance of the D–F# tenth, he executes either a glissando or, as in m. 27, a brief chromatic anacrusis to the F#. It is likely that Evans heard very clearly LaFaro’s slow glissando in m. 42 and anticipated that he would again move to the tenth in m. 43.
downbeat of measure 41 represent the moment of impact. Our protagonist is hurled through the air as the bottom falls out beneath him. In measure 42, having landed with both feet on the ground, inertia causes him to run for several steps to stay on his feet and avoid serious injury. Our action hero may be subject to the forces of nature, but he shows no signs of losing his swagger, and takes a short skip and a hop (on beat 4 of m. 42) before continuing at a slower pace (into m. 43). This is followed by another couple of skips, and then (in m. 44) a regularly paced walk by which our protagonist casually continues to his next destination, which happens to be a bar. Bar 45, to be precise.

The timbral change initiated by Motian’s shift from brush stirs on the snare drum head to brushed cymbal rolls beginning in measure 41 enhance this effect of this metaphoric sequence. Just as Rothstein claims (in his discussion of viscosity) that friction causes a thickening effect (2005 23), I argue that the fluttering nature of Motian’s cymbal gestures create more of a floating effect. Whereas the drawing of brushes across a textured drum head implies a frictive, dragging sensation, the lack of such friction, and the repetitive micro-motions associated with cymbal rolls, gives a feeling of “airiness,” perhaps due to the imagery of insects flapping tiny wings in rapid succession to take flight, or the sensation of wind blowing through several small parts of a larger entity (e.g. leaves on a tree, the hair on one’s head, or stalks of tall grasses).

Bill Evans’ own words on the issue of displacement support a metaphoric interpretation of this nature. In a 1980 interview for the magazine Contemporary Keyboard, Evans attempts to explain his approach to displacement by way of a physical metaphor: “I could illustrate it by saying if a tap dancer or soft shoe dancer sort of takes a jump and lands and slides and then comes into a strong beat, it’s as if he got there too soon but then he slides into the strong beat.” (Aiken 1980) Perhaps realizing that his metaphor fails to fully express his thoughts on the matter, Evans reneges, saying “It’s not exactly
that,” before offering a more abstract explanation. It is revealing and substantiating, however, that Evans’ first response is to compare a series of musical gestures with a sequence of elided physical motions. Evans continues,

It’s a way of keeping the music moving when you’re using a regular metric form, by making the phrase accents and the motivic accents fall according to the content of the motives, falling before it should happen, or maybe dividing it up in different ways as it happens. *It’s a way of propelling the music, making it have a great deal of forward motion, and at the same time saying something extra because you’re getting deeper into the language of the music.*” (55, italics added)

mm. 45-46

The 16th-note based rhythms of the first half of m. 45 leave little doubt that the composite musical energy has slowed significantly over the previous 4 bars. The material in the second half of the bar broadens further into a triplet subdivision of the beat (entirely of Evans’ doing). Then in m. 46, Evans and LaFaro simultaneously enhance the V/V secondary dominant with a full, lush sound—Evans moving to an 8-voice locked-hands voicing while LaFaro strums a rich open 5th in the bass. This is a common technique of LaFaro’s, found throughout this performance as well as others from the same recording date. It can add a percussive emphasis in higher registers and a sonorous sustaining depth when played in the lower register. It is worth noting that this B-F# 5th (which occurs multiple times) is the lowest pitch level at which it occurs, making it one of the richest double-stops LaFaro plays in this performance.
Motian had maintained a consistent pattern of cymbal roll swells and hi-hat afterbeats since the beginning of this section of the chorus (m. 41), but finally introduces a change in the second half of bar 46 by articulating eighth notes on the cymbal with a double-time feel to the hi-hat placement. It is likely that he is responding to the uplifting quality of the suspended secondary dominant created by the timbral and textural changes in the piano and bass. Additionally, Evans’ melodic figuration on the second beat of m. 46, the G#-A in octaves, is the familiar doubly-embedded anacrusis, mildly suggestive of double-time.

mm. 47-48

Double-time is not realized in the following bars. Instead, there seems to be a general broadening going into the next section. (These are the last two bars of this section) Evans’ homophonic chords are temporally stretched out over the bar, and reserved in nature. Motian brings the brushes back to the snare drum, contributing to the sense of broadening by reintroducing the friction of the brush stirs.

mm. 49

Measure 49 marks the return of the A section halfway through the chorus form. Evans returns to a statement of the head melody over sustained, gently repeated chords.
in the left hand. LaFaro adds an element of inner pulsation to the texture with a high G#

a major 14th above the open string bass note. The high tension goes unresolved,
harmonically, as the G# becomes a major 9th (+8ve) over the F# in the next bar. Evans’
accompanimental voicing on the downbeat of m. 49 is characteristically rootless
(discounting the A4 in the melodic line). Perhaps as a response to LaFaro’s emphasis on
the high G#, Evans adjusts his voicing on the third beat to the root above so that they’re
not playing the same pitch.

Excerpt 7: mm. 49-52 of the Bill Evans Trio performance of "My Foolish Heart"

mm. 51 - 52

Measures 51 and 52 contain an exchange of sonic cues between Motian and
Evans. In the first half of m. 51, Motian again inflects a subtle eighth-note subdivision
into the snare drum stir for just those two beats, then backs off into longer quarter-note
gestures. On the fourth beat of that bar, Evans again shapes the melody with a doubly-
embedded anacrusis figure. Two beats later (m. 52, b. 2), Motian responds, reintroducing
the eighth-note subdivision in the brush stir, becoming more deliberate as the bar
progresses. It should be pointed out that these are the same two sonic cues that I
identified in the first chorus as “planting the seeds” of double-time insinuation.

LaFaro introduces a harmonic change on beat 3 of m. 52, a tritone substitution,

into what would otherwise be a full bar of sustained G#7 (V7/iii) harmony. He moves
from a G# to the same D-F# tenth as before, flipping the harmony to a D7 that resolves to the C#m7 in the next bar by half step, increasing the compulsion of musical forces into the downbeat.

mm. 53-56

In the following measure (m. 53), Motian brings the hi-hat back into the mix, articulating a double-time pattern with the closing of the hi-hat on the afterbeat, pushing it dynamically into the downbeat of m. 54. LaFaro’s increased textural thickness and articulation of quarter-notes on beats 3 and 4 help to drive into m. 54, where he begins strumming a hemiola pattern in 5ths suggestive of double-time. But just as quickly as the suggestion of double-time arrived, it seems to dissipate.

Excerpt 8: mm. 53-56 of the Bill Evans Trio performance of "My Foolish Heart"

Motian executes a decrescendo of the hi-hat foot, causing its presence to fade out. Evans’ comping pattern of two sustained half notes suggest a reluctance to fully commit. LaFaro articulates the fourth beat of m. 54 rather than repeating the hemiola figure. Were the hemiola pattern to give in to musical inertia, we would expect to hear it one more time. It would fit neatly into the double-time meter, as the second and third notes of the 3-note figure would act as the doubly-embedded anacrusis figure mentioned earlier, propelling the ensemble into the next bar. Instead, LaFaro and Motian seem to back off together, while Evans pushes forward with an ascending series of anticipated
pulses (suggestive of an underlying eighth-note tactus) leading to a more sustained final bar of the phrase. Motian once again stops playing the snare drum at this point, and once again the metaphor of “letting go” seems appropriate here. He lightly marks three beats on the ride cymbal, putting a sense of finality on the abandoned effort to achieve double-time. The effect is like a mechanical process “running out of steam.” The inner harmonic tensions seeking resolution, the hypermetric pull toward the next downbeat, and the inertia of the half-note harmonic rhythm seem to be the only forces compelling a continuation to the final phrase.

mm. 57-63

The final phrase of the chorus is performed similarly to the beginning phrases of the opening chorus. Measure 62 is the third-to-last bar of the head, i.e. the bar that immediately precedes the turnaround. Upon its arrival in the opening chorus, it was the moment at which all of the sparse, ethereal energy coalesced into a solidified whole with an urgent sense of forward momentum. This time, however, it feels considerably different. Motian plays soft cymbal rolls (still with brushes) rather than snare drum stirs. Though both techniques are essentially a manner of painting the musical landscape with high-frequency noise, the feel, as noted earlier, is radically different. Whereas the elongated stir seemed filled with anticipatory tension, the cymbal roll feels more like a release of tension, as if the micro-level physical motions responsible for the creation of the sound represent a light dissipation of energy. And while the cymbal rolls in mm. 41-45 maintained a sense of forward direction due to a crescendo into every other beat, in this section they exhibit longer, smoother trajectories.
LaFaro articulates just the first and third beats of this bar, once again utilizing the warm-sounding B-F# fifth. Evans plays no cross-rhythms with his left hand, simply articulates straight quarter-notes. If the analogous point in the first chorus represented a solidifying of ensemble texture, this point reaches an even more solid state. There is nothing out of the ordinary about the way the trio approaches the end of this chorus. If anything, the performance serves as a model way to end a jazz ballad. But how can a theory of musical forces interpret and explain the apparent loss of energy?

Hatten (2012) uses the term “willed braking” to refer to the process by which agential energy imparts friction sufficient to slow down the musical momentum via decrescendo, ritardando, liquidation of motive, durational expansion, or a combination of similar devices (19). This is a different application of friction than that which I described occurring in the bar before the turnaround of the first chorus. In that case,
friction pushed back against the opposing momentum, but did so without overcoming the inevitable forward progress of musical momentum. Rather, it functioned to temporarily heighten dramatic effect, and upon its release, it was seen to provide a small impulse of additional forward momentum. In the final phrase of the second chorus (mm. 57-62), friction is imparted as a means of slowing musical momentum to prepare for its ultimate cessation.

mm. 63-66

Following Evans’ lead, the trio executes a subtle ritardando going into the last beat before m. 63. The cadential resolution is elided, and the turnaround is disposed of in favor of a coda. With this small adjustment to the form, the performance achieves cadential resolution Kernfeld suggested was never coming, i.e., the alignment of structural accent with metrical accent. But it is only because the placement of the metrical accent has been shifted that this alignment is possible, and the only reason the coda is able to give the impression that the metrical accent has moved is because it sounds like a new beginning, thus temporarily providing the propulsion of a beginning-oriented accent.
The coda begins as a paraphrase of the head in diminution, then moves to a freer elaboration of a simplified version of the chord changes in the last phrase of the head (a ii-V of flat-III is succeeded by iii-vi-ii-V-I).

2.2.6 Cycles of activity within hypermetric units (4-bar hypermeasures)

To get a better understanding of the ways in which the members of the Bill Evans Trio interact with one another, and how those interactions are organized within the larger form, it will be helpful to examine textural activity on the level of the 4-bar hypermeasure. For convenience, I use “hm.” as an abbreviation for hypermeasure and “hmm.” for the plural form.

mm. 1-32 (hmm. 1-8) [first chorus]

Paul Motian’s sparse accompaniment to Evans’ statement of the head melody is not cyclic, but is loosely organized into 4-bar units of textural variation. (Hereafter, I will
consider every fours bars, beginning with the first bar, as a being grouped into hypermeasures. Hypermeasure 1 begins in bar 1, hypermeasure 2 begins in bar 5, and so on.) The units of textural variation, coinciding with the hypermeasures of the first chorus, are occasionally marked by a contrasting hyperbeat (e.g., hm. 4 [m. 13], hm. 7 [m. 25]), but sometimes the last hyperbeat is differentiated, functioning as an anacrusis to the following hypermeasure (e.g., hm. 2 [m. 8 of mm. 5-8], hm. 6 [m. 24 of mm. 21-24]). It is not unusual for a drummer to mark 4-bar hypermeasures in this way, (especially in some styles of pop music), but the hypermeasure takes on new significance in this performance beginning with hm. 8 (mm. 29), as Motian begins a pattern of 4-bar textural cycles in the drums. Each cycle consists of 2 bars of activity followed by 2 bars of contrasting activity.

The opening hypermeasures are significant for a couple of reasons. First, they establish a slowly developing undercurrent of hypermetric shift that presages the cyclic textural activity that begins in hm. 8 and continues into the next chorus. Secondly, they demonstrate Motian’s wide variety of timbral combinations and instill a sense of unsettledness early on in the performance. With each new hypermeasure, Motian finds a slightly different way to keep time. Most of the hypermetric units exhibit a relatively consistent texture (with the exceptions noted above when the first or last hyperbeat differs), but each is unique. The gradual, unhurried, underlying textural churning leading up to the end of the first chorus plays an important role in the perceived ensemble-wide solidification/coalescence that occurs in the bar before the turnaround.

mm. 33-40 (hmm. 9-10) [first A of 2nd Chorus]

Over the course of the next two hypermeasures, the bass and the drums interact in overlapping cycles of different durations. Motian continues in 4-bar textural cycles, juxtaposing two bars of regular time with two bars of a double-time pattern. At the same
time, LaFaro’s playing is accentuating 2-bar cycles of rhythmic activity. One bar of slow, stable 4/4 time (usually in a two-beat pattern, i.e. two half notes per bar) is followed by a more elaborate rhythmic inflection suggestive of double-time. Obviously the 2-bar cycles of the bass nest into the 4-bar cycles of the drums so that the last bar of each (4-bar) hypermeasure coordinates a double-time feel between both members of the rhythm section. Evans is not tied to either pattern, but interacts with both.

Figure 14: Overlapping cycles of activity between Bass and Drums in hmm. 8-10

Figure 14 graphically illustrates the composite intensification created by overlapping cycles of activity in the bass and drums beginning in hm. 8.

mm. 41-44 (hm. 11)

In the following hypermeasure, the bass shifts to a 4-bar cycle while the drums become static through these bars. LaFaro is essentially sticking to a long two-beat pattern throughout, but the differentiation of the anticipated double-stops of the second
two-bar unit coming after the solid, undecorated half notes of the first two bars is significant. The material played by Evans moves according to its own scheme as described earlier. This is the section that features the offbeat displacement in the piano. The sensation of Evans breaking out of the ensemble texture is made more vivid by the observation of underlying textural augmentation on the part of the bass and drums.

Figure 15: Cycles of activity between Bass and Drums in hmm. 11-12

mm. 45-48 (hm. 12)

Hypermeasure 12 (the second half of B, 2nd Chorus) exhibits less of a discernable pattern overall due to the collective broadening going into the next section. The bass remains fairly static throughout, while the drums return to a somewhat nebulous 4-bar cycle (the return of the snare drum in the second 2-bar unit is the determining factor).

mm. 49-52 (hm. 13)

Upon the return of the head melody, for the second half of chorus 2 (hm. 13), Motian continues to construct textural variations in a 4-bar cycle. The first 2-bar unit primarily consists of cymbal and hi-hat work, while the second 2-bar unit is strictly limited to the snare drum. Aside from LaFaro’s high, unresolved leading-tone in the first bar, Evans and LaFaro maintain a relatively consistent, relaxed texture.
mm. 53-56 (hm. 14)

The following hypermeasure marks the only instance in which an ensemble conception of double-time occurs on a hypermetric downbeat. Motian’s activity is again loosely organized into a 4-bar cycle, starting with a 2-bar unit of double-time feel that is followed by a 2-bar unit of regular time demarcation. LaFaro plays a 2-bar unit reminiscent of the 2-bar cycles noted earlier, consisting of a two-beat pattern in one bar, followed by one bar of activity suggesting double-time, but the cycle is not maintained through the hypermeasure. Figure 16 illustrates how combined activity of the bass and drums works to create a fleeting sense of double-time in hmm. 13-14.

![Figure 16: Cycles of activity between Bass and Drums in hmm. 13-14](image)

2.3 General observations about “My Foolish Heart”

2.3.1 Comparison of double-time-suggesting passages

In all, the Bill Evans Trio performance of “My Foolish Heart” contains five instances of passages in which a unified ensemble conception of time suggests a move to double-time: (1) the turnaround of the first chorus (mm. 31-32); (2) the third and fourth bars of the second chorus (mm. 35-36); (3) the last bar of the first A section, second chorus (m. 40); (4) the third-to-last bar of the B section, second chorus (m. 46); and the fifth and sixth bar of the second A section, second chorus (mm. 53-54).
Figure 17 shows how patterns of activity in the bass and drums contribute to instances of intensification throughout the entire performance. Interruptions to double-time insinuation are noted accordingly.

Figure 17: Patterns of activity between Bass and Drums throughout entire performance of "My Foolish Heart"

2.3.2 Significance of hypermetric sections

Between hmm. 9-12 [mm. 33-48] (i.e., the first half of the second chorus, which is also the solo section), the 4-bar cycles of textural activity in the drums and 2-bar cycles in the bass align on hypermetric downbeats. When examined at the level of the 4-bar hypermeasure, there is an intensification of activity suggestive of a move to double-time before each structural downbeat. Frustration of double-time occurs on these hypermetric downbeats. Rhythmic and textural intensification implicative of a move to double-time can thus be seen as a function of metric magnetism on the hypermetric level.

The one exception is the double-time suggestion in m. 46, which is somewhat more subtle than the others, and limited to one bar. As mentioned earlier, it seems to yield to a general broadening of time and texture going into the return of the head in the following section. If the textural intensification in the turnaround going into the second chorus (mm. 31-32) is considered to be act as a structural anacrusis to the section that follows, the same could be said about the two measures preceding the return to the head. These two bars (mm. 47-48) can be seen as exhibiting a de-intensification of texture.
that serves as a structural anacrusis to the next section, a reverse of the phenomenon witnessed in the turnaround of the first chorus. This observation is further bolstered by noting the inverse nature of the measures that immediately precede each 2-bar structural anacrusis. In the first case (m. 30), rhythmic energy is consolidated into a direct representation of the meter. (This is the target measure of the textural solidification discussed earlier.) The solidification is immediately followed by a contrasting move towards double-time. In the latter instance (m. 46), the texture is momentarily intensified for one measure just before a contrasting gestural broadening. In both instances, the bars before the anacruses temporarily oppose the changes that follow. Larson’s discussion of combined physical motions reminds us that motions are often elided so that one gesture prepares another (2012 157). Preparatory gestures tends to be smaller opposing motions to the gestures they prepare, just as one crouches before a leap, raises a hammer before striking a nail, or winds up before a throwing a ball or swinging a golf club. By this analogy, the two measures in question (m. 30 and m. 46) function as preparatory gestures to the structural anacruses that proceed them. Thus, the insinuation of double-time in m. 46 serves as an anacrusis to the anacrusis, or a local-level component of a doubly-embedded structural anacrusis. It is the only suggestion of double-time in this performance that can be categorized as such.

While the first four suggestions of double-time occur within, or in the turnaround immediately before, the solo section (i.e. the first half of the second chorus), the last instance occurs in the head-out. It differs from the others in several ways. For one, it is the only instance of double-time insinuation that falls on a hypermetric downbeat. It also is not frustrated in the same way as the previous instances, as in this case the intensification seems to simply fade away. The observations of Cone and others, in regards to beginning-orientation implying a diminuendo, and goal-orientation
implying a crescendo are clearly illustrated by the way the insinuation of double-time in mm. 53-54 stands out from the others. It is beginning-oriented, and exhibits a decrescendo (figuratively and literally) that disperses its momentum. The first three suggestions of double-time, on the other hand, exhibit a goal-oriented crescendo towards a hypermetric downbeat, at which point, in the case of all three, the momentum is abruptly broken.

Because the first three suggestions of double-time immediately precede hypermetric downbeats and are immediately broken and unrealized upon their subsequent arrival, and the fourth instance functions within a doubly-embedded structural anacrusis to contribute to an ensemble-wide broadening going into the head, and the last instance, despite occurring on a hypermetric downbeat, is so quickly dissolved, I posit that this performance never achieves the goal of “going into” double-time. Instead, each instance of double-time suggestion only rises to the level of Mirka’s “challenge to the meter” without crossing the threshold necessary to be considered a change of meter (2009 23). Once again it is helpful to turn to Jackendoff’s (1992) notion of “prospective hearing,” informed by principles of musical grammar, that leads to musical expectation and implication. In this instance, the concept of “musical grammar” can be interpreted to mean more than just the musical forces present within the performance. It can also include the standards of common performance practice that cause a listener to expect that a slow jazz ballad will traditionally move into double-time, and that the implication of double-time is in conversation with that tradition, enhancing expectations among listeners well-versed in jazz performance practice.

Hatten (2004) speaks of “continuity” as a larger, structural concept, which he defines as “consistency of action at some level” (248). Berliner (1994) likewise mentions continuity, highlighting some of the ways in which jazz musicians shape a performance...
on a larger level by maintaining a “general continuity of mood” (368-369). If one were to look for a thread of large-scale continuity in the Bill Evans Trio’s performance of “My Foolish Heart,” it could be found, to borrow Jackendoff’s terminology, in the recurring implication and subsequent nonrealization of double-time.

2.4 Rhetorical interpretation

The performance is heavily instilled with themes of motion, desire, and expectation toward a goal. The elements of the musical performance that appear to most significantly contribute to these themes are the use of double-time implication and the large scale contour of the song’s melody.

2.4.1 Thematic and rhetorical gestures

Hatten (2004) talks about as being either “thematic” or “rhetorical.” Thematic gestures, he suggests, are “marked by initial foregrounding and subsequent development.” Rhetorical gestures are “marked by [their] disruption of the otherwise unmarked flow in some dimension of the musical discourse” (113). The rhythmic interplay and implications of double-time in the Bill Evans Trio’s rendition of “My Foolish Heart” rise to a level of thematic salience. In the close analyses above, I have illustrated how individual moments of rhythmic activity plant the seeds of double-time that are subsequently developed into ensemble-wide gestures of double-time insinuation. The moments where motion to double-time is thwarted, however, appear more in line with Hatten’s rhetorical gestures. That is, they disrupt the natural flow of musical discourse, and thus seem to be the result of a more intentional source of motivation than the natural development associated with traditional thematic treatment.
2.4.2 Melodic contour and spatial metaphor

The large-scale motion of the melody also plays a role in creating to the aforementioned themes of motion, desire, and expectation toward a goal, which works in tandem with the rhythmic interplay and implication of double-time. As noted earlier in the general overview of “My Foolish Heart,” the first half of the chorus outlines a balanced ascent and descent where the leading-tone is frustrated (i.e. resolved down by step to scale-degree 5 instead of to the tonic pitch). Four out of five suggestions of double-time occur in the solo section of the second chorus, meaning they occur within the portion of the tune in which the melody exhibits this rise and unresolved fall. There exists a plethora of metaphors that correlate feelings of hope with upward physical motion (e.g., uplifting, being elevated, getting one’s hopes up), as well as metaphors that associate the realization of happiness with an elevated physical state (e.g. walking on air, being on cloud nine). The opposite is just as pervasive. Metaphors of loss or non-realization of happiness are associated with downward physical motion (e.g. being deflated, depressed, weighted down, down in the dumps). Similarly, descriptions of emotional states along a spectrum ranging from excited and out-of-control to relaxed and composed rely on an analogous mapping of high and low (e.g., being riled up, wound up, up in arms, vs. grounded, down-to-earth). That the melodic line executes such a long and regularly paced rise implies a steady movement toward an elevated emotional state, but the fact that the climb is followed by a melodic descent back to the starting pitch suggests the non-realization of an emotional goal.

The spatial metaphor is not limited to melodic contour. As I noted earlier, a move to double-time can be interpreted as an ascent to a “higher” metric level, so analogy of feelings of rising hope being countered by feelings of loss or unrealized expectations can be similarly ascribed to the rhythmic/textural discourse of double-time implication and
nonrealization. These themes are then shown to be operating on multiple musical parameters in different time scales.

2.4.3 Thematic undercutting

Hatten (1994) writes about “thematic undercutting” as a form of musical discourse (99-100). Undercutting, he explains (in Hatten 2004) is a type of discontinuity, involving “abrupt juxtapositions or disruptions” as a means of breaking up continuity, such as the “humorous undercutting” frequently found in Haydn string quartets (267-270). However, he suggests that the most common use of disruptions it to function “as parts of a dramatic trajectory based on a premise of thematic contrast or conflict.”

In Hatten (1994), he uses the first movement of Beethoven’s opus 101 as an illustrative model for thematic undercutting. Correlating rising melodic lines with “yearning” and the use of deceptive cadences as the means of undercutting, he notes that undercutting “oppose[s] that which it prevents.” He also explains that any elements that are strategically exploited can rise to the level of being “thematic,” giving justification to the use of the term “thematic undercutting.” In the Beethoven example, he notes that “yearning gives way to resignation” (99-100).

The Bill Evans Trio’s performance of “My Foolish Heart” can be viewed similarly. The suggestion of double-time correlates to a sense of yearning, while the undercutting induces a sense of unfulfillment. In order to understand the motivations behind these phenomena, and the thematic conflict from which they arise, we ought to turn our attention to Ned Washington’s lyrics that form the vocal line of “My Foolish Heart.”
2.4.4 Content of lyrics

[Introductory verse:]
The scene is set for dreaming,
Love's knocking at the door.
But oh my heart, I'm reluctant to start,
For we've been fooled before.

[A]
The night is like a lovely tune,
Beware my foolish heart.
How white the ever constant moon,
Take care my foolish heart.

[B]
There's a line between love and fascination,
That's hard to see on an evening such as this,
For they both give the very same sensation,
When you're lost in the magic of a kiss.

[A2]
Her lips are much too close to mine,
Beware my foolish heart.
But should our eager lips combine,
Then let the fire start.

[C]
For this time it isn't fascination,
Or a dream that will fade and fall apart,
It's love, this time it's love,
My foolish heart!

2.4.5 Inner conflict of “heart” vs “head”

Although the Bill Evans Trio’s performance makes no musical reference to the introductory verse, it is included above for the sake of completeness and because illustrates the basis of the thematic conflict, one of “head” versus “heart,” within a singular conflicted subject. Paul Anderson (2013) notes that the two halves of the lyrics have mutually exclusive messages. The first half is about the mind overcoming the desires of the heart, while the second half appears to be more heavily weighted in the other direction, where the desires of the heart win out over the cautious reluctance of the mind. That the thematic content of the lyrics is differentiated in this manner supports
my argument that the melodic contour of the first half, with its frustrated leading-tone and unfulfilled return to its starting note, exhibits a greater sense of unfulfilled desire than the second half, in which a melodic resolution to the tonic does imply a sense of fulfilled closure.

Anderson, referencing this same Bill Evans Trio recording of the tune, remarks that the opening tempo “implicitly reframes the song’s lyric as a wistful reflection on the pleasures and costs of romantic infatuation and investment” (205-249). He notes the disinclination of Motian and LaFaro to “lock the two-beat feel into a firm groove,” but suggests that “nothing shifts the musical focus decisively away from the surrogate vocalization of the pianist’s soft but firm right hand.” He also claims that the performance includes “limited bass-piano improvisational interplay.”

The correlations to Hatten’s discussion of thematic undercutting are obvious, and the lines of Ned Washington’s lyrics relating to the emotions of the heart support a similar sense of yearning. While Anderson’s partitioning of the lyrics into two halves with opposing meanings offers a convincing parallel to the bipartite nature of the melodic line, it may be too general of a viewpoint from which to appreciate the conflict between the insinuation of double-time and the undercutting thereof. As I noted earlier, the themes of yearning and unfulfillment, as they play out in the sense of large-scale melodic shape and the thematic undercutting of double-time, operate on different timescales. Here too with the lyrics, there exists a similar construction.

The alternation between descriptive phrases that suggest resonance with the subject’s “heart” (lines A-1, A-3, A2-1) and imperative commands from the subject’s “head” directed literally toward the heart (lines A-2, A-4, A2-2), occurs on a line-by-line basis in both of the A sections. Lines that mention things to which the heart may be attracted (a lovely tune, the ever constant moon, her lips) are interspersed with lines
warning the heart to beware, and take care. This immediate diametric opposition on a line-by-line basis correlates to the immediate juxtaposition of rhythm and texture involved in the thematic double-time insinuation and its subsequent undercutting.

2.4.6 Larger concepts of agency and persona

I have already explored the concept of agential energy as a factor of musical performance that is able to influence and interact with musical forces, but that was within the context of viewing individual performers as performer-agents. Cone (1974), Hatten (2012) and others have noted that agency is not limited to individual instruments or performers, but also to large-scale gestures.

Hatten (2012) notes, for instance, that a gesture or relationship between gestures exhibiting a frictional effect may be interpreted as an opposing agential force to the forward musical momentum (11-12). Larson (2012) states “if we understand musical motion as goal-oriented or shaped by musical forces, then we will tend to read that motion as caused by an animate agent - an agent driven by desire” (209). Larson’s theory of musical forces does not account for agential energy from an outside entity that influences musical forces (as proposed by Hatten), only a perception of agency that arises from the expectations implicit in musical motion shaped by musical forces. Despite that minor difference, these ideas are unified in the recognition of a larger concept of agency based on the trajectory of the musical material.

Cone further develops the idea of virtual agency and suggests that concepts of agency can combine to create a higher-level musical “persona.” He describes a persona as “an intelligence embracing and controlling all the elements of musical thought that comprise a work.” As is the case with most of the theorists cited in this paper, Cone’s ideas are based upon composed musical works of the common-practice period rather than the improvisatory performance practices of small jazz groups. While his concepts of
agency are relatively fluid, he does comment on the nature of chamber music, which is much closer in conception to a jazz piano trio than solo piano or orchestral genres. He notes that in chamber music, “the persona can only be inferred from the interaction of equal agents. The instruments, so to speak, evoke a subtle but discernible presence through their communication with one another—a communication for which the proper metaphor often ought to be ‘thinking together’ rather than ‘talking together’” (109). Cone appears to acknowledge the nearly immutable perception of chamber musicians as individual agents working together. When taking into account the interactions among jazz musicians constantly improvising aspects of a performance, agency and identity seem inseparably intertwined. Conceiving of a collective group purpose reaching the level of persona allows us to discuss higher-level concepts of agency in a given performance.

I posit that in this performance of “My Foolish Heart,” the alternating textural intensification establishing expectations of a double-time shift and the thwarting thereof constitute two different sides of a musical persona achieved through a high level of group interplay among the members of the trio. The persona is both subject to the effects of musical forces and able to intervene on its own behalf to counter implications and expectations set up by the expected behavior of musical material according to a contemporary theory of musical forces.

The passive side of the persona is consistently giving in to compulsions of musical forces, attracted to hypermetric downbeats, intuitively swayed by the customs of performance practice, affected by nuances of gravity and magnetism, and carried forward effortlessly by inertia. The tendency of the trio to take the small seed of a single double-time suggestive gesture and develop it over time until, with the help of musical forces naturally built in to the repeated chorus form, the intensification begins to reach a
critical mass of double-time insinuation is related to this side of the persona. It behaves according to the rules of musical forces and musical grammar in expected ways. This is akin to Hatten’s (2004) concept of a thematic gesture.

The active side of the persona is more deliberate, and acts to disrupt the musical discourse. It acts in opposition to the forces of musical momentum to the extent that those forces will allow, occasionally thwarting what seems inevitable. This is the side of the persona responsible for the thematic undercutting that stubbornly refuses to allow the music to go into double-time. It is similar to Hatten’s concept of a rhetorical gesture. It appears to be motivated from something outside of the music itself, intervening when the mood is about to become elevated to a point beyond what it will tolerate.

The two sides of the persona’s inner conflict are also reflected in the lyrics of the song. As mentioned earlier, the lines that imply a passive susceptibility or vulnerability of the heart are interspersed with lines that imply a direct intervention on the part of the subject’s conscience. But the correlation goes beyond their content. Equally important is the grammatical construction of each. The lines associated with the heart make third-person observations (line A2-1, “Her lips are much too close to mine” is a first-person exception), while the lines associated with the head are constructed as second-person grammatical imperatives. The passive nature of intensification as a result of musical forces is reflected in the lyrics’ observations about the surrounding world, as if coming from a mere participant in the whimsical and unpredictable world governed by the so-called laws of nature, whereas the deliberate quality of thematic undercutting is reflected in the imperative, commanding mood of the lyrics’ subject seizes control of his consciousness to fight the natural compulsion toward an emotional goal. Cone speaks of the elements of a persona “subsist[ing] in consciousness, which is in turn awakened by
the performance (in actuality or in imagination) of the gestures that express them” (1974 109).

The conflict between the two sides of the persona is not static, but in a dynamic state of flux. The same can be said of Washington’s lyrics, as, in Anderson’s view, the heart appears to win out over the head in the second half of the song. That is the case in as far as large-scale melodic motion is concerned, but as it relates to the conflict arising from the regular frustration of double-time, a different reading may be more appropriate.

Within the realm of musical forces, Hatten (2012) draws attention to a process of “winding down,” which he defines as “a breakdown of willed energy on the part of a virtual agent” (10). On a local level, this concept is similar to the “willed braking” invoked when discussing the dispersal of energy in the final phrase of the performance. But on a larger rhetorical level, “winding down” could be used to describe the overall trajectory of the persona’s inner conflict. The most strongly suggestive attempts to move into double time are the first and third instances. The first one occurs in mm. 31-32 during the turnaround at the end of the first chorus and the third instance occurs in mm. 39-40 two bars before the B section of the second chorus. These are the two instances most vulnerable to the forces of metric magnetism pulling them toward the hypermetric downbeats at the 8-bar (i.e., section) level. Additionally, the first is propelled by the forces that naturally provide an extra push forward in the turnaround, while the second is attracted to the hypermetric downbeat by the harmonic magnetism inherent in the V7 - I resolution. The two instances of double-time insinuation that follow are considerably weaker. The fourth has been addressed in its role as a component of the doubly-embedded structural anacrusis, which separates it from the other instances. The final attempt a double-time, in mm. 53-54, has been discussed in terms of its location
coinciding with a beginning-oriented hypermetric downbeat (at the 4-bar hypermeasure level) but not in terms of its rhetorical significance. The manner in which it fades out makes it stand out from the other instances in dramatic contrast. (Berliner (1994) has discussed the power of contrast to enhance dramatic qualities of performance (370).)

Taking into account Hatten’s concept of “winding down,” it appears that the final attempt at double-time simply lacks the agential will to overcome the frictional power of the side of the persona that has so successfully thwarted every attempt to go into double-time. Since it lacks willpower, it does not necessitate being stopped so forcefully, but fades like a whimper, or a reflection on a fulfilled state of emotional being that could have, and should have been.

Consequently, I disagree with Anderson’s claim that nothing shifts attention away from Evans’ solo lines, as well as his assertion that the performance includes limited bass-piano improvisational interplay. The struggle between the natural compulsion to transition into double-time and the musical persona’s refusal to allow it to do so stand out to me as the most salient features of this performance, and to that end, it is a performance rich with unusually coordinated interplay on the part of each member of the trio, almost rising to the level of telepathy.

Revisiting the Ted Gioia’s description of this performance of “My Foolish Heart,” in which he remarks that it “could serve as a textbook case in how to use space and silence to accentuate the forward momentum of jazz music,” and of the whole day’s recordings that “the marvel was how this music could say so much while leaving so much unsaid,” (2011 274) we find an apt description that supports an interpretation of thematic undercutting of motion to double-time affected by and working in tandem with musical forces. If the insinuation and intensification leading to an expectation of a double-time goal is what is said, than the fulfillment of that goal, conspicuously absent,
is left unsaid. The forward momentum created by space and silence (as described by Gioia) arises from the interaction between the trio’s unified musical persona and the musical forces inherent in the structure of the tune.

2.4.7 Knowledge of lyrics

Is it safe to assume that the Bill Evans Trio’s performance of “My Foolish Heart” was informed by a thorough knowledge of the inner conflict represented in the lyrics? Well, not exactly. Just before sitting down for an interview with Len Lyons in 1974, Evans had recorded a duo album with singer Tony Bennett, which included a rendition of “My Foolish Heart.” When asked about the effect lyrics have on his approach to a tune, Evans replied, “I never listen to lyrics, I’m seldom conscious of them at all. The vocalist might as well be a horn as far as I’m concerned” (Lyons 1983 224). Anderson (2013) speculates that Evans may have intended to “inoculate himself from the scandal of sentimentalism,” not wanting to be too closely associated with negative attitudes in the world of jazz criticism regarding sentimentality. Berliner (1994) has noted that jazz musicians in interview settings might not give the best recollection of a given performance, especially if a significant time has passed in the interim (8). Also, the question came in the context of discussing Evans’ recent collaboration with Tony Bennett, and not the Village Vanguard recordings made thirteen years earlier.

Regardless of whether the members of the trio were aware of the lyric content, there is a strong feeling of internal conflict on this performance of “My Foolish Heart.” The juxtaposition of a sense of yearning with an intervening sense of unfulfillment might be implicit in the general sentiment of the song itself, outside of lyrical content. I have suggested as much in the skeletal structure of the melodic line.
2.5 Summary/conclusions

In this paper, I have aimed to illustrate the ways in which contemporary theories about musical forces can be applied to the jazz idiom. I have presented a model of perpetual motion that describes how musical forces provide a built-in sense of forward propulsion that is unique to jazz because of its repetition of choruses, and I have shown how this model of perpetual motion can explain certain performance practices of jazz ballads, particularly with regard to the use of double-time. I have utilized this model, along with observations about jazz ballad performance practice and theories of musical forces to analyze concepts of group interplay and collaborative efforts in The Bill Evans Trio’s 1961 performance of “My Foolish Heart.”

The interactions of the members of the trio rise above the individualized roles of agency to create a persona (similar to that described by Cone (1974)) that enacts the inner conflict as a musical discourse, taking advantage of the musical forces inherent in a repeated jazz chorus form. The persona can intervene with musical forces, but the changes it induces are always subservient to the effects of musical forces. I posit that the ability of this particular trio to achieve such compelling and expressive musical ends through the manipulation of texture and time stands as evidence to back up the observations of jazz aficionados who have claimed that group interactions in the performances of this trio reach a level matched by few.

In The Composer’s Voice, Edward Cone writes, “the expressive power of every art depends on the communication of a certain kind of experience, and each art in its own way projects the illusion of the existence of a personal subject through whose consciousness that experience is made known to the rest of us” (1974 3). It is, in my view, precisely this collaborative communicative ability that causes the Evans-LaFaro-Motian trio rise to such a high level of artistic expression.
Appendix A: Full transcription of “My Foolish Heart”
My Foolish Heart

Chorus 1:

A

Piano (Bill Evans)

Bass (Scott LaFaro)

Drumset (Paul Motian)

My Foolish Heart

as recorded by the Bill Evans Trio on June 25, 1961,
and released on the 1962 album Waltz for Debby

music by Victor Young
lyrics by Ned Washington

transcribed by Jamie Keesecker

My Foolish Heart

as recorded by the Bill Evans Trio on June 25, 1961,
Appendix B: Discography of Cited Recordings

(in order of original release date)

Bibliography

Biography

Jamie Keesecker was born in Toledo, Ohio. He received a Bachelor of Music degree from the University of Arizona in 2006, where he studied composition with Daniel Asia and Pamela Decker. He received a Master of Music degree from the University of Oregon in 2009, where he studied with Robert Kyr and David Crumb. In the Fall of 2009, he matriculated to Duke University as a James B. Duke fellow, studying composition with Stephen Jaffe, Scott Lindroth, and John Supko. In 2011 he received a Master of Arts from Duke University.