CT Breast Dose Reduction with the Use of Breast Positioning and Organ-Based Tube

Current Modulation

by

Wanyi Fu

Department of Electrical and Computer Engineering
Duke University

Date:_______________________
Approved:

Ehsan Samei, Supervisor

Loren W. Nolte, Chair

Joseph Yuan-Chieh Lo

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Electrical and Computer Engineering in the Graduate School of Duke University

2016
ABSTRACT

CT Breast Dose Reduction with the Use of Breast Positioning and Organ-Based Tube Current Modulation

by

Wanyi Fu

Department of Electrical and Computer Engineering
Duke University

Date:_______________________
Approved:

Ehsan Samei, Supervisor

Loren W. Nolte, Chair

Joseph Yuan-Chieh Lo

An abstract of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Electrical and Computer Engineering in the Graduate School of Duke University

2016
Abstract

Purpose: The purpose of this work was to investigate the breast dose saving potential of a breast positioning technique (BP) for thoracic CT examinations with organ-based tube current modulation (OTCM).

Methods: The study included 13 female patient models (XCAT, age range: 27-65 y.o., weight range: 52 to 105.8 kg). Each model was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were further deformed, emulating a BP that would constrain the breasts within 120° anterior tube current (mA) reduction zone. The tube current value of the CT examination was modeled using an attenuation-based program, which reduces the radiation dose to 20% in the anterior region with a corresponding increase to the posterior region. A validated Monte Carlo program was used to estimate organ doses with a typical clinical system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDIvol were compared between attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCMBP).

Results: On average, compared to ATCM, OTCM reduced the breast dose by 19.3±4.5%, whereas OTCMBP reduced breast dose by 36.6±6.9% (an additional 21.3±7.3%). The dose saving of OTCMBP was more significant for larger breasts (on average 32, 38, and 44%
reduction for 0.5, 1.5, and 2.5 kg breasts, respectively). Compared to ATCM, OTCM also reduced thymus and heart dose by 12.1 ± 6.3% and 13.1 ± 5.4%, respectively.

Conclusions: In thoracic CT examinations, OTCM with a breast positioning technique can markedly reduce unnecessary exposure to the radiosensitive organs in the anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts.
Contents

Abstract .. iv

List of Tables ... viii

List of Figures ... ix

Acknowledgements ... xi

1. Introduction ... 1

2. Materials and Methods ... 3

 2.1 Computational phantoms .. 3

 2.2 Morphing Breast ... 5

 2.3 CT examination Simulations .. 7

 2.4 Tube Current Profiles .. 7

 2.5 Organ Dose Estimation .. 10

3. Results ... 13

 3.1 breasts dose ... 13

 3.2 Other organ dose .. 18

4. Discussion .. 25

 4.1 Organ-based tube current modulation and dose ... 25

 4.2 Compare with literature ... 26

 4.2.1 Breast modeling ... 26

 4.2.2 Dose savings ... 27
List of Tables

Table 1: Mean of percentage of breast volume from all phantoms within ±60° frontal zone

Table 2: CTDIvol value used for each phantom and scan

Table 3: Average CTDIvol-normalized-breast dose coefficients and difference from ATCM, OTCM, and OTCMBP

Table 4: Average value of CTDIvol-normalized-breast dose coefficients and difference in different sized breast

Table 5: Fitting coefficients of breast dose fitted vs. breast mass

Table 6: Fitting parameters of organ dose v.s. chest diameter
List of Figures

Figure 1: The BMI and age distribution of the computational phantoms3

Figure 2: The three-dimensional frontal view of phantoms...4

Figure 3: Transverse slice of a modified voxelized XCAT phantom. Three breast sizes are shown: (a) small, (b) medium (c) large and the corresponding slice with breast position altered while volume is constant (d), (e), (f) respectively. The breast tissue is highlighted in red. ...6

Figure 4: An example of the tube current profile generated for attenuation based tube current modulation (ATCM), organ-based tube current modulation (OTCM), and OTCM with breast positioning for a phantom. The shaded regions correspond to the dose reduction zone. ...9

Figure 5: a) Average of CTDI_{vol}-normalized-breast breast dose coefficients and b) breast dose simulated with ATCM, OTCM, and OTCMBP for all phantoms with 50/50 and 20/80 breasts. Error bars represent ±1 standard deviation. ...14

Figure 6: Dose distribution plots of three example patients with small (a), medium (b), and large (c) breasts. ..14

Figure 7: CTDI_{vol}-normalized-breast dose coefficients linearly fitted to breast mass scanned with ATCM, OTCM and OTCM_{BP} as equation (2). ...17

Figure 8: Differentiation for a) CTDI_{vol}-normalized-breast dose coefficients and b) breast dose across ATCM, OTCM and OTCM_{BP}. ..20

Figure 9: A) CTDI_{vol}-normalized-organ dose and B) organ dose fitted against model chest diameter as equation (1). Example organs from anterior (a), (b), and (c), medial and distributed (d) and (e), and posterior (f) group. ..22

Figure 10: a) CTDI_{vol}-normalized-breast dose coefficients and b) breast dose linearly fitted to breast mass scanned with ATCM, OTCM and OTCM_{BP} as equation (2).28

Figure 11: Skin dose from ATCM and OTCM in computerized phantom for this study compared with Duan et al. measured with physical phantoms with OTCM and fixed mA. The dose was averaged to a unit mean for comparisons. For this study, skin dose
profile was averaged across all phantoms. The dose reduction zone is shaded in yellow.
Acknowledgements

The author would like to thank Xiaoyu Tian, Gregory Sturgeon, Greeshma Agathya and W. Paul Segars from Duke University, Mitchell M. Goodsitt and Ella A. Kazerooni from University of Michigan, and Juan Carlos Ramirez Giraldo from Siemens Health Care for their valuable discussions.
1. Introduction

Computed tomography (CT) has significantly benefitted the clinical diagnosis of a wide spectrum of diseases. In the past decades, the use of CT has grown exponentially. In 2014, approximately 81.2 million CT examinations were performed in the United States\(^1\). The increased number of CT examinations has led to concerns about the associated population-based radiation dose\(^3\). Significant efforts have been made to minimize unnecessary radiation exposure and maximize patient benefits through the development of dose reduction techniques\(^4\). These techniques generally aim to reduce the unnecessary exposure to major radiosensitive organs while maintaining the required image quality level\(^5\).\(^6\).

Breasts are among the most radiosensitive organs for female patients\(^7\).\(^8\). In thoracic CT examination, although breasts are usually not diagnostically targeted, they receive a considerable amount of radiation dose\(^9\).\(^12\). In an effort to protect superficial radiosensitive organs such as breasts, some vendors have developed organ based tube current modulation (OTCM) techniques\(^13\). In one implementation of OTCM, the tube current (mA) is reduced by 80% in the anterior region (±60°) of the patient with a corresponding increase in the posterior region (X-CARE, Siemens Healthcare). It has been reported that, with OTCM, breast doses can be reduced by 30-50% with no detrimental effect on image quality\(^5\).\(^6\).\(^14\). However, a major challenge associated with the
OTCM technique has been the extension of the breasts to outside the dose reduction zone15. A previous study has shown that, without any constraint, when the patient is supine, the breast tissue extends within an average angular zone for 155°; this is larger than the 120° dose reduction zone angle16. In effect, for most women, at least one breast partly resides in the increased dose zone, between ±75° and ±84°17. Another challenge with OTCM and associated breast dose is that the outer breast region contains a higher percentage of glandular tissue, making it more susceptible to cancer18. More than half of breast malignant tumors first develop in the upper outer quadrant of the breast19. As a result, the effectiveness of OTCM has been questioned, especially for women with larger breasts15.

The purpose of this study was to evaluate the dose reduction potential of a specially-designed breast positioning technique for OTCM examinations. The breast positioning technique was modeled by constraining most of the breast tissue to within the dose reduction zone. The dose reduction potential of this technique was evaluated across a library of phantoms with various ages, weights, and breast sizes. The organ doses were normalized by CTDI\textsubscript{vol} and compared from Monte Carlo simulations with three CT scan protocols: attenuation based tube current modulation (ATCM), OTCM, and OTCM with breast positioning altered (referred to as OTCMBP).
2. Materials and Methods

2.1 Computational phantoms

This study included models of thirteen female adult patients (age range: 27-65 y.o., weight range: 52 to 105.8 kg) who received a chest and abdominal-pelvis, or a chest-abdominal-pelvis CT examination at our institution. The patients represented the anatomical variability amongst a clinical population with a broad range of age and BMI distribution (Figure 1).

![Figure 1: The BMI and age distribution of the computational phantoms](image)

The models have been developed from the CT images of the patients. Initially, large organs within the scan volumes were segmented to generate phantom masks followed by 3D triangulated polygon models using a marching cubes algorithm. The polygon structure was translated to 3D non-uniform rational B-spline surface (NURBS) (Rhinceros, McNeel North America, Seattle, WA). The remaining organs and structures were generated by morphing a template’s corresponding anatomies. The template was
segmented from high-resolution visible human female full-body images. The organ volume was rescaled to the organ volume and anthropometry data reported in ICRP 89. The computer modeled frontal views are shown in Figure 2. Each phantom was voxelized at isotropic resolution of 3.45 mm for input into a Monte Carlo simulation program. The resolution was chosen considering the anatomic details and simulation time.

To investigate the effect of dose on glandular density, two compositions of breasts were simulated: (1) 50/50 breast (50% glandular tissue and 50% adipose tissue), as a representative case for younger women and (2) 20/80 breast (20% of glandular tissue and 80% adipose tissue), which was an approximation of mean glandular percentage in a wide population.

Figure 2: The three-dimensional frontal view of phantoms.
2.2 Morphing Breast

The phantom library was enhanced by modeling each phantom with two additional breast sizes (Figure 3). To allow for the use of additional breast sizes, the torso surface of each phantom was first modeled as a smooth breast-free surface. The individual breasts were modeled as closed surfaces that were added to the breast-free surface. The modeling of two additional breast geometries per patient providing a library of 39 phantoms preserved the breast-free surface and kept all other organs and structures constant.

The breast deformation to desired positioning was solved using finite element method (FEBio, University of Utah’s Musculoskeletal Research Laboratories and Columbia’s Musculoskeletal Biomechanics Laboratory)28. The breasts were voxelized at a resolution of 0.2 mm to create hexahedral finite elements. The breast elements were morphed by a body force in up and towards the midline of the torso direction with experimentally determined magnitude. The breast elements adjacent to the body were constrained to have zero displacement. The breasts were further checked and scaled manually to ensure the breast volume remained constant and the targeted positioning was achieved. Figure 3 shows an example phantom with three breast sizes before and after applying BP. The phantom library was further divided into three groups by breast size: small (447 ± 187 g), medium (1068 ± 222 g), and large-sized (1929 ± 432 g) groups.
The percentage of breast volume within dose reduction zone in standard supine positioning and after applying BP is listed in Table 1.

Table 1: Mean of percentage of breast volume from all phantoms within ±60° frontal zone

<table>
<thead>
<tr>
<th></th>
<th>Without BP (%)</th>
<th>With BP (%)</th>
<th>Change in Volume (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small breasts</td>
<td>68.5 ± 11.1</td>
<td>93.9 ± 4.2</td>
<td>25.5 ± 12.1</td>
</tr>
<tr>
<td>Median breasts</td>
<td>68.0 ± 17.0</td>
<td>93.7 ± 5.2</td>
<td>25.6 ± 14.3</td>
</tr>
<tr>
<td>Large breasts</td>
<td>57.2 ± 14.5</td>
<td>93.9 ± 3.3</td>
<td>36.6 ± 12.3</td>
</tr>
<tr>
<td>All Models</td>
<td>64.6 ± 15.2</td>
<td>93.8 ± 4.0</td>
<td>29.1 ± 14.1</td>
</tr>
</tbody>
</table>

Figure 3: Transverse slice of a modified voxelized XCAT phantom. Three breast sizes are shown: (a) small, (b) medium (c) large and the corresponding slice with breast position altered while volume is constant (d), (e), (f) respectively. The breast tissue is highlighted in red.
2.3 CT examination Simulations

A previously validated Monte Carlo simulation program was used to simulate CT scans27, 29. The package included PENOLEPE as a subprogram to track the energy loss of photons and electrons30, 31.

A 128-section CT system (SOMATOM Definition Flash; Siemens Healthcare, Forchheim, Germany) was modeled32, 33. The scanner parameters were 120 kVp, pitch factor of 0.6, rotation time of 0.5 s, table speed of 2.304 cm/rot, 38.4 mm collimation, and CTDI\textsubscript{vol} value denoted below. A clinical chest CT examination was simulated for each phantom. The scan coverage was defined as 1 cm above lung apex to 1 cm below the lung base.

2.4 Tube Current Profiles

The attenuation-based tube current modulation profile (mA\textsubscript{ATCM}) simulated the virtual CAREDose4D, which takes into account attenuation of patient in both longitudinal (Z) and angular (XY) plane34. The XYZ attenuation through the phantom was simulated by a previously developed ray-tracing program34. In brief, at each projection angle \(\theta \), the ‘fanbeam’ function was used to measure the line integrals of attenuation coefficients alone each ray from the source to each detector bin (Matlab2010a; Mathworks, Natick, MA). The maximum line integrals of attenuation coefficients (\(ud \))
from all detector bins at θ was selected as the basis to generate tube current profile at θ.

The tube current profile was modeled as \(m_{A_{ATCM}}(\theta) = m_{A_0} e^{\alpha x(-ud(\theta))} \), \(m_{A_0} \) and \(m_{A_{ATCM}}(\theta) \) are the fixed and attenuation modulated mA, respectively, \(ud(\theta) \) is the maximum line integrals of attenuation coefficients calculated at θ, and α is the modulation strength. A typical averaged modulation strength level ($\alpha=0.5$) was used. Finally, at each rotation angle, the tube current was scaled to below the systems’ maximum mA limit.

To generate the organ based tube current profile ($m_{A_{OTCM}}$), X-CARE was simulated (X-CARE, Siemens Healthcare). First, the longitudinal (Z-plane) profile was reduced to 80% between $\pm 60^\circ$ of each patient and the reduction was evenly divided and added to the remaining projections within one rotation. The angular (XY-plane) modulation was turned off. The longitudinal-profile was modeled as \(m_{A_Z}(\theta) = 0.5(m_{A_0} e^{\alpha x(-ud(\theta_{AP}))} + m_{A_0} e^{\alpha x(-ud(\theta_{LAT}))}) \), \(m_{A_0} \) and \(m_{A_Z}(\theta) \) are the fixed and longitudinal modulated mA, and \(ud(\theta_{AP}) \) and \(ud(\theta_{LAT}) \) are the attenuation in AP (anterior-posterior) and in LAT (lateral) direction along the Z-plane at gantry angle θ. This approach emulated the CT system, in that the Z-profile was generated prior to the scan based on localization radiographs in LAT and
AP directions. The simulation further modeled gradual change in mA (slope as a function of rotation time, upward and downward transition time) when switching between mA reduction and mA increase zone. Using 0.28 rot/s and 1 rot/s per Duan et al.13, the mA upward and downward times at 0.5 rot/s was estimated using linear approximation as 17\% and 6\% of rotation time, respectively. The mA value was generated for models with and without BP separately, mA\textsubscript{OTCM} and mA\textsubscript{OTCM,BP}, respectively. The mA\textsubscript{AATCM}, mA\textsubscript{OTCM}, and mA\textsubscript{OTCM,BP} of one example phantom is shown in Figure 4.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{An example of the tube current profile generated for attenuation based tube current modulation (ATCM), organ-based tube current modulation (OTCM), and OTCM with breast positioning for a phantom. The shaded regions correspond to the dose reduction zone.}
\end{figure}
2.5 Organ Dose Estimation

Organ doses were determined by tracking the energy deposited within each organ using flux for a particular CTDI\textsubscript{vol} value. The reference CTDI\textsubscript{vol} of 14.1 mGy was used for quality reference mAs of 150. The CTDI\textsubscript{vol} values were adjusted as dictated by the applied TCM. Table 2 summarized the corresponding CTDI\textsubscript{vol} value. The organ doses were further normalized by CTDI\textsubscript{vol} to derive the CTDI\textsubscript{vol}-to-organ dose conversion coefficients (\(h\) factor) so that the results can be potentially generalized to other scanners and protocols35. Furthermore, expanding the results in terms of CTDI\textsubscript{vol} normalized dose value could be interpolated as comparing technique where total flux (and thus image quality by implication) remain constant. The breast dose was computed for both 50/50 and 20/80 breasts assume breast tissue to be uniform. A side study indicated that average glandular dose (AGD) is very similar to uniform tissue dose results.

Table 2: CTDI\textsubscript{vol} value used for each phantom and scan

<table>
<thead>
<tr>
<th></th>
<th>1st size</th>
<th>2nd size</th>
<th>3rd size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATCM/OTCM</td>
<td>OTCMBP</td>
<td>ATCM/OTCM</td>
</tr>
<tr>
<td>phantom 1</td>
<td>6.8</td>
<td>6.8</td>
<td>6.9</td>
</tr>
<tr>
<td>phantom 2</td>
<td>8.8</td>
<td>8.5</td>
<td>9.1</td>
</tr>
<tr>
<td>phantom 3</td>
<td>4.7</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>phantom 4</td>
<td>12.7</td>
<td>12.5</td>
<td>13.3</td>
</tr>
<tr>
<td>phantom 5</td>
<td>7.0</td>
<td>7.0</td>
<td>7.3</td>
</tr>
<tr>
<td>phantom 6</td>
<td>11.8</td>
<td>11.2</td>
<td>13.7</td>
</tr>
<tr>
<td>phantom 7</td>
<td>7.6</td>
<td>7.3</td>
<td>7.8</td>
</tr>
</tbody>
</table>
To investigate the effect of OTCM\textsubscript{BP} on breast dose, dose percentage difference was measured between OTCM and OTCM\textsubscript{BP}. The effect of BP on the difference between organ-based and attenuation-based tube current modulation was then compared. The dose percentage difference was calculated for OTCM, OTCM\textsubscript{BP} and ATCM, respectively. Organs were further grouped into anterior organs, medial or distributed organs, and posterior organs based on organ geometric center locations with respect to the CT scanner.

Because breast positioning repositions more breasts volume within the dose reduction zone for larger breasts (Table 1), to assess the effect of breast mass on dose reduction potential, the CTDI\textsubscript{vol}-normalized-breast dose coefficients and the breast dose value were further fitted to breast mass as

\[\hat{h}_{\text{breast}} = p_{h,1} m_{\text{breast}} + p_{h,2}, \]
\[\hat{D}_{\text{breast}} = p_{D,1} m_{\text{breast}} + p_{D,2}, \]

<table>
<thead>
<tr>
<th>Phantom</th>
<th>14.3</th>
<th>14.5</th>
<th>14.6</th>
<th>15.1</th>
<th>16.2</th>
<th>17.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom 9</td>
<td>8.6</td>
<td>8.2</td>
<td>9.2</td>
<td>9.1</td>
<td>10.4</td>
<td>10.2</td>
</tr>
<tr>
<td>Phantom 10</td>
<td>5.5</td>
<td>5.5</td>
<td>5.6</td>
<td>5.6</td>
<td>6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Phantom 11</td>
<td>8.6</td>
<td>8.4</td>
<td>8.7</td>
<td>8.4</td>
<td>10.3</td>
<td>9.6</td>
</tr>
<tr>
<td>Phantom 12</td>
<td>12.0</td>
<td>12.4</td>
<td>12.6</td>
<td>12.7</td>
<td>13.6</td>
<td>11.7</td>
</tr>
<tr>
<td>Phantom 13</td>
<td>9.9</td>
<td>9.8</td>
<td>11.0</td>
<td>10.3</td>
<td>12.5</td>
<td>10.9</td>
</tr>
</tbody>
</table>
where h_{breast} and D_{breast} denote the CTDI$_{vol}$-to-breast dose conversion coefficient and breast dose, respectively, m_{breast} is the weight of both breasts in each phantom, and p_1 and p_2 are the linear fitting coefficients.
3. Results

3.1 breasts dose

On average, compared to ATCM, OTCM reduced the CTDIvol-normalized-50/50 breast dose by 19.3 ± 4.5%. The CTDIvol-normalized average breast dose was further decreased by an additional -21.3 ± 7.3% to -36.6 ± 6.9% with OTCMBP compared to ATCM (Figure 5). The corresponding values in terms of breast dose were 24.1±9.7% (OTCBP to OTCM) and 38.8±8.4% (OTCMBP to ATCM), respectively. Table 3 shows the average CTDIvol-normalized-breast dose coefficients and the breast dose values for the 50/50 and 20/80 breasts simulated with ATCM, OTCM and OTCMBP. The difference in CTDIvol-normalized-breast-dose between the two breast compositions was 8.9 ± 0.6%, but the two compositions exhibited very similar trends in terms of impact of imaging method on dose. Figure 6 shows dose distribution plots of one phantom with small, medium, and large breasts undergoing ATCM, OTCM, and OTCMBP exams at a mid-transverse plane.

The breast dose saving of OTCMBP compared to ATCM was more significant for patients with larger breasts. For small (447 ± 187 g), medium (1068 ± 222 g), and large-sized (1929 ± 432 g) groups, the OTCMBP and ATCM h factors difference were -31.4 ± 6.5%, -36.8 ± 5.0%, and -41.5 ± 5.4%. The corresponding values in terms of breast dose were 32.6 ± 7.0%, 38.3 ± 5.2%, and 45.4 ± 7.7%, respectively (Table 4). Compared to
OTCM alone, OTCMBP h factors decreased by 17.3 ± 7.8%, 20.4 ± 6.2%, and 26.3 ± 5.0% for small, medium, and large sized groups, respectively. The corresponding value in terms of breast dose were 18.7±9.0%, 22.3±7.1%, and 31.3±8.7%, respectively. The fitting coefficients of dose values vs. breast mass for the three protocols are given in Table 5 (Figure 7).

![Figure 5](image)

Figure 5: a) Average of CTDIvol-normalized-breast breast dose coefficients and b) breast dose simulated with ATCM, OTCM, and OTCMBP for all phantoms with 50/50 and 20/80 breasts. Error bars represent ±1 standard deviation.

![Figure 6](image)

Figure 6: Dose distribution plots of three example patients with small (a), medium (b), and large (c) breasts.
Table 3: Average CTDI\textsubscript{vol}-normalized-breast dose coefficients and difference from ATCM, OTCM, and OTCMBP

<table>
<thead>
<tr>
<th>Breast Composition</th>
<th>ATCM Dose per CTDI\textsubscript{vol} (mGy)</th>
<th>OTCM Dose per CTDI\textsubscript{vol} (mGy)</th>
<th>OTCMB \textsubscript{BP} Dose per CTDI\textsubscript{vol} (mGy)</th>
<th>OTCMB \textsubscript{BP} to ATCM difference (%)</th>
<th>OTCM to ATCM difference (%)</th>
<th>OTCMB \textsubscript{BP} to OTCM difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50</td>
<td>1.0 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>-36.6 ± 6.9*</td>
<td>-19.3 ± 4.5*</td>
<td>-21.3 ± 7.3*</td>
</tr>
<tr>
<td>20/80</td>
<td>0.9 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>-35.8 ± 6.9*</td>
<td>-19.1 ± 4.5*</td>
<td>-20.7 ± 7.2*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breast Composition</th>
<th>ATCM Dose (mGy)</th>
<th>OTCM Dose (mGy)</th>
<th>OTCMB \textsubscript{BP} Dose (mGy)</th>
<th>OTCMB \textsubscript{BP} to ATCM difference (%)</th>
<th>OTCM to ATCM difference (%)</th>
<th>OTCMB \textsubscript{BP} to OTCM difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50</td>
<td>9.9 ± 2.9</td>
<td>7.9 ± 2.1</td>
<td>6.0 ± 1.7</td>
<td>-38.8 ± 8.4*</td>
<td>-19.3 ± 4.5*</td>
<td>-24.1 ± 9.7*</td>
</tr>
<tr>
<td>20/80</td>
<td>8.9 ± 2.6</td>
<td>7.1 ± 1.9</td>
<td>5.4 ± 1.5</td>
<td>-37.9 ± 8.3*</td>
<td>-19.1 ± 4.5*</td>
<td>-23.2 ± 9.5*</td>
</tr>
</tbody>
</table>

\(^1\)Negative means dose reduction.
* represents statistical significant.
Table 4: Average value of CTDI_{vol}-normalized-breast dose coefficients and difference in different sized breast group.

<table>
<thead>
<tr>
<th>Breast Size</th>
<th>ATCM Dose per CTDI<sub>vol</sub> (mGy)</th>
<th>OTCM Dose per CTDI<sub>vol</sub> (mGy)</th>
<th>OTCM<sub>BP</sub> Dose per CTDI<sub>vol</sub> (mGy)</th>
<th>OTCM<sub>BP</sub> to ATCM difference (%)</th>
<th>OTCM to ATCM difference (%)</th>
<th>OTCM<sub>BP</sub> to OTCM difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>1.1 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>-31.4 ± 6.5*</td>
<td>-16.9 ± 4.1*</td>
<td>-17.3 ± 7.8*</td>
</tr>
<tr>
<td>Medium</td>
<td>1.0 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>-36.8 ± 5.0*</td>
<td>-20.5 ± 4.3*</td>
<td>-20.4 ± 6.2*</td>
</tr>
<tr>
<td>Large</td>
<td>1.0 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>-41.5 ± 5.4*</td>
<td>-20.6 ± 4.3*</td>
<td>-26.3 ± 5.0*</td>
</tr>
</tbody>
</table>

Breast dose

<table>
<thead>
<tr>
<th>Breast Size</th>
<th>ATCM Dose (mGy)</th>
<th>OTCM Dose (mGy)</th>
<th>OTCM<sub>BP</sub> Dose (mGy)</th>
<th>OTCM<sub>BP</sub> to ATCM difference (%)</th>
<th>OTCM to ATCM difference (%)</th>
<th>OTCM<sub>BP</sub> to OTCM difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>8.0 ± 2.5</td>
<td>6.5 ± 1.8</td>
<td>5.4 ± 1.9</td>
<td>-32.6 ± 7.0*</td>
<td>-16.9 ± 4.1*</td>
<td>-18.7 ± 9.0*</td>
</tr>
<tr>
<td>Medium</td>
<td>9.3 ± 2.2</td>
<td>7.4 ± 1.6</td>
<td>5.8 ± 1.4</td>
<td>-38.3 ± 5.2*</td>
<td>-20.5 ± 4.3*</td>
<td>-22.3 ± 7.1*</td>
</tr>
<tr>
<td>Large</td>
<td>12.4 ± 2.1</td>
<td>9.8 ± 1.5</td>
<td>6.8 ± 1.5</td>
<td>-45.4 ± 7.7*</td>
<td>-20.6 ± 4.3*</td>
<td>-31.3 ± 8.7*</td>
</tr>
</tbody>
</table>

*Negative means dose reduction.

* represents statistical significant.
The breast dose saving of OTCM\textsubscript{BP} compared to ATCM was more significant for patients with larger breasts. For small (447 ± 187 g), medium (1068 ± 222 g), and large-sized (1929 ± 432 g) groups, the OTCM\textsubscript{BP} and ATCM \(h \) factors difference were -31.4 ± 6.5\%, -36.8 ± 5.0\%, and -41.5 ± 5.4\%. The corresponding values in terms of breast dose were 32.6 ± 7.0\%, 38.3 ± 5.2\%, and 45.4 ± 7.7\%, respectively (Table 4). Compared to OTCM alone, OTCM\textsubscript{BP} \(h \) factors decreased by 17.3 ± 7.8\%, 20.4 ± 6.2\%, and 26.3 ± 5.0\% for small, medium, and large sized groups, respectively. The corresponding value in terms of breast dose were 18.7±9.0\%, 22.3±7.1\%, and 31.3±8.7\%, respectively. The fitting coefficients of dose values vs. breast mass for the three protocols are given in Table 5 (Figure 7).

![Figure 7](image-url)

Figure 7: CTDI\textsubscript{vol}-normalized-breast dose coefficients linearly fitted to breast mass scanned with ATCM, OTCM and OTCM\textsubscript{BP} as equation (2).
Table 5: Fitting coefficients of breast dose fitted vs. breast mass.

<table>
<thead>
<tr>
<th>CTDI_{vol}-normalized-breast dose coefficients</th>
<th>Breast dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{h,1}(kg^{-1})$</td>
<td>$p_{h,2}$</td>
</tr>
<tr>
<td>ATCM -0.007</td>
<td>1.042</td>
</tr>
<tr>
<td>OTCM -0.027</td>
<td>0.87</td>
</tr>
<tr>
<td>OTCM_{BP} -0.063</td>
<td>0.735</td>
</tr>
</tbody>
</table>

3.2 Other organ dose

Besides breast, other radiosensitive organs exhibited dose differences in ATCM to OTCM, OTCM to OTCM_{BP}, and ATCM to OTCM_{BP} as in Figure 8. Compared to ATCM, OTCM significantly reduced dose to general anterior organs (except larynx-pharynx and tracheobronchi) ($p < 0.01$). Doses to several organs (thymus, stomach, small and large intestine, pancreases) decreased up to 10%. The doses to medial and posterior organ dose in OTCM compared to ATCM was increased by less than 10% ($p < 0.01$). For distributed organs of bone-marrow and bone-surface, which are located more towards posterior of the patient, organ doses were increased by 10%. The skin dose remained relatively constant. When using BP compared to OTCM alone, doses to anterior organs (heart, stomach, small and large intestine, pancreases) were decreased or not changed significantly. The doses to medial and posterior organs was increased by less than 3% or not significantly changed when using BP (except for spleen).

Figure 8 shows CTDI_{vol}-normalized-dose fitted to patient chest diameter as an exponential function. For general anterior located organs, ATCM scan dose was higher than OTCM scan for all patients with various chest diameters, except for thyroid,
tracheo-bronchi and larynx-pharynx, whose doses from OTCM and/or OTCM$_{BP}$ exceed the doses from ATCM. The OTCM and OTCM$_{BP}$ dose show few changes in coefficients.

For medial or distributed organs and general posterior organs, the OTCM and OTCM$_{BP}$ dose were generally larger than ATCM dose across all patient sizes, especially for larger sized patients, except for adrenal. The fitting parameters are in Table 7.
Figure 8: Differentiation for a) CTDI\textsubscript{vol}-normalized-breast dose coefficients and b) breast dose across ATCM, OTCM and OTCM\textsubscript{BP}.
Figure 9: A) CTDI_{vol}-normalized-organ dose and B) organ dose fitted against model chest diameter as equation (1). Example organs from anterior (a), (b), and (c), medial and distributed (d) and (e), and posterior (f) group.
Table 6: Fitting parameters of organ dose v.s. chest diameter\(^1\)

<table>
<thead>
<tr>
<th>Organ</th>
<th>ATCM $\alpha_{h,\text{ATCM}}$</th>
<th>$\beta_{h,\text{ATCM}}$</th>
<th>R^2</th>
<th>OTCM $\alpha_{h,\text{OTCM}}$</th>
<th>$\beta_{h,\text{OTCM}}$</th>
<th>R^2</th>
<th>OTCM({BP}) $\alpha{h,\text{OTCM,BP}}$</th>
<th>$\beta_{h,\text{OTCM,BP}}$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior organs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>-0.01</td>
<td>0.47</td>
<td>0.45</td>
<td>-0.03</td>
<td>0.65</td>
<td>0.56</td>
<td>-0.03</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>Heart</td>
<td>-0.05</td>
<td>1.43</td>
<td>0.86</td>
<td>-0.05</td>
<td>1.33</td>
<td>0.82</td>
<td>-0.04</td>
<td>1.01</td>
<td>0.71</td>
</tr>
<tr>
<td>Eyes</td>
<td>0.01</td>
<td>-4.55</td>
<td>0.09</td>
<td>0.00</td>
<td>-4.39</td>
<td>0.01</td>
<td>0.02</td>
<td>-4.75</td>
<td>0.13</td>
</tr>
<tr>
<td>Thymus</td>
<td>-0.06</td>
<td>1.90</td>
<td>0.89</td>
<td>-0.06</td>
<td>1.73</td>
<td>0.89</td>
<td>-0.05</td>
<td>1.37</td>
<td>0.75</td>
</tr>
<tr>
<td>Stomach</td>
<td>-0.05</td>
<td>1.05</td>
<td>0.31</td>
<td>-0.05</td>
<td>0.96</td>
<td>0.30</td>
<td>-0.04</td>
<td>0.51</td>
<td>0.21</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.03</td>
<td>-3.26</td>
<td>0.08</td>
<td>0.03</td>
<td>-3.24</td>
<td>0.06</td>
<td>0.03</td>
<td>-3.51</td>
<td>0.11</td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.04</td>
<td>-3.43</td>
<td>0.12</td>
<td>0.03</td>
<td>-3.44</td>
<td>0.10</td>
<td>0.04</td>
<td>-3.67</td>
<td>0.14</td>
</tr>
<tr>
<td>Gallbladder</td>
<td>0.01</td>
<td>-2.17</td>
<td>0.02</td>
<td>0.01</td>
<td>-2.16</td>
<td>0.01</td>
<td>0.01</td>
<td>-2.13</td>
<td>0.01</td>
</tr>
<tr>
<td>Pancreas</td>
<td>-0.03</td>
<td>-0.32</td>
<td>0.09</td>
<td>-0.03</td>
<td>-0.45</td>
<td>0.09</td>
<td>-0.02</td>
<td>-0.69</td>
<td>0.06</td>
</tr>
<tr>
<td>Larynx-pharynx</td>
<td>-0.01</td>
<td>-1.09</td>
<td>0.09</td>
<td>-0.01</td>
<td>-1.18</td>
<td>0.06</td>
<td>0.00</td>
<td>-1.48</td>
<td>0.00</td>
</tr>
<tr>
<td>Trachea-bronchi</td>
<td>-0.06</td>
<td>1.89</td>
<td>0.94</td>
<td>-0.05</td>
<td>1.65</td>
<td>0.92</td>
<td>-0.05</td>
<td>1.51</td>
<td>0.86</td>
</tr>
<tr>
<td>Thyroid</td>
<td>-0.08</td>
<td>1.85</td>
<td>0.53</td>
<td>-0.07</td>
<td>1.51</td>
<td>0.53</td>
<td>-0.05</td>
<td>0.86</td>
<td>0.42</td>
</tr>
<tr>
<td>Liver</td>
<td>-0.03</td>
<td>0.36</td>
<td>0.46</td>
<td>-0.03</td>
<td>0.25</td>
<td>0.38</td>
<td>-0.03</td>
<td>0.16</td>
<td>0.29</td>
</tr>
<tr>
<td>Bladder</td>
<td>-0.01</td>
<td>-5.76</td>
<td>0.02</td>
<td>-0.01</td>
<td>-5.83</td>
<td>0.02</td>
<td>0.00</td>
<td>-6.07</td>
<td>0.00</td>
</tr>
<tr>
<td>Medial or distributed organs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>-0.04</td>
<td>1.35</td>
<td>0.87</td>
<td>-0.04</td>
<td>1.26</td>
<td>0.84</td>
<td>-0.04</td>
<td>1.22</td>
<td>0.79</td>
</tr>
<tr>
<td>Marrow (red)</td>
<td>-0.05</td>
<td>0.59</td>
<td>0.77</td>
<td>-0.05</td>
<td>0.53</td>
<td>0.72</td>
<td>-0.05</td>
<td>0.56</td>
<td>0.69</td>
</tr>
<tr>
<td>Esophagus</td>
<td>-0.06</td>
<td>1.69</td>
<td>0.94</td>
<td>-0.05</td>
<td>1.46</td>
<td>0.88</td>
<td>-0.05</td>
<td>1.38</td>
<td>0.83</td>
</tr>
<tr>
<td>Bone surface</td>
<td>-0.05</td>
<td>0.88</td>
<td>0.81</td>
<td>-0.04</td>
<td>0.83</td>
<td>0.77</td>
<td>-0.04</td>
<td>0.85</td>
<td>0.75</td>
</tr>
<tr>
<td>Skin</td>
<td>-0.04</td>
<td>-0.47</td>
<td>0.63</td>
<td>-0.04</td>
<td>-0.46</td>
<td>0.65</td>
<td>-0.04</td>
<td>-0.40</td>
<td>0.69</td>
</tr>
<tr>
<td>Brain</td>
<td>-0.01</td>
<td>-4.13</td>
<td>0.06</td>
<td>-0.01</td>
<td>-4.11</td>
<td>0.04</td>
<td>-0.01</td>
<td>-4.09</td>
<td>0.05</td>
</tr>
<tr>
<td>Posterior organs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>-0.11</td>
<td>1.54</td>
<td>0.48</td>
<td>-0.11</td>
<td>1.58</td>
<td>0.46</td>
<td>-0.11</td>
<td>1.64</td>
<td>0.45</td>
</tr>
<tr>
<td>Adrenals</td>
<td>-0.10</td>
<td>2.21</td>
<td>0.55</td>
<td>-0.10</td>
<td>2.48</td>
<td>0.54</td>
<td>-0.11</td>
<td>2.76</td>
<td>0.53</td>
</tr>
<tr>
<td>Spleen</td>
<td>-0.05</td>
<td>0.99</td>
<td>0.40</td>
<td>-0.04</td>
<td>0.83</td>
<td>0.29</td>
<td>-0.03</td>
<td>0.67</td>
<td>0.23</td>
</tr>
</tbody>
</table>

\(^1\) The doses are fitted against chest diameter using exponential function as equation (1).
<table>
<thead>
<tr>
<th>Organ</th>
<th>ATCM $\alpha_{D,ATCM}$</th>
<th>ATCM $\beta_{D,ATCM}$</th>
<th>R^2</th>
<th>OTCM $\alpha_{D,OTCM}$</th>
<th>OTCM $\beta_{D,OTCM}$</th>
<th>R^2</th>
<th>OTCM<sub>BP</sub> $\alpha_{D,OTCM,BP}$</th>
<th>OTCM<sub>BP</sub> $\beta_{D,OTCM,BP}$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior organs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>0.09</td>
<td>-0.47</td>
<td>0.92</td>
<td>0.08</td>
<td>-0.32</td>
<td>0.83</td>
<td>0.07</td>
<td>-0.55</td>
<td>0.70</td>
</tr>
<tr>
<td>Heart</td>
<td>0.06</td>
<td>0.52</td>
<td>0.88</td>
<td>0.05</td>
<td>0.48</td>
<td>0.81</td>
<td>0.06</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td>Eyes</td>
<td>0.13</td>
<td>-5.91</td>
<td>0.88</td>
<td>0.12</td>
<td>-5.72</td>
<td>0.87</td>
<td>0.13</td>
<td>-6.20</td>
<td>0.81</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.04</td>
<td>0.93</td>
<td>0.64</td>
<td>0.04</td>
<td>0.78</td>
<td>0.69</td>
<td>0.06</td>
<td>0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.06</td>
<td>-0.18</td>
<td>0.40</td>
<td>0.06</td>
<td>-0.27</td>
<td>0.35</td>
<td>0.07</td>
<td>-0.72</td>
<td>0.40</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.13</td>
<td>-4.09</td>
<td>0.56</td>
<td>0.12</td>
<td>-4.00</td>
<td>0.54</td>
<td>0.14</td>
<td>-4.58</td>
<td>0.57</td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.13</td>
<td>-3.92</td>
<td>0.59</td>
<td>0.12</td>
<td>-3.88</td>
<td>0.57</td>
<td>0.13</td>
<td>-4.37</td>
<td>0.58</td>
</tr>
<tr>
<td>Gallbladder</td>
<td>0.08</td>
<td>-2.10</td>
<td>0.42</td>
<td>0.08</td>
<td>-2.08</td>
<td>0.41</td>
<td>0.08</td>
<td>-2.08</td>
<td>0.38</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.09</td>
<td>-1.69</td>
<td>0.47</td>
<td>0.09</td>
<td>-1.77</td>
<td>0.48</td>
<td>0.09</td>
<td>-2.11</td>
<td>0.46</td>
</tr>
<tr>
<td>Larynx-pharynx</td>
<td>0.09</td>
<td>-2.04</td>
<td>0.76</td>
<td>0.09</td>
<td>-2.14</td>
<td>0.78</td>
<td>0.10</td>
<td>-2.41</td>
<td>0.80</td>
</tr>
<tr>
<td>Trachea-bronchi</td>
<td>0.04</td>
<td>0.86</td>
<td>0.75</td>
<td>0.05</td>
<td>0.65</td>
<td>0.84</td>
<td>0.05</td>
<td>0.47</td>
<td>0.86</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.03</td>
<td>0.89</td>
<td>0.15</td>
<td>0.04</td>
<td>0.49</td>
<td>0.30</td>
<td>0.05</td>
<td>-0.02</td>
<td>0.47</td>
</tr>
<tr>
<td>Liver</td>
<td>0.07</td>
<td>-0.45</td>
<td>0.83</td>
<td>0.07</td>
<td>-0.51</td>
<td>0.79</td>
<td>0.07</td>
<td>-0.61</td>
<td>0.79</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.07</td>
<td>-6.12</td>
<td>0.33</td>
<td>0.07</td>
<td>-6.16</td>
<td>0.31</td>
<td>0.08</td>
<td>-6.54</td>
<td>0.37</td>
</tr>
<tr>
<td>Medial or distributed organs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>0.06</td>
<td>0.44</td>
<td>0.90</td>
<td>0.06</td>
<td>0.39</td>
<td>0.90</td>
<td>0.06</td>
<td>0.28</td>
<td>0.94</td>
</tr>
<tr>
<td>Marrow (red)</td>
<td>0.05</td>
<td>-0.41</td>
<td>0.81</td>
<td>0.05</td>
<td>-0.44</td>
<td>0.81</td>
<td>0.05</td>
<td>-0.45</td>
<td>0.85</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.05</td>
<td>0.64</td>
<td>0.83</td>
<td>0.06</td>
<td>0.44</td>
<td>0.87</td>
<td>0.06</td>
<td>0.34</td>
<td>0.91</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.05</td>
<td>-0.03</td>
<td>0.75</td>
<td>0.06</td>
<td>-0.07</td>
<td>0.79</td>
<td>0.06</td>
<td>-0.05</td>
<td>0.86</td>
</tr>
<tr>
<td>Skin</td>
<td>0.07</td>
<td>-1.51</td>
<td>0.89</td>
<td>0.07</td>
<td>-1.50</td>
<td>0.90</td>
<td>0.07</td>
<td>-1.49</td>
<td>0.90</td>
</tr>
<tr>
<td>Brain</td>
<td>0.10</td>
<td>-5.42</td>
<td>0.77</td>
<td>0.10</td>
<td>-5.43</td>
<td>0.74</td>
<td>0.10</td>
<td>-5.38</td>
<td>0.69</td>
</tr>
<tr>
<td>Posterior organs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.04</td>
<td>-0.61</td>
<td>0.16</td>
<td>0.04</td>
<td>-0.60</td>
<td>0.15</td>
<td>0.04</td>
<td>-0.71</td>
<td>0.15</td>
</tr>
<tr>
<td>Adrenals</td>
<td>0.03</td>
<td>0.60</td>
<td>0.16</td>
<td>0.02</td>
<td>0.78</td>
<td>0.11</td>
<td>0.02</td>
<td>0.89</td>
<td>0.06</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.06</td>
<td>0.07</td>
<td>0.45</td>
<td>0.06</td>
<td>-0.08</td>
<td>0.46</td>
<td>0.07</td>
<td>-0.29</td>
<td>0.42</td>
</tr>
</tbody>
</table>
4. Discussion

Organ-based tube current modulation technique has been devised to minimize unnecessary radiation exposure to major radiosensitive organs while maintaining the required image quality. In this work, we evaluated the dose saving potential of an additional breast positioning technique for organ based TCM examinations. Compared to standard tube current modulation, organ-based tube current modulation offered an average of $19.3 \pm 4.5\%$ reduction in breast dose. Targeted breast positioning extended that reduction by an additive $21.3 \pm 7.3\%$. Targeted breast positioning takes a fuller advantage of OTCM for reducing breast dose in body CT examinations.

4.1 Organ-based tube current modulation and dose

In this study, a constant CTDI\textsubscript{vol} value was used for ATCM and OTCM scheme for each phantom. A previous study has argued that OTCM is less dose-economical compared to ATCM, and resulted in a 5 - 10\% CTDI\textsubscript{vol} increase to maintain image quality\cite{14}. When OTCM is utilized, the x-y modulation is shut off, the Z-plane mA is generated based on the average of AP and LAT attenuation. If techniques permit, keeping x-y plane modulation in OTCM would be more dose efficient. We simulated this scenario (OTCM\textsubscript{ideal}), reducing mA\textsubscript{ATCM} by 80\% and a corresponding increase in the remaining projections. The dose reduction was larger in anterior organs. The dose for heart and thymus was reduced by $14.7 \pm 3.4\%$ and $20.0 \pm 4.6\%$, respectively. The dose
increase was smaller in distributed and posterior organs (except for spleen). No significant change was noted in lung, esophagus, and kidneys.

4.2 Compare with literature

4.2.1 Breast modeling

To take full advantage of OTCM, breast-positioning techniques constrain the breast to within the dose reduction zone. Seidenfuss et al. have demonstrated that a normal bra can constrain more breast tissue within the dose reduction zone36. However, in that implementation, the breasts are still not fully sheltered, especially in women with larger breasts where only 83.3\% of the volume is constrained. That study did not include the breast dose saving. In this study, we simulated the breast positioning technique that can optimize breast position beyond a normal bra’s support by compressing more breast tissue to within the dose reduction zone. To ensure the modeled breast locations reflect real scenario, the percentage of breast tissue within the dose reduction zone was compared with those reported in literature. Seidenfuss et al. reported breast volumes within dose reduction zone on CT images from 578 female patients with and without brassiere36. On average, 60.4 ± 24.7\% and 91.3 ± 9.4\% of breast volume was within dose reduction zone with and without a brassiere, respectively36. In our work, the average breast tissue within the dose reduction zone was 64.6 ± 15.2\% originally, and increased to 93.8 ± 4.0\% after applying BP. The ratio of breast within the dose reduction zone is
higher in our study compared to Seidenfuss et al. because in our technique, we compressed the breast tissue closer towards the center of the torso.

4.2.2 Dose savings

The breast dose savings of OTCM and OTCM\textsubscript{BP} from ATCM were compared with physical phantoms. Comparing OTCM to ATCM on an anthropomorphic phantom with breast attachment Lungren et al. showed that with 37\% reduced dose on average, the anterior and posterior breast dose reduction ranges from 29-45\% and 9-19\%, respectively.16 Our results were generally consistent; with OTCM, the average breast dose reduction ranges were 11.0\% to 28.7\%. For ATCM to OTCM\textsubscript{BP}, the breast dose was reduced from 20.6\% to 48.1\% when normalized to CTDI\textsubscript{vol}, and 21.0\% to 54.8\% without normalization. Another study reported that breast dose was reduced by 34\%, 34\%, and 39\% with OTCM compared to ATCM for small, medium, and large semi-anthropomorphic phantoms (30×20, 35×25, 40×30 cm in lateral and posterior-anterior dimension)14. To derive breast dose corresponding to the above average chest diameter in our study, the breast dose was fitted to chest diameter as an exponential function (Figure 8). On average, compared to ATCM, OTCM reduced h factor by 12.7\%, 18.0\%, and 23.0\%, and breast dose by 13.1\%, 18.1\%, and 22.8\%. The OTCM savings in our study was smaller compared to the literature, as the XCAT breasts were explicitly modeled, while the phantoms used in other studies were with “underdeveloped” breasts (i.e., the
breasts were not spread). Thus, more lateral portions of the XCAT breasts were in the dose-increased zone. The full advantage of OTCM was not taken without BP. The OTCM\textsubscript{BP} saved \(h \) factor by 30.01%, 35.33%, and 40.25%, and breast dose by 33.8%, 38.1%, 42.1% for phantoms with 25 cm, 30 cm, and 35 cm chest diameter, respectively.

![Figure 10](image)

Figure 10: a) CTDI\textsubscript{vol}-normalized-breast dose coefficients and b) breast dose linearly fitted to breast mass scanned with ATCM, OTCM and OTCM\textsubscript{BP} as equation (2).

Other organ doses were also compared with physical phantoms. Lungren et al. has reported anterior organ dose reduced 17-47%; posterior organ dose significantly increased; lateral and inner organ dose showed similar results. Our results were consistent on some typical anterior and posterior organs. Thymus and kidney dose changed by 10.5% and -1.6% (8.4% and -1% from Lungren et al.). The skin dose profile was also compared with measurement of physical phantoms from the literature. The skin dose was sampled and interpolated within 360 degrees for each phantom on one
selected slice. The slice was chosen to contain a large volume of breast tissue. The interpolated skin dose was further averaged across all phantoms. Duan et al. reported surface dose of anthropomorphic phantoms receiving OTCM and fixed mA scan (mA_{fix})

To compare our results to those of Duan et al., the dose from each our protocols was normalized by CTDI_{vol} and scaled to unit mA on average. Our results showed excellent agreement with the measurement from physical phantoms (Figure 10). For OTCM, the dose was unsymmetrical on left and right reduction zone, which is due to unequal upward and downward transition times. Compared to mA_{fix}, the mA_{ATCM} is generally larger in LAT and smaller in AP.

Figure 11: Skin dose from ATCM and OTCM in computerized phantom for this study compared with Duan et al. measured with physical phantoms with OTCM and fixed mA. The dose was averaged to a unit mean for comparisons. For this study, skin dose profile was averaged across all phantoms. The dose reduction zone is shaded in yellow.
4.3 Breast positioning technique advantage

Although use of a patient’s own brassiere is cost efficient, a specially designed BP support would be superior as it compresses more of the breast tissue within the dose reduction zone, especially the outer quadrant of the breast, which more than half of breast carcinoma occurs18, 19, 38. With a normal brassiere, 17\% of the breast is outside the dose reduction zone for large sized breasts36. With the implemented BP, the portion of breast tissue within the dose increased zone decreases to 6\%. Furthermore, BP constrains an average constant portion (94\%) of breast tissue within the dose reduction zone in all groups. However, normal brassieres performance varies among different breast-size groups36. The dose savings effect and potential artifacts in CT images with various normal brassieres is yet to be examined. A standardized BP allows one to accurately monitor dose and prospectively optimize CT procedure.

4.5 Limitations

This work has several limitations. First, the dose coefficient estimation was limited to one CT scanner. Second, although the dose reduction potential was demonstrated, an optimized positioning technique with minimum dose and patient comfort is yet to be defined. For each phantom, only one breast positioning was simulated. Third, image quality was not examined in this study. In previous studies, no significant difference in noise and CT numbers have been reported when comparing
OTCM with ATCM or fixed mA scans using physical phantoms13,14,16. Neither were streaking and beam hardening artifacts with perceivable differences found. In Seidenfuss \textit{et al.} work, the image quality was assessed for women scanned with OTCM CT, with and without a normal brassiere; no artifacts were reported36. A similar study will be conducted for OTCM\textsubscript{BP} in the future.
5. Conclusion

In this study, the dose reduction potential of alternate breast positioning was evaluated for organ-based TCM examinations. Keeping CTDI_{vol} constant, on average, compared to ATCM, OTCM reduced the breast dose by ~20%. The average breast dose was further decreased by an additional 21% with targeted breast positioning. Targeted breast positioning is needed to take full advantage of OTCM for reducing breast dose in body CT examinations.
References

13. X. Duan, J. Wang, J.A. Christner, S. Leng, K.L. Grant, C.H. McCollough, "Dose reduction to anterior surfaces with organ-based tube-current modulation:

38 P.D. Darbre, "Recorded quadrant incidence of female breast cancer in Great Britain suggests a disproportionate increase in the upper outer quadrant of the breast," Anticancer research 25, 2543-2550 (2005).