Comment on Jin et al, page 2249

Antibodies are back for thymic attack in cGVHD

Stefanie Sarantopoulos DUKE UNIVERSITY MEDICAL CENTER

In this issue of Blood, Jin et al uncover how antibodies contribute to B- and T-cell pathology in sclerodermatous chronic graft-versus-host disease (cGVHD).1

Given that cGVHD patients are often cured of their cancer or other primary blood/marrow disease by allogeneic hematopoietic cell transplantation (HCT), the morbidity and sometimes lethality of cGVHD is especially tragic. Effective prophylaxis and treatment of cGVHD has been significantly hampered by the lack of understanding of the pathophysiology of cGVHD.

Studies in murine models continue to improve our understanding of the immunopathologic mechanisms of cGVHD, much as they did in acute GVHD. Animal studies, for many years, have suggested a clear role for B cells in cGVHD, but not acute GVHD. Animal models and in patients after allogeneic HCT, but not autologous HCT, suggest that alloreactivity incites autoimmunity.2,3

Separating the distinct cGVHD events that result in ongoing broad reactivity to nonpolymorphic antigens and recipient tissues from specific immunologic reactions to malignant cells will be pivotal for developing more active and specific cGVHD treatments. Elegant experiments in murine models have substantiated specific roles for B- and T-cell subsets in cGVHD development.4 Several studies suggested a role for B cells in cGVHD, and a seminal paper by Bruce Blazar’s group used transgenic mice either incapable of producing B cells or having B cells that cannot release immunoglobulin G (IgG) to autoimmune disease in syngeneic animals. Insidious development of pleiotropic autoimmune disease manifestations in murine models and in patients after allogeneic HCT, but not autologous HCT, suggest that alloreactivity incites autoimmunity.2,3

One question is whether antibodies are an important player in the pathogenesis of cGVHD. Jin et al provide experimental evidence that autoreactive antibodies are important in the pathogenesis of cGVHD. Jin et al isolated autoreactive antibodies from the serum of human cGVHD patients and demonstrated that they induce T-cell activation and organ dysfunction in murine thymus models.

In vivo, these antibodies did not induce organ-specific pathologies but induced thymic and lymphoid organ organ disruption that was accompanied by a nonpolymorphic T-cell infiltrate. These results demonstrate that donor-derived antibodies may help perpetuate cGVHD immune pathology. GCs are required for immune tolerance and the promotion of cGVHD of the skin. T_{reg} regulatory T cell.

DOI 10.1182/blood-2016-02-699058
© 2016 by The American Society of Hematology

REFERENCES
11. Stefanie Sarantopoulos DUKE UNIVERSITY MEDICAL CENTER

Going forward, the promising preclinical anti-AML efficacy of the cotreatment with pevonedistat and belinostat demonstrated by Zhou et al, coupled with the documented single-agent clinical activity of pevonedistat in AML, creates a strong rationale to further evaluate the efficacy of the combination in a phase 2 trial in patients with AML. Importantly, to determine the predictors of response or resistance to the combination, studies involving the genetic profiling by whole-exome DNA- and RNA-sequencing, as well as evaluation of selected biomarkers of the on-target effects of pevonedistat and belinostat in the AML cell samples, must be incorporated in the trial. This would more rationally guide the future clinical development of the combination in the therapy of AML.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

REFERENCES
11. Stefanie Sarantopoulos DUKE UNIVERSITY MEDICAL CENTER

Going forward, the promising preclinical anti-AML efficacy of the cotreatment with pevonedistat and belinostat demonstrated by Zhou et al, coupled with the documented single-agent clinical activity of pevonedistat in AML, creates a strong rationale to further evaluate the efficacy of the combination in a phase 2 trial in patients with AML. Importantly, to determine the predictors of response or resistance to the combination, studies involving the genetic profiling by whole-exome DNA- and RNA-sequencing, as well as evaluation of selected biomarkers of the on-target effects of pevonedistat and belinostat in the AML cell samples, must be incorporated in the trial. This would more rationally guide the future clinical development of the combination in the therapy of AML.

Conflict-of-interest disclosure: The authors declare no competing financial interests.
They use their previously established T-cell understanding of antibody-mediated cGVHD.

Although these trials confirmed that B cells played a role in the disease process, more recent treatment studies were less encouraging. The abnormal antibody and aberrant B-cell signaling findings in patients have underscored the importance of targeting aberrant B-cell homeostasis while maintaining normal B-cell homeostasis in cGVHD. Although further evidence is needed to exclude an antitumor B-cell effect, the potential to preferentially eliminate cGVHD through suppression of B cells has emerged as a focus of therapeutic clinical trials, additional human and murine trials in cGVHD. Clearly, in conjunction with B cells has emerged as a focus of therapeutic trials in cGVHD. Clearly, in conjunction with

In their current study, Jin et al further our understanding of antibody-mediated cGVHD. They use their previously established T-cell dose-dependent model of cGVHD (DBA/2 CD25− cell–depleted spleen cells across a minor histocompatibility antigen barrier) to induce cGVHD. For their experiments, they employ transgenic IgH

In their current study, Jin et al further our understanding of antibody-mediated cGVHD. They use their previously established T-cell dose-dependent model of cGVHD (DBA/2 CD25− cell–depleted spleen cells across a minor histocompatibility antigen barrier) to induce cGVHD. For their experiments, they employ transgenic IgH

Collectively, this manuscript and other cGVHD murine studies point out that the kinetics of immunologic events appear to be highly relevant in the pathobiology of cGVHD. Although robust germinal center (GC) formation appears to be critical for disease initiation, the current study reveals that GC disruption is also important for disease maintenance. The data suggest that antibody targeting of both primary and secondary lymphoid organs results in a vicious self-destructive cycle of these tissues in cGVHD. Perhaps ongoing primary lymphoid destruction leads to critical levels of lymphopenia such that out-competition by autoreactive B- and/or T-cell clones for factors and niches can occur. Additional experiments addressing this possibility are warranted.

Taken together, it appears that the immune system over time after allogenic HCT becomes its own worst enemy (see figure). Organs that produce cGVHD–initiating cells are subsequently destroyed by those very cells or their cellular products, IgG. Further studies addressing this paradigm will lead us to pathways that afford targeting of pathological immune cells while preserving normal integrity of hematolymphoid organ systems.

Allogeneic HCT is the only known curative option for many patients afflicted with life-threatening blood, bone marrow, or lymphoid node disorders. Immune pathology in the form of cGVHD develops in 30% to 80% of HCT patients, carrying an impact on morbidity and survival that has not improved significantly over the last 30-plus years. It appears the old adage is correct: persistence is a virtue. With National Institutes of Health consensus conference initiatives and strong collaborative efforts by the cGVHD research community, things are now moving rapidly in the right direction! Including this current paper, a surge of human and murine studies over the last several years has led to significant improvement in the understanding of the cGVHD process. As we gain more knowledge about the importance of immune recovery and immune homeostasis, along with the distinct functional capacities of key lymphoid subsets, increasing numbers of viable treatments will become available for our patients.

Conflict-of-interest disclosure: The author declares no competing financial interests.

REFERENCES

Antibodies are back for thymic attack in cGVHD

Stefanie Sarantopoulos