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Abstract

Withdrawal penalties are common features of time deposit contracts offered by commercial banks,

as well as individual retirement accounts and employer-sponsored plans. Moreover, there is a significant

amount of early withdrawals from these accounts, despite the associated penalties, and empirical evidence

shows that liquidity shocks of depositors are a major driving force of this. Using the consumption-savings

model proposed by Amador, Werning and Angeletos in their 2006 Econometrica paper (henceforth AWA),

in which individuals face the trade-off between flexibility and commitment, we show that withdrawal

penalties can be part of the optimal contract, despite involving money-burning from an ex ante perspec-

tive. For the case of two states (which we interpret as “normal times” and a “negative liquidity shock”),

we provide a full characterization of the optimal contract, and show that within the parameter region

where the first best is unattainable, the likelihood that withdrawal penalties are part of the optimal

contract is decreasing in the probability of a negative liquidity shock, increasing in the severity of the

shock, and it is nonmonotonic in the magnitude of present bias. We also show that contracts with the

same qualitative feature (withdrawal penalties for high types) arise in continuous state spaces, too. Our

conclusions differ from AWA because the analysis in the latter implicitly assumes that the optimal con-

tract is interior (the amount withdrawn from the savings account is strictly positive in each period in

every state). We show that for any utility function consistent with their framework there is an open set

of parameter values for which the optimal contract is a corner solution, inducing money burning in some

states.
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1 Introduction

Retail deposits constitute a large fraction of the assets of commercial banks (see Gilkeson et al.

(1999)). Their distinctive feature is that a withdrawal option is bundled with each account. In

particular, time deposits allow early withdrawal prior to stated maturity, but assess an early

withdrawal penalty. Similarly, tax-deferred accounts, such as individual retirement accounts

and employer-sponsored plans, which became important components of individual retirement

planning, are subject to a 10% early withdrawal penalty. Empirical work on the subject shows

that early withdrawal is at an economically significant level, even though it cannot be justified

by profitable reinvestment motives (Gilkeson et al. (1999)), and finds direct evidence that it

is connected to liquidity shocks of depositors (Amromin and Smith (2003)). Negative liquidity

shocks such as job loss, divorce, and home purchases increase the likelihood of early withdrawals

from employer-sponsored plans by an average of 3-10 percentage points each, with significantly

stronger increases among the poorest households.

While early withdrawal penalties are prevalent in practice, it is not easy to justify them in

a contract theory setting.1 Even in the case of time-inconsistent consumers, early withdrawal

penalties are essentially money burning schemes from the point of view of a consumer, making

them a costly incentive device to discipline savings behavior. Along these lines, in an important

paper AWA studied the optimal savings rule in a model where people are tempted to consume

earlier, along the line of Strotz (1956), Phelps and Pollack (1968) and Laibson (1997, 1998),2

but full commitment is undesirable as it does not allow for incorporation of new information,

such as taste shocks and income shocks. They provided an optimal rule in two broad situations:

if the shock variable can only take two values, and if the shock variable is continuous but a

simple regularity condition on the density holds (essentially, the density of the distribution of

taste shocks–the desire to consume early–does not decrease too fast). In the latter continuous

case, AWA find that the optimal rule takes a simple form: it either allows a type to choose

her optimal allocation, or imposes a minimal savings rule. In particular, in the continuous

setting the optimal contract bunches the high liquidity shock types at a level of savings that

is less than what they would find optimal. An important feature of the optimum in the above

characterization results is that there is no money burning (withdrawal penalty).3

1For a theoretical model in which withdrawal penalties are assumed, instead of derived as part of an optimal

contract, see Gilkeson and Ruff (1996).
2See also Gul and Pesendorfer (2001) and Dekel, Lipman and Rustichini (2001) for exiomatic foundations for

preferences that imply temptation by present consumption and relatedly demand for commitment.
3Analogously, Athey et al. (2004) and Athey et al. (2005) show in various contract theory settings that money

burning is not part of the optimal contract. Ambrus and Egorov (2009), in a principal-agent setting different

from the one in the current paper, characterize cases when money burning can be part of an optimal delegation

1



We revisit the model of AWA and first analyze the case of two possible taste shocks. We

show that money-burning may be used in equilibrium, imposed on the impatient type, in order

to provide incentives for the more patient type not to imitate the impatient type. This is in

contrast with Proposition 1 in AWA. The reason is that in the arguments in AWA implicitly

assume that the optimal contract involves allocating strictly positive amounts of the good to be

consumed at both time periods, in every state. However, we show that for every utility function

in the framework they propose, there is an open set of parameter values for which the optimal

contract involves 0 consumption in the second time period in case of a negative liquidity shock in

the first time period. This can even be the case when the marginal utility of consumption in the

second period is infinity at consumption level 0, that is when every consumer type would prefer

to choose an interior consumption plan. This is because pushing consumption in the second

period in a high liquidity shock state can relax the incentive constraints for the consumption

allocation in the low state, and the resulting ex ante utility gain in the low state can exceed the

utility loss in the high state.

There is a natural way to modify the framework in AWA that allows for utility functions that

indeed guarantee that the optimal contract always specifies an interior consumption plan, and

hence the analysis in AWA is valid: adding utility functions that at consumption level 0 take a

value of −∞. Such utility functions would indeed be realistic in macroeconomic applications that
motivated AWA, that is when a representative consumer is contracting with a social planner, as

long as the whole income of the consumer is contractible so she does not have any other sources

of consumption than withdrawals from the savings account. In micro finance applications such

utility functions would not be realistic, as presumably no consumer would ever want to hold

literally all her present and future wealth in one savings account. In any case, we append the

AWA framework with utility functions like above, and conduct our analysis in the extended

framework.

For utility functions in the original AWA framework, we show that money burning becomes

part of the optimal contract when the probability of the impatient type is not too large, and when

the negative liquidity shock is severe enough. The intuition behind the first result is that money

burning becomes a realized loss in the high liquidity shock state, hence when the probability of

this state is large it becomes too costly to use as an incentive device. The result holds because

if the possible liquidity shock is severe then allowing the consumer to withdraw everything from

the account, at the price of a withdrawal penalty, becomes a more efficient incentive device to

deter the low type consumer to imitate the high type than specifying a consumption plan for the

scheme. See also Amador and Bagwell (2011).
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high type with no money burning. In contrast to the above clear comparative statics results, we

find that the presence of money burning is not necessarily monotonic in the magnitude of present

bias. This is because increasing the degree of present bias has two opposite effects: it increases

the conflict of interest between the ex ante and the period-1 ex post selves, which makes money

burning more likely. On the other hand, more present bias implies that the ex post self is more

difficult to discipline through money burning, which makes it less likely to be used in the optimal

contract. In general there is an intermediate region of present bias parameters for which money

burning is used.

To summarize, the scenarios in which withdrawal penalties are most likely to be optimal are

those in which individuals face the possibility of a rare but severe negative liquidity shock.

We also show that money-burning by impatient types may be part of the optimal contract

if there are more than two types, in particular if there is a continuum of types. This is not

consistent with Proposition 2 from AWA, for exactly the same reasons as our results differ from

theirs above. However, Proposition 2 becomes true when an additional assumption, that AWA

introduces later, is imposed on the distribution function.

Our interpretation of these results is that early withdrawal penalties can be part of an optimal

savings contract in a much broader set of environments than previously thought. Moreover, our

results are consistent with the empirical finding that it is liquidity constrained consumers with

more severe negative income shocks who exercise early withdrawal despite the associated penalty.

On the other hand we do not think that our results diminish the importance of minimum savings

rules, which AWA highlighted. Both of these simple types of savings contracts are common in

practice, and which one is likely to be used depends on the given situation (the uncertainty and

the degree of present bias that the consumer faces). In particular, in macroeconomic applications

it can be realistic to restrict attention to specifications of the model that justify the implicit

assumption in AWA that the optimal contract specifies an interior consumption plan.

We would also like to point out that the main results of AWA regarding minimum savings

rules, Propositions 3 and 4, are not affected by our analysis, and are valid in their original

framework, without imposing any extra assumptions.

2 The model

The setup reintroduces the model from AWA, and we preserve the notation. There are two

periods and a single good. A consumer has a budget  and chooses his consumption in periods

1 and 2,  and , respectively, so his budget set  is defined by  ≥ 0,  ≥ 0,  +  ≤  (the

interest rate is normalized to 0). The utility of self-0 (the individual before the consumption
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periods) is given by:

 () + () ,

where  : R+ → R∪ {−∞} are two strictly increasing, strictly4 concave and continuously
differentiable functions, and  ∈ Θ is a taste shock which is realized in period 1. AWA assume
that  map R+ to R, thus ruling out the possibility of, say,  () = log . We extend their

framework as allowing for this does not complicate the analysis, and as we show leads to some

new insights regarding the possibility of money-burning in optimum.

We assume that Θ is bounded and normalized so that E = 1. Denote the c.d.f. of  by  (·)
and the p.d.f. of  by  (·). The utility of self-1 is given by

 () +  () ,

where 0   ≤ 1 captures the degree of agreement between self-0 and self-1 (and 1− captures

the strength of temptation towards earlier consumption). The goal is to characterize the optimal

contract with self-0 as the principal and self-1 as the agent, i.e., the consumption scheme that

self-0 would choose from behind the veil of ignorance about the realization of the taste shock .

The optimization problem of the principal is:

max
(()())∈Θ

Z
∈Θ

( (()) + (()))  () (1)

subject to

(() ()) ∈  for every  ∈ Θ, (2)

 (()) +  (()) ≥ 
¡
(0)

¢
+ 

¡
(0)

¢
for every  0 ∈ Θ. (3)

Hereinafter, we find it convenient to characterize contracts in terms of utilities rather than

allocations (each is a monotone transformation of the other). We let  () and  () be the

inverse functions of  () and  (), respectively, and we let set  be given by

 =
©
() ∈ R2 :  ≥  (0)   ≥ (0)   () + () ≤ 

ª
.

Since  () and  () are strictly convex functions, the set  is convex. Let us also introduce

function  (·) by
 () = ( −  ()) ;

then  (·) is decreasing and strictly concave. The set { :  =  ()} is the frontier of the set
 where there is no money-burning:  () + () = .

4Assuming strict concavity rules out linear utility functions, but simplifies characterization a lot. Clearly, any

linear function may be approximated by strictly concave functions, so the results may be applied to characterize

the properties of optimal contracts with linear utility functions as well.
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In the terms  and , the first-best utilities of the ex ante self,
¡
 ()   ()

¢
=¡


¡
 ()

¢


¡
 ()

¢¢
, solve³

 ()   ()
´
= arg max

()∈
(+ ) ,

and utilities for the full flexibility benchmark (where the period-1 self is free to make the choice),¡
 ()   ()

¢
=
¡

¡
 ()

¢


¡
 ()

¢¢
solve³

 ()   ()
´
= arg max

()∈
(+ ) .

Finally, the rewritten optimization problem of the principal is:

max
(()())∈Θ

Z
∈Θ

( () + ())  () (4)

subject to

(() ()) ∈  for every  ∈ Θ, (5)

 () +  () ≥ 
¡
0
¢
+ 

¡
0
¢
for every  0 ∈ Θ. (6)

3 Two types

Here we consider the case of two types, so that Θ = { } with 0     (and given the

normalization  = 1,   1  ). This setup can be interpreted such that state  represents

“normal times”, while state  represents a negative liquidity shock, such as a job loss.

If we denote the probability that  =  by , we must have

 + (1− )  = 1. (7)

We are thus solving the problem

max
()()∈

( ( +) + (1− ) ( + )) (8)

subject to

 +  ≥  + , (9)

 +  ≥  + . (10)

Throughout this section, we use subscripts  and  to denote the values at  and , respectively,

e.g.,  ≡  (), etc.

AWA, as part of Proposition 1 in this paper, characterizes the parameter regions in which

(i) the optimal contract achieves the first best; (ii) does not achieve the first best but implies
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separation of the two types; and (iii) implies pooling of the two types. Parts of this proof relied

on an argument in the proof that there is no money-burning in the optimal contract. Since

below we show that this does not hold without additional assumptions, we provide the complete

proof of this result in the Appendix, even though this part of Proposition 1 of AWA is correct

as stated.

Proposition 1 Suppose Θ = { } with   . Suppose that  
¯̄


|=()

¯̄
and  ¯̄



|=(0)

¯̄
.5 Then there exists ∗ ∈ ( 1) such that for  ∈ [∗ 1] the first-best allocation

is implementable.

If  ≤ , then pooling is optimal, i.e.,  =  and  = ; moreover, there is no

money-burning in this case:  =  ().

If, however,  ∈
³


 ∗
´
, then separation is optimal, i.e.,    and   . In this

last case,  =  (), but both  =  () and    () is possible. In either case, the IC

constraint of the low type (9) is binding and the IC constraint of the high type (10) is not.

Proposition 1 of AWA also claims that money burning is never part of the optimal contract,

which, as we find, does not have to hold in general. Our next result below gives a necessary

and sufficient condition for money burning to be part of the optimal contract. The proof of

Proposition 1 in AWA is invalid without further assumptions at the point where the authors

write “Then an increase in  () and a decrease in  () that holds () ( ())+ ( ())

unchanged...”, which implicitly assumes that a decrease in  =  () is possible. If  =

0, so type  consumes only in period 1, then such a decrease is clearly impossible, and no

contradiction is obtained. We prove that this is the only possible case consistent with money

burning (i.e., money-burning implies   ,  = 0), and it is only possible if  (0) 6= −∞
(Proposition 2). In fact, if   0 in the optimal contract then the argument in AWA goes

through, ruling out the possibility of money burning.

As a prelude to the next result, the following figures illustrate the two types of separating

contracts that are possible in optimum. Note that if the IC constraint is binding for the low type

then the line connecting ( ) and ( ) has to have a slope of −. Below we refer to
this line as the  line. Figure 1 represents a possibility such that at the optimum the  line

intersects set  twice at the Pareto frontier. This corresponds to a separating equilibrium with

no money burning, as in AWA. Figure 2 represents a different possibility, when at the optimum

5This requirement ensures that the first best contract is not pooling, and should have been included in Propo-

sition 1 of AWA as well. If  ≥
 

|=()

, then the optimal contract is  = 

 = , 


 = 


 = 0, and if

 ≥
 

|=(0)

, then the optimal contract is  = 

 = 0, 


 = 


 = . In either of these cases, the first best

is implementable for all . (If  () does not have a left derivative at  =  (0), or  (0) = −∞, then
 

|=(0)


is −∞.)
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the  line crosses the horizontal boundary of set  (on the  =  (0) line), implying that

there is money burning in equilibrium. Below we show that both of these cases can indeed occur

at the optimum.

Figure 1: Optimal contract with no money burning.

Figure 2: Optimal contract with money burning.
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In order to give a precise characterization of when money-burning is part of a separating

optimal contract, we need to introduce some further notation. Proposition 1 implies that the

IC constraint of type  is binding; let us denote, for any  ∈ R,

 =

½
() ∈  : +




 = 

¾
. (11)

For any , the above set of points is either a line segment, a point, or the empty set, although

for simplicity we just refer to it as the  line. Whenever  6= ∅, let  =
¡
  




¢
and  =

¡
  




¢
be the points of  that minimize and maximize , respectively. Fixing

 = +


 = +



, we observe that ( ) =  and ( ) =  (if it were not the

case, then moving ( ) north-west along the  line would not violate (9) or (10) and would

increase (8), as  


, and moving ( ) along the same line would have the same effect as

 


). Let us now take a particular value of ,

0 =  () +



 (0) ; (12)

then 0 is finite if  (0) 6= −∞ and 0 = −∞ otherwise. In the case 0 is finite, notice that

0

 = ( ()  (0)) by definition. The leftmost point of intersection of 0 with , 0

 , plays

a critical role in the following formulation, and we let 0 ≡ 0

 .

Proposition 2 Suppose 


   ∗, so the optimal contract is separating. Money-burning

will be used as part of the optimal contract if and only if (i)  (0) 6= −∞, (ii) 0   (0), where

0 is defined as 
0

 for 0 =  () + 

 (0), and (iii) for the following inequality holds:


1− 
1

|  |=0 | −



 1. (13)

While the formal proof is in the Appendix, we provide a summary of the reasoning behind

the proof below. First, let us reformulate the problem (8) in terms of , which remains the only

degree of freedom:

max
: 6=∅

¡

¡



 +



¢
+ (1− )

¡



 + 



¢¢
; (14)

the constraints (9) and (10) would then hold automatically.6

Next, we show that the maximand in (14) is strictly concave in . The idea of the proof

for this fact is illustrated in Figure 3. If we take two contracts
³
1

  1

  1

  1



´
and

6The IC constraint of type  (9) would hold as equality because

  





and


  





lie on the same  ,

and the IC constraint of type  (10) would follow from the fact that (9) holds with equality and  ≥  .
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³
2

  2

  2

  2



´
with ex-ante expected payoffs  1 and  2 , then a linear combination

of these contracts with weights  ∈ (0 1) and 1 − , (0 
0
 

0
 

0
), would yield the ex-ante

payoff  0 =  1 + (1− ) 2 due to linearity of (14). However, for  = 1 + (1− )2,¡
  


  


  




¢
yields an even higher utility     0 =  1 + (1− ) 2 , which

establishes the strict concavity.

Figure 3: Argument for concavity of the maximand in (14) as a function of .

Because the maximand in (14) is a single-peaked function of , money-burning is optimal if

and only if (14) increases as  decreases from 0 =  () + 

 (0), which corresponds to the

corner point on Figure 4. This gives us the derivation for the formula (13). We take  small and

let  = 0 − ; then 

 = 0

 −  =  ()−  and 

 = 0

 = 0. Linearizing the function

 () near the point 0, we find that 


 = 0

 − 


−|  (̃())|

and 

 = 0

 +
|  (̃())|



−|  (̃())|

for some ̃ () ∈
h


  0

i
. Consequently, the total change of the expected utility of self-0 from

this manipulation is 

µ
− 

1− 

|  (̃())| +

|  (̃())|
1− 


|  (̃())|

¶
+(1− )

³


³
− 



´´
. Rearranging,

using (7), and observing that 

(̃ ()) → 


(0) as  → 0, we get (13). These arguments are

illustrated in Figure 4.
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Figure 4: Derivation of the condition for money-burning (13).

The next corollary, which follows directly from the proof described above, further clarifies

the set of cases where money-burning may be used.

Corollary 1 If the optimal contract requires money-burning, then self-1 with type  is impatient

enough to prefer allocation ( 0) to
¡
 ()  

 ()
¢
, i.e.,

 () +  (0)  

 + 


 . (15)

In particular,  (0) must be finite, so  () must be bounded away from −∞. Moreover,

whenever the optimal contract requires money-burning, we must have  = 0.
7

Note that the case  (0) = −∞ is only realistic if the consumer literally keeps all her

resources in the savings account, and has no other source of consumption, and this is unlikely to

hold for savings accounts in practice. Putting it differently, it is reasonable in real life savings

situations that self-1 is impatient enough ( is low) to want to withdraw all money from the

account in period 1, if this option is feasible.

The next corollary studies what happens if money-burning is optimal, but the contract is

exogenously constrained not to involve money-burning.

7 If  =


, then the optimal contract is not uniquely defined, and among them there may be contracts with

money-burning and   0. But in this case we can find an optimal contract without money burning.
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Corollary 2 Suppose 


   ∗ and money-burning is part of the optimal contract, i.e.,

(13) holds. Then the optimal contract under the additional constraint that money-burning is

impossible ( =  (),  =  ()) is given by  =  (),  = (0) (i.e.,  = ,  = 0),

 = 0,  =  (0) (where 0 is as defined in Proposition 2).

This result is straightforward. As part of the proof of Proposition 2, we established that

the maximand in (14) is strictly concave in . If the optimum satisfied   0 (for 0

given by (12)) and we effectively add the constraint  ≥ 0, then the optimum would be at

0. Consequently, allowing type  to consume everything in period 1 while keeping type 

indifferent would be optimal under the constraint of no money-burning. Corollary 2 makes it

easy to compute gains from allowing money-burning.

The following is an example in which money burning is part of the optimal contract.

Example 1 Suppose () = 07,  () = 07,  = 1 (then () = (1 − 
1
07 )07),  = 02,

 = 82,  = 09,  = 01. In this case, 
∗ = 01973, and 


= 00244, so  ∈

³


 ∗
´
and a

separation contract is optimal. Then 0 = 07955, so
¯̄


|=0

¯̄
= 133. Therefore,


1− 
1

|  (0)| −



= 09
1− 01
1
133
− 10

20

= 32158  1

The optimal contract is  = 02892,  = 07108,  = 07444,  = 0, and indeed involves money

burning. (The optimal contract with the constraint that money-burning is not allowed would be

 = 07212,  = 02788,  = 1,  = 0, and the ex-ante expected utilities in the two contracts

are 1.4512 and 1.3312, respectively, with a difference of 0.1199.) For these parameter values the

maximal  that would still result in an optimal contract with money burning is  = 01597  .

Let us now take  = 016, which also satisfies  ∈
³


 ∗
´
, so separation is optimal. We

then have 00 = 03065 and
¯̄̄


|=00

¯̄̄
= 06405. Therefore


1− 
1

|  (0)| −



= 09
1− 016
1

06405
− 16

20

= −157106  1

Note that 0  . In this case money-burning is not part of the optimal contract:  = 01847,

 = 08153,  = 1,  = 0.
8

Example 1, which shows that money-burning is possible, is not atypical. In particular, this

has nothing to do with the choice of utility functions (except that we must have  (0) 6= −∞
8 It is not a coincidence that the allocation for type  is exactly  = 1,  = 0, i.e., at the corner. Clearly, at

0, the maximand in (14) has a kink. Consequently, for a positive measure of parameter values this will be the

optimal point.
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to get money-burning). As a matter of fact, as long as the utility functions in both periods are

the same, one can find an open set of parameter values (relative to the possible set of parameter

values defined in the model) for which having money burning is optimal, i.e., (13) is satisfied.

In other words, such situations are not knife-edge cases.

Proposition 3 Take any convex functions  (·) and  (·) such that the function  () has at

least one point 0 ∈ (0 ) with
¯̄


|=0

¯̄
≥ 1 (this would be the case, for example, if  =  , or

if  0 (0) = ∞ and  (0) 6= −∞). Then there exists an open set of parameter values , , 
(with  found from (7)) such that the optimal contract necessarily includes money-burning.

We can strengthen this result further if we put some constraints on the set .

Proposition 4 If  ∈
³


 ∗
´
(so that the optimal contract is separating but not the first-best),

and
¯̄


|=0

¯̄
≥ 1, then the optimal contract involves money-burning. In particular, if  () is

such that
¯̄


|=(0)

¯̄
≥ 1 and

¯̄


|=()

¯̄
≤  (i.e.,

¯̄


()
¯̄
∈ [1 ] for all  ∈ [ (0)   ()]),

then for every  ∈
³


 ∗
´
the optimal contract involves money-burning.

This proposition gives a sufficient condition for money-burning in the optimal contract: if the

slope of the boundary of set  at the leftmost intersection with 0 is at least 1, then there must

be money-burning. The condition is not necessary: e.g., in Example 1,
¯̄


|=0

¯̄
= 3

4
 1, yet

there is money-burning. Intuitively, this condition corresponds to the cases where  is small (yet

still greater than 

), so the preferences of self-0 and self-1 are sufficiently different. However,

we do not get unambiguous comparative statics with respect to . Indeed, there are two effects.

On the one hand, (13) is increasing in  in the relevant region. This happens because the slope

of the indifference line decreases, so every unit of money-burning for type  means a larger gain

for type , so money-burning is more profitable on the margin. However, as the slope decreases,

0 also decreases, and
¯̄


|=0

¯̄
decreases and becomes closer to , which means that self-0 of

type  becomes less sensitive to moving across the boundary of set . Intuitively, on the one

hand, a larger  makes self-1 more concerned about money-burning, and thus easier to discipline

with just a little money-burning; on the other hand, it also makes preferences of self-0 and self-1

better aligned, so money-burning is not so important from the start. Interestingly, the second

effect disappears as the boundary of set  becomes close (in 1-metrics) to linear (i.e., if  (·)
and  (·) become close to linear).

The second part of Proposition 4 deals with a special case where the slope of the boundary

of set  lies between 1 and . (For example, if  (·) and  (·) are identical linear functions,
the slope would be 1.) In this situation, self-0 of type  would prefer to consume everything
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in period 1 while self-0 of type  would prefer to consume everything in period 2. As we show

above, such strong conflict of interest makes money-burning part of the optimal contract.

Next we examine comparative statics for the region where money burning is part of the

optimal contract.

Proposition 5 Suppose that , , ,  are such that (7) holds and  ∈
³


 ∗
´
(so the

optimal contract is separating but not the first best) and it involves no money burning. Then,

for a fixed  and , a decrease in  involves no money-burning either. For a fixed 

and , a

higher  implies no money-burning.

This means that within the parameter region which imply separation, but not the first-best,

money-burning is more likely if the high state is sufficiently rare. Intuitively, if  is high enough,

then committing to money burning in the state  does not affect the expected utility of self-0

too negatively. The second part of the result states that increasing  and  in a way that keeps

their ratio constant makes money burning less likely to be part of the optimal contract. Note

that increasing  for a fixed  implies decreasing , hence the statement can be reworded such

that decreasing the severity of the liquidity shock in the high state (keeping 

constant) makes

money burning less likely.

Figures 5-7 illustrate these comparative statics results, for utility functions

(·) =  (·) = (·), by depicting how in the - parameter space, for different levels

of , the region where the optimal contract is separating but not first best is divided into a re-

gion with money-burning and a region with no money burning. For  = 07 the money-burning

region is small, and it is concentrated on very low values of  (equivalently, very high levels of

). As  increases (the probability of high state decreases), the money-burning subregion takes

over a larger and larger part of the separating region.
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Figure 5: Money-burning and no money-burning separating regions for  = 07.

Figure 6: Money-burning and no money-burning separating regions for  = 09.
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Figure 7: Money-burning and no money-burning separating regions for  = 099.

We finish the section by pointing out that clearly, with two types, contracts that involve

money-burning have a “withdrawal fee” interpretation. Indeed, they may be implemented as

follows. The agent can withdraw up to  in period 1 free of charge. Withdrawal of any larger

amount is possible, but requires paying a fee of −. In equilibrium then, type  will withdraw
, and type  will withdraw the full amount but consume only   .

4 Continuum of types

We now consider the case with an arbitrary number of types. As AWA notice, money-burning is

possible. However, they suggest in Proposition 2 that the highest types never engage in money-

burning. We saw that this is not true with two types, and here we show that it does not actually

hold for more types either.

Let us restrict attention to the case where the support of  is a compact segment Θ =
£
0 ̄

¤
,

and that  () is positive on Θ. Denote

 () =  () +  (1− )  () , (16)

and let  be the lowest  ∈ Θ such that
̄Z

̂

(1−(̃))̃ ≤ 0 for all ̂ ≥ .

Since 
¡
̄
¢
= 1 and 

¡
̄
¢
 0, we must have   ̄. The following proposition proves that

there is “bunching at the top”, i.e., all types    get the same allocation.
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Proposition 6 An optimal allocation {( ()   ())}∈Θ satisfies () = () and  () =

 () for  ≥ . Both  () =  ( ()) and  ()   ( ()) are possible for  ≥ .

This proposition corrects Proposition 2 in AWA. Like AWA, we claim that the types
£
 ̄

¤
are pooled. Unlike AWA, we do not claim that the budget constraint holds with equality for these

types and there is no money-burning at the top. On the contrary, we show that it is possible

that types
£
 ̄

¤
will have to burn money. The difference in the conclusions again arises because

of the possibility that the optimal contract does not specify an interior consumption plan. In

particular, in the proof of Proposition 2 AWA suggest that if  is interior (i.e.,  ∈
¡
0 ̄

¢
), then

 () can be increased in a way that the IC constraint is preserved and the objective function

does not decrease. However, preserving the IC constraint for type  necessarily implies that

 () must be decreased, which is impossible if  () = 0. As in the case with two types,

therefore, we only can have money-burning at the top if  () = 0 for high types, namely, for

 ≥ . Earlier, AWA recognizes that in the case with a continuum of types, money-burning

is possible for intermediate types; the reasoning above provides the intuition for why money-

burning is possible for the high types, not just intermediate ones.

Constructing an example where there is money-burning at the top can be done by a contin-

uous approximation of the two-type Example 1. We know that type  in that example must

use money-burning in equilibrium. Let us now approximate the binary distribution on { }
with a continuous distribution with full support on Θ = [ −   + ]. Proposition 6 would

then suggest that on a large part of Θ the contract should be the same. We can now use the

optimal contract for the two types (which involves money-burning) to construct a contract for

the continuous distribution, which will feature money-burning for high types and will yield ap-

proximately the same ex-ante payoff. Suppose that the optimal contract does not not involve

money-burning for the high types, and performs even better. We can then use this optimal con-

tract to construct a contract for the case with two types, which does not involve money-burning

for  and which yields approximately the same utility. But this would violate the fact that we

started with the optimal contract.

The next example provides the details.

Example 2 As in Example 1, let  () =
√
,  () =

√
,  = 1 (then  () =

√
1− 2),

 = 1
20
. Take  ∈ ¡0 1

10

¢
, and let  be the atomless distribution with finite support be given by
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the following p.d.f.:

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if   1
10
− 

10
11
− 
2


if 1
10
−  ≤   1

10


10− 1
10

if 1
10
≤   10

1
11
− 
2


if 10 ≤   10 + 

0 if 10 +  ≤ 

.

We can prove that for every  ∈ ¡0 1
10

¢
,   1

2
(it monotonically increases and has 1

2
as

the limit as  decreases from 1
10
to 0), so for all these , the types from 1

2
and above receive the

same allocation in the optimal contract. In the proof of Proposition 6 in the Appendix, we prove

that if  is sufficiently small, then this allocation must involve money-burning. This provides

a counterexample to Proposition 2 in AWA. Interestingly, even some types   1 have to burn

money in the optimal contract, which shows that money-burning is not necessarily a feature of

types with high  only.

The reason why in Example 2 money-burning for high types is part of the optimal contract

is intuitive: the utility of high types is sacrificed to relax the incentive compatibility constraint

of the self-1 low type so that the self-0 low type can achieve a more favorable allocation in the

low state. At the same time, if high types are sufficiently numerous, money-burning may be too

costly for the ex-ante self, and should not be used.

These last considerations suggest a natural condition for when money-burning will not be

part of the optimal contract (neither for    nor for the pooled types  ≥ ), which is

formulated as Proposition 3 in AWA. Our point above, establishing that no money-burning at

the top does not hold in general, makes this result even more powerful.

Proposition 7 Suppose  () is nondecreasing in  for  ≤ . Then the optimal contract takes

the form of a minimal savings rule: The types  ≤  choose the point on the budget set that

their selves-1 prefer (argmax(∈) +) and the types    choose the same point as .

In particular, there is no money-burning:  () =  ( ()) for each  ∈ Θ.

In other words, if  () is nondecreasing for  ≤ , then not only is there no money-burning,

but the contract takes a simple form of minimum savings requirement. This of course implies

that under the same assumption, Proposition 2 in AWA would be correct as well. Furthermore,

AWA show that if this assumption on  (·) does not hold, then the optimal contract cannot take
the minimum savings requirement form.

Notice that as in the case with two types, withdrawal penalties may only be used if it is

very likely that  is going to be low, so  () cannot be increasing. This corresponds to the case
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where the likely need for early withdrawal is low, and only in exceptional circumstances should

a person be given the flexibility to withdraw early. We showed in the previous section that this

is precisely the scenario where early withdrawal penalties may be part of the optimal contract;

we see here that the intuition extends to the case with a continuous types as well.

Lastly, we note that Proposition 6 in AWA, which generalizes Proposition 2 there, is also in-

correct in claiming the absence money-burning, for the same reason as Proposition 2. However,

under the additional assumption that guarantees that the optimal contract takes the form of

minimal savings requirement, the result goes through and there is no money-burning (Proposi-

tion 7 in AWA). We omit the details here.

5 Conclusion

In this paper we demonstrate that withdrawal penalties, despite implying money burning from

the point of view of a consumer, can be part of the optimal savings contract when the consumer

faces self-control problems with current consumption. With two states we provide a full charac-

terization of the optimal contract, and identify the region in which the optimal contract involves

withdrawal penalties. We also show that withdrawal penalties for high types can also be part of

the optimal contract when the state space is continuous. A full characterization of the optimal

contract in the continuous setting is beyond the reach of the current paper, and is left to future

research. Another possible direction of future investigation is characterizing the optimal savings

contract in the model framework of Fudenberg and Levine (2006), which is a major alternative

to the quasi-hyperbolic approach used in AWA and the current paper. The specification of the

above model with linear costs of self-control is particularly tractable, potentially facilitating the

analysis of an infinite-horizon contracting problem.
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6 Appendix

Proof of Proposition 1. First note that if  ≥ ∗, where

∗ = 


 − 






 −




,

then first-best allocation is implementable, and moreover ∗  

. This is correctly proven in

AWA.

From now on, consider the case   ∗. Adding the incentive constraints (9) and (10)

implies  ( − ) ≥  ( − ), which implies  ≥ . Trivially, if (9) holds with equality,

then (10) holds as well. Let us prove that (9) binds (so we could forget about (10)), and also

( ) ∈ , ( ) ∈ .

To see that ( ) ∈ , assume the contrary. Indeed, if ( ) ∈ , then we can use

the reasoning analogous to AWA: we can lower  and raise  slightly while holding  + 

unchanged, so that the modified contract is still in ; this would not change (9), will relax (10),

and will increase the objective function (8), which contradict optimality of the initial contract.

To prove that ( ) ∈ , suppose that ( ) ∈ , and consider the following three

cases separately. If   

, then a slight increase in  and a corresponding decrease in  that

holds  +  unchanged will not change (9), will relax (10), and will increase the objective

function (8). If   

, then a slight decrease in  and a corresponding increase in  will do

the same. Finally, if  = 

, then moving ( ) to  while preserving  +  will not

violate any constraint and will preserve the objective function, so without loss of generality we

may assume that ( ) ∈  in the optimal contract in this case as well.

Let us now prove that (9) holds with equality in the optimal contract. Denote

 = {() ∈  :  () + () = } (i.e., the frontier, where there is no money-

burning),  = {() ∈  :  () = 0} (there is no consumption in period 1) and  =

{() ∈  :  () = 0} (no consumption in period 2). The latter two may be empty if

 (0) = −∞ or  (0) = −∞, respectively, but in any case  =  ∪  ∪ .
Suppose, to obtain a contradiction, that (9) is not binding; this already implies that the

optimal contract is separating. We must have ( ) ∈ , for otherwise we would be able

to increase  slightly without violating either of the constraints and increasing the objective

function). Second, we must have ( ) ∈ . Indeed, suppose not, then either ( ) ∈ 

or ( ) ∈ . Notice that (10) must bind, for if (10) did not bind, we could increase  to

increase the objective function. Now, if ( ) ∈ , then we must have  ≤  ( is the

lowest possible), we also have  ≤  and if the contract is separating, one of the inequalities
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is strict, but then (10) cannot be binding. The remaining case is ( ) ∈  \ . Since
(10) binds, we must have

¯̄


|=

¯̄
 


. But then slightly increasing  coupled with moving

( ) along  so as to preserve (10) would unambiguously increase the objective function.

This means that if (9) is not binding, then ( ) ∈ , ( ) ∈ , and also   

(otherwise the contract would be pooling, not separating). Again, suppose first that (10) binds;

then    means that ( ) is the rightmost point of intersection of the line corresponding

to (10) and , and so
¯̄


|=

¯̄
 


; in this case, moving ( ) slightly in the direction

of
³


  




´
would relax (10) and increase the objective function. The last possibility is that

(10) does not bind. Then we could move either ( ) slightly in the direction of
³


  




´
or ( ) slightly in the direction of

³


  




´
so as to increase the objective function without

violating any of the non-binding constraints. The only case where such deviation would not be

possible is where ( ) =
³


  




´
and ( ) =

³


  




´
. But this is not an incentive

compatible contract if   ∗ by the definition of ∗. This contradiction proves that (9) must

bind.

Consider the case 


   ∗. Let us prove that the contract is separating. Indeed, if it

were pooling, then, first of all, ( ) = ( ) ∈ . If this contract is 

 (but not  ) for

 =  +


, then we can lower  and raise  slightly while holding  +  unchanged;

this would not change (9), will relax (10), and will increase the objective function (8). If this

contract corresponds to  (but not  ), then we can raise  and lower  slightly while

holding  +  unchanged with similar effects. The remaining case is where 

 =  ; this

means that
¯̄


|=

¯̄
= 


, and then moving ( ) in the direction of

³


  




´
and moving

( ) in the direction of
³


  




´
in a way that (9) continues to bind will relax (10) and

will increase the objective function. Consequently, the optimal contract is separating. This

implies   , and thus (10) does not bind. From this one can easily prove that ( ) ∈ 

(otherwise slightly increasing  +  would create an incentive compatible contract which

yields a higher ex-ante payoff) and, moreover,
¯̄


|=

¯̄
∈
h





i
(in particular,  ∈

h


  




i
).

Indeed, if
¯̄


|=

¯̄
 , then moving ( ) in the direction of

³


  




´
would increase the

ex-ante payoff, and
¯̄


|=

¯̄
 


makes ( ) ∈  and (9) binding incompatible with

  . As for ( ), we can rule out ( ) ∈  (as then    is impossible), but as

we show, both ( ) ∈  and ( ) ∈  is possible.

Now consider the case   

. Let us prove that the contract is pooling. If it were separating,

then we can lower  and raise  slightly while holding  +  unchanged (the fact that

( ) ∈  ensures that such deviation results in a contract within , but it also preserves

(9), (10) and increases the ex-ante payoff (8). Hence, the contract is pooling. This means that
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( ) = ( ) ∈  and also  ∈
h


  




i
, for otherwise moving the pooled contract

along  in the direction of the first-best contract would increase the ex-ante payoff.

We thus showed that the contract is separating if 


   ∗, pooling if   

, and

money-burning is possible only in the separating case and for type  only. The possibility of

money-burning for type  is established by Example 1; the construction of an example without

money-burning at optimum is trivial. This completes the proof. ¥

Proof of Proposition 2. Take  ∈
³


 ∗
´
. From the proof of Proposition 1, if money-

burning is part of the optimal contract, then ( ) ∈  \ , so  = 0,   . This

already implies  (0)  −∞.
Also, by Proposition 1 we know that (9) is binding. Consequently, if (   ) is

the optimal contract, then  +


 =  +



, which we denote by . This means that

( )  ( ) ∈  . Moreover, from the proof of Proposition 1 we know that ( ) =  ,

( ) =  . This proves that the optimal contract solves problem (14). Moreover, again

from the proof of Proposition 1, we have ( ) ∈ , and also  ≥ 

 , so it is suffices to

optimize over  ≥ 

 + 




 only.

Let us first establish that (14) is strictly concave in . Take two values of , 1 and 2,

and denote the value of the maximand in (14) by  (1) and  (2), respectively. Now take any

 ∈ (0 1). Given the linearity of the objective function (14) and the constraints (9) and (10), the
contract given by 0 = 1

 + (1− )2

 , 0 = 1

 + (1− )2

 , 0 = 1

 + (1− )2

 ,

0 = 1

 + (1− )2

 satisfies the constraints and yields the value of (14) 0 equal to

 (1) + (1− )  (2); moreover, it lies in  due to convexity of . Since we proved that we

can only improve by moving ( ) to the upper-left and ( ) to the lower-right, we get that

 (1 + (1− )2)   (1) + (1− )  (2) (to see that the inequality is strict, notice that

at least (0 
0
) necessarily lies in the interior of . Hence we established that (14) is strictly

concave in .

We now see that money-burning is optimal if and only if (14) increases if we decrease  a

little bit from the value 0 ≥  () + 

 (0). If  (0) =  (0), then doing so decreases the

value of the objective function, because both the low type and the high type will get a smaller

payoff. Now consider two cases. Suppose first that 0  

 + 




 ; then the formula (13) is

derived in the main text. If 0 ≤ 

 + 




 , then

¯̄


|=0

¯̄
≤  as 0 ≤ 


 . But in this

case the right-hand side of (13) does not exceed   1, so the formula is correct in this case

as well. ¥

Proof of Corollary 1. From Proposition 2, we have  (0)  −∞, so  (·) is bounded
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away from −∞. Now, we have a combination of (in)equalities:

 () +  (0)   + ;

 +  =  + ;

 +  ≥ 

 + 




The first follows as    (0) and  =  (0); the second follows because (9) is binding (as

shown in the proof of Proposition 1), and the third holds because
¯̄


|=

¯̄
∈
h





i
(again

from the proof of Proposition 1), so
¯̄


|=

¯̄
≤ 


, and now 


   and

³


  




´
∈ 

imply the required condition. This implies  () +  (0)  

 + 


 , which completes

the proof. ¥

Proof of Corollary 2. Consider the additional constraints ( )  ( ) ∈ . As

in the proof of Proposition 1, we can establish that (9) is binding and the optimal contract

is separating. Thus, ( ) =  , ( ) =  , and moreover,  ≥ 0. In the proof of

Proposition 2 we established that the problem (14) is strictly concave in . If money-burning

takes place in the unconstrained optimum, then the unique maximum of (14) is achieved at

  0. Hence, after adding the constraint  ≥ 0, we get the constrained maximum at

 = 0. ¥

Proof of Proposition 3. Given  (·) and  (·), the set  is fixed. Let  =  () be

the equation that determines the upper boundary of this set and let  =
¯̄


(0)

¯̄
≥ 1. By

assumption that  (0) 6= −∞ and convexity of , the number  =
(0)− (0)

()−0 ∈ (∞). For any
 ∈ ¡0 1



¢ ⊂ (0 1), let  () = . In this case, 0 will be the 0 from formulation of Claim

2. We have  1−
1

|  (0)|−


()

=  1−
1

− 1


. But  ∈ (∞) and  ≥ 1 implies 1

− 1


∈ (0 1), which

means that inequality (13) must hold for  sufficiently close to 0 and  sufficiently close to 1

(and ,  derived by  =  and  =
1−
1− ). Moreover, for  close to 1 we will have 

arbitrarily high, in particular,    =
()

. The latter implies   


, and we have   ∗ by

construction, so in this case, indeed, a separating contract is optimal by Proposition 1 Finally,

since varying 0 would not change the inequalities above, then the set of parameters    for

which money-burning is optimal contains an open set. ¥

Proof of Proposition 4. Fix 0 and thus
¯̄


|=0

¯̄
=   1. Let us take 0 =



=

(1−)
1−
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and plug it into (13). We get:


1− 0
1

|  |=0 | −
0


− 1 = 
1− (1−)

1−
1

− 1−

1−
− 1

=
− 1

1−  1−
1−

=
− 1
1− 



≥ 0,

because  ≤ 

 

0
=  and   1. Notice that the left-hand side of (13) is increasing in 

(again for a fixed
¯̄


|=0

¯̄
= ): indeed, we have





Ã

1− 
1

− 



!
= 

− 

( − )2
 0,

as   1  . Consequently, for   0 =


, condition (13) holds with strict inequality, and

money-burning is optimal.

To prove the second part, it now suffices to prove that for all  ∈
³


 ∗
´
, 0   (0) (then

we would have
¯̄


|=0

¯̄
 1 and the first part would apply). But now the first-best points are

( ()  (0)) for  and ( (0)  ()) for . Consequently, the leftmost point of the green

line corresponding to   ∗ that lies in  satisfies 0 =  (0), and thus the previous result is

applicable. This completes the proof. ¥

Proof of Proposition 5. For fixed  and , 0 is also fixed. Then the left-hand side of (13)

is clearly increasing in , so if (13) did not hold for a given , then it would not hold for a lower

. Hence, if the new optimal contract is separating, there will be no money-burning because (13)

would not hold, and if the new optimal contract is not separating, then such optimal contract

never involves money-burning. Finally, a decrease in , for a fixed , implies a lower , and

we can use the previous reasoning. This completes the proof. ¥

Proof of Proposition 6. The proof that  () =  () for  ≥  in AWA is correct, and

is omitted here. Trivially, we must have  () =  () for  ≥  as well (otherwise, only the

contracts with the highest  will be chosen). This proves the first part of the Proposition.

Let us show that  ()   ( ()) is possible, so money-burning for high types is possible.

Consider Example 2. We have  () =  () +  (1− )  () equal to

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if   1
10
− ¡

 − 1
10
+ 
¢ 10

11
− 
2


+ 

¡
1− 1

20

¢ 10
11
− 
2


if 1
10
−  ≤   1

10
10
11
− 

2
+
¡
 − 1

10

¢


10− 1
10

+ 
¡
1− 1

20

¢


10− 1
10

if 1
10
≤   10

10
11
+ 
2
+ ( − 10)

1
11
− 
2


+ 

¡
1− 1

20

¢ 1
11
− 
2


if 10 ≤   10 + 

1 if 10 +  ≤ 

.
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Direct computations give the threshold  as a decreasing function of  on
¡
0 1
10

¢
, which

monotonically increases from 5620−√28 754 482
780

= 033 to 1
2
as  decreases from 1

10
to 0:

 () =
1

390

³
1010+ 180−

√
5
p
38613 + 202 5382 + 58 680+ 6480

´
.

In particular, this implies that all individuals with  ≥ 1
2
are pooled.

Let us prove that this contract must involve money-burning for  small enough for all in-

dividuals with  ≥ 1
2
. Recall the values  and ̃ we defined in Example 1 as the ex-ante

payoff from the optimal contract and the optimal contract subject to no money burning in state

 = 10; we had   ̃ . In this example, for  ∈ ¡0 1
10

¢
, let us define the ex-ante payoff from

the optimal contract as  and that from the optimal contract with the constraint that types

 ≥ 1
2
do not burn money (and thus types    () do not burn money) by ̃. We now prove

that lim inf→0  ≥  and that lim sup→0 ̃ ≤ ̃ ; this would establish that for  small enough,

money-burning must be used for the types  ≥ 1
2
.

We first prove that lim inf→0  ≥  . Let us take the optimal contract for the two-type

case, Ξ = (   ), and provide these two options, ( ) and ( ), to all types from

1
10
−  to 10 + . From Proposition 1, we know that type  =

1
10
is indifferent between the two

contracts; then single-crossing considerations will imply that types   1
10
will choose ( )

while types   1
10
will choose ( ). The ex-ante utility from such contract equals

 0 =
µ
10

11
− 

2

¶µµ
1

10
− 

2

¶
 + 

¶
+

µµ
5 +

1

20

¶
 + 

¶
+

µ
1

11
− 

2

¶³³
10 +



2

´
 +

´
.

Clearly, we have lim→0  0 = . But we have taken some contract, not necessarily optimal, so

 ≥  0 for all . This implies lim inf→0  ≥  .

Let us now prove that lim sup→0 ̃ ≤ ̃ . Suppose this is not the case, and there exists   0

and a monotonically decreasing sequence 1 2    with lim→∞  = 0 such that ̃  ̃ + 

for all  ∈ N. Suppose that Ξ = {( ()   ())}∈[ 110−10+] is the optimal contract
for , subject to no money-burning for types  ≥ 1

2
. Let us construct a binary contract¡

      
¢
in the following way. We let

¡
  

¢
= ( (10)   (10)) be the contract

that type  = 10 chooses under Ξ
 (as well as all types    ()). We let

¡
  

¢
be the

contract that maximizes max
∈[ 110−]

 ( ()) + ( ()) (the reason we do not take¡

¡
1
10

¢
 

¡
1
10

¢¢
is even in the optimal contract the type  may get a relatively low payoff,

which is not a problem if this type has zero mass, but may be a problem if it has a mass of 10
11
);

suppose that this maximum is reached at  = ̃ .

Let us compute the ex-ante payoff from the following contract Ξ̃ :
³
̃ ()  ̃ ()

´
=¡

  
¢
if  ≤ 1

10
and

³
̃ ()  ̃ ()

´
=
¡
  

¢
if   1

10
for different distributions of .
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We first take  ; the payoff from this contract (note that this contract need not be incentive

compatible!) is

̃ 0 =
µ
10

11
− 

2

¶µµ
1

10
− 

2

¶
 +



¶
+

µµ
5 +

1

20

¶
 + 



¶
+

µ
1

11
− 

2

¶³³
10 +



2

´
 + 



´
.

(where  = 
¡

¢
=
p
 etc are defined as usual). But under the contract Ξ , types

  10 get exactly the same allocation as in Ξ̃ , and types   1
10
get payoff

 + 
 ≥ | −  |+ ̃


 + 

 ≥ | −  |+  ( ()) + ( ()) ,

since  ∈ (0 1). Consequently,

̃ 0 − ̃ ≥ −
µ
10

11
− 

2

¶
 − 

µ
5 +

1

20
+ 1

¶
,

where the second term certainly exceeds the possible difference between ̃ 0 and ̃ coming from

 ∈ ¡ 1
10
 10
¢
. But the right-hand side tends to 0 as  → 0, so for  high enough, ̃ 0  ̃ − 

3
.

Let us now take the binary distribution as in Example 1 and consider the payoff under Ξ̃

(again, this contract need not be incentive compatible under this distribution). We have

̃ 00 =
10

11

µ
1

10
 + 



¶
+
1

11

¡
10 + 



¢
.

Clearly,

̃ 00 − ̃ 0 ≥ −
µ
5 +

1

20
+ 1

¶
−
µ
1

11
− 

2

¶


2
,

so for  high enough we have ̃ 00  ̃ 0 − 
3
.

Consider now the sequence of contracts Ξ̃ . It is characterized by two pairs
¡
  

¢
and¡

  
¢
; moreover,  +  =  is satisfied for every . Let us pick a subsequence {} such

that
¡


  




¢
and

¡


  




¢
converge to some

³
̂ ̂

´
and

³
̂ ̂

´
; this is possible since 

is compact and, moreover, we have ̂ + ̂ = . Denote the ex-ante payoff from this contract

under the binary distribution by ̂ . We have:

̂ =
10

11

µ
1

10
̂ + ̂

¶
+
1

11
(10̂ + ̂) ;

here we used the fact that  (·) and  (·) are continuous. We have

lim
→∞

³
̂ − ̃ 00

´
= 0

by construction, and therefore for  high enough, ̂  ̃ 00 − 
3
.

This shows that there is some  such that ̂  ̃ − . But we took the sequence such that

̃  ̃ +  for all , which implies that ̂  ̃ . Recall, however, that ̃ is the ex-ante payoff
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in the optimal contract with no money-burning for the high type, and ̂ is the ex-ante payoff in

one of such contracts. We would get a contradiction if we prove that the contract
³
̂ ̂

´
and³

̂ ̂

´
is incentive-compatible. To do so, let us write the following two incentive compatibility

constraints that the contract Ξ̃ satisfies:

̃

 +

1

20


 ≥ ̃


 +

1

20


 ;

10

 +

1

20


 ≥ 10


 +

1

20


 .

Taking the limits as  → ∞ and using the fact that ̃ ∈
£
1
10
−  ,

1
10

¤
and thus tends to 1

10
,

we get

1

10
̂ +

1

20
̂ ≥ 1

10
̂ +

1

20
̂;

10̂ +
1

20
̂ ≥ 10̂ +

1

20
̂.

This proves that the contract
³
̂ ̂ ̂ ̂

´
is incentive compatible, and thus ̂ ≤ ̃ . We have

reached a contradiction which proves that lim sup→0 ̃ ≤ ̃ .

Consequently, we have established both lim inf→0  ≥  and lim sup→0 ̃ ≤ ̃ . But

  ̃ , therefore, for  close to 0,   ̃. This means that there is   0 for which the optimal

contract must involve money-burning in the allocation that types    () get, and the mass

of these agents is at least 1
11
(as  () 

1
2
). This completes the proof that  ()   ( ()) is

possible.

To show that  () =  ( ()) is possible as well, we can refer to Proposition 7 which

establishes sufficient conditions for this to be true. ¥

Proof of Proposition 7. This result is a reformulation of Proposition 3 in AWA which is

proven there correctly. The proof is thus omitted. ¥

26



7 References

Amador, Manuel and Kyle Bagwell (2011): “The theory of optimal delegation with an applica-

tion to tariff caps,” mimeo Stanford University.

Amador, Manuel, Iván Werning and George-Marios Angeletos (2006): “Commitment vs Flex-

ibility,” Econometrica, 74, vol.2, 365-396.

Ambrus, A. and G. Egorov (2009): “Delegation and nonmonetary incentives,” mimeo, Har-

vard University.

Amromin, G. and P. Smith (2003): “What explains early withdrawals from retirement ac-

counts? Evidence from a panel of taxpayers,” National Tax Journal, 56, 595-612.

Athey, S., A. Atkeson and P. Kehoe (2005): “The optimal degree of discretion in monetary

policy,” Econometrica, 73, 1431-1475.

Athey, S., K. Bagwell and C. Sanchirico (2004): “Collusion and price rigidity,” Review of

Economic Studies, 71, 317-349.

Dekel, E., B. Lipman and A. Rustichini (2001): “Representing preferences with a unique

subjective state space,” Econometrica 69, 891-934.

Fudenberg, D. and D. Levine (2006): “A dual-self model of impulse control,” American

Economic Review, 96, 1449-1476.

Gilkeson, J., J. List and C. Ruff (1999): “Evidence of early withdrawal in time deposit

portfolios,” Journal of Financial Services Research, 15, 103-122.

Gilkeson, J. and C. Ruff (1996): “Valuing the withdrawal option in retail CD portfolios,”

Journal of Financial Services Research, 10, 333-358.

Gul, F. and W. Pesendorfer (2001): “Temptation and self-control,” Econometrica, 69, 1403-

1435.

Laibson, D. (1997): “Golden eggs and hyperbolic discounting,” Quarterly Journal of Eco-

nomics, 112, 443-477.

Laibson, D. (1998): “Life-cycle consumption and hyperbolic discount functions,” European

Economic Review, 42, 861-871.

Phelps, E. and R. Pollack (1968): “On second best national savings and game-equilibrium

growth,” Review of Economic Studies, 35, 185-199.

Strotz, R. (1956): “Myopia and inconsistency in dynamic utility maximization,” Review of

Economic Studies, 23, 165-180.

27


