Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response.

Loading...
Thumbnail Image

Date

2011-05

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

194
views
613
downloads

Citation Stats

Abstract

Major depressive disorder (MDD) is characterized by the presence of disturbances in emotional processing. However, the neural correlates of these alterations, and how they may be affected by therapeutic interventions, remain unclear. The present study addressed these issues in a preliminary investigation using functional magnetic resonance imaging (fMRI) to examine neural responses to positive, negative, and neutral pictures in unmedicated MDD patients (N = 22) versus controls (N = 14). After this initial scan, MDD patients were treated with cognitive behavioral therapy (CBT) and scanned again after treatment. Within regions that showed pre-treatment differences between patients and controls, we tested the association between pre-treatment activity and subsequent treatment response as well as activity changes from pre- to post-treatment. This study yielded three main findings. First, prior to treatment and relative to controls, patients exhibited overall reduced activity in the ventromedial prefrontal cortex (PFC), diminished discrimination between emotional and neutral items in the amygdala, caudate, and hippocampus, and enhanced responses to negative versus positive stimuli in the left anterior temporal lobe (ATL) and right dorsolateral PFC. Second, CBT-related symptom improvement in MDD patients was predicted by increased activity at baseline in ventromedial PFC as well as the valence effects in the ATL and dorsolateral PFC. Third, from pre- to post-treatment, MDD patients exhibited overall increases in ventromedial PFC activation, enhanced arousal responses in the amygdala, caudate, and hippocampus, and a reversal of valence effects in the ATL. The study was limited by the relatively small sample that was able to complete both scan sessions, as well as an inability to determine the influence of comorbid disorders within the current sample. Nevertheless, components of the neural networks corresponding to emotion processing disturbances in MDD appear to resolve following treatment and are predictive of treatment response, possibly reflecting improvements in emotion regulation processes in response to CBT.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.jpsychires.2010.09.007

Publication Info

Ritchey, Maureen, Florin Dolcos, Kari M Eddington, Timothy J Strauman and Roberto Cabeza (2011). Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res, 45(5). pp. 577–587. 10.1016/j.jpsychires.2010.09.007 Retrieved from https://hdl.handle.net/10161/13854.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Strauman

Timothy J. Strauman

Professor of Psychology and Neuroscience

FOR POTENTIAL STUDENTS (fall 2024 class): 

Dr. Timothy Strauman and Dr. Ann Brewster will be seeking to admit a student for Fall 2024 who will be an important member of their collaborative projects. Dr. Brewster is an intervention scientist and a faculty member in Duke’s Social Science Research Institute. The collaborative projects focus on creating, testing, and implementing school-based therapeutic and preventive interventions for adolescents at risk for negative academic and mental health outcomes. We are partnering with the Durham Public Schools as well as with other local school districts, and Dr. Brewster has extensive experience and expertise in developing the partnerships, working with community members, and the intervention process itself. We are especially interested in applicants with experience in community-based interventions, with interests in adolescence, and with knowledge and experience working with both behavioral and neuroimaging data.



Professor Strauman's research focuses on the psychological and neurobiological processes that enable self-regulation, conceptualized in terms of a cognitive/motivational perspective, as well as the relation between self-regulation and affect. Particular areas of emphasis include: (1) conceptualizing self-regulation in terms of brain/behavior motivational systems; (2) the role of self-regulatory cognitive processes in vulnerability to depression and other disorders; (3) the impact of treatments for depression, such as psychotherapy and medication, on self-regulatory function and dysfunction in depression; (4) how normative and non-normative socialization patterns influence the development of self-regulatory systems; (5) the contributory roles of self-regulation, affect, and psychopathology in determining immunologically-mediated susceptibility to illness; (6) development of novel multi-component treatments for depression targeting self-regulatory dysfunction; (7) utilization of brain imaging techniques to test hypotheses concerning self-regulation, including the nature and function of hypothetical regulatory systems and characterizing the breakdowns in self-regulation that lead to and accompany depression.
Cabeza

Roberto Cabeza

Professor of Psychology and Neuroscience

My laboratory investigates the neural correlates of memory and cognition in young and older adults using fMRI. We have three main lines of research: First, we distinguish the neural correlates of various episodic memory processes. For example, we have compared encoding vs. retrieval, item vs. source memory, recall vs. recognition, true vs. false memory, and emotional vs. nonemotional memory. We are particularly interested in the contribution of prefrontal cortex (PFC) and medial temporal lobe (MTL) subregions and their interactions. Second, we investigate similarities and differences between the neural correlates of episodic memory and other memory and cognitive functions (working, semantic, implicit, and procedural memory; attention; perception, etc.). The main goal of this cross-functional approach is to understand the contributions of brain regions shared by different cognitive functions. Finally, in both episodic memory and cross-function studies, we also examine the effects of healthy and pathological aging. Regarding episodic memory, we have linked processes differentially affected by aging (e.g., item vs. source memory, recall vs. recognition) to the effects of aging on specific PFC and MTL subregions. Regarding cross-function comparisons, we identify age-related changes in activity that are common to various functions. For example, we have found an age-related increase in bilaterality that occurs for many functions (memory, attention, language, perception, and motor) and is associated with functional compensation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.