Essays on the Industrial Organization of Health Care Markets

by

Eli Sellinger-Liebman

Department of Economics
Duke University

Date: ____________________________

Approved:

Allan Collard-Wexler, Supervisor

Attila Ambrus

David Ridley

Jimmy Roberts

Donald Taylor

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Economics in the Graduate School of Duke University 2017
Abstract

Essays on the Industrial Organization of Health Care Markets

by

Eli Sellinger-Liebman

Department of Economics
Duke University

Date: ______________________

Approved:

Allan Collard-Wexler, Supervisor

Attila Ambrus

David Ridley

Jimmy Roberts

Donald Taylor

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Economics
in the Graduate School of Duke University
2017
Copyright © 2017 by Eli Sellinger-Liebman
All rights reserved except the rights granted by the
Creative Commons Attribution-Noncommercial Licence
Abstract

This dissertation examines three separate issues of the industrial organization of health care markets. There are a number of features which differentiate health care from other industries. In my dissertation I examine three features: (1) the role of government setting prices, (2) the use of networks, or refusing to contract in order to gain bargaining leverage and, (3) adverse selection.

The second chapter explores the role of government reimbursement in providing incentives for manufacturing quality. To do this my coauthors and I examine whether the Medicare Modernization Act (2003), which reduced the reimbursement for physicians for certain drugs, affected the amount of drug shortages. We hypothesize that as these drugs become less profitable, there is less incentive for manufacturers to invest in the reliability of their manufacturing lines, double source ingredients or build newer facilities. This would lead to more drug shortages. We use a difference-in-difference approach and find evidence that more drug shortages are correlated with drugs that are most affected by the policy change.

The third chapter explores the common story that insurance companies exclude hospitals from their networks to gain bargaining leverage in contract negotiations. To do this, I propose a novel model of price formation in a bilateral oligopoly setting where the networks are endogenous. The endogeneity of its network allows the insurer to threaten to exclude hospitals. I show that exclusion is an equilibrium outcome of the model; the insurer offsets the loss of premiums from a less valuable
network by reimbursing hospitals less. I then estimate this model using data from the Colorado All-Payer Claims Database. I find, using a counterfactual analysis, that restricting insurers’ ability to exclude would lead to 20 percent higher prices negotiated between hospitals and insurers, which is mostly passed through to consumers as higher premiums. This worsens consumer surplus as the value of broader networks is offset by the higher premiums consumers face.

The fourth chapter incorporates adverse selection into the standard model of price formation in hospital markets. A typical merger analysis seeks to quantify the anti-competitive effects of a merger. For example, do hospitals gain more power by merging? However, in a market with adverse selection, if a merger leads to hospitals to negotiate higher prices, this may lead to higher premiums, and the healthiest consumers being priced out of the market. This may raise premiums even more. Therefore, a hospital merger may also have welfare consequences through the channel of adverse selection. This suggests that a merger analysis which focuses solely on competitive effects may underestimate the welfare consequences of a merger.
Contents

Abstract iv
List of Tables ix
List of Figures xi
Acknowledgements xii

1 Introduction 1

2 The Role of Government Reimbursement in Drug Shortages 5

2.1 Background 7

2.1.1 Manufacturing 9

2.1.2 Reimbursement Changes 9

2.1.3 Surplus for Providers and Manufacturers 14

2.2 Theory 14

2.3 Data 18

2.3.1 Medicare Market Share (MMS) 22

2.3.2 Sample Definition 24

2.4 Empirical Analysis 25

2.4.1 Shortages Conditional on Medicare Market Share 26

2.4.2 Shortages Conditional on Reimbursements to Health Providers 28

2.4.3 Shortages Conditional on Manufacturer’s Prices 29

2.4.4 Correlation in Payments to Providers and Manufacturers 30
2.5 Results

2.5.1 Results for Shortages Conditional on Medicare Market Share

2.5.2 Results for Shortages Conditional on Reimbursements to Health Providers

2.5.3 Results for Shortages Conditional on Manufacturers’ Prices

2.5.4 Results for Correlation in Payments to Providers and Manufacturers

2.6 Discussion

2.7 Conclusion

3 Bargaining in Markets with Exclusion: An Analysis of Health Insurance Networks

3.1 Literature Review

3.1.1 Reduced-Form Estimates of Savings from Managed Care

3.1.2 Theory on Exclusion and Bargaining Over Networks

3.1.3 Nash-in-Nash Bargaining Model

3.1.4 Other Mechanisms for Savings from Narrow Networks

3.2 Data

3.3 Reduced-Form Evidence

3.4 Stylized Bargaining Model

3.4.1 Fundamentals

3.4.2 Equilibrium Strategy Profile

3.4.3 Determining Continuation Values

3.4.4 Bargaining Results

3.5 Structural Model and Estimation

3.5.1 Defining Surplus

3.5.2 Stage 1 - Providers and Insurers Bargain over Prices and the Network
3.6 Results ... 92
 3.6.1 Demand Estimation Results 92
 3.6.2 Bargaining Estimation Results 94
3.7 Counterfactuals ... 95
3.8 Limitations and Extensions ... 97
3.9 Conclusion .. 98

4 Hospital-Insurer Bargaining in Selection Markets 108
 4.1 Introduction ... 108
 4.2 Literature Review ... 110
 4.3 Theory ... 111
 4.3.1 No Selection Case ... 112
 4.3.2 Incorporating Adverse Selection 112
 4.4 Structural Model .. 114
 4.5 Conclusion .. 118

A Chapter 2 Appendix .. 120

B Chapter 3 Appendix .. 123
 B.1 Data Appendix ... 123
 B.2 Complete Bargaining Model 124
 B.2.1 Fundamentals ... 125
 B.2.2 Equilibrium Strategy Profile 130
 B.2.3 Determining Continuation Values 132
 B.2.4 Bargaining Results ... 135
 B.3 Defining Acceptable Replacement Hospitals 138

Bibliography ... 140

Biography ... 148
List of Tables

2.1 Descriptive Statistics .. 41
2.2 OLS and IV Estimates of the Effect of MMS on Shortage Days 42
2.3 First Stage - MarketScan MMS on IMS MMS 43
2.4 First Stage - Predicted MMS × Year ≥ 2005 43
2.5 Robustness Check: Different Patent Definitions 44
2.6 Falsification Test Using 2003 as Regulation Year 45
2.7 OLS and IV Year By Year Coefficient Estimates 46
2.8 The Effect of the Reimbursement Change and Patent Status on Shortage Days .. 47
2.9 OLS and Lagged OLS Estimates of Medicare Reimbursement Effect on Shortages .. 48
2.10 OLS and Lagged OLS Estimates of Manufacturer Price Effect on Shortages .. 48
2.11 Effect of Medicare Reimbursement on Price to Manufacturers 49
3.1 Summary Statistics ... 99
3.2 Correlations between Network Size and Prices 100
3.3 Correlations between Network Size and Prices 100
3.4 Correlations between Network Size and Premiums 101
3.5 Demand for Hospitals .. 102
3.6 Prevalence of Condition Categories 103
3.7 Prevalence of Conditions by Age 103
3.8 Summary Statistics for WTP for Networks ... 104
3.9 Demand for Networks ... 104
3.10 Premium Sensitivity ... 105
3.11 Hospital-Specific Bargaining Parameters, ρ^H_j 105
3.12 Insurer-Specific Bargaining Parameters, ρ^I_r 106
3.13 Insurer-Specific Exclusion Parameters θ_r 106
3.14 Counterfactual Negotiated Prices ... 107
A.2 OLS and IV Estimates of the Effect of MMS on Shortage Days 121
A.3 First Stage - MarketScan MMS on IMS MMS 122
A.4 First Stage - Predicted MMS × Year ≥ 2005 122
List of Figures

2.1 Shortage Days per Year for Sterile Injectable and Other Drugs 6
2.2 Supply Chain for a Drug Administered by a Provider 8
2.3 Medicare Part B Reimbursement Levels and Changes for Off-Patent Drugs . 11
2.4 Revenue per Year for Medicare and the Entire Market 12
2.5 Shortage Frequency as a Function of the Model’s Parameters 19
2.6 Prices for Generic Injectable Drugs 31
3.1 Insurer’s $t = 0$ expected value by network size. 78
4.1 Demand and Average Cost Curve Under Adverse Selection 113
Acknowledgements

I would like to thank my advisor, Allan Collard-Wexler, and the remainder of my committee Attila Ambrus, David Ridley, Jimmy Roberts, and Don Taylor for many excellent comments and suggestions.

For chapter 2, I would like to thank my co-authors Ali Yurukoglu and David Ridley. Frank Sloan’s comments as a referee on my second year paper helped to improve this paper.

For chapter 3, I would like to thank the Duke Public/IO lunch group, the Duke Micro Theory lunch group, and conference participants at the 2016 American Society of Health Economists conference (Philadelphia). Allan Collard-Wexler, Attila Ambrus and Ali Yurukoglu provided excellent comments throughout and I am grateful for the time you took to read my drafts. Matt Grennan provided a number of crucial insights. Finally, Curtis Taylor and the Duke Economics Department for data acquisition funding, and the Duke Graduate School for summer research support.

For chapter 4, I would like to thank my co-author Matthew Panhans.

I would also like to thank Matthew Panhans for many helpful discussions and generosity. Margaux Luflade for many excellent discussions, support, and encouragement. Also, Ana Aizcorbe and Abe Dunn deserve credit as role models, demonstrating the research process to me, and teaching me to not be afraid of answering hard questions.
There are a number of features that differentiate health care markets from the canonical models in economics. In each of the chapters, I model the market as having a vertical structure, i.e. consumers are administered injectable drugs through a physicians, while physician purchase those drugs from their manufacturer. Furthermore, these are markets where both sides of the market may be best considered to be an oligopoly. In chapter 2, the market has many physicians or hospitals downstream and many drug manufacturers upstream. In chapters 3 and 4, markets have many hospitals upstream and many insurers downstream. This market arrangement is referred to as having a bilateral oligopoly. The difficulty of these types of market is that theory is less precise about how prices are formed, but without considering the vertical structure of the markets, it would be difficult to capture the mechanisms I focus on in these chapters.

Furthermore, each chapter examines specific features of health care markets in the United States, which are less common in other markets. One interesting feature of the health care industry in the United States is the role of government. Chapter 2 takes into account the role the government plays in setting prices. Chapter 3
examines the use of excluding firms from insurance networks. Insurers use this strategy with physicians, hospitals, and increasingly with pharmacies. Finally, chapter 4 incorporates adverse selection into the cutting edge model of bilateral oligopoly, showing how adverse selection may play an important role in anti-trust policy.

Chapter 2 is the first paper in the economics literature look at drug shortages. A drug shortage in our data is a complaint that a physician or hospital is unable to purchase a drug. In other words, the manufacturer is unable to meet demand. The drugs that have shortages are injectable drugs that are administered by physicians or hospitals, like chemotherapy, anesthesis or vaccines. These drugs are expensive and complicated to make, because they are injectable, and because they are injected directly into your blood stream they have to be sterile.

For certain patients, physicians or hospitals are reimbursed by private insurance and for some patients physicians and hospitals are reimbursed by Medicare. In this case, the prices that physicians and hospitals receive may affect an upstream drug manufacturers’ ability to negotiate their own prices. Therefore, government price setting in the downstream market can affect the upstream prices. We hypothesize that a policy change that affected reimbursement to physicians and hospitals reduced the prices that drug manufacturers are able to negotiate. This makes those drugs less profitable, reducing the incentive for manufacturers to invest in the reliability of their manufacturing lines, double source ingredients or build newer facilities. This leads to shortages as manufacturers have to shut down lines due to quality concerns.

We use a difference-in-difference approach to test this hypothesis. The policy change we exploit is the Medicare Modernization Act reduced how much Medicare reimbursed physicians and hospitals. Since Medicare only covers the elderly, we argue that drugs which treat conditions that are more likely for the elderly to have should be differentially effected. The idea is that drugs which are purchased by the elderly would see their revenue reduced the most, so they should see the largest increases in
shortages. We find evidence that this is the case. And that raises important questions about how the government should reimburse drugs. The optimal reimbursement for a generic drug might not be marginal cost because that will lead to shortages as firms in the market are unwilling to pay the fixed costs as maintenance requires it.

Chapter 3 explores the common story among the health policy community that insurance companies exclude hospitals from their networks to gain bargaining leverage in contract negotiations. The challenge is that modeling bargaining leverage requires modeling the market as a bilateral oligopoly, thinking of either side as a price-setter gives all bargaining leverage to one side of the market. However, the cutting edge model of bilateral oligopoly, developed in Crawford and Yurukoglu (2012a), treats the networks as exogenous and exclusion must be due to other reasons. My job market paper builds on this literature by incorporating an insurer’s ability to exclude hospitals as a strategy.

I develop a new model of bargaining between many insurers and many hospitals. While the literature on exclusive dealing does not detail this mechanism as a reason for exclusion, I show that it can be a profitable strategy for insurers to exclude hospitals from their network in order to gain bargaining leverage in their negotiations with hospitals. Even though an insurer loses some ability to set high premiums, since it has a lower quality network, it can make up for this by paying lower prices to hospitals.

I apply this new model of the insurer-hospital market to examine regulations around networks. Regulators worry that patients lack information about which conditions they will get in the future; without knowing what conditions they will have in the coming year, they may not check whether high quality providers are available in each specialty. However, these plans are popular because they charge lower premiums. These lower premiums are due to reduced markups to hospitals since they lose bargaining power. Therefore, there is a tradeoff for the policy maker, on one
hand they reduce deadweight loss due to insurers not contracting with all hospitals, but they create deadweight loss due to hospitals gaining markup.

I empirically evaluate this tradeoff using data from the Colorado All-Payer Claims Database. I find, using a counterfactual analysis, that restricting insurers’ ability to exclude would lead to 20 percent higher prices negotiated between hospitals and insurers, which is mostly passed through to consumers as higher premiums. This worsens consumer surplus as the value of broader networks is offset by the higher premiums consumers face.

Chapter 4 incorporates adverse selection into the standard model of price formation in hospital markets. A typical merger analysis seeks to quantify the anti-competitive effects of a merger. For example, do hospitals gain more power by merging? However, in a market with adverse selection, if a merger leads to hospitals to negotiate higher prices, this may lead to higher premiums, and the healthiest consumers being priced out of the market. This may raise premiums even more. Therefore, a hospital merger may also have welfare consequences through the channel of adverse selection. This suggests that a merger analysis which focuses solely on competitive effects may underestimate the welfare consequences of a merger.
The Role of Government Reimbursement in Drug Shortages

Beginning in the mid-2000s, the incidence of drug shortages rose, especially for generic injectable drugs (Figure 2.1). Examples include drugs used in chemotherapy, antibiotics and anesthesia, as well as injectable electrolytes and vitamins. Shortages cause doctors and patients to seek alternatives that are unfamiliar or inferior. When substitutes are unacceptable, doctors and patients delay or forego treatment. Most of the drugs that experienced shortages were off patent and had previously been readily available.

We investigate how declining reimbursement affected the rise of shortages of ster-
Figure 2.1: Shortage Days per Year for Sterile Injectable and Other Drugs

Source: University of Utah Drug Information Service

The shortage of sterile injectable drugs in the United States. One such change was the Medicare Modernization Act (MMA) which reduced Medicare reimbursement for health care providers that administer these drugs.\(^4\) We begin by specifying a theoretical model of how reimbursement policy and market size influence shortages. Our model implies that the decision by manufacturers to invest in reliability and quality depends on the expected returns.\(^5\) If the returns are sufficiently high, then manufacturers will dual source ingredients, perform monitoring and maintenance on manufacturing lines, and build newer or more robust manufacturing lines. These actions can reduce the likelihood of shortages.

Consistent with the theoretical model, the empirical results suggest supply-side

\(^4\) Duggan and Scott Morton (2010) examine the effect of the MMA on prices in the retail market. Furthermore, Jacobson et al. (2010) examine the effect of the MMA on treatment patterns by oncologists.

\(^5\) See also Woodcock and Wosinska (2012).
responses to decreasing margins. We begin by showing that drugs with greater exposure to the policy change experienced greater increases in shortages. Exposure to the policy change is measured using the Medicare market share (MMS) – the fraction of a drug’s revenue that comes from Medicare fee for service patients.\(^6\) Consistent with our theoretical model, we find that drugs for which reimbursements fell more after the policy change had greater increases in shortages. The results hold whether measuring reimbursement from Medicare to health providers (which the policy directly affected, but which only indirectly affects profit) or a manufacturers’ average revenue per dose (which the policy only indirectly affected, but which directly affects profit).

The median drop in reimbursement from Medicare to providers for generic sterile injectable drugs after the policy change was about 50 percent. We estimate that a 50 percent drop in reimbursement to providers would increase the number of expected shortage days by 16 per year from a mean of 60.

2.1 Background

The pharmaceutical industry is highly regulated. Approval by the U.S. Food and Drug Administration (FDA) is required before manufacturers may market branded or generic prescription drugs. A manufacturer of a branded drug must demonstrate efficacy and safety compared to a placebo. Likewise, a manufacturer of a generic drug must demonstrate that its generic drug is pharmaceutically equivalent to the branded drug and that the manufacturing process follows good manufacturing practices including ensuring sterility for injectable dosage forms (Scott Morton, 1999).

Injectable drug sales totaled $83 billion dollars and 3.7 billion units in 2010, according to our IMS Health data sample (which we describe in section 2.3). Injectable

\(^6\) Our MMS measure is similar to the Medicare market share measure used by Duggan and Scott Morton (2010) who study the effect of introducing Medicare Part D.
drugs are typically administered in a clinical setting, such as a physician’s office or in a hospital. Consider the following example of the supply chain for an injectable drug (Figure 2.2). A patient who is over age 65 is eligible for Medicare and being treated for cancer. She visits her provider who administers a drug through injection or infusion. The provider paid the price of the drug to a manufacturer (through a wholesaler). Medicare reimburses the provider for the drug. The difference between the amount that Medicare reimburses for the drug and the manufacturer’s price is the gross margin for the provider.\(^7\) Henceforth, “manufacturer’s price” will refer to a payment from a provider to a manufacturer (through a wholesaler), while “reimbursement” will refer to a payment from Medicare or a private insurer to a provider.

\(^7\) Berndt (2002) describe the economics of the pharmaceutical industry. U.S. Department of Health and Human Services (2011) provides more detail on the sterile injectable portion of the industry.
2.1.1 Manufacturing

Sterility is critical for injectable drugs because they are administered intravenously, intramuscularly, or subcutaneously rather than passing through the gastrointestinal tract. Manufacturing lines must not be contaminated by bacteria, fungus, or mold which causes delays to clean up the problem. In some cases, remediation is so costly relative to expected profit that the manufacturer stops producing the drug. Also, shortages might occur due to disruptions to supplies of active pharmaceutical ingredients.

A typical generic injectable drug is made by three to four manufacturers out of seven major generic injectable manufacturers selling in the United States. Once one manufacturer stops producing, it falls to the other manufacturers to make up the supply difference. However, the other manufacturers might have been affected by the same supply shock, might not find it profitable to produce more units of the drug given capacity constraints, or might not be licensed to produce the drug.

2.1.2 Reimbursement Changes

Medicare provides health insurance for seniors and the disabled. Medicare covers hospitals and hospice (Medicare Part A), as well as physician visits and outpatient services (Medicare Part B). Under Part B, physicians are reimbursed when they administer a drug (often a sterile injectable). Until 2005, Medicare Part B reimbursed providers for drugs based on Average Wholesale Price (AWP). However, AWP was a list price, not an actual average price. According to the Medicare Payment Advisory Commission (2003): “[AWP] does not correspond to any transaction price... AWP has never been defined by statute or regulation. Individual AWPs are compiled in compendia like the Red Book and First Databank”. As such, the AWP was often

8 APP-Fresenius, Bedford-Ben Venue, Daiichi Sankyo, Hospira, Sandoz, Teva, and West-Ward. Several of these manufacturers, as well as smaller manufacturers, experienced shortages.
substantially higher than the actual transaction price. The Medicare Payment Advisory Commission (2003) cited some dramatic examples: Vincasar, a chemotherapy drug, had an AWP of $740, while being sold to physicians for $7.50. Berndt (2005) provides a detailed history of AWP. By raising AWP, manufacturers could raise the profitability of providers that chose their drug. However, the threat of litigation and new regulation probably disciplined AWP.

In 2003, the Medicare Modernization Act (MMA) (officially known as the Medicare Prescription Drug Improvement and Modernization Act of 2003) created the retail drug benefit known as Medicare Part D and changed reimbursement under Medicare Part B. In 2004, MMA changed Medicare reimbursement from the previously used 95 percent of AWP to 85 percent of AWP. Starting January 1, 2005, Medicare began to reimburse these drugs at 106 percent of the Average Sales Price (ASP) for the previous two quarters. The ASP is the volume-weighted average price across all manufacturers of a given drug to all buyers from two quarters prior. The ASP captures actual transaction prices, including most discounts and rebates. A study by the Office of Inspector General found that the median percentage difference between AWP and ASP was 50 percent (Office of Inspector General, 2005). The change resulted in decreases on the order of 50 percent of reimbursements for these drugs to providers as seen in Figure 2.3. Furthermore, the policy change clearly affected the level of reimbursements paid by Medicare as shown in Figure 2.4. There is a clear drop in revenue paid by Medicare in 2005, followed by below private growth in Medicare reimbursements. The ASP regime is not a government price control – it is cost-based reimbursement – but it substantially reduced reimbursements.

The MMA dramatically reduced reimbursement to providers for many generic

9 AWP was referred to as “Ain’t What’s Paid” (Mullen, 2007).
10 For example, the U.S. Department of Justice sued Abbott for violating the False Claims Act by reporting a high AWP for its products, including an intravenous antibiotic. For more information, see https://www.justice.gov/opa/pr/pharmaceutical-manufacturers-pay-4212-million-
drugs. Before the MMA, there was a large spread between the low generic price paid by providers and the high reimbursement provided by the government and other payers. After the MMA, reimbursement fell, putting financial stress on providers who sometimes changed treatment patterns, including changing drug regimens. For example, some providers changed from carboplatin and paclitaxel to docetaxel (Jacobson et al., 2010). The change also put downward pressure on generic prices. Hence, generic manufacturers might see profit fall due to changes in both quantity

11 ASP is based on the two previous quarters which introduces rigidity into the price mechanism and might exacerbate the shortage problem. However, ASPs can and do rise by more than 6 percent from quarter to quarter in the data, so we conclude that this aspect of the switch to ASP is second order compared to the decrease in the realized levels of reimbursements.
The top line is revenue for the drugs in our IMS data sample. The bottom (dashed) line is total reimbursement for Medicare Part B drugs indexed to 2003. The sample includes all HCPCS codes starting with J in the Part B summary files. Sources: IMS MIDAS and CMS Part B National Summary.

The reimbursement change directly affected Medicare fee-for-service. Private insurance and Medicare Advantage, which is administered by private insurers, were not directly affected. However, it is quite common for private insurers to mimic Medicare reimbursement, albeit with a lag (Clemens and Gottlieb, 2013). Indeed, in 2007, 21 percent of surveyed private payers planned to mimic ASP, while 76 percent intended to use rates above ASP or not use ASP (Mullen, 2007). In 2012, seven years after the change to ASP by Medicare, private insurers were using ASP for 55 percent of patients, according to a survey (Magellan Rx Management, 2013). Private insurers were somewhat more generous than Medicare. In 2012, the average private

12 Enrollment in Medicare Advantage was 13 percent of Medicare enrollees in 2005 and 27 percent in 2012.
insurance markup over ASP was 18 percent (Academy of Managed Care Pharmacy, 2013, p.48). Hence, while the change from AWP to ASP was immediate for the Medicare population, it was somewhat more gradual for privately insured patients. Nevertheless, we can think of it as being caused by government policy, because policymakers should know that private insurers often imitate Medicare.

The MMA not only affected Medicare Part B reimbursement, but also created Medicare Part D. Beginning in 2006, Medicare Part D provided prescription drug insurance to seniors and the disabled for drugs dispensed by pharmacists, drugs which are disproportionately oral solids (pills and tablets). The introduction of Medicare Part D might shift demand to oral solids, reducing demand for injectable or infused drugs. Reductions in demand for injectable or infused drugs would not directly cause shortages (just the opposite) but in the long run could reduce profit and the incentive to manufacture a drug.

A second change in reimbursement was the expansion of the Medicaid 340B program with more drugs purchased by covered entities. Drug purchases under the 340B Program account for about 2 percent of all U.S. drug purchases (U.S. Department of Health and Human Services, 2013, p.311). The program requires that drug manufacturers offer discounts to outpatient facilities that can be classified as safety-net providers for low-income patients. Because these drugs are offered at a discount, the growth implies lower revenue for drug manufacturers. Our estimates do not isolate the effect of reduced incentives because of 340B. However, both MMA and 340B reduced incentives because of government policies that affect reimbursement.

Occasionally, news outlets highlight large price increases for generic drugs. Price increases tend to occur when manufacturers have market power due to exits or acquisitions. Our model (section 2.2) predicts higher generic prices when there are fewer manufacturers. However, these large price increases for generic drugs are rare. According to Janine Burkett of pharmacy benefits manager Express Scripts, “Price inflation among a few generic drugs has been in the news lately,” but the “Express Scripts Prescription Price Index shows that, since 2008, the average price of brand drugs has almost doubled, while the average price of generic drugs has been cut roughly in half” (Burkett, 2014).
and prices.

2.1.3 Surplus for Providers and Manufacturers

Prior to the policy change, reimbursement to providers was typically much higher than the prices they paid, so both providers and manufacturers could capture (short-run) surplus. For example, as much as half of an oncologists’ income may have come from the surplus on drugs. Likewise, branded manufacturers charged prices considerably higher than marginal costs. Even generic manufacturers can charge prices above marginal costs if fixed costs are large (some sterile injectable manufacturing requires costly facilities), products are not identical (due to reputation, availability, and relationships), or long-run equilibrium has not been reached.

The MMA caused providers to be reimbursed less. Furthermore, the reimbursement change compressed the scope of price differentiation for manufacturers. With Medicare reimbursing at a 6 percent markup on average price, providers that paid a 7 percent markup on average price would lose money with each purchase. Hence, both manufacturers and providers likely lost surplus. This is consistent with previous research on vertical relationships suggesting that large firms on each side of the market share the surplus (Crawford and Yurukoglu, 2012b; Grennan, 2013a; Ho and Lee, 2015). Through this channel, the decreased reimbursements to providers reduced the prices manufacturers receive as well. We investigate the relationship between provider reimbursement and manufacturer price.

2.2 Theory

We use a model of entry and capacity choice with supply uncertainty to illustrate the change in production incentives and underlying welfare economics associated with changing Medicare reimbursement. This class of models has been studied by Carlton (1978), Deneckere and Peck (1995), and Dana (2001) amongst others. We consider
two regimes: list-price reimbursement (AWP) and cost reimbursement (ASP). The AWP regime features reimbursement at a list price that is higher than what would normally be the acquisition price of the drug. The ASP regime features reimbursement based on costs to the provider.14

Manufacturers, denoted by i, simultaneously choose capacity levels k_i to produce an identical medicine. After choosing capacities, each manufacturer is hit by a shock ϵ_i which jointly follow a distribution whose CDF is $G(\bar{\epsilon})$. The new capacity for manufacturer i is $k_i\epsilon_i$.

There is a mass of size M of patients which are all willing to pay up to p_{max} for the medicine. Of those, M_{gov} are insured by Medicare. Under cost-based reimbursement (ASP), if the total capacity in the market after the shocks is less than the market size M, then the market price of the medicine is equal to p_{max}. If the total installed capacity is greater than the market size M, then the price of the good is zero.

$$p_{\text{ASP}}(\vec{k}, \vec{\epsilon}, N, M) = \begin{cases} p_{\text{max}}, & \sum_{i=1}^{N} k_i\epsilon_i < M \\ 0, & \sum_{i=1}^{N} k_i\epsilon_i \geq M \end{cases}$$

Under AWP reimbursement, the government reimburses hospitals and physicians for drugs used for Medicare patients at p_{max} no matter what price the hospital or physician paid for the medicine.15 The government purchases up to M_{gov} units at p_{max} no matter what total industry capacity turns out to be. Some fraction γ of that reimbursement rate will go to manufacturers. $\gamma \in [0, 1]$ represents a bargaining power parameter which is assumed to be the same across manufacturers.

$$p_{\text{AWP}}(\vec{k}, \vec{\epsilon}, N, M, M_{\text{gov}}, \gamma) = \begin{cases} p_{\text{max}}, & \sum_{i=1}^{N} k_i\epsilon_i < M \\ \gamma p_{\text{max}}, & \sum_{i=1}^{N} k_i\epsilon_i \geq M, \text{Medicare} \\ 0, & \sum_{i=1}^{N} k_i\epsilon_i \geq M, \text{Non-Medicare} \end{cases}$$

14 ASP is therefore not a regulated price. However, because ASP is based on data from the two previous quarters, it does introduce some frictions into the flexibility of prices if health providers are unwilling to accept a loss on some transactions.

15 The manufacturers only receive the additional payment compared to the ASP regime on Medicare patients.
Under ASP, manufacturer i solves:

$$\max_{k_i \geq 0} E_{\epsilon_i} [p_{ASP}(\vec{k}, \vec{\epsilon}) k_i \epsilon_i] - c(k_i)$$

where the expectation is over the joint distribution of shocks to capacity. How much each manufacturer sells when total capacity is greater than the market size does not matter because price drops to zero when the industry is not capacity constrained and the marginal cost of production is zero up to the capacity constraint. Under AWP reimbursement, manufacturer i solves

$$\max_{k_i \geq 0} E_{\epsilon_i} [p_{AWP}(\vec{k}, \vec{\epsilon}) Q_{i, AWP}(\vec{k}, \vec{\epsilon})] - c(k_i)$$

where Q_i is the quantity sold by manufacturer i. If total capacity is lower than market size ($\sum_i k_i \epsilon_i < M$), then this is equal to the capacity for manufacturer i. If the industry has more capacity than necessary to serve the whole market, the manufacturers split the Medicare market according to what fraction of total capacity they own.\footnote{Because the price for non-Medicare buyers and marginal costs of production are both zero, how manufacturers split the non-Medicare quantities does not affect their profits.} We assume that manufacturers produce up to capacity and do not destroy any of their product even when the industry has over produced. One could consider variations to this game that accounted for that type of behavior. For example, once shocks are realized, new capacities could be announced publicly followed by a simultaneous move game where each manufacturer decides how much quantity to supply to the market. Depending on the realization of the shocks, a single manufacturer may be large enough to unilaterally withhold enough quantity to avoid the market price falling to zero. Borenstein et al. (2002) document this type of behavior in the California electricity generation industry. However, there will still be states of the world where this incentive does not exist, and Medicare’s reimbursement under the AWP regime will affect investment incentives.
The incentive to invest in capacity is determined by integrating prices over the joint distribution of ϵ. Manufacturers must pay an entry cost F to produce and sell the good. The equilibrium number of firms is given by the maximum number of firms such that the variable profits of each firm are greater than F.

We find a symmetric Nash equilibrium to the simultaneous capacity choice sub-game. If the distribution of ϵ has no mass points, then the symmetric equilibrium capacity per firm when N firms are producing is the solution to the following equation under ASP:

$$E_\epsilon[p_{ASP}(k \otimes e_N, \bar{\epsilon}, N, \cdot) \epsilon_i] - c'(k) = 0$$

where e_N is the $1 \times N$ vector of ones. Under AWP reimbursement,

$$E_\epsilon\left\{ \frac{p_{max} \epsilon_i}{\gamma p_{max} M_{gov} \frac{\epsilon_i (\sum_{j=1}^{N} k \epsilon_j - dk)}{(\sum_{j=1}^{N} k \epsilon_j)^2}}, \quad \sum_{j=1}^{N} k \epsilon_i < M \right\} - c'(k) = 0$$

We use numerical simulation to show how equilibrium quantities vary with model parameters.

When $\gamma > 0$, equilibrium capacities and average prices are higher under AWP than ASP. Shortages occur less frequently under AWP than with ASP (Figure 2.5). Whether total welfare is higher or lower is ambiguous. When a firm enters the industry, it does not capture the full social value of its investment, because competition drives average price below p_{max} in some states of the world.\(^{17}\) In the other direction, the government must raise the funds to pay for the AWP reimbursement, potentially distorting the decisions in some other area of the economy. Poorly designed AWP reimbursement can also lead to over entry and over investment in capacity.\(^{17}\)

\(^{17}\) In this model, conditional on having the socially optimal number of firms, the capacity choices are socially optimal. This is because price rises to p_{max} immediately in a shortage. With less flexible pricing or competitive pressures in shortage states, capacity investment could also be too low under ASP.
The model’s predictions for levels are not surprising. The AWP reimbursement continues to pay manufacturers for Medicare patients even when the industry over produces. This implies higher returns to investing in capacity for manufacturers, thus more total capacity and fewer shortages. The model is useful for empirical analysis because it predicts a differential impact of the AWP reimbursement depending on features of the drug. In particular, drugs with lower fixed costs and that serve more Medicare patients will experience a greater increase in shortages moving from AWP to acquisition cost-based reimbursement as in ASP.

The contracts negotiated between health providers, wholesalers, and manufacturers are more complicated than the simple model put forth here. Contracts often have non-linearities due to bundled discounts or quantity discounts or other material clauses. Modeling the nexus of non-linear contracts between strategic agents would be an important advance to the maintained model. However, it is unlikely that such a model would change the result that moving from AWP to ASP reimbursement decreases incentives to invest in capacity. This is because in such models of the nexus of linear contracts in other industries (for example Crawford and Yurukoglu (2012b)) the price to the upstream firm, the manufacturer in this paper, will depend strongly on the surplus created by consumption of the good and competition. Non-linearities in the contracts may reduce or sharpen this dependence, but there is no theoretical basis that they would overturn the dependence. Since prices and demand for each product determine the incentives to invest in capacity, the simple model here captures the first-order determinants of these investment decisions.

2.3 Data

An observation is a drug and year. We refer to a drug as an active ingredient or a combination of active ingredients. For example, the nutritional product Multiple Vitamins for Infusion (MVI) is a combination of active ingredients that also ex-
Figure 2.5: Shortage Frequency as a Function of the Model’s Parameters

The solid lines are predictions for the cost-based ASP reimbursement regime. The dashed-dotted lines are predictions under the AWP reimbursement regime. Increasing p_{max} makes capacity investment more desirable and can induce entry. Increasing market size makes entry more desirable because there are more consumers for the medicine, but requires more capacity which can make capacity investment less attractive depending on the shape of the cost of capacity function. When fixed costs increase, fewer firms enter. This leads to higher margins and more capacity investment in equilibrium. Finally, when the share of Medicare patients rises, capacity investment becomes more attractive in the AWP reimbursement regime while it is unaffected in the ASP reimbursement regime. Source: authors

We only consider drugs whose route of administration is intravenous or injectable.

We use five data sources. First, we use Medicare Part B reimbursement data from the CMS Part B National Summary Data Files. Second, we use privately-insured outpatient hospital (analogous to Medicare Part B) reimbursement and quantity data from the MarketScan Commercial Claims and Encounters Database. Third, we use total U.S. drug revenue and quantity data across all payers (Medicare, Medicaid, private insurance) and settings (physicians, hospitals, retail) from IMS Health.
Fourth, we use shortage data by molecule and year from the University of Utah Drug Information Service. Fifth, we use approval dates and the number of manufacturers per molecule from FDA Orange Book.

First, we use Medicare reimbursements and services given by the CMS Part B National Summary Data Files. The key variables are the total reimbursements by Medicare and number of services billed for a Healthcare Common Procedure Coding System (HCPCS) code and year. Providers use HCPCS codes to bill Medicare and private payers for procedures. A typical HCPCS code represents one administration of a drug. For example, the spending by Medicare to a hospital or physician’s office on a lymphoma patient being treated by chemotherapy agent Doxorubicin once a month for three months would show up as three services of HCPCS code J9000. The same drug can have multiple HCPCS codes representing different dosages. We use data from 2001 to 2012 and adjust reimbursements for inflation to year 2010 dollars.

Second, we use MarketScan Commercial Claims and Encounters database outpatient files. These data are given at the claims level, but we aggregate to the year and HCPCS code. The data are not nationally representative, but rather they are a convenience sample of all claims from large employers and insurance plans. The data only include enrollees who are under 65. As discussed later, we reweight the data to match the commercially-insured population in the U.S. We use the years 2001-2009 to estimate the total non-Medicare spending by year and HCPCS, adjusted for inflation to year 2010 dollars.

Third, we use IMS MIDAS data for estimates of a drug’s total revenue for the years 2003 to 2010. We use these data to estimate sales to providers. These data contain all payers, including private, Medicare, Medicare Advantage, and Medicaid. Quantities are measured in standard units which can be thought of as doses. For injectable drugs, a standard unit is often an ampoule or vial. The IMS Health sales data do not include off-invoice discounts (for example, rebates paid by the
Fourth, we use shortage data from the University of Utah Drug Information Service (UUDIS) which archives shortages that were reported to the FDA or the Association of Health System Pharmacists (ASHP) by providers (hospitals or pharmacists) or manufacturers. In the data, a drug shortage is defined as “a supply issue that affects how the pharmacy prepares or dispenses a drug product or influences patient care when prescribers must use an alternative agent” (Fox et al., 2009). A report of a shortage leads to a response from the FDA and ASHP which usually leads to rationing and identifying alternative drugs. Furthermore, manufacturers are contacted to determine which manufacturers, if any, have emergency supplies. This suggests that manufacturers and the FDA vet the reporting of shortages. Shortages are specific to a molecule and form (injectable or not) and for the U.S. We also have information on the dates of shortage start and when they are resolved. We use shortage data from 2001 to 2012.\(^\text{18}\)

Fifth, we use the Food and Drug Administration Orange Book for the years 2001-2012 to record how many approved manufacturers of a drug (active ingredient and route of administration combination) exist in each year, and the number of years since the earliest approval of a manufacturer of the drug. The FDA Orange Book records each approved and active manufacturer\(^\text{19}\) of a given drug in a given year. Because the analysis is at the drug level, we collapse the observations of a given drug into one observation per year. The Orange Book does not track biological pharmaceuticals which are made by a biological process rather than chemical synthesis (e.g., insulin). These drugs have a more complicated manufacturing process and have been subject

\(^{18}\) An alternative set of shortage data are offered by the FDA. The FDA uses a stricter definition of a shortage than the UUDIS. However, historical FDA data are not available. The UUDIS measures of shortages are widely used in the pharmaceutical literature (Fox et al., 2009, 2014).

\(^{19}\) Approved products whose manufacturers no longer actively market the product are listed as discontinued in the Orange Book. Our variable measuring the number of manufacturers based on the Orange Book only counts active manufacturers.
to some shortages. We include these drugs but treat them all as single-source, on-patent drugs during our sample period, because Congress did not create a pathway for FDA to approve multi-source biologics (biosimilars) until 2010.

2.3.1 Medicare Market Share (MMS)

MMS is the fraction of drug reimbursement from Medicare Part B. We use MMS to identify which drugs will be more impacted by the Medicare reimbursement change. Hence, for MMS, cardinality is not particularly important, but ordinality is.

We use two estimates of MMS. For both measures, the numerator is Medicare Part B sales to physicians. These were the only sales directly affected by the policy change of switching to ASP reimbursement.\footnote{The Medicare Part B data do not include Medicare Advantage reimbursements. In 2012, Medicare Advantage accounted for 27 percent of all Medicare enrollees.} The two MMS measures vary according to the denominator: total reimbursement. In the first measure of MMS, the denominator is the sum of payments to manufacturers for each drug from the IMS database. In the second measure of MMS, the denominator is the sum of reimbursement for each drug in the MarketScan database plus the reimbursement in Medicare Part B. The number of people in the MarketScan data rises from around five million in 2001 to 37 million in 2009. To create the MarketScan-based estimate of MMS for each year, we scale the reimbursement by drug as if the sample were nationally representative.\footnote{The data vendors do not claim that the data are nationally representative of the private insurance market. However, Dunn et al. (2014) show that reweighting MarketScan data improves the representativeness of the sample.} For example, suppose there are 10 million individuals in a given year in the MarketScan data. We scale the reimbursement of each drug by the U.S. population minus the number of individuals insured by Medicare and/or Medicaid divided by 10 million.

Medicare serves seniors and those with kidney failure. Consistent with this, the drugs with the highest MMS include inhalants for chronic obstructive pulmonary disease \footnote{\emph{a progressive disease caused by smoking}}, Pegaptanib Sodium \footnote{\emph{for age-related}}
macular degeneration), and Triptorelin Pamoate (for prostate cancer). Other drugs with the highest Medicare share are immunosuppressants used in kidney transplants which are covered by Medicare for all ages. The drugs with the lowest Medicare share are those used by a younger population, including Somatrem (human growth hormone for children), Glatiramer Acetate (for multiple sclerosis), two drugs which treat hyper-thyroidism, and Urofollitropin (a fertility drug).

While the data used to construct the numerator, reimbursements from Medicare Part B, represent the population of drugs affected by the policy change, we adjust our methods to handle imperfect data in the denominator. The IMS measure is not perfect as it mixes revenues to manufacturers with reimbursement from Medicare to doctors. Nonetheless, it is a measure of the relative importance of Medicare to non-Medicare revenues. For example, if revenue to a manufacturer is a constant fraction of reimbursements to doctors, then this measure would be equal to the true MMS times a constant. As such, drugs which derive more of their revenue from Medicare would have relatively higher values of this variable. While not ideal for interpreting units, the first-order role of this variable is to detect differences in the change in shortages between drugs which are more or less reliant on Medicare. The MarketScan measure might have some error because it is only a convenience sample of the under-65 private insurance market and misses sales to other payers like Medicare Advantage and Medicaid, as well as sales in other settings like retail or inpatient hospital.22 As we discuss in section 2.4.1, we use an instrumental variables strategy to address this measurement error.

22 Missing sales in secondary settings is not a big concern because drugs typically receive most of their revenue from one setting. For example, a drug used mainly in retail would typically not have large hospital sales.
2.3.2 Sample Definition

To combine these data sources, we use each HCPCS code beginning with J (which indicates drug administration)23 that we observe in the Medicare Part B National Summary File at any time between 2001 and 2012. For each of the 690 observed unique HCPCS J codes,24 we determine the relevant active ingredient(s) and route of administration by examining the HCPCS description and searching the FDA Orange Book.25 This leaves 616 unique HCPCS J codes whose active ingredient(s) and route of administration have a match in the FDA Orange Book or are a biologic drug. We keep drugs whose route of administration is “injection,” leaving 511 HCPCS J codes. Some drugs have multiple dosages with different HCPCS J codes. The 511 HCPCS codes correspond to 424 drugs.

Next, we join these data to the Medicare reimbursements from the Part B National Summary File by HCPCS code and year. We only keep HCPCS-year observations which were in the Part B National Summary File. This reduces the sample to 415 drugs. Next, we merge in the MarketScan MMS data by drug.26 There are thirty additional active ingredients which never manifest in the MarketScan data and are dropped (leaving 385 drugs in our sample). Many of these drugs are introduced after 2009, which is the last year that we have MarketScan data.

We join these data to two FDA datasets by active ingredient(s) and year. The Orange Book is the primary FDA data set we use, but it does not include biologics so we supplement it with data from the drugs@FDA website. We keep all overlapping observations that either appear in the Orange Book or appear in the drugs@FDA

23 Codes J0000 - J0849 indicate “Drugs other than Chemotherapy” and Codes J8521 to J9000 indicate “Chemotherapy Drugs.”

24 The average HCPCS J code contains 15.12 10-digit National Drug Code (NDC) codes.

25 The Orange Book does not cover biologics, vaccines, and some nutritional products.

26 This is a mean across the sample years 2001-2009, so there is one observation for each drug.
Next, we join this set of drugs to the IMS MIDAS data by year, active ingredient(s). The matching is done by ingredient name, so it is imperfect. We were unable to match fifty drugs. Then, sixteen drugs were dropped because their MMS was greater than one or there was no spending in the IMS data, even if the drugs were matched. The sample with MarketScan MMS, IMS MMS, and Medicare reimbursement information is 310 drugs. We dropped two more drugs because they are only in the Medicare reimbursement files for one year, which precludes their use in fixed-effect regressions.

We join this set of drugs to the shortage data by year, active ingredient(s), and route of administration. If an observation from the sample of drugs does not match any shortage observation, we record that the drug has no shortages in the period of the sample. We do not drop any drugs while merging in the shortage data.

The final sample has 308 drugs. This corresponds to 3094 observations. Some drugs do not have 12 years in our data because they are not in the Part B summary files for 12 years. Of the 308 drugs in the sample, 102 are always on patent, 111 are always off patent, and the other 95 switch from on patent to off during the sample period. The full list of drugs in the sample is in Appendix A.

2.4 Empirical Analysis

We begin by using a difference-in-differences identification strategy to show that drugs that had greater exposure to the Medicare policy change, measured using the Medicare market share (MMS), had the greatest increases in shortages (section 2.4.1). Our model suggests that shortages result from reduced manufacturers’ prices, which we hypothesize results from lower reimbursements to providers. We show
that reduced reimbursement to providers, caused by the policy change, is correlated with increased shortages (section 2.4.2). Then consistent with our prediction that reduced incentives to manufacturers would lead to more shortages, we show that lower prices to manufacturers are correlated with more shortages (section 2.4.3). Following the discussion of vertical markets with bargaining power on each side (section 2.1.3), we show that lower reimbursements to providers are correlated with lower manufacturers’ prices (section 2.4.4).

Throughout this section the unit of analysis is a drug and year. We use logged Medicare market share because the observed distribution of MMS is skewed. Similarly, we use logged prices. To reduce noise in the measure of the Medicare market share, and because the sample period for the IMS data is shorter than the whole sample, we average across years to compute one MMS measure for each drug. In the appendix (Table A.2) we show that the results are robust to using levels rather than logs of MMS, and using an MMS measure only using years prior to implementation.

2.4.1 Shortages Conditional on Medicare Market Share

First, we test the hypothesis that drugs most affected by the ASP reimbursement, that is, drugs with a large fraction of their revenues from Medicare Part B, experience larger increases in shortages. We use a difference-in-differences model where the first difference is the Medicare (Part B) Market Share (MMS_i) of drug i and the second difference is before and after the policy change ($Post_i$). The specification is motivated by the assertion that Medicare Market Share is a feature of the diseases that the drug treats, and is not affected by post-policy changes in the unobservable determinants of shortage days. The first set of regressions uses a binary pre and post period, where the treatment was assumed to be applied in 2005, when ASP based pricing went into effect. Formally, this is modeled as:
Shortage_{it} = \alpha_i + \delta_t + \beta \text{Post}_t \times \log(MMS_i) + \gamma 1(\text{Off Patent}_{it}) + \epsilon_{it} \tag{2.1}

Shortage_{it} is the number of shortage days in year t. The model includes \alpha_i and \delta_t which are drug and year fixed effects, which control for time-invariant differences across drugs, including the main effect of \log(MMS_i), and a general time trend. Then, assuming parallel trends without treatment, \beta is the treatment effect – the extra shortage days caused by having higher MMS post-regulation. 1(\text{Off Patent}_{it}) is an indicator for whether that drug and year observation was off patent. We classify a drug as off patent if it has been at least 15 years since the molecule was approved.27

As discussed in (section 2.3.1) we are concerned about error in our measures of MMS. Under the assumption of classical measurement error, the coefficient on the interaction term, \beta, will be attenuated towards zero. We therefore employ instrumental variables to deal with the measurement error. Because we ultimately interact MMS with “post” (the indicator variable for years 2005 and later), we follow the suggestion in Procedure 21.1 of Wooldridge (2010) to first use the MarketScan based MMS estimate and the mean age of patients who receive the drug in the MarketScan database as instrumental variables for the IMS database-based MMS estimate.28 We then interact predicted MMS with the post variable. This interacted value serves as the instrumental variable for the interaction of the post variable and the IMS MMS measure in a standard two-stage least squares procedure.

We include several falsification tests and robustness checks. First, if drugs with higher Medicare market shares were experiencing an increase in shortages prior to

\begin{footnotesize}
\begin{enumerate}
\item For drugs experiencing initial generic entry between 2000 and 2012, the mean time since launch (which usually follows a few months after approval) was about 13 years with a standard deviation of about 3 years (Grabowski et al., 2014). Our results are not sensitive to varying the threshold from 15 to 12 or 18 years.
\item The MarketScan data cover patients who are under 65. The logic is that if the drugs are taken by older patients in the MarketScan data, then they are more likely to be taken by Medicare patients as well.
\end{enumerate}
\end{footnotesize}
the policy change, then the coefficient estimate would be misinterpreted as evidence that the policy change had led to an increase in shortages. We assess whether such an effect exists by running the same specification as equation 2.1, but limiting the sample to 2001 to 2004, and considering 2003 and 2004 as a pseudo- “ASP Reimbursement” period.

In addition, we use a flexible difference-in-differences method to see whether there are pre-trend effects and observe the dynamics of the treatment effect over time. This is modeled as:

\[
Shortage_{it} = \alpha_i + \delta_t + \beta_t Year_t \times \log(MMS_i) + \gamma_{It} (Off Patent_{it}) + \epsilon_{it} \quad (2.2)
\]

where \(Year_t\) are indicators for each year, that is interacted with the MMS which is constant across years.

As shown in the model, because of their lower margins, off-patent drugs should be more affected by the change to ASP than on-patent drugs. To test this, we interact an indicator for patent-status with an indicator for post-regulation status. Then, we interact those indicators with Medicare market share to test whether the importance of Medicare is largest for the off-patent drugs. This is modeled as:

\[
Shortage_{it} = \alpha_i + \delta_t + \beta_t Period_t \times 1(Patent Status_{it})
+ \beta_t Period_t \times 1(Patent Status_{it}) \times \log(MMS_i) + \epsilon_{it} \quad (2.3)
\]

where \(Period_t \times 1(Patent Status_{it})\) is the cross product of period (pre- and post-regulation) and patent status (on and off).

2.4.2 Shortages Conditional on Reimbursements to Health Providers

Previously, we discussed why declining reimbursements to providers would affect a manufacturer’s profit (section 2.1.3). In this section, we provide indirect evidence
of this effect, by checking whether the reduced reimbursements to providers increase the rate of shortages. Under the assumption that a majority of the variation in price was due to the policy change (see Figure 2.3), then most of the variation in price can be considered exogenous which allows us to use OLS. The specification we use is:

\[
\text{Shortage}_{it} = \alpha_i + \delta_t + \beta_1 \log(\text{Reimbursement per service}_{it}) \\
+ \beta_2 \mathbb{1}(\text{Patent Status}_{it}) + \epsilon_{it} \tag{2.4}
\]

where \(\text{Reimbursement per service}_{it} \) is the mean reimbursement (revenue divided by quantity) by Medicare in year \(t \) for drug \(i \). In practice, this should be similar to the AWP or ASP during the respective reimbursement regimes. Drugs which go into shortage experience increases in price which translate into increased Medicare reimbursements after 2005 with ASP based reimbursement. Therefore, the OLS regression will underestimate the effect of drug prices that have risen in response to shortage. To control for the effect of shortages on prices, we use one-year lagged reimbursement values.

We also condition on the patent status \((\mathbb{1}(\text{Patent Status}_{it})) \) since it plays important roles in the theory. Finally, \(\alpha_i \) and \(\delta_t \) are drug and time fixed effects.

One possible concern in this regression is that unobservable demand shocks are driving both prices and shortages. However, a positive demand shock would lead to higher prices and more shortages, holding supply fixed. This biases the estimates in the opposite direction of what we ultimately find, which is that higher prices are correlated with fewer shortages.

2.4.3 Shortages Conditional on Manufacturer’s Prices

In the previous section, we analyzed changes in shortage frequency with variation in reimbursements to health care providers. While the law directly affected reimburse-
ments to providers, our model suggests that shortages depend on manufacturers’ incentives. In this section, we analyze the effect of manufacturers’ prices on shortages. To do this, we use the IMS data, which measures wholesale prices. Similar to section 2.4.2, we regress shortages on the price manufacturers receive. We also try lagged price to control for shortages raising prices of drugs. Formally, the specification we use is:

\[
\begin{align*}
\text{Shortage}_{it} &= \alpha_i + \delta_t + \beta_1 \log(\text{IMS price}_{it}) \\
&+ \beta_2 \mathbb{1}(\text{Patent Status}_{it}) + \epsilon_{it}
\end{align*}
\] (2.5)

Because Medicare is a subset of the market, the MMA might not be solely responsible for overall price changes. However, as discussed above, there is evidence that private insurers followed Medicare into ASP pricing. If private insurers did this without any lag, then we could again think of price changes as exogenous. Figure 2.6 demonstrates the identifying variation. There were considerable price declines for the highest MMS drugs (left panel of Figure 2.6) with the highest prices (dashed line). These drugs were most likely to have inflated AWP before the reimbursement change, and would have had the biggest sales impact due to their high Medicare shares.

2.4.4 Correlation in Payments to Providers and Manufacturers

As discussed in section 2.1.3, the mechanism relies on the assumption that manufacturers’ prices decreased when the reimbursement to providers decreased. To test this assumption, we regress the IMS price, a measure of a manufacturer’s price, on the Medicare reimbursement per service, a measure of reimbursement to providers. Also, to show that this effect is strongest for drugs where Medicare plays a larger role, we interact the MMS with the Medicare reimbursements. Formally, this is modelled as:
Figure 2.6: Prices for Generic Injectable Drugs

On the left are prices for drugs in the top quartile of MMS, meaning used by seniors. The prices are falling for the drugs with highest prices that are targeted at seniors. On the right are prices for the bottom quartile of MMS, meaning used by younger patients. Prices are adjusted to 2010 dollars. All percentiles are calculated without weights across drugs. Source: IMS MIDAS

\[
\log(IMS \ Price_{it}) = \beta_0 + \delta_t + \beta_1 \log(Reimbursement \ per \ service_{it}) + \beta_2 MMS_i \times \log(Reimbursement \ per \ service_{it}) + \epsilon_i
\]

(2.6)

2.5 Results

The top panel of Table 2.1 gives summary statistics for the main sample. There are 308 drugs in the main sample. The lower panel gives summary statistics for off- and on-patent drug year observations separately. The average time that a drug is in shortage was 59 days (unconditional on being in shortage), but was 82 days and 14 days for off- and on-patent drugs, respectively. 66 percent of drug-year observations are off patent. The average number of manufacturers for an off-patent drug is 3.
Using the IMS data, the average MMS is 0.10 and using the MarketScan data the average MMS is 0.15. The MarketScan MMS measure is larger because it does not include in the denominator spending by payers like Medicare Advantage, Medicaid, Veterans Affairs, or spending in settings like inpatient hospitals. In the MarketScan data, the mean patient age is 45.

There are fewer observations in the Manufacturer Price and Number of Manufacturers rows. Manufacturer Price has fewer observations, because our sample of IMS data is from 2003 to 2010, so earlier and later years are dropped. The row with the number of manufacturers has fewer observations because some drugs were not in the Orange Book. Many of the products missing from the Orange Book are biologics which we assume are on patent (or at least, have no generic competition). Hence, while many of the observations are missing from the Orange Book, they are not missing from our analysis.

Figure 2.3 shows the distribution of reimbursement levels (left panel) and changes (right panel) for off-patent drugs in Medicare. In 2005, there is a large fall in reimbursement which is concurrent with the implementation of ASP under the MMA. Figure ?? in the appendix shows the distribution for all drugs (on and off patent), which has similar patterns, though less pronounced.

Figure 2.6 shows that IMS prices decline most for generic drugs with high prices and high MMS. The left panel shows prices for drugs in the bottom quartile of share of their sales from Medicare, while the right shows the drugs in the top quartile. We see large, slow price declines in drugs that have a high share of Medicare sales versus those which do not. This suggests that while not all drugs are affected by the law change, those most affected were those where the Medicare population plays the largest role. This is consistent with the idea that Part B is not a huge part of the market (Medicare is roughly 30 percent of the market, and 30 percent of Medicare is in Medicare Advantage), but for drugs where it is important, prices fall over time in
all markets as other payers switch to ASP. This may help explain the lag in shortages after the law change.

2.5.1 Results for Shortages Conditional on Medicare Market Share

Table 2.2 presents the difference-in-differences relationship between shortages and Medicare market share. The estimate is 6.73 in the OLS (Table 2.2, Column 1), and 7.83 in the IV (Table 2.2, Column 2). As expected, the IV estimate is larger due to the correction of measurement error. The results imply that an increase in the MMS from the mean of 0.09 to 0.10 leads to a 0.71 and 0.82 day increase in the number of shortage days, for the OLS and IV estimates, respectively. Columns (1) and (2) omit age in the instrument set. Using year indicators, we have differenced out the time-trend in the results. Column (3) is a robustness check where we include age and age-squared in the instrument set. Columns (4) and (5) use the MarketScan MMS as the endogenous variable, where column (4) is the OLS estimate and column (5) is the IV which uses the IMS MMS as an instrument. Using the MarketScan MMS gives larger point estimates and implied magnitudes. The IV coefficient of 12.88 implies a change from 0.14 to 0.15 in MMS, leads to a 0.89 day increase in the number of shortages. These estimates show that for a number of specifications, drugs with higher Medicare market share were more likely to be in shortage after the MMA went into effect.29

Table 2.3 gives the initial first stage result, where we regress the log of IMS MMS on the instrument set. Table 2.4 gives the first-stage results in the main regression, where the interaction of predicted MMS with the ASP reimbursement dummy is as an instrument for log of IMS MMS interacted with the ASP reimbursement. In each table, column (1) uses the log of IMS MMS as the endogenous variable and

29 In the first two columns of Table A.2 in the Appendix, we report the results using levels instead of logs. The results are similar.
the log of MarketScan MMS as the instrument, (2) includes age and age-squared in the instrument set, and (3) uses the log of MarketScan MMS as the endogenous variable and the log of IMS MMS as the instrument. For the initial first stage, the F-statistic is well above 10, the usual rule of thumb for instrument relevance in each specification.

In the main specification we assume the patent expires 15 years after the first approval. In Table 2.5, we consider alternative specifications. We define off patent as 18 years since first approval in columns (1) and (2), 12 years in columns (3) and (4), and 8 years in columns (5) and (6). Furthermore, unlike our standard definition of off patent, we do not redefine drugs with multiple manufacturers as off patent as well. The odd columns are OLS results while the even numbered columns are IV results. Changing the patent variable leads to differences in the OLS estimate of the treatment effect from 6.29 to 6.77, and the IV estimate of the treatment effect from 7.11 to 7.88. In summary, we find that varying the patent status variable within reason matters little for our coefficients of interest.

If drugs with higher Medicare market shares were experiencing an increase in shortages prior to the policy change, then the coefficient estimate would be misinterpreted as evidence that the policy change led to an increase in shortages. Table 2.6 presents a falsification test by choosing a “pseudo”-regulation period and seeing whether our specification picks up the results. We use 2003 as the regulation year, rather than 2005, and drop all data starting in 2005. Thus, 2001 and 2002 are the fake pre-period and 2003 and 2004 are the post-period. The OLS coefficient from the MMS interacted with a post regulation indicator falls from 6.73 to -0.61 in this falsification test and loses statistical significance. Likewise, the IV coefficient falls from 7.83 to 1.39 and loses statistical significance as well. These results suggest in

30 We use 8 years as the minimum because drugs submitting clinical evidence receive 5 years of data exclusivity plus an additional 2.5-year stay for the courts to sort out a patent challenge.
the pre-period, the assumption of parallel trends holds, a check that is often used in
the literature to justify the parallel trends-assumption during the sample period.

To better understand how the effects of MMS change over time, Table 2.7 presents
the OLS and IV estimates of our specification using yearly treatment indicators
interacted with the MMS. The OLS coefficient for 2007 is 6.63, which suggests a 0.70
day difference in shortages for drugs with 0.09 MMS versus those with 0.1 MMS,
compared to the omitted year of 2001. The coefficients prior to 2005 are insignificant.
In 2004 the magnitudes of both the OLS and the IV start growing and the coefficient
estimates start becoming statistically different than zero. This corresponds to the
switch from 95 percent AWP to 85 percent AWP in 2004 to ASP + 6 percent in 2005.
Afterwards, the coefficients stabilize at higher levels, roughly 7 for the OLS and 10
for the IVs until the end of the sample. This highlights that the results are not due
to just one year, as well as some lag time for the MMA to matter for drug shortages.

Finally, our theoretical model suggests that the reimbursement change should
impact off-patent drugs more than on-patent drugs, because off-patent drugs have
small margins. Hence, we interact the off-patent indicator with a post-regulation
indicator and the MMS measure (Table 2.8). Because the off-patent indicator is
interacted with several other variables, we sum the coefficients. The coefficients
on the off-patent interaction terms sum to as little as 86 (Table 2.8, Column 4)
and as much as 95 (column 5). Hence, off-patent drugs are associated with about
3 additional months of shortages. Furthermore, the effect of off-patent status on
shortages is greatest after 2005 as indicated by the positive coefficients on the inter-
action between off patent and the post period. These results corroborate our theory
that off-patent drugs, which tend to have lower reimbursement, should be most in
shortages and most affected by the reimbursement change.
2.5.2 Results for Shortages Conditional on Reimbursements to Health Providers

Table 2.9 shows the results for shortages conditional on reimbursements to providers. Columns (1) and (2) show the log and lagged-log reimbursement coefficients. The coefficient on lagged reimbursement suggests that a 1 percent (roughly 81 cents per unit) decrease in reimbursement leads to 0.30 more shortage days. Columns (3) and (4) show the same results keeping only drugs which were off patent throughout the sample while columns (5) and (6) show the on-patent results. Consistent with our theory, off-patent drugs were most affected by prices. The statistically significant coefficient on a one-year lag of log price for an off-patent drug of -40.27 suggests that a 1 percent decrease in price (roughly 32 cents per unit) leads to 0.40 more shortage days. The on-patent drugs’ results were negative and not statistically significantly different from zero, which is consistent with our theory that these drugs had higher margins. The change in estimates moving from current price to the 1 year lagged price (-26.88 to -30.29) are consistent with correcting the downward bias caused by the reverse causality problem described above.

2.5.3 Results for Shortages Conditional on Manufacturers’ Prices

Table 2.10 shows the results for shortages conditional on manufacturers’ prices. Columns (1) and (2) show the log and lagged-log price coefficients. The coefficient on lagged price suggests that a 1 percent (roughly 2.87 dollars per unit) decrease in price leads to 0.36 more shortage days. Columns (3) and (4) show the same results keeping only drugs which were off patent throughout the sample while columns (5) and (6) show the on-patent results. Again, off-patent drugs were most affected by prices. The statistically significant coefficient on 1 year lag of log price of -29.91 suggests that a 1 percent decrease in price (roughly 93 cents per unit) leads to 0.30 more shortage days. The on-patent drugs’ results, as in the case with reimbursements to health providers, were not statistically significant. In summary it appears that lower
prices to manufacturers are correlated with more shortages.

2.5.4 Results for Correlation in Payments to Providers and Manufacturers

Table 2.11 reports the correlation in payments. On average, a ten percent decline in Medicare reimbursement would reduce the manufacturer’s price by 3.4 percent. Drugs which have higher Medicare market share should be more affected by Medicare price changes. To account for this, we interact the share of revenue coming from Medicare. The interaction term, while statistically insignificant, is important in magnitude. Added to β_1, the coefficient implies that a 10 percent decline in Medicare reimbursement could reduce the price a manufacturer gets by close to 4.6 percent near the maximum on MMS. This is suggestive of the magnitude of pass through in reimbursement reductions from the law to manufacturers.

2.6 Discussion

We analyzed the effect of a reimbursement change on drug shortages using several approaches. Our main approach was a difference-in-differences (pre/post and Medicare market share) with drug and year fixed effects. We found that the reimbursement change led to about 2 additional weeks (13 days) of shortages for generic injectables (Column 5 of Table 2.2). We also used a triple difference without fixed effects and again found that shortages of generic injectables increased by about 2 weeks (13 days) (Column 5 of Table 2.8). Finally, we used reimbursement on the right side of the regression equation to examine directly how reimbursement affected shortages. We found that a 50 percent drop in reimbursement (Office of Inspector General, 2005) led to about 2 additional weeks (16 days) of shortages for generic injectables (Table 2.9).

We provide evidence that higher reimbursement could reduce drug shortages. A 10 percent increase in Medicare reimbursement for an off patent drug is associated
with 4 fewer days of shortage (Table 2.9). A 10 percent increase in price for all off-patent drugs is about $3.24 per service (Table 2.1). With roughly 50 million services per year (699 million services across 12 years), and at $3.24 per service, that equals $162 million dollars to avert 4 days of shortages for the average injectable or infused drug. Alternatively, the payment increases could target lower-priced drugs, as would be sensible according to our model.\footnote{In columns (3) and (4) in Table A.2 in the Appendix, we show that the main regression results hold within the sample of lower-price generic drugs as defined by prices below the median.} A payment increase of 10 percent for off-patent drugs under the 90th percentile of reimbursement levels would amount to $0.71 per service. For off-patent drugs below the 50th percentile, the increase would be $0.12 per service. Focusing on these least cost drugs, for example by targeting drugs in the lower half of the reimbursement level distribution, would allow for a reduction in total shortages of nearly 2 weeks (12.5 days) at a cost of about $50 million dollars.\footnote{The total cost to society depends on how private payment reacts as well. If private payment follows Medicare reimbursement, then it would be more expensive. In fact, not all private insurers changed and even those that changed did not move all the way down to ASP plus 6 percent, so the cost would be less than $750 million.}

Other factors may be associated with drug shortages. First, declining drug prices resulted not only from Medicare changes, but also from the expansion of 340B pricing (as discussed in section 2.1.2). However, the scale of the 340B program is much smaller than the scale of Medicare, with the 340B program accounting for only about 2 percent of U.S. drug sales (U.S. Department of Health and Human Services, 2013, 311). Second, industry consolidation could cause shortages. However, consolidation among manufacturers has ambiguous effects. Consolidation could make shortages less likely as consolidation increases market power and margins. Alternatively, depending on the covariance of shocks to manufacturing lines of different firms, consolidation could lead to increased shortages. Third, shortages could be caused by grey-market distributors and stockpiling by hospitals, but these practices are symptoms of shortages, rather than causes. Finally, increased FDA regulatory
scrutiny appears to be associated with drug shortages (Stomberg, 2015). However, some of the increased scrutiny could be a reaction to less investment in reliability by the manufacturers. The aforementioned factors are complementary but not competing hypotheses. For FDA regulatory scrutiny to be a competing hypothesis, increased FDA scrutiny would have to take place after the policy change and fall disproportionately on generic drugs which served more Medicare patients.

The policy change was implemented in 2005, but shortages did not become large until 2009. However, the empirical analysis shows an increase in shortages for drugs with higher MMS starting in 2006. Furthermore, private insurers are known to mimic Medicare with a lag (as described in section 2.1.2). Finally, some manufacturers probably continued to produce these low-margin drugs until other opportunities arose, such as following a large wave of patent expirations in 2007.

The generic sterile injectable market shares several features with electricity generation. First, timing is critical. In the generic market, delays can be costly to patient health, and in electricity, supply and demand must be in equilibrium at each instant to avoid power system failures. Second, storage is costly. Sterile injectables are sensitive to light and temperature. Likewise, storing electricity by battery or with hydro storage is currently considered prohibitively costly in most cases. Third, there is little product differentiation, so price competition can be fierce. The solution in electricity generation has been a mixture of rapid price adjustment and government regulation (Cramton and Stoft, 2005).

Another approach to reducing shortages would be to write contracts with “failure to supply” clauses. If contracts impose harsh penalties on manufacturers for failure to supply, then shortages should fall and average prices should rise. However, contracts might be difficult to enforce due to information asymmetries. Furthermore, contracts usually void the penalty in the case of nationwide shortages (U.S. Department of Health and Human Services, 2011). Another concern is that contracts might
encourage the buyer to create a shortage by hoarding, thus receiving a penalty payment from the supplier. Alternatively, competing suppliers might hoard to create a shortage and then supply the product when prices rise. Given that the shortage problem is relatively recent, perhaps buyers will learn to write new contracts that reduce the shortage problem.

Finally, there might be a role for regulation. For example, the Food and Drug Administration Safety and Innovation Act (FDASIA) of 2012 requires that manufacturers notify FDA of potential discontinuances.

2.7 Conclusion

Shortages of drugs, especially generic sterile injectable drugs, increased dramatically beginning in the mid-2000s. The increase in shortages followed a change in drug reimbursement. We show that a reduction in reimbursement to health providers was passed to manufacturers and played a role in the large increase in shortages of generic sterile injectable drugs. Drugs used to treat diseases with high Medicare share were most affected by the reimbursement change. The results are consistent with a model in which declining reimbursement decreased the returns to investing in manufacturing capacity and reliability which led to an increase in drug shortages.

To reduce shortages, Medicare could increase reimbursement. Both the theoretical model and the empirical results suggest that firms with market power (and thus higher prices) tend to invest more in capacity and have fewer shortages. Of course, increasing prices through higher reimbursement and/or market power is costly. The optimal number of shortages is not necessarily zero if it requires extremely high prices. However, reimbursement increases could focus on lower-priced drugs. We show that for the cheapest generic drugs, a payment increase of $0.12 per service would cost about $50 million and reduce shortages by about 2 weeks.
Table 2.1: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>source</th>
<th>count</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortage Days</td>
<td>Univ. Utah</td>
<td>3094</td>
<td>59.28</td>
<td>120.23</td>
<td>0.00</td>
<td>365.00</td>
</tr>
<tr>
<td>Number of Manufacturers</td>
<td>Orange Book</td>
<td>2679</td>
<td>3.04</td>
<td>2.94</td>
<td>0.00</td>
<td>25.00</td>
</tr>
<tr>
<td>MMS</td>
<td>IMS</td>
<td>3094</td>
<td>0.10</td>
<td>0.17</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>MarketScan</td>
<td>3094</td>
<td>0.15</td>
<td>0.17</td>
<td>0.00</td>
<td>0.93</td>
</tr>
<tr>
<td>Medicare Reimbursement ($)</td>
<td>Part B</td>
<td>3094</td>
<td>81.03</td>
<td>261.96</td>
<td>0.00</td>
<td>3645.59</td>
</tr>
<tr>
<td>Mean Age (years)</td>
<td>MarketScan</td>
<td>3094</td>
<td>45.34</td>
<td>7.42</td>
<td>12.83</td>
<td>57.92</td>
</tr>
<tr>
<td></td>
<td>Orange Book</td>
<td>3094</td>
<td>0.66</td>
<td>0.47</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>IMS</td>
<td>2030</td>
<td>286.90</td>
<td>672.92</td>
<td>0.01</td>
<td>12533.00</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>3094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>source</th>
<th>count</th>
<th>Off Patent mean</th>
<th>sd</th>
<th>On Patent count</th>
<th>mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortage Days</td>
<td>Univ. Utah</td>
<td>2050</td>
<td>82.40</td>
<td>135.77</td>
<td>1044</td>
<td>13.87</td>
<td>59.48</td>
</tr>
<tr>
<td>Number of Manufacturers</td>
<td>Orange Book</td>
<td>2050</td>
<td>3.68</td>
<td>3.09</td>
<td>629</td>
<td>0.95</td>
<td>0.22</td>
</tr>
<tr>
<td>MMS</td>
<td>IMS</td>
<td>2050</td>
<td>0.09</td>
<td>0.16</td>
<td>1044</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>MarketScan</td>
<td>2050</td>
<td>0.13</td>
<td>0.15</td>
<td>1044</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>Medicare Reimbursement ($)</td>
<td>Part B</td>
<td>2050</td>
<td>32.40</td>
<td>118.54</td>
<td>1044</td>
<td>176.52</td>
<td>402.64</td>
</tr>
<tr>
<td>Mean Age (years)</td>
<td>MarketScan</td>
<td>2050</td>
<td>44.42</td>
<td>6.83</td>
<td>1044</td>
<td>47.14</td>
<td>8.17</td>
</tr>
<tr>
<td></td>
<td>Orange Book</td>
<td>2050</td>
<td>1.00</td>
<td>0.00</td>
<td>1044</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>IMS</td>
<td>1315</td>
<td>93.47</td>
<td>383.64</td>
<td>715</td>
<td>642.66</td>
<td>905.71</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>2050</td>
<td></td>
<td></td>
<td>1044</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descriptive statistics for the 308 drugs in the sample from 2001 to 2012. MMS is Medicare Market Share.
Table 2.2: OLS and IV Estimates of the Effect of MMS on Shortage Days

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(13.54)</td>
<td>(13.51)</td>
<td>(13.52)</td>
<td>(13.57)</td>
<td>(13.46)</td>
</tr>
<tr>
<td>Year ≥ 2005 × Log MMS</td>
<td>6.732***</td>
<td>7.828***</td>
<td>7.852***</td>
<td>10.20***</td>
<td>12.88***</td>
</tr>
<tr>
<td></td>
<td>(2.192)</td>
<td>(2.925)</td>
<td>(2.932)</td>
<td>(3.648)</td>
<td>(4.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>17.70*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.286)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>R^2</td>
<td>0.172</td>
<td>0.172</td>
<td>0.172</td>
<td>0.172</td>
<td>0.171</td>
</tr>
<tr>
<td>Drug Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IV Regression</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Off patent is 15 years since earliest Orange Book approval. Columns (1) and (2) are the OLS and IV estimates using the IMS MMS as the treatment variable, respectively. Column (3) includes age in the instrument set. Column (4) and (5) are the OLS and IV estimates using the MarketScan MMS as the treatment variable. Each regression contains molecule fixed effects and indicator variables for each year from 2002 to 2012.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 2.3: First Stage - MarketScan MMS on IMS MMS

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log MMS</td>
<td>1.223***</td>
<td>1.215***</td>
<td>0.561***</td>
</tr>
<tr>
<td></td>
<td>(0.0473)</td>
<td>(0.0518)</td>
<td>(0.0217)</td>
</tr>
<tr>
<td>Mean Age</td>
<td>-0.198**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0896)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Age Squared</td>
<td>0.00244**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00108)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.855***</td>
<td>2.946</td>
<td>-0.468***</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
<td>(1.873)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>Observations</td>
<td>308</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>R^2</td>
<td>0.686</td>
<td>0.691</td>
<td>0.686</td>
</tr>
<tr>
<td>F-stat</td>
<td>668.0</td>
<td>226.6</td>
<td>668.0</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Standard errors, in parentheses, are clustered at the drug level. First step in IVs, OLS with log of MarketScan MMS as the independent variable and log of IMS MMS as the dependent variable. Column (1) is the single instrument case. Column (2) adds age instruments. Column (3) uses log of MarketScan MMS as the dependent variable and log of IMS MMS as the independent variable.

Table 2.4: First Stage - Predicted MMS × Year ≥ 2005

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Patent</td>
<td>-0.168</td>
<td>-0.180</td>
<td>0.184**</td>
</tr>
<tr>
<td></td>
<td>(0.167)</td>
<td>(0.160)</td>
<td>(0.0791)</td>
</tr>
<tr>
<td>Predicted Log MMS</td>
<td>1.065***</td>
<td>1.063***</td>
<td>0.932***</td>
</tr>
<tr>
<td></td>
<td>(0.0504)</td>
<td>(0.0507)</td>
<td>(0.0578)</td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>R^2</td>
<td>0.905</td>
<td>0.907</td>
<td>0.911</td>
</tr>
<tr>
<td>F-stat</td>
<td>177.0</td>
<td>176.0</td>
<td>166.4</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Standard errors, in parentheses, are clustered at the drug level. This is the first-stage in 2SLS where the instrument is predicted MMS from Table 2.3 interacted with ASP Reimbursement. The first column in the main specification. The second is using age as an additional instrument. The third uses the MarketScan MMS instead of the IMS MMS. Each regression also contains indicator variables for each year from 2002 to 2012, which are omitted from the table.
Table 2.5: Robustness Check: Different Patent Definitions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Patent</td>
<td>69.84***</td>
<td>69.55***</td>
<td>-10.51</td>
<td>-10.78</td>
<td>-19.92*</td>
<td>-19.83*</td>
</tr>
<tr>
<td></td>
<td>(18.44)</td>
<td>(18.35)</td>
<td>(12.82)</td>
<td>(12.80)</td>
<td>(11.10)</td>
<td>(11.15)</td>
</tr>
<tr>
<td>Year ≥ 2005 × Log MMS</td>
<td>6.290***</td>
<td>7.108**</td>
<td>6.765***</td>
<td>7.877***</td>
<td>6.671***</td>
<td>7.703***</td>
</tr>
<tr>
<td></td>
<td>(2.147)</td>
<td>(2.849)</td>
<td>(2.197)</td>
<td>(2.938)</td>
<td>(2.202)</td>
<td>(2.948)</td>
</tr>
<tr>
<td>Constant</td>
<td>-16.97*</td>
<td>20.48**</td>
<td>27.68***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.862)</td>
<td>(8.274)</td>
<td>(8.715)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>R^2</td>
<td>0.184</td>
<td>0.184</td>
<td>0.172</td>
<td>0.172</td>
<td>0.173</td>
<td>0.173</td>
</tr>
<tr>
<td>Drug Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IV Regression</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Odd-numbered columns are OLS and even-numbered columns are IV. We define off patent as years since earliest Orange Book approval. In the main specification, off patent means 15 years since approval. In Columns (1) and (2), off patent means 18 years since approval. In Columns (3) and (4), off patent means 12 years since approval. In Columns (5) and (6), off patent means 8 years since approval.
Table 2.6: Falsification Test Using 2003 as Regulation Year

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Patent</td>
<td>29.83</td>
<td>27.47</td>
</tr>
<tr>
<td></td>
<td>(26.14)</td>
<td>(26.52)</td>
</tr>
<tr>
<td>Year ≥ 2003 × Log MMS</td>
<td>-0.608</td>
<td>1.390</td>
</tr>
<tr>
<td></td>
<td>(2.440)</td>
<td>(2.697)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(18.54)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>896</td>
<td>879</td>
</tr>
<tr>
<td># Drugs</td>
<td>246</td>
<td>229</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0633</td>
<td>0.0617</td>
</tr>
<tr>
<td>Drug Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IV Regression</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, ***p < 0.01

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. This regression uses 2003, rather than 2005, as a false policy year. 2003 and 2004 are considered treatment years, data from 2005 and onwards are dropped. Off patent is 15 years since earliest Orange Book approval. Columns (1) and (2) are the OLS and IV estimates using the IMS MMS as the treatment variable, respectively. Each regression contains molecule fixed effects and indicator variables for each year from 2002 to 2004.
Table 2.7: OLS and IV Year By Year Coefficient Estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Patent</td>
<td>-5.635</td>
<td>-7.220</td>
</tr>
<tr>
<td></td>
<td>(13.64)</td>
<td>(13.72)</td>
</tr>
<tr>
<td>Year=2002 × Log MMS</td>
<td>-2.036</td>
<td>-1.142</td>
</tr>
<tr>
<td></td>
<td>(2.058)</td>
<td>(2.502)</td>
</tr>
<tr>
<td>Year=2003 × Log MMS</td>
<td>-1.789</td>
<td>-0.452</td>
</tr>
<tr>
<td></td>
<td>(3.130)</td>
<td>(3.705)</td>
</tr>
<tr>
<td>Year=2004 × Log MMS</td>
<td>0.597</td>
<td>5.381</td>
</tr>
<tr>
<td></td>
<td>(2.915)</td>
<td>(3.343)</td>
</tr>
<tr>
<td>Year=2005 × Log MMS</td>
<td>5.006*</td>
<td>8.252**</td>
</tr>
<tr>
<td></td>
<td>(2.981)</td>
<td>(3.775)</td>
</tr>
<tr>
<td>Year=2006 × Log MMS</td>
<td>4.845*</td>
<td>7.353*</td>
</tr>
<tr>
<td></td>
<td>(2.892)</td>
<td>(3.913)</td>
</tr>
<tr>
<td>Year=2007 × Log MMS</td>
<td>6.633**</td>
<td>10.09**</td>
</tr>
<tr>
<td></td>
<td>(2.778)</td>
<td>(4.025)</td>
</tr>
<tr>
<td>Year=2008 × Log MMS</td>
<td>7.967****</td>
<td>12.07***</td>
</tr>
<tr>
<td></td>
<td>(2.993)</td>
<td>(3.844)</td>
</tr>
<tr>
<td>Year=2009 × Log MMS</td>
<td>7.856**</td>
<td>13.39***</td>
</tr>
<tr>
<td></td>
<td>(3.384)</td>
<td>(3.888)</td>
</tr>
<tr>
<td>Year=2010 × Log MMS</td>
<td>5.886*</td>
<td>10.04***</td>
</tr>
<tr>
<td></td>
<td>(3.350)</td>
<td>(3.632)</td>
</tr>
<tr>
<td>Year=2011 × Log MMS</td>
<td>6.457</td>
<td>8.620*</td>
</tr>
<tr>
<td></td>
<td>(3.940)</td>
<td>(4.650)</td>
</tr>
<tr>
<td>Year=2012 × Log MMS</td>
<td>2.908</td>
<td>3.181</td>
</tr>
<tr>
<td></td>
<td>(3.976)</td>
<td>(4.755)</td>
</tr>
<tr>
<td>Constant</td>
<td>17.89*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.478)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>3094</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>R^2</td>
<td>0.174</td>
<td>0.172</td>
</tr>
<tr>
<td>F-stat</td>
<td>10.88</td>
<td>11.10</td>
</tr>
<tr>
<td>Drug Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IV Regression</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Columns (1) and (2) are the OLS and IV estimates, respectively. Each regression contains molecule fixed effects and indicator variables for each year from 2002 to 2012.
Table 2.8: The Effect of the Reimbursement Change and Patent Status on Shortage Days

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Patent</td>
<td>22.46</td>
<td>23.63</td>
<td>24.17</td>
<td>29.11*</td>
<td>16.27</td>
</tr>
<tr>
<td></td>
<td>(16.40)</td>
<td>(20.51)</td>
<td>(20.57)</td>
<td>(17.49)</td>
<td>(19.37)</td>
</tr>
<tr>
<td></td>
<td>(1.873)</td>
<td>(2.064)</td>
<td>(2.077)</td>
<td>(3.053)</td>
<td>(3.520)</td>
</tr>
<tr>
<td>Year ≥ 2005</td>
<td>-1.218</td>
<td>2.079</td>
<td>0.746</td>
<td>1.349</td>
<td>0.195</td>
</tr>
<tr>
<td></td>
<td>(9.679)</td>
<td>(10.32)</td>
<td>(10.38)</td>
<td>(9.840)</td>
<td>(10.82)</td>
</tr>
<tr>
<td>Year ≥ 2005 × Off Patent</td>
<td>65.31***</td>
<td>61.26***</td>
<td>62.65***</td>
<td>54.69***</td>
<td>74.20***</td>
</tr>
<tr>
<td></td>
<td>(17.97)</td>
<td>(22.96)</td>
<td>(23.03)</td>
<td>(19.72)</td>
<td>(21.22)</td>
</tr>
<tr>
<td>Year ≥ 2005 × Log MMS</td>
<td>1.865</td>
<td>2.649</td>
<td>2.317</td>
<td>3.932</td>
<td>3.493</td>
</tr>
<tr>
<td></td>
<td>(1.901)</td>
<td>(1.938)</td>
<td>(1.974)</td>
<td>(2.862)</td>
<td>(3.542)</td>
</tr>
<tr>
<td></td>
<td>(3.693)</td>
<td>(4.738)</td>
<td>(4.767)</td>
<td>(5.859)</td>
<td>(6.836)</td>
</tr>
<tr>
<td>Constant</td>
<td>11.77</td>
<td>7.538</td>
<td>6.945</td>
<td>8.580</td>
<td>10.20</td>
</tr>
<tr>
<td></td>
<td>(9.246)</td>
<td>(9.921)</td>
<td>(9.965)</td>
<td>(9.488)</td>
<td>(10.34)</td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
<td>3094</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0849</td>
<td>0.0846</td>
<td>0.0845</td>
<td>0.0834</td>
<td>0.0822</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Off patent is 15 years since earliest Orange Book approval. Columns (1) and (2) are the OLS and IV estimates using the IMS MMS as the treatment variable, respectively. Column (3) includes age in the instrument set. Column (4) and (5) are the OLS and IV estimates using the MarketScan MMS as the treatment variable. This table does not contain molecule fixed effects and indicator variables for each year.
Table 2.9: OLS and Lagged OLS Estimates of Medicare Reimbursement Effect on Shortages

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4.111)</td>
<td>(5.176)</td>
<td>(5.752)</td>
<td>(6.942)</td>
<td>(8.312)</td>
<td>(8.236)</td>
</tr>
<tr>
<td>Off Patent</td>
<td>-13.88</td>
<td>-17.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.32)</td>
<td>(14.06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>87.56***</td>
<td>225.6***</td>
<td>90.07***</td>
<td>266.9***</td>
<td>39.27</td>
<td>54.24**</td>
</tr>
<tr>
<td></td>
<td>(12.74)</td>
<td>(16.61)</td>
<td>(12.21)</td>
<td>(13.71)</td>
<td>(28.71)</td>
<td>(27.31)</td>
</tr>
<tr>
<td>Observations</td>
<td>3093</td>
<td>2785</td>
<td>1295</td>
<td>1184</td>
<td>793</td>
<td>691</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
<td>111</td>
<td>111</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>R²</td>
<td>0.194</td>
<td>0.197</td>
<td>0.289</td>
<td>0.300</td>
<td>0.0474</td>
<td>0.0463</td>
</tr>
<tr>
<td>Lagged Reimbursement</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, ***p < 0.01

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Columns (1) and (2) are the OLS and 1-year lagged OLS estimates for all drugs. Off patent defined as 15 years since earliest Orange Book approval. Columns (3) and (4) are the OLS and 1-year lagged estimates for drugs off patent throughout the sample period. Columns (5) and (6) are the OLS and 1-year lagged estimates for drugs on patent throughout the sample period. All regressions include year and ingredient fixed effects.

Table 2.10: OLS and Lagged OLS Estimates of Manufacturer Price Effect on Shortages

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log IMS Price</td>
<td>-20.04**</td>
<td>-35.84***</td>
<td>2.606</td>
<td>-29.91**</td>
<td>-1.303</td>
<td>-6.324</td>
</tr>
<tr>
<td></td>
<td>(14.63)</td>
<td>(15.48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>158.1***</td>
<td>183.4***</td>
<td>73.37*</td>
<td>110.1***</td>
<td>36.56</td>
<td>57.17</td>
</tr>
<tr>
<td></td>
<td>(34.60)</td>
<td>(27.90)</td>
<td>(38.42)</td>
<td>(32.01)</td>
<td>(69.15)</td>
<td>(82.36)</td>
</tr>
<tr>
<td>Observations</td>
<td>1948</td>
<td>1927</td>
<td>792</td>
<td>790</td>
<td>531</td>
<td>523</td>
</tr>
<tr>
<td># Drugs</td>
<td>293</td>
<td>291</td>
<td>104</td>
<td>104</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>R²</td>
<td>0.0677</td>
<td>0.189</td>
<td>0.101</td>
<td>0.267</td>
<td>0.0248</td>
<td>0.0231</td>
</tr>
<tr>
<td>Lagged Price</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, ***p < 0.01

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Manufacturer prices are from IMS MIDAS data. Columns (1) and (2) are the OLS and 1-year lagged OLS estimates for all drugs. Off patent defined as 15 years since earliest Orange Book approval. Columns (3) and (4) are the OLS and 1-year lagged estimates for drugs off patent throughout the sample period. Columns (5) and (6) are the OLS and 1-year lagged estimates for drugs on patent throughout the sample period. All regressions include year and ingredient fixed effects.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Medicare Reimbursement</td>
<td>0.352***</td>
<td>0.339***</td>
<td>0.237***</td>
<td>0.206***</td>
<td>0.0582</td>
<td>0.0619</td>
</tr>
<tr>
<td></td>
<td>(0.0524)</td>
<td>(0.0593)</td>
<td>(0.0508)</td>
<td>(0.0550)</td>
<td>(0.0371)</td>
<td>(0.0395)</td>
</tr>
<tr>
<td>Log Medicare Reimbursement × MMS</td>
<td>0.129</td>
<td>0.195</td>
<td>-0.125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.187)</td>
<td>(0.182)</td>
<td>(0.178)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2.827***</td>
<td>2.809***</td>
<td>1.834***</td>
<td>1.828***</td>
<td>5.461***</td>
<td>5.518***</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.124)</td>
<td>(0.0824)</td>
<td>(0.0797)</td>
<td>(0.131)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>Observations</td>
<td>2029</td>
<td>2029</td>
<td>848</td>
<td>848</td>
<td>533</td>
<td>533</td>
</tr>
<tr>
<td># Drugs</td>
<td>304</td>
<td>304</td>
<td>111</td>
<td>111</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>R^2</td>
<td>0.284</td>
<td>0.285</td>
<td>0.164</td>
<td>0.172</td>
<td>0.0600</td>
<td>0.0615</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, *** p < 0.01

Standard errors, in parentheses, are clustered at the drug level. This table regresses Medicare prices on IMS prices. Columns (1), (3) and (5) regress log Medicare price on IMS price, with year and drug fixed effects. Columns (2), (4) and (6) add an interaction between Medicare market share with the Medicare price. Columns (1) and (2) include all drugs. Columns (3) and (4) include drugs which are off patent throughout the sample. Columns (5) and (6) include drugs which are on patent throughout the sample.
Spending on health care in the United States totals three trillion dollars per year, more than 350 billion dollars of which is spent by private insurance companies at hospitals.1 Because of this high spending, policy makers and insurance companies have a considerable interest in controlling health care costs. One aspect of cost control used by insurance companies is to form networks. An insurance network is a list of providers which the insurance company incentivizes its patients to visit. Patients who visit a provider outside of their insurance network often face reduced or no coverage for those services.2

This paper formalizes and explores the implications of a common story among health care insiders: that the threat of exclusion from networks improves insurers’ bargaining leverage in their negotiations with providers. Howard (2014) provides one example of this intuition: “Networks give insurers leverage in their negotiations

1 Source: National Health Expenditure Accounts, The Centers for Medicare and Medicaid Services.

2 For example, out of network visits may have a higher copay, higher coinsurance or the payments do not factor into the deductible.
with providers over reimbursement rates. Insurers rely on the threat of exclusion rather than the actual narrowness of their networks – providers that do not face the threat of exclusion have little reason to temper their demands for higher prices.” In my data, plans that exclude providers, often referred to as “narrow networks,” pay 23 percent less at the same hospital for the same services. I present this result as suggestive evidence that the bargaining leverage theory may account for substantial savings, while other mechanisms that explain why narrow networks reduce insurers’ costs cannot easily explain this comparative static.³

Despite their cost savings, narrow-network health insurance plans are controversial.⁴ The concern among regulators is that patients lack information about which conditions they will get in the future; without knowing what conditions they will have in the coming year, they may not check whether high quality providers are available in each specialty. This concern has grown due to the prevalence and popularity of narrow-network health plans in the insurance marketplace (referred to as “exchanges”) set up by the Affordable Care Act (ACA). In a national study, Bauman et al. (2014) find that 45 percent of plans on the ACA health insurance exchanges have narrow networks, and in my sample 71 percent of patients are enrolled in a plan with a narrow network.⁵ These plans are popular because, while they provide fewer options for care, they also charge lower premiums to consumers. For example, Bauman et al. (2014) find that narrow-network plans charge premiums 13-17 percent lower than broad-network plans.⁶

³ I discuss other mechanisms in section 3.1.4.
⁵ Bauman et al. (2014) define a narrow-network health plan as having less than 70 percent of that market’s hospitals in network. I follow their definition for this analysis. They find that roughly 90 percent of patients have access to narrow-network plans, but 90 percent also have access to broad-network health plans.
⁶ Their results control for metal level (a measure of the actuarial value of the plan), insurance company, plan type (e.g., HMO or PPO) and location.
There is considerable policy interest around regulating these plans. The ACA included the first federal “network adequacy” law, which sets standards that networks must meet, though it left defining “adequate” to the states. Many states have since updated or are considering updating their regulations (Giovannelli et al., 2015).\(^7\)

However, careful regulation requires a trade off between the value of extra access to providers and higher premiums due to reduced insurer bargaining leverage. One of the main contributions of this paper is to provide an empirical framework to better understand why, and how much, restricting insurers’ ability to exclude would raise costs. I argue that a structural model is needed to evaluate how much these laws would raise costs, since a reduced-form analysis may suffer from a bias due to the endogeneity of these networks.

To formalize how an insurer can use the threat of exclusion to gain leverage, I propose a novel model of price formation in a bilateral oligopoly setting where the networks are endogenous. My model nests the Nash-in-Nash bargaining model, which has become the workhorse model of vertical competition; when exclusion is assumed to be exogenous my model is identical to Ho and Lee (2017).\(^8\) Therefore, my model shares many of the advantages of the Nash-in-Nash model, it is in a bilateral oligopoly setting, allows for heterogeneity in the amount of available surplus and accounts for externalities and interdependencies between hospitals and insurers. However, allowing for the endogeneity of the networks allows me to capture two important institutional features of this market: the insurer uses the threat of exclusion to gain bargaining leverage, and exclusion is an equilibrium outcome of this model.

\(^7\) Another common restriction on exclusion is an “any willing provider” law, which requires insurance companies to cover all medical providers willing to agree to the terms offered by the plan. In 2014, 27 states had passed some form of any willing provider law, though in many states this does not apply to hospitals. Source: http://www.ncsl.org/research/health/any-willing-or-authorized-providers.aspx

\(^8\) Other papers which use the Nash-in-Nash bargaining model include: Crawford and Yurukoglu (2012a), Grennan (2013b), Gowrisankaran et al. (2014), Beckert et al. (2015), Crawford et al. (2016), Soares (2016) and Prager (2016) among others.
The model also allows for richer forms of competition between hospitals than the Nash-in-Nash model. In the spirit of Town and Vistnes (2001), my model allows excluded hospitals, which may be substitutes for those in the observed network, to effect the negotiations of hospitals who will reach an agreement. For example, an insurer’s threat to exclude a particular hospital may be more salient if there is a similar hospital to replace it with. A drawback of the Nash-in-Nash model is that negotiations are not affected by excluded hospitals.

To estimate this model, I use data from the Colorado All-Payer Claims Database (APCD), which is one of the few sources used in this literature that provides information on negotiated prices between all insurers and all hospitals.\(^9\) The setting for my study is the non-group market in the Denver, Colorado rating area.\(^{10}\) The non-group market is where individuals purchase insurance when it is not available through their employer and they are not eligible for government insurance (e.g., Medicare, Medicaid, Tricare, etc.). The ACA exchanges are included in the non-group market. As such, this is among the first papers which studies competition on the ACA exchanges.\(^{11}\)

Games with randomly ordered sequential agreements, which are commonly used in the literature where prices and networks are endogenous, can be difficult to estimate, especially when externalities between players are allowed.\(^{12}\) However, the

\(^9\) Panhans (2016) also uses the Colorado APCD. The other dataset which has been used in this literature and has negotiated prices between all insurers and hospitals in a market is the Massachusetts APCD. The Massachusetts APCD is used by Ericson and Stac (2015), Shepard (2016), Prager (2016), and Ghili (2016). The Denver, Colorado insurance market has many different features than the Massachusetts market. For example, in 2014, Colorado had 10 insurers on its exchange and an additional two off its exchange, but in the non-group market. Ericson and Stac (2015) and Shepard (2016)’s sample has five insurer’s.

\(^{10}\) A rating area is a state-defined collection of counties where an insurance company in the non-group market may not vary premiums, except by age and whether the person purchasing insurance is a tobacco user.

\(^{11}\) Other papers which examine competition on the ACA exchanges include Kowalski (2014), Dafny et al. (2015), Tebaldi (2016), and Panhans (2016).

\(^{12}\) Abreu and Manea (2012), Manea (2015) and Elliott and Nava (2015) are examples of papers in
main insight of the estimation section, and one reason for extending the Nash-in-Nash model, is that the networks form simultaneously, which simplifies estimation considerably. Extending the Nash-in-Nash model also allows me to compare my estimates with the hospital-insurer bargaining literature. This literature uses a rich model of the health insurance market to understand how consumer preferences over premiums, networks, and hospitals affect price formation. The bargaining model is only one stage of that broader model. I use the same model of consumer preferences over hospitals and health plans as Ho and Lee (2017) and Prager (2016) to isolate the contribution of the new bargaining stage from other features of this broader model.

While the role of exclusion is important for policies affecting how insurers form their networks, the Nash-in-Nash bargaining parameters are also policy relevant. If hospitals have a lot of relative bargaining power, then restricting one of the insurer’s tools to gain leverage may have a large effect on prices. On the other hand, if insurers have a lot of relative bargaining power, even without the use of exclusion, then these policies would not impact prices much.

To show that ignoring exclusion in estimation can be problematic, I analyze the effects of a counterfactual law where insurers are not allowed to exclude (i.e., a network adequacy law). The Nash-in-Nash model suggests that under the law prices would fall by 36 percent; plans that had narrow networks prior to the law now would distribute their enrollees across more hospitals, reducing the marginal surplus provided by any given hospital. However, by removing the bargaining leverage that exclusion provides, my model suggests that the law would increase the prices insurers pay by 50 percent, which is consistent with conventional wisdom that restricting narrow networks would increase costs for insurers.

The remainder of this paper is organized as follows. Section 3.1 discusses the related literature and other theories about why narrow-network plans lower costs
for insurers. Sections 3.2 and 3.3 discuss the data I use and reduced-form evidence. Section 3.4 presents a stylized model to demonstrate how exclusion can lead to lower prices for the insurer and why it is an optimal strategy for the insurer. Section 3.5 discusses the computation of surplus and then, given the surplus values, estimation of the bargaining model. Sections 3.6 and 3.7 discuss the results and counterfactual estimates. Section 3.8 discusses limitations, extensions, and next steps. Section 3.9 concludes.

3.1 Literature Review

I highlight the contribution of my paper in three literatures: (1) a reduced-form literature on the savings from managed care, (2) theory on exclusion and bargaining over networks, and (3) the Nash-in-Nash bargaining model. The final subsection discusses other proposed mechanisms for why narrow-network plans may save money for insurers.

3.1.1 Reduced-Form Estimates of Savings from Managed Care

Narrow networks are one strategy that “managed care” plans, such as health maintenance organizations (HMOs), use to reduce costs. Other strategies include incentivizing physicians to limit utilization, requiring a primary care gatekeeper to approve specialist visits, and more aggressive cost sharing.13 Much of the literature quantifying the savings from managed care do not separately account for the role of networks, which is a limitation of my paper as well.14 Most of the papers in the literature find large savings comparing managed care prices relative to fee-for-service. Gruber and Mcknight (2016), Cutler et al. (2000), and Altman et al. (2003) all look at per patient costs or cost per episode of care, and find savings around 30-40 per-

13 Cost sharing refers to using copay or coinsurance to limit patients’ use of services.

14 As discussed in Cutler et al. (2000), these other strategies are primarily used to reduce utilization. However, Prager (2016) highlights how cost sharing may spillover into bargaining.
cent, controlling for patient mix. However, cost per patient may include differences in utilization intensity.15 Wu (2009) and Dor et al. (2004) examine negotiated prices per procedure, which should not be affected by patient mix or utilization intensity, and is consistent with the unit being negotiated over. Wu (2009) and Dor et al. (2004) find effects of 26-50 percent and 20 percent, respectively. The estimates in my reduced-form analysis also use price per procedure and the magnitude of my findings are consistent with this literature. I also attempt to distinguish between lower negotiated prices and narrow-network plans shifting patients to cheaper hospitals.

\textit{3.1.2 Theory on Exclusion and Bargaining Over Networks}

This paper is related to a broad theoretical literature on competition in vertical relationships and exclusive dealing.16 It is most closely related to Gal-Or (1997), who demonstrates in a stylized two-by-two model of hospital-insurer bargaining that exclusion can lead to insurers negotiating lower prices and can be an equilibrium outcome. Lee and Fong (2013) propose a dynamic model of hospital-insurer bargaining, where the networks are determined by a cost of agreement and dynamic considerations. This paper also contributes to the sparse empirical literature on exclusive dealing.17

This paper is also related to a recent literature on bargaining when prices and networks are endogenous. This includes Abreu and Manea (2012), Manea (2015) and Elliott and Nava (2015). Within this literature, my paper is closest to Camera and Selcuk (2010) who show how an endogenous capacity constraint can be used to negotiate lower prices. The models in this literature are all very stylized; my model

15 Patient mix refers to how sick patients are. Utilization refers to how many services a patient receives, conditional on how sick they are.

16 See Rey and Tirole (2007) or Whinston (2008).

17 These include Sass (2005), Lee (2013), Asker (2016) and Soares (2016). See Lafontaine and Slade (2008) for a summary.
differs in that it allows for more heterogeneity and I use simultaneous agreement in order to simplify estimation.

3.1.3 Nash-in-Nash Bargaining Model

The literature on bargaining has a long history starting with the axiomatic approach to bargaining proposed by Nash (1950). Crawford and Yurukoglu (2012a) extends the Nash bargaining solution to a bilateral oligopoly setting by invoking the bargaining protocol of Horn and Wolinsky (1988); each negotiation is modeled as a pairwise Nash bargaining solution, conditional on the outcome of all other negotiations. That is, it is a Nash equilibrium of Nash bargains, hence “Nash-in-Nash”. Collard-Wexler et al. (2016) provides non-cooperative foundations of the Nash-in-Nash model with an alternating offers, many-to-many, bargaining game similar to the pairwise bargaining game in Rubinstein (1982). Collard-Wexler et al. (2016) also provides sufficient conditions for when their non-cooperative model limits to the Nash-in-Nash model, analogous to Binmore et al. (1986) who show that Rubinstein (1982) limits to the pairwise Nash bargaining solution. To be precise, I propose a model which nests Collard-Wexler et al. (2016). When I compare my model to Nash-in-Nash, I am invoking their result that their non-cooperative solution limits to Nash-in-Nash.

The Nash-in-Nash model has been used extensively in the applied literature to model bilateral oligopoly settings because it allows for externalities and interdependencies between players, heterogeneity in surplus, and is relatively easy to estimate. The model has been used in a number of markets with vertical competition including: television (Crawford and Yurukoglu, 2012a), medical devices (Grennan, 2013b), bricks (Beckert et al., 2015), and gas stations (Soares, 2016). However, modeling a market with many firms on either side of the market as the outcome of pairwise Nash bargains ignores a lot of interesting economics (i.e., externalities from excluded players, punishment strategies, signaling, ordering of negotiations, informational asym-
metries, etc.). This makes the model more tractable and in an applied setting data typically do not contain information about other aspects of negotiations. Furthermore, if these strategies or features of the market are present, they will be accounted for in the estimated bargaining parameters. This is consistent with the interpretation of the bargaining parameters. I extend this model by allowing another strategy, the threat of exclusion, which I have data on, to be incorporated into the model.

The Nash-in-Nash model can only explain exclusion if the incremental surplus from any agreement is negative. While they do not use the Nash-in-Nash model, Capps et al. (2003) and Ho (2009) provide intuition for what “exogenous exclusion” means in this setting. A plan may not reach an agreement with a hospital if the additional costs it incurs by including the hospital in the network is larger than the marginal benefit of including that hospital. While a number of other papers have attempted to account for exclusion in the Nash-in-Nash framework, in these papers the exclusion is exogenous and is due to firms’ surplus functions.\(^\text{18}\)

Incorporating the threat of exclusion into the bargaining model is this paper’s contribution to the hospital-insurer bargaining literature. This particular literature began with Town and Vistnes (2001) and Capps et al. (2003) who specify a model of consumer valuation of hospital networks. Gowrisankaran et al. (2014) incorporated the Nash-in-Nash model into this literature. Other papers using the Capps et al. (2003) model of network valuation and the Nash-in-Nash model include Lewis and Pflum (2015), Ho and Lee (2017), and Prager (2016).\(^\text{19}\) While they do not use the Nash-in-Nash model, the following papers are also related. Shepard (2016) provides

\(^{18}\) For example, Crawford and Yurukoglu (2012a) uses this argument in the television market where the threat of exclusion may not be an institutional feature of the market. A special case is Prager (2016) who introduces a correlation between the negotiated price and the probability of agreement (into a tier).

\(^{19}\) None of these papers attempt a counterfactual changing the networks. The point of this paper is to show how the standard model cannot answer this question, rather than arguing these papers are insufficient.
evidence that networks can reduce costs for insurers by excluding hospitals that attract high cost or high risk patients. Ho (2009) proposes a model of hospital networks using inequalities defined by what I refer to as exogenous exclusion. Finally, a current job market paper, Ghili (2016), proposes a bargaining model based on Jackson and Wolinsky (1996) to account for the endogeneity of the networks and the bargaining leverage that this may provide. Ho and Lee (2017), in a currently uncirculated manuscript, also develop a variant on the Nash-in-Nash model to account for the possibility of narrow networks.

3.1.4 Other Mechanisms for Savings from Narrow Networks

Finally, a number of other mechanisms have been proposed for why narrow-network plans have lower costs, including that they: (1) only use lower cost hospitals, (2) concentrate patient volume at fewer hospitals, and (3) avoid high cost patients who value broader networks. (1) This story would not explain variation in prices for the same services at the same hospital as I use in the reduced-form evidence section.20 (2) The standard assumptions made in the Nash-in-Nash hospital-insurer bargaining literature (constant marginal cost and declining marginal value of additional hospitals) implies that narrow networks should pay higher prices, all else constant.21 (3) Would lead to higher per patient costs, but would not explain lower negotiated prices per service. I believe these mechanisms are not mutually exclusive and my empirical model accounts for (1) and (2), while (3) is considered out of scope of this paper.22

20 I do find evidence this mechanism may also be relevant, the coefficient on narrow-network plans is even larger (in absolute value) when not conditioning on which hospital provides the services.

21 Chipty and Snyder (1999) show buyer size can either lead to higher or lower prices depending on the curvature of the profit function. Because the assumptions made in this literature imply a concave (in the size of the network) profit function, an insurer’s bargaining position is worsened by concentrating its patients in fewer hospitals. This story is the reason why prices fall in the counterfactual where insurers are not allowed to exclude, rather than remaining constant.

22 A more complete model of narrow-networks should account for this selection effect, however, I believe it is out of scope for this paper because adverse selection is not a first-order concern for how prices are negotiated. One would account this through the definition of marginal surplus, which is
3.2 Data

The main data for this analysis is from the Colorado APCD. In addition, I supplement this data with information about premiums and networks from the Colorado Department of Insurance and company websites. I also use data from the American Hospital Association survey of hospitals.

The APCD is a collection of all the health insurance claims for (nearly) all insurance companies in Colorado. For enrollees of these plans, the claims reveal all their reimbursed encounters with health care providers. That is, the claims data contain detailed information about all reimbursed hospital visits, physician visits, prescription drug purchases, and other reimbursed medical care.

A claim is submitted by a health care provider in order to get reimbursed by an insurance company. Each claim contains person-level identifiers, information on what services were provided, the associated diagnosis, and, importantly, the negotiated price between the insurance company and the hospital. I use only outpatient hospital visits, where the object of a negotiation is typically the price per Current Procedural Terminology (CPT4) code. There are roughly 15,000 different CPT4 codes that represent very detailed services provided, for example, a preventative doctor’s visit distinguishes between five different age groups and also between whether this was a first visit or not. The claims also contain diagnosis codes, represented by ICD-9 codes, which provide information on the conditions the patients have.

\[23\] While the rest of the literature uses inpatient admissions, the data are too thin to provide precise estimates.

\[24\] There are roughly 14,000 different designations of conditions. In order to have many observations for each condition, I use the Clinical Classification Software (CCS), as defined by the Agency for Health Research and Quality, to reclassify diagnoses into 18 broad conditions represented by the body system they affect. CCS codes are available at: https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp. The CCS also groups conditions into about 270 distinct categories. In future iterations of this paper, I plan to use those definitions and treat the 18 categories as a robustness check.
On each claim I observe many different prices, including the amount the insurance company reimburses the hospital, the copay, coinsurance, the deductible, etc. I use the allowed amount on the claim, which is the sum of all of these prices, and refer to this as the negotiated price between the hospital and insurer for the remainder of the paper. The data also contains an enrollment file, which provides information on every enrolled member regardless of whether they submitted a claim. These data contain the age, gender, and five-digit zip code of the enrollee. Observing all enrolled members, not just those who submit claims, allows me infer overall enrollments of the plans, which is used in plan-demand estimates.

The data is suited for my research question due to three features. First, it has the negotiated prices and quantities between many hospitals and many insurers. In many markets having prices negotiated between two businesses is competitive information. This data contains prices and quantities for (nearly) all firms in the market. Second, that I observe (nearly) the entire non-group market in Colorado allows me to estimate insurance demand, providing information about downstream competition as well. Finally, that I observe many hospitals allows me to estimate hospital demand.

I focus my analysis on the ACA exchange and the off-exchange non-group market. The non-group market sells insurance to individuals who do not receive insurance through their employer or other means (e.g., Medicare, Medicaid). To sign up for insurance on the exchange, a consumer would go to http://connectforhealthco.com/, while to sign up off the exchange a consumer would usually work with a broker or with an insurance company directly. A few plans are available only on the exchange or only off the exchange; however, for the plans offered in both settings,

\[A\] A consumer might prefer to use the exchange to access premium subsidies for lower-income individuals. The subsidies are only available for those purchasing insurance through the exchange.
I cannot distinguish how the plan was purchased.26 I treat the on-exchange market and the off-exchange non-group market as one market since consumers have both in their choice set.

There are many advantages of using the non-group market. First unlike many employers, premiums are paid by consumers (though some may receive government subsidies) and consumers are the decision makers about which plans to purchase.27 The other advantage is that the data on premiums and networks are more easily available because the plans are sold to the public.

While I have data from across the state, I only require one market to estimate bargaining parameters, so I focus my analysis on the rating area which includes Denver. A rating area is a state-defined collection of counties where, due to the ACA, an insurance company in the non-group market may not vary premiums, except by age and whether the person purchasing insurance is a tobacco user.28 There are 10 counties included in the rating area that includes Denver county and Arapahoe and Adams counties, where Aurora is located. It does not include Boulder or Colorado Springs. In each of these counties a 40-year-old, non-smoker must be offered the same premium regardless of other characteristics, like gender or past health history.29 I use the rating area to define the market, though roughly 20 percent of hospital visits leave the rating area. Finally, I only use data in 2014, the first year of the ACA exchanges and the last year I have APCD data for. I discuss the sample construction in more detail in Appendix B.1.

26 Most of the plans in the non-group market are offered both on and off the exchange and, when that happens, the plans are nearly identical.

27 Gowrisankaran et al. (2014) address many of the issues involved in estimating a Nash-in-Nash model in an employer-sponsored insurance setting.

28 In Colorado, the rating areas are defined by counties; however, other states use metropolitan statistical areas or zip-codes to determine their rating areas.

29 Furthermore, age adjustments are limited so that an insurer can charge a 64-year-old at most three times more than a 21-year-old.
The first panel of table 3.1 presents summary statistics where the unit of observation is a network. There are five narrow-network plans in my data and four broad-network plans. To be consistent with Bauman et al. (2014) I define a narrow-network as having less than 70 percent of hospitals in the rating area in network, however, in practice the broad-network plans all have fifteen hospitals, while the broadest narrow-network plan in my sample has eight hospitals. This suggests that the definition of narrow network is somewhat binary. Results would not change if I define a narrow-network as having 55% or having 95% of hospitals in the rating area. Conditional on being a narrow-network, the mean number of hospitals is 5.6. The average monthly premium (for a 40-year-old on a silver plan) is $323, though this varies between $245 and $380. The average premium for a narrow-network plan is $307.

The second panel of table 3.1 presents enrollee-level summary statistics. There are 130,000 members in the non-group market sample. The mean age is 37, and 55 percent of sample is female. 71 percent of the sample is in a narrow-network plan. Six percent of enrollees have a claim at an in-network and in-sample hospital.

The third panel of table 3.1 presents summary statistics on the payments per visit. While only 6 percent of enrollees submitted a claim, there were 17,124 visits, since an enrollee can have multiple visits. The first row of this panel is for all visits at hospitals in my sample, including those out-of-network. For those visits the average payment was $1,736. There were 12,472 and 8,382 in-network visits for all plans and narrow-network plans respectively, with average payments of $1,628 and $1,543.

The final panel of table 3.1 presents summary statistics on the payments per claim line. These values are what I refer to as the negotiated price. There are roughly four times as many claims as visits because a single visit can result in multiple claims if multiple procedures are performed. The first row of this panel is for all claims at hospitals in my sample, including those that were out-of-network. There were 65,582
claims with an average payment of $453. There were 47,814 and 35,195 in-network claims for all plans and narrow-network plans respectively, with average payments of $424 and $367. These final two panels demonstrate a few important points about the data. First, the difference in claims between the first and second row of each panel shows that about 30 percent of claims were coming from out-of-network hospitals. This suggests that the networks are not necessarily binding, as many patients go out of network. Second, payments to the hospitals are highest out of network, then lower at broad-network plans and finally the lowest at narrow-network plans.

3.3 Reduced-Form Evidence

In this section, I (1) provide reduced-form evidence that narrow-network health plans get lower prices, (2) distinguish between the theory about sending patients to lower-cost hospitals and improved insurer bargaining leverage, and (3) provide a sense of the magnitude of savings for insurers. Then, because consumer welfare may be impacted if insurers’ cost savings are passed through to premiums, I provide evidence that health plans with narrow networks also charge lower premiums.

Because this paper takes a stand that the networks are endogenous, I caution that these are simply correlations and do not provide a causal estimate of the effect of narrow-networks. The concern is that plans which otherwise would not be able to negotiate low prices are the most likely to use the tool of exclusion. This results in non-random selection into network size; if a narrow-network plan were randomly assigned to be a broad-network plan, it would pay higher prices than other broad-network plans. If my model is correct, the naive comparison between broad- and narrow-network plans would provide an estimate of the treatment effect (on the treated) that is biased towards zero. I discuss this issue more precisely at the end of the stylized model section.

To provide suggestive evidence of the bargaining leverage story, I look at variation,
across network sizes, at the same hospital for the same service. For example, do narrow-network plans pay less for an x-ray at hospital A than broad-network plans? In the introduction, I argued that many of the other explanations for why narrow-network plans have lower costs would not explain this comparative static. Then, to account for the story about sending patients to cheaper hospitals, I provide results without controlling for the hospital. That is, do narrow-network plans pay less than broad-network plans for an x-ray on average? I find evidence that supports both stories and they are both incorporated into the modeling framework. Formally, the regression equation is:

\[\log(\text{price}_{csjr}) = \beta \cdot 1(Narrow \text{ Network}_r) + \alpha_s + \alpha_j + \epsilon_{csjr} \]

The unit of observation is a claim line \(c \), where \(s \) refers to the service (CPT4), \(r \) the insurer and \(j \) the hospital. \(1(Narrow \text{ Network}_r) \) is an indicator for whether the patient receiving the service was in a narrow-network health plan. \(\alpha_s \) and \(\alpha_j \) are service and hospital fixed effects, respectively. In all regressions I cluster standard errors by the network. I use the log of price due to the skewness in health expenditure data. I limit the sample to just in-network visits.

The first column of Table 3.2 suggests that narrow-networks pay 23 percent less than broad-networks, for the same service at the same hospital. The second column defines the service as a CPT4 code and modifier code, which is a more granular description of the services performed.\(^{30}\) The results are slightly larger in magnitude. In the third column, I drop \(\alpha_j \), the hospital fixed effect. This answers the question of how much less insurers pay for the same services, when allowing patients to go to different hospitals. The coefficient of \(-.29\) suggests that narrow-networks pay twenty-nine percent less for the same service. While 29 percent seems large, the

\(^{30}\) A CPT4 modifier code may or may not affect reimbursement. One example is to specify if a surgery was performed with or without anesthesia.
magnitude is consistent with the literature.31 This result provides evidence that both theories are relevant. Column four presents results that do not drop out-of-network visits. That the coefficient is statistically indistinguishable from zero shows an important empirical issue in working with narrow-network health plan data: it is important to only use in-network providers, because narrow-network plans often pay more out-of-network than broad-network plans.32

While conventional wisdom, and some empirical evidence, suggests that narrow-networks negotiate lower prices, there is less evidence of whether a narrow-network should be thought of as binary or whether the narrowness of the network also matters. My model will imply that the narrowness matters, though the effect is diminishes quickly. To explore this, I replace the narrow-network indicator with a linear term for the number of hospitals in the network and only include narrow-network plans.

Table 3.3 presents results using the number of hospitals in a network, another measure of network narrowness, with the same controls as Table 3.2. I drop broad-network plans to distinguish the source of variation from Table 3.2.33 The first column suggests that an extra hospital in the network is correlated with 5 percent higher negotiated prices. The third column presents results without controlling for the hospital. Again, the results are slightly larger than with the hospital controls. The fourth column, which includes out-of-network claims now shows that smaller networks may pay higher prices, this may be due to them excluding higher-cost hospitals and differentially paying higher rates at those hospitals.

Finally, I provide evidence that narrow-network health plans also charge lower

31 For example, Wu (2009) finds discounts of 26 to 50 percent while Dor et al. (2004) finds discounts of roughly 20 percent using per procedure data.

32 In some cases, the narrow-network plans pay the amount charged by the hospital for the out-of-network visits. This is typically more than the out-of-network plans pay, since those plans still negotiate their prices down.

33 That is, the two tables use distinct sources of variation. Table 3.2 compares broad- and narrow-networks, ignoring the size of the narrow-network. Table 3.3 uses the size of the network dropping broad-network plans.
premiums. This provides context about the effects on consumer surplus due to savings being passed through to consumers. The analysis of premiums is simply a regression of the log of the premium on network size. I only use data from the Denver rating area, so this is just a cross-sectional analysis across plans. Table 3.4 presents the results from these regressions. In the first two columns, I use only the lowest-cost silver plan for each network, which corresponds to the premiums I use in the structural model. Because I observe the metal level in the premium data, I also present a specification which includes them. The third and fourth columns include all metal levels, with an indicator for each. The results are consistent with narrow-network plans having premiums that are 10-15 percent lower than broad-network plans, which corresponds to roughly $30-45 per month. However, these results are not statistically significant, which is not surprising given the limited number of observations. These results are lower in magnitude than Bauman et al. (2014), who use a nationwide sample and are also able to control for the company and plan type (PPO, HMO, etc.). They find narrow-networks charge 15 percent lower premiums, on average.

One limitation of this analysis is that other aspects of plans, which may be correlated with a narrow network, may affect the salience of “threat of exclusion” is. A narrow-network plan may only charge a few dollars more for a visit out of network or may contract with doctors who have incentives to send patients to certain hospitals. That is, the definition of exclusion is not binary or one-dimensional. I argue this would bias the parameter of interest towards zero, because my model treats exclusion as absolute (patients cannot go to an out-of-network hospital), while in practice the threat of exclusion may not be as strong if the threat of exclusion is that copays are $10 higher. That 30 percent of hospital visits are out-of-network, suggests that the networks are not binding.
3.4 Stylized Bargaining Model

The previous section presented correlations that are most easily explained by the use of exclusion, providing bargaining leverage for the insurer. In this section I present a stylized version of my theoretical model, which aims to formalize the intuition behind these correlations. Following the industry intuition about why narrow-networks get lower prices, the mechanism I model is that a narrow network increases the threat of exclusion for the hospitals. I incorporate the threat of exclusion into an alternating-offers bargaining framework similar to Rubinstein (1982). A hospital who rejects an offer from a narrow-network plan has a higher probability of being excluded from that network, than it would a broader network; there are more substitute hospitals remaining than when the network is smaller. The increased probability of exclusion reduces the continuation value for the hospitals, leading them to accept a lower price.

The bargaining protocol is adapted from Collard-Wexler et al. (2016), which provides foundations for the Nash-in-Nash bargaining model, to facilitate the comparison of my model with the empirical literature on hospital-insurer bargaining and to simplify estimation. There are two sides of the market, who alternate in making offers to the other side: In each period either hospitals make offers to the insurer or the insurer makes offers to hospitals. I incorporate the probability of exclusion by, in some periods, having Nature randomly choose hospitals to negotiate with the insurer. The insurer implicitly chooses the probability of exclusion by initially choosing a network size that may exclude hospitals.

I highlight three main results of my model. First, I contrast my model with Rubinstein (1982). If there is no exclusion, then the model suggests \(N \) agreements with the transfers suggested by Rubinstein (1982) in a pairwise setting. Second, I show that when the insurer decides to exclude, it will negotiate smaller transfers. Finally, I show that exclusion is an equilibrium outcome of the model. Even if
exclusion shrinks the amount of surplus created, the insurer is able to make up for this by capturing a larger share of the surplus from hospitals.

The model is an alternating offers game between \(R \) insurers and \(N \) hospitals. Each player negotiates over surplus which represents the joint profits between insurer \(r \) and the hospitals insurer \(r \) contracts with.\(^{34}\) In the empirical model, this is the premiums that insurer \(r \) collects, minus the marginal cost to hospitals for treating insurer \(r \)'s patients. Insurer \(r \)'s payments to the hospital are the transfers they negotiate over. For the bargaining model, total surplus for insurer \(r \), \(\Pi_r(\mathcal{F}, x) \), is a primitive which depends on all insurers’ networks \(\mathcal{F} \) and all insurers’ transfers to hospitals \(x \). I treat surplus as a primitive because all of the inputs are determined at other stages of the game, and are conditional on the outcome of the bargaining game. Payments to other hospitals affect surplus because they raise the insurer’s costs and may affect how they set their premiums.\(^{35}\) This is general enough to allow externalities and interdependencies between hospitals, and heterogeneity in the value each hospital provides to consumers (which affects premium setting), and non-transferable utility between hospitals and insurers.

However, this generality complicates the discussion of how I incorporate the threat of exclusion and how it creates bargaining power for the insurer. Therefore, I now present a stylized version of the model, and I present the more general model, which I estimate, in section B.2 of the appendix. These two discussions follow each other closely, so the reader may read either section and return at Section 3.4.4. In the stylized model I assume there is one insurer and the negotiation is over one unit of surplus. To relax these assumptions, in the general model, I assume the existence of an equilibrium and that players know which equilibria will be played. I also make informational assumptions, which rule out information asymmetries, similar to

\(^{34}\) Surplus in this case ignores consumer surplus.

\(^{35}\) Premiums are set in a separate stage of the game through Nash-Bertrand competition.
Crawford and Yurukoglu (2012a).

3.4.1 Fundamentals

Consider a bargaining game between one insurer and N hospitals. Let N denote the set of all hospitals. At $t = 0$, the insurer publicly commits to $K \in \mathbb{N}^*$, how many hospitals it would like to agree with, which remains a fixed constant for the remainder of the game.

Negotiations start at time period $t = 1$, step b. Let \mathcal{F}_t and \mathcal{A}_t denote the sets of hospitals who have and have not reached an agreement before period t. Let $F_t = |\mathcal{F}_t|$ denote the number of hospitals who have reached an agreement by the beginning of period t. In each period, every hospital j is either in \mathcal{F}_t or \mathcal{A}_t, that is, \mathcal{F}_t and \mathcal{A}_t are a partition of N for all t. Each period, the set of hospitals who will either make or receive an offer that period is denoted \mathcal{K}_t. I refer to \mathcal{K}_t as the “bargaining set”.

Either Nature or the insurer selects the set \mathcal{K}_t out of the set \mathcal{A}_t, such that the number of hospitals selected, plus those who have already reached an agreement, equal the number of hospitals the insurer would like in the network, i.e., $K = |\mathcal{F}_t| + |\mathcal{K}_t|$. In odd periods, the insurer chooses \mathcal{K}_t. In even periods, Nature chooses \mathcal{K}_t with equal probability among the hospitals in \mathcal{A}_t. I denote the probability of a hospital being picked as $P(F, K) = \frac{K - F}{N - F} = \frac{\text{# of Remaining Slots}}{\text{# of Remaining Hospitals}}$.

Once the set \mathcal{K}_t is specified, the game moves to the negotiation phase, step c, of period t. For each agreement, the insurer receives one unit of surplus. The negotiation determines how much of that unit of surplus the insurer transfers to...

Commitment is a key assumption; without commitment the insurer would not exclude and would lose the leverage gained from exclusion. In practice these contracts are renegotiated every year or every few years, and not all hospitals negotiate simultaneously. Furthermore, many of these insurance companies operate in many geographic markets, with different types of providers (hospitals, physicians, ambulatory care centers, etc.) and across many market segments (Medicare Advantage, health exchanges, individual and employer insurance, etc.). Reneging in one market could make the exclusion threat less credible in others.

All periods after the first start with a step a.

70
the hospital, denoted x_j. When t is odd, the insurer makes offers to all hospitals in K_t simultaneously. When t is even, all hospitals in K_t make offers to the insurer simultaneously. A player who receives an offer has a binary choice to either accept or reject that offer. If the offer between hospital j and the insurer is accepted, hospital j joins the set F_{t+1} and remains in F for all subsequent periods. If an offer is rejected at period t, that hospital joins the set A_{t+1}. The game ends when K agreements have been made or when a breakdown occurs.

In order to have price determinacy, models of bargaining require a friction or cost of negotiating. I include an exogenous probability of breakdown, similar to Binmore et al. (1986). Starting in period $t = 2$ and in every following period, before K_t is set, Nature determines whether a breakdown occurs. I allow hospitals and the insurer to have asymmetric beliefs about the subjective probability of breakdown denoted by ρ^H_j and ρ^I, respectively. When a breakdown occurs, the game ends and no further agreements can be made, though surplus created and transfers previously agreed to remain. All excluded hospitals, either due to the insurer reaching K agreements or breakdown receive zero surplus. Renegotiation of contracts is not allowed. The breakdown probabilities are assumed to be constant throughout time and do not vary based on which hospitals have reached agreements. Players do not discount the future.

For clarity, I respecify the timing of the model:

\[t=0. \] Insurer publicly commits to size of their network, K.

\[t=1, 3, 5, \ldots \text{ (if } F < K \text{ agreements have been reached):} \]

\[^{38} \text{Asymmetric beliefs are allowed for in Binmore et al. (1986), with the assumption of some appropriate behavioral model, for example heterogenous priors. I follow Binmore et al. (1986) and do not specify this aspect of the model because it is not a key feature of the model. The main results of the model can be shown with symmetric beliefs. However, asymmetric beliefs help highlight the concerns endogenous networks raise for the reduced-form analysis and are an important feature of the empirical model where the interpretation of this parameter is different.} \]
a. (Except period $t = 1$) Nature decides whether there is a breakdown.
b. Insurer picks which hospitals to make an offer to K.
c. Insurer makes simultaneous offers to the hospitals in K.
d. Hospitals simultaneously decide whether to accept or reject their offer.

$t = 2, 4, 6, ...$ (if $F < K$ agreements have been reached):

a. Nature decides whether there is a breakdown.
b. With equal probability $P(F, K) = \frac{K-F}{N-K}$, Nature chooses $K-F$ hospitals to make an offer K.
c. Hospitals in K make simultaneous offers to the insurer.
d. Insurer simultaneously decides whether to accept or reject each offer.

The game stops when K hospitals have reached agreement or breakdown occurs. Payments are made.

The structure of the game is common knowledge. Players know the surplus functions and all the parameters. At the end of $t = 0$, all the players know K. At the beginning of each period $t > 0$, players know which players have agreed already, F_t, and which remain active, A_t. During period t, once the bargaining set, K_t, has been set but before offers are made, all players learn K_t. That is, they all know which other hospitals are negotiating before offers are made. Because offers are made simultaneously, hospitals do not know what offers the others made/received. Likewise, similar to Crawford and Yurukoglu (2012a), I do not allow the insurer to use its information about what hospitals have offered or which hospitals have accepted to be used that period in decisions with other hospitals. That is, I rule out informational asymmetries for the insurer. Once all offers have been made and responded to, all players learn which agreements were reached so that at the beginning of period $t+1$ the sets F_{t+1} and A_{t+1} will be known.
3.4.2 Equilibrium Strategy Profile

In this subsection, I propose a strategy profile which is a Markov-perfect equilibrium (MPE). The concept of an MPE restricts the set of equilibria to the subset of subgame-perfect Nash equilibria for which the only aspect of the history that influences strategies is the current state. In particular, this implies that if negotiations happen at \(t + 1 \), the probability that any hospital in \(\mathcal{A}_{t+1} \) will be chosen to bargain at \(t + 1 \) is independent of the identity of the hospital which rejected an offer at \(t \).

In period \(t = 0 \), the insurer chooses the profit-maximizing size of the network. Let \(\tilde{\Pi}^I(K) \) be the surplus the insurer receives in equilibrium when choosing size \(K \).

In equilibrium the insurer chooses \(K \) such that \(\tilde{\Pi}^I(K) \geq \tilde{\Pi}^I(K') \) for all \(K' \leq N \).

In odd periods \(t = 1, ..., \infty \), step b, the insurer picks a bargaining set \(\mathcal{K}_t \) such that \(|\mathcal{K}_t| + |\mathcal{F}_t| = K \). The insurer chooses their profit-maximizing network. Let \(\Pi^I(\mathcal{G}_t; K) \) denote the expected surplus to the insurer given the equilibrium outcomes when the network \(\mathcal{G}_t \) is chosen at \(t \). Then the insurer chooses the network \(\mathcal{G}_t \) such that \(\Pi^I(\mathcal{G}_t; K) \geq \Pi^I(\mathcal{G}'_t; K) \) for all \(\mathcal{G}'_t \) where \(|\mathcal{G}'_t| = K \) and \(\mathcal{F}_t \subset \mathcal{G}_t \).

Let \(V_{jt+1}(F_{t+1}, K) \) and \(W_{t+1}(F_{t+1}, K) \) respectively denote hospital \(j \)'s and the insurer’s expected value of being in the game at the beginning of period \(t + 1 \). Given that players know the bargaining set when making or receiving an offer, players can determine which hospitals will have reached agreements before receiving their offers in period \(t \). Therefore, in negotiations with hospital \(j \), the continuation value to the hospital and insurer during the offer stage of period \(t \) is \(V_{jt+1}(F_{t+1}, K) \) and \(W_{t+1}(F_{t+1}, K) \), where \(F_{t+1} \) takes into account those who have already reached an agreement (\(\mathcal{F}_t \)) and those who are expected to reach an agreement (some subset of \(\mathcal{K}_t \)). Because I use the MPE solution concept, the time period does not affect the value functions, except for whether the state is even or odd. I use \(t \) subscripts to clarify timing. In periods \(t = 1, ..., \infty \), step c, the players that make offers propose
the offeree’s continuation value. When t is odd, the insurer offers the hospital: $x_{jt} = V_{jt+1}(F_{t+1}, K)$. When t is even, the hospital offers (to keep): $x_{jt} = 1 - W_{t+1}(F_{t+1}, K)$. The player who is offered their continuation value will accept.

Finally, I assume that in equilibrium there will be immediate agreement:

Assumption 1. Suppose the beliefs about breakdown probabilities are such that a possible equilibrium involves immediate agreement (K_r agreements are reached in period $t = 1$ for each r) and that this equilibrium is played.

In the simplified model there are two reasons why it is unprofitable for the insurer to delay. First, as with many dynamic games of complete information delay is unprofitable for the insurer is that the expected costs of breakdown are higher if fewer hospitals have agreed at any point in time. Second, delay improves the continuation value of a hospital who reaches an agreement at $t = 1$ because the probability they are picked again if they deviate is higher than when all hospitals agree at period $t = 1$.\(^{39}\) Recall that $P = \frac{K - F}{N-F}$. Because $K \leq N$, this probability is decreasing in F. Consider, for example, when $N = 9$ and $K = 3$. If $F_2 = 1$, (one hospital has already agreed at the beginning of period 2), $P = .25$ (2 slots left divided by 8 hospitals left). If $F_2 = 2$, then $P = .14$ (1 slot left divided by 7 hospitals left).

3.4.3 Determining Continuation Values

Now, I discuss the equilibrium outcomes and compute the continuation values, given the strategies specified in the previous section. While all hospitals agree in the first period, continuation values depend on the expected value for hospital j after deviating from the equilibrium and rejecting the offer. Deviating hospital j’s expected value for period $t = 2$, given equilibrium strategies and immediate agreement, simplifies

\(^{39}\) This is a similar argument to Möller (2007) who argues that when the timing of agreements is endogenous, there is an incentive for simultaneous agreements when the externalities between players weakens over time.
\[V_{j_{t=2}}(K - 1, K) = (1 - \rho_j^H) \cdot P(K - 1, K) \cdot [1 - W_{t=3}(K - 1, K)] + \rho_j^H \cdot 0 \]

(3.1)

With probability \(\rho_j^H \), breakdown occurs and the hospital gets nothing. With probability \((1 - \rho_j^H) \), agreements are made possible in period \(t = 2 \). In period \(t = 2 \), with probability \(P = \frac{1}{N-K+1} \), hospital \(j \) will be chosen to make an offer. Because in equilibrium, all hospitals reach an agreement at \(t = 1 \), in considering the value of deviating, hospital \(j \) expects the set of hospitals who have reached an agreement will consist of all the hospitals in the original bargaining set except itself, i.e., \(F_2 = K - 1 \). It offers the insurer its continuation value for period \(t = 3 \) and keeps the remainder. The input to \(W_{t=3}(K - 1, K) \) is \((K - 1, K) \) because again we are considering a case where the insurer deviates to determine the continuation value.

Now I solve for the insurer’s continuation value by considering the case where it deviates at period \(t = 2 \). The insurer’s expected value in \(t = 3 \), given that the \(K - 1 \) hospitals have agreed is:

\[W_{t=3}(K - 1, K) = (1 - \rho^I) \cdot [1 - V_{j_{t=4}}(K - 1, K)] + \rho^I \cdot 0 \]

(3.2)

With probability \(\rho^I \), breakdown occurs and the insurer gets nothing from this hospital, so it receives the values from other agreements (which I omit because they are sunk). With probability \((1 - \rho^I) \), the game goes forward and the insurer offers hospital \(j \) its continuation value.

3.4.4 Bargaining Results

To calculate transfers, I consider a unilateral deviation by each hospital \(j \in K_1 \) separately. Because of immediate agreement, a unilateral deviation would imply there is only one additional agreement remaining. At this point the state of the game does not change from period \(t = 2 \) until an agreement is reached (conditional
on the state being even or odd). Because the value functions only depend on the state, and the state only depends on whether the time is even or odd, $V_{j t=2}(K - 1, K) = V_{j t=4}(K - 1, K) = ... = V_{j \text{even}}(K - 1, K)$ and likewise for $W_{t=3}(K - 1, K) = W_{t=5}(K - 1, K) = ... = W_{\text{odd}}(K - 1, K)$. Therefore, for each insurer-hospital pair there are two unknowns ($V_{j \text{even}}(K - 1, K)$ and $W_{\text{odd}}(K - 1, K)$) and two equations linear in the unknowns, so there exists a unique solution that can be represented with a closed form. Proposition 1 presents this solution:

Proposition 1. The equilibrium outcome of this game is given by:

$$x_j(K) = \frac{\rho^I \cdot \left[(1 - \rho_j^H) \cdot \frac{1}{N-K+1} \right]}{1 - (1 - \rho^I) \cdot \left[(1 - \rho_j^H) \cdot \frac{1}{N-K+1} \right]}$$

Relationship to Rubinstein Outcomes

Corollary 2 states that when $K = N$, meaning the insurer chooses not to exclude, the model predicts N outcomes that match the outcomes in Rubinstein (1982).\(^{40}\) In particular, $K = N$ implies that $\mathbb{P}(\cdot) = 1$, i.e., hospitals who reject an offer in the previous period will be picked with probability one. The solution reduces to:

Corollary 2. When $K = N$ and $\mathbb{P}(\cdot) = 1$, the equilibrium outcome simplifies to:

$$x_j(N) = \frac{(1 - \rho_j^H) \cdot \rho^I}{1 - (1 - \rho_j^H) \cdot (1 - \rho^I)}$$

Allowing for exclusion, the results are the same as Rubinstein (1982), except that the hospitals’ risk of breakdown parameters are multiplied by their probability of being chosen, as highlighted by the brackets in Proposition 1. One way to interpret this is that my result is distinguishing the risk of breakdown from the risk of

\(^{40}\) Technically these are Binmore et al. (1986) outcomes because the cost of negotiation is modeled as a risk of breakdown. However, the result would be the same as Rubinstein (1982) if I modeled it as a discount factor. I cite Rubinstein (1982) since it may be more familiar to a broader audience.
exclusion due to the narrow-network. This also demonstrates how my model nests the Nash-in-Nash solution. When there is no exclusion (or the probability of being picked after deviating equals 1), each negotiation becomes the outcome of a pairwise Rubinstein bargain, conditional on all the other negotiations. Collard-Wexler et al. (2016) provides sufficient conditions under which this limits to the Nash-in-Nash solution, similar to how Binmore et al. (1986) demonstrates that Rubinstein (1982) limits to the Nash solution. The remaining results show how my model extends the Nash-in-Nash model.

Narrow-Networks Negotiate Smaller Transfers

My next result shows that my model can imply smaller transfers when there is exclusion. This is a straightforward consequence of Proposition 1. Intuitively, the reason this occurs is that by excluding, the insurer is increasing the probability the hospital gets zero, which worsens the hospital’s continuation value. Why this worsens the continuation value is clear from Equation 3.1, as the value function is multiplied by \(P(K - 1, K) = \frac{1}{N-K+1} \). If hospital \(j \) disagrees when many hospitals are excluded, the probability it gets nothing \((1 - \frac{1}{N-K+1}) \) is large. When few hospitals are excluded, the probability of getting nothing is smaller, so the continuation value is larger.

While it may be intuitive that exclusion leads to smaller transfers, it is not obvious that exclusion can be optimal for the insurer. By narrowing the network, the insurer reduces total surplus, which would not be optimal if it did not get larger transfers.\(^{41}\)

Exclusion in Equilibrium

Figure 3.1 plots the value function at the beginning of the game for the insurer given different choices of \(K \). I assume all hospitals have the same risk of breakdown probabilities. There are 7 hospitals in this game. \(\rho^I = .75 \), so the insurer expects

\(^{41}\)In my empirical setting, consumers prefer larger networks (more choice of hospitals, etc.) so a broad-network can charge higher premiums.
a non-degenerate risk of breakdown. The top line, $\rho^H = 1$, shows that when the hospitals do not expect to have a chance to offer, and thus have no bargaining power, the insurer receives all the surplus. In this case, the insurer agrees with all 7 and they create 7 units of surplus which are all kept by the insurer. When $\rho^H = .25$, the insurer excludes 1 hospital in equilibrium, creating 6 total units of surplus and keeps roughly 4 of these units. If it were to choose $K = 7$, it would create 7 total units of surplus, but would only keep 2 of these units. Finally, when $\rho^H = 0$, the insurer will exclude two hospitals. Instead, if it were to exclude no hospitals, the hospitals would capture all the surplus. The $K = N$ case matches the Rubinstein outcome (Corollary 2) times N, which is often not optimal for the insurer.

![Figure 3.1: Insurer’s $t = 0$ expected value by network size.](image)

Results are from simulated data, using the following parameters:

$\rho^I = .75, \rho^H = .25, \Pi = 1, N = 7$

Finally, I discuss the endogeneity concern my model raises. In Figure 3.1, the insurer’s risk of breakdown parameter is fixed at $\rho^I = .75$. As ρ^H increases, the insurer excludes fewer hospitals. This demonstrates that, as the insurer’s relative bargaining power increases, it is less likely to exclude.\footnote{This result is also shown in Gal-Or (1999).} Intuitively, an insurer that
will get less of the pie will not be affected as much by shrinking that pie. This raises a concern about selection into network size. If plans that are unable to negotiate low prices are the most likely to use the tool of exclusion, then observed broad-network prices are not an appropriate comparison. In Figure 3.1, when $\rho^H = 0$, the insurer chooses to exclude two hospitals, but if it had a broad network, it would transfer the entire unit of surplus to hospitals. In the other extreme, when $\rho^H = 1$, the insurer transfers no surplus to the hospitals.

3.5 Structural Model and Estimation

The estimation strategy amounts to matching the split of surplus predicted by the model to the “observed split of surplus.” While estimation of games with endogenous networks can be challenging, the key insight of this section is that estimation of a game with simultaneous agreement makes estimation feasible. This is a feature of the Nash-in-Nash model; however, it is not standard in the literature where prices and the networks are endogenous, which uses randomly ordered sequential matching. I begin by discussing how I estimate the surplus over which the hospitals and insurers negotiate. Then I discuss how I estimate the bargaining parameters.

There are two important distinctions between the theoretical model and the empirical model. I allow for hospitals and insurers to negotiate over a linear prices and the interpretation of the risk of breakdown parameter changes. I back out the linear price that is consistent with the lump-sum transfer that is implied by the model. This is also done in Gowrisankaran et al. (2014), Ho and Lee (2017), and Prager (2016). Since I do not observe the price for each hospital-insurer-service combination, I assume that insurers negotiate a constant markup above a CPT4 code’s relative weight. Throughout the paper, I refer to lump-sum payments as transfers and payments based on a linear price schedule as prices.\footnote{For those who have read the appendix, I change notation from x, which represents transfers, to}
In the previous theory section, the cost of negotiation is represented by an exogenously risk of breakdown due to the regulator ending the game. This parameter explains how surplus is split between parties and therefore is often referred to as a "bargaining parameter." In the empirical literature, the bargaining parameters are estimated as the residuals that explain the split of surplus beyond other aspects of the model and data. That is, the bargaining parameters are interpreted as reduced-form parameters which explain how surplus is divided between hospitals and insurers. This does not preclude the risk of breakdown as an aspect of price formation, but accounts for many other stories (for which data are not available) that effect price formation.

3.5.1 Defining Surplus

In order to estimate the bargaining model from the previous section, I require estimates of the surplus at stake in each negotiation. Surplus is defined as the sum of profits to each insurer and the providers they contract with, which are determined by consumers’ choices over which hospitals to use and which plans to enroll in. This allows insurers’ valuation of hospitals to depend on how its enrollees value those hospitals. This section presents a five-stage model which describes how consumers make these choices, how the insurers set their premiums, and how prices and the network are negotiated.

Stage 1: Prices and the network are negotiated between insurers and hospitals.

Stage 2: Insurers set their premiums.

Stage 3: Consumers choose which health plan to join.

Stage 4: Nature determines which consumers get sick.

Stage 5: Consumers who got sick choose which hospital to attend.

Besides the bargaining stage, the framework in this section is standard in the liter-
For example, it follows Ho and Lee (2017) closely, facilitating comparison between the bargaining models. As is typical with these models, I solve the game backwards.

Stage 5 - Provider Choice

Consumer \(i \), who lives in county \(m \), is enrolled in health plan \(r \), and gets sick with condition \(d \), has to choose a hospital in its health plan’s network. To simplify the model, I assume consumers cannot go out of network, while in practice many do but have to pay higher copays or coinsurance. Conditional on being sick enough to go to a hospital, the utility of hospital \(j \) for a consumer is given by:

\[
 u_{imjd} = \gamma \text{distance}_{mj} + \delta^H_{jd} + \epsilon^H_{imjd}
\]

\(\delta^H_{jd} \) denotes the mean value of hospital \(j \) to a patient with disease \(d \). The mean value can include out-of-pocket prices the consumer would have to pay for that hospitalization, hospital quality, patient preferences, etc. I avoid parameterizing these aspects of the model to remain agnostic on functional form and to avoid the need for instruments. This parameterization is also used in Ericson and Starc (2015).

\(\text{distance}_{mj} \) is the distance from the patient’s county to hospital \(j \). The distance coefficient is identified by variation in hospital choice probabilities across counties.\(^{44}\)

\(\epsilon^H_{imjd} \) is an idiosyncratic taste for hospital \(j \) and is i.i.d Type 1 extreme value. The outside option is using a hospital that is outside the rating area; I observe this occurs for roughly 20 percent of visits. I normalize the mean value of the outside option to zero, \(u_{im0} = \epsilon^H_{im0} \).

This parameterization limits market shares and substitution patterns to a single index that depends on \(\delta^H_{jd} \) and distance, which along with the logit structure implies

\(^{44}\) To compute the distance measure, I take the centroid of the patient’s zip code to the centroid of the hospital’s zip code, then take an average weighted by the number of patients in each zip code to get the mean distance at the county level.
the independence of irrelevant alternatives (IIA) property. Also, if patients of different health status choose hospitals differently, as shown in Shepard (2016), then my model would overestimate the value (to the insurer) of hospitals that attract the costliest patients. In order to account for these concerns, I include age-hospital interactions to allow individual’s preferences for hospitals to vary by age as well.

I estimate hospital choice parameters by inverting the age-gender-county-condition specific market shares and running OLS, as shown in Berry (1994). Because of the distributional assumption of ϵ_{imjd}^H, the expected probability of going to a hospital, in a particular plan, conditional on a consumer getting sick is:

$$\sigma_{imjd}(F_r) = \frac{\exp (\gamma \text{distance}_{mj} + \delta_{jd}^H)}{1 + \sum_{k \in F_r} \exp (\gamma \text{distance}_{mk} + \delta_{kd}^H)}$$

Stage 4 - Nature Determines Which Consumers Get Sick

In stage 4, there are no strategic decisions to be made, as Nature determines which consumers get sick. Let the probability of getting sick with disease d be given by f_{id}. I calculate f_{id} by using the observed probability that an enrollee has a hospital visit, for disease d, in my sample. I compute the number of enrollees in 12 groups, (six age categories times gender). I estimate this probability across the entire rating area.

Stage 3 - Consumers Choose health plans

In stage 3, consumers choose their health plan. Following Town and Vistnes (2001) and Capps et al. (2003), I model utility as the value of premiums, the expected value of the network, and other plan characteristics:

$$U_{imr} = \alpha_{1r} \text{ premium}_{ir} + \alpha_{2} E(u_{imr}) + \xi_{mr} + \epsilon_{imr}^P$$

45 Age categories are: 0-18, 19-25, 26-35, 36-45, 46-55, 56-65
premium_{ir} is the premium that consumer i would face, which is, by law, constant across counties within a rating area, except by age. \(\xi_{mr} \) is other unobserved plan characteristics which can vary by county. \(\epsilon^P_{imr} \) represents idiosyncratic consumer preferences over plan characteristics that are assumed to be i.i.d Type 1 extreme value. \(\alpha_{1r} \) is a health plan specific premium-sensitivity parameter. \(E(u_{imr}) \) is the expected utility of the providers in health plan r’s network. This is also referred to as willingness to pay (WTP) for the network. This value, as shown in Capps et al. (2003) is given by the familiar inclusive value formula, incorporating the probability of getting sick with disease d:

\[
E(u_{imr}) = \sum_{d \in D} f_{id} \ln \left(\sum_{j \in F_r} \exp(\gamma distance_{mj} + \delta^H_{jd}) \right)
\]

Prager (2016), Ericson and Starc (2015), and Ho and Lee (2017) use variation in premiums offered for individual versus family plans to account for the endogeneity of premiums. My data does not have information on which enrollees are in which families. Furthermore, many enrollees receive unobserved subsidies for premiums, which creates measurement error in the observed premium that is paid by an enrollee. To handle these concerns, rather than estimating \(\alpha_{1r} \) directly, I back out \(\alpha_{1r} \) using first-order conditions implied by optimal premium setting. This similar to how Rosse (1970) or Berry (1994) use optimal pricing to back out marginal costs. First, I estimate \(\alpha_2 \) separately by defining \(\delta^P_{imr} = \alpha_{1r} premium_{ir} + \xi_{mr} \) as the mean value of the plan, net of the value of the network in each county. Then I rewrite the utility function as:

46 This varies from the rest of the literature; because I do not estimate the copay sensitivity, I do not rescale the WTP term. Therefore, it is measured in units of utils, rather than dollars.

47 The supply-side premium elasticity is more relevant because the main purpose of this stage is to understand how insurers update premiums. This also avoids the measurement concern due to subsidies. While I have not computed welfare results, I will need to account for consumers facing different premiums.
\[U_{imr} = \alpha_2 E(u_{imr}) + \delta_{imr}^p + \epsilon_{imr} \]

I estimate \(\alpha_2 \) by inverting the market shares for each plan, in each county, for each demographic group. There are two sources of identifying variation: consumer demographics and geographic variation. Each demographic group values the network differently, so if those who value networks more (typically older patients) choose broader networks, one would expect a positive \(\alpha_2 \). Likewise, plans vary in terms of the location of their in-network hospitals. \(\alpha_2 \) will be positive if consumers are more likely to choose plans which include nearby hospitals. The outside option is being uninsured. I use the estimates from Panhans (2016), who calculates the insurance take-up rate by age in Colorado. The uninsured rate varies from 30 percent to 60 percent, mostly declining by age.\footnote{Under the ACA regulations, there is an “individual mandate” that requires all individuals eligible for the exchanges to have insurance. In 2014, those who do not purchase insurance and were not exempt were liable for a “shared responsibility payment” of \$95 or one percent of household income, whichever was greater for an individual.}

Denote the probability that consumer \(i \), in county \(m \), signs up for insurance plan \(r \) as \(S_{imr}(\text{premium}(\mathcal{F}, p), \mathcal{F}) \). \(\mathcal{F} \) represents the set of all observed networks. The functional form is due to the distributional assumption on \(\epsilon_{imr}^p \):

\[
S_{imr}(\text{premium}, \mathcal{F}) = \frac{\exp(\alpha_{1r} \text{ premium}_{ir} + \alpha_2 E(u_{imr}) + \xi_r)}{1 + \sum_{k \in \mathcal{R}} \exp(\alpha_{1k} \text{ premium}_{ik} + \alpha_2 E(u_{imk}) + \xi_k)}
\]

(3.3)

Because the market shares take into account premiums and networks from each insurer in the market, I omit the \(r \) subscript on \(\text{premium} \) and \(\mathcal{F} \). This equation defines how cross-insurer competition is accounted for in the model; plans engage in Nash-Bertrand competition over premiums, after the networks and prices are set.
Stage 2 - Insurers Choose Premiums

Insurer r’s expected profits consist of the premiums it receives, minus the expected amount it must reimburse the hospitals in its network. The expected amount it must pay for consumer i is the probability of the consumer being sick with disease d (\(\mathbb{P}_{id} \)) times the expected value of the payments (weighted by the probability of going to each hospital, conditional on having disease d, \(\Pi_{j}^{F}(\mathcal{F}, \mathcal{P}_{r}, K) \sigma_{imjd}(\mathcal{F}) \)) times the probability that the consumer chooses that health plan \((S_{imr}(\text{premium}(\mathcal{F}, p), \mathcal{F})) \).

\[
\Pi_{i}^{F}(\mathcal{F}, p, K) = \sum_{i} \left[\text{premium}_{ir}(\mathcal{F}, p_{r}) - \sum_{d \in \mathcal{D}} \sum_{j \in \mathcal{F}_{r}} \mathbb{P}_{id} \sum_{d \in \mathcal{D}} p_{jdr}(\mathcal{F}, \mathcal{P}_{r}, K) \sigma_{imjd}(\mathcal{F}) - \text{other costs}_{i} \right]
\times S_{imr}(\text{premium}(\mathcal{F}, p), \mathcal{F})
\]

(3.4)

I also include other costs, that account for each consumer’s expected costs for the insurer in other settings, such as inpatient hospitals and physician visits. To back out plan-specific premium sensitivities, \(\alpha_{1r} \), I take the derivative of Equation 3.4 with respect to premiums. I solve for it \(\alpha_{1r} \), since all other terms in this equation are observed or estimated. I use the estimated market share values, since the model suggests that plans set premiums based on expected costs not observed costs.

3.5.2 Stage 1 - Providers and Insurers Bargain over Prices and the Network

For the remainder of the paper, I refer to the subjective beliefs about the risk of breakdown, \(\rho_{j}^{H} \) and \(\rho_{r}^{I} \), as “generic bargaining parameters” to differentiate the bargaining power they provide from the threat of exclusion and highlight how all other sources of bargaining power are accounted for in these parameters. In this section, I discuss the estimation of the generic bargaining parameters, \(\rho_{j}^{H} \) and \(\rho_{r}^{I} \), and the effect of exclusion \(\mathbb{P}_{r} \). While I have focused on the effect of exclusion, the generic bargaining parameters are relevant for network adequacy policies as well. If hospitals have a lot of relative bargaining power, then restricting one of the insurer’s tools
to gain leverage may raise prices a lot. On the other hand, if insurers have a lot of relative bargaining power, even without the use of exclusion, then these policies would not impact prices much.

To estimate these parameters, I match the model’s prediction of the split of surplus to the observed split of surplus. The observed split of surplus is the hospital’s profits divided by the marginal surplus hospital \(j \) contributes to network \(r \), \((\Pi_{jr}^{MARG}(\mathcal{F}, \mathcal{F}_r\setminus\{j\}, p(\mathcal{F}), K))\). The marginal surplus contains three terms: (1) the surplus the insurer receives with the observed network \((\Pi_r^I(\mathcal{F}, p, K))\) (2) the surplus captured by hospital \(j \), given the observed network \((\Pi_j^H(\mathcal{F}, p, K))\) (3) minus the surplus the insurer would obtain if they made offers to the observed network, but hospital \(j \) (and only hospital \(j \)) deviates, followed by a breakdown \((\Pi_{jr}^{IB}(\mathcal{F}, \mathcal{F}_r\setminus\{j\}, p(\mathcal{F}), K))\).

Formally, the marginal surplus can be written:

\[
\Pi_{jr}^{MARG}(\mathcal{F}, \mathcal{F}_r\setminus\{j\}, p(\mathcal{F}), K) = \Pi_r^I(\mathcal{F}, p, K) + \Pi_j^H(\mathcal{F}, p, K) - \Pi_{jr}^{IB}(\mathcal{F}, \mathcal{F}_r\setminus\{j\}, p(\mathcal{F}), K)
\]

(3.5)

Note that marginal surplus is not a value that I am assuming, but rather this is derived in the appendix.\(^{49}\)

The surplus captured by the insurer, \((\Pi_r^I(\mathcal{F}, p, K))\), is given in Equation 3.4. The surplus captured by hospital \(j \) from insurance company \(r \) is defined as the price that the hospital receives for each service minus the marginal cost of the service, times the number of services the hospital provides. The number of services is defined as the probability of patient \(i \) joining insurer \(r \)’s plan, times the probability of being sick with disease \(d \), times the probability of using hospital \(j \), conditional on having disease \(d \):

\(^{49}\) Due to the linearity of the surplus functions, this is an equivalent way of writing the equation in the appendix. \(\Pi_r^I = \Pi_r - \sum \Pi_{jr}^H \), then I add back in \(\Pi_{jr}^H \) because it is not subtracted off.
\[
\Pi_{jr}^{IB}(\mathcal{F}, p, K) = \sum_i \sum_{d \in D} f_{id} [p_{jd} \Pi_r, K) - mc_{jd}] \sigma_{imjd}(\mathcal{F}) \cdot S_{imr}(premium_i(\mathcal{F}, p, \mathcal{F})
\]

(3.6)

For both hospital and insurer surplus, prices, probabilities of being sick, and premiums are observed in the data. I use estimated, rather than observed, insurer and hospital market shares because the timing of the model suggests prices are negotiated over expected surplus. For now I assume that marginal costs are zero. I plan to follow Ho and Lee (2017) in defining marginal costs using costs reported in the AHA data. Without accounting for costs, my coefficient estimates will be biased to suggest that hospitals have more bargaining power than they would if marginal costs were positive.

I compute the insurer’s profit during breakdown after hospital \(j \) unilaterally deviates from the equilibrium, \(\Pi_{jr}^{IB}(\mathcal{F}, \mathcal{F}_r, \{j\}, p(\mathcal{F}), K) \), for each hospital-insurer pair separately:

\[\Pi_{jr}^{IB}(\mathcal{F}, \mathcal{F}_r, \{j\}, p(\mathcal{F}), K)\]

\[= \sum_i \left[premium_i(\mathcal{F}_r, \{j\}, \mathcal{F}, p) - \sum_{d \in D} \sum_{k \in D \setminus \{j\}} p_{kd} \mathcal{F}_r, \sigma_{imkd}(\mathcal{F}_r, \{j\}) - other\ cost_i \right] \]

\[\times S_{imr}(premium_i(\mathcal{F}_r, \{j\}, \mathcal{F}_r, p), \mathcal{F}_r, \{j\}, \mathcal{F}_r)\]

The breakdown value depends on the premiums, insurer \(r \)'s market share and remaining hospitals’ market shares (from insurer \(r \)'s enrollees) that would occur when hospital \(j \) is omitted from insurer \(r \)'s network but the other hospitals in insurer \(r \)'s network remain. I use the estimates from stages 2-5 of the game to compute these values for the network where hospital \(j \) is excluded. For other plans, I use the observed premiums.\(^{50}\)

Finally, I use the observed prices for the non-deviating hospitals:

\(^{50}\) This is because I assume that plans do not learn about others’ networks until after the premiums
hospitals $i \in \mathcal{F}_r \setminus \{j\}$ agree to prices with the expectation that the network \mathcal{F}_r will be formed. They only learn about the deviation after agreeing to a price. I include \mathcal{F} in $p(\cdot)$ to specify the expectations of the network realization used to form prices.\footnote{Using observed prices is consistent with negotiating a linear price, not a lump-sum transfer. If lump-sum transfers were made, under breakdown, because more patients visit each in-network hospital (due to the IIA property of the Type 1 extreme value error terms) the linear price would need to fall to keep the lump-sum transfer constant.}

That negotiated prices during breakdown and prices negotiated by other hospital-insurer pairs (and hence other insurers’ premiums) all depend on the equilibrium network is the key simplification of simultaneous agreement that makes estimation feasible. Because I only use observed prices, the values $\Pi_{j_{r}}^{MARG}(\mathcal{F}, \mathcal{F}_r \setminus \{j\}, p(\mathcal{F}), K)$ and $\Pi_{j_{r}}^{H}(\mathcal{F}, p, K)$ can be computed in a separate step from the estimation of bargaining parameters.

Now I discuss the split of surplus predicted by the model. In Appendix B.2, I derive the transfer to the hospital, which is the generalized version of Proposition 1 (which gave the split of surplus). The equation includes multiple insurers, and a more general form for the probability hospital j is chosen to negotiate after deviating and is multiplied by the marginal surplus value:

$$x_{j_{r}}(\mathcal{F}; \rho_{r}^{H}, \rho_{r}^I, \theta) = \Pi_{j_{r}}^{MARG}(\mathcal{F}, \mathcal{F}_r \setminus \{j\}, p(\mathcal{F}), K) \cdot \frac{\rho_{r}^{I} \cdot (1 - \rho_{j_{r}}^{H}) \cdot \mathbb{P}_{r}(j \in \mathcal{F}_{r_{2}}|\mathcal{F}_{r_{1}} \setminus \{j\})}{1 - (1 - \rho_{j_{r}}^{H}) \cdot (1 - \rho_{r}^{I}) \cdot \mathbb{P}_{r}(j \in \mathcal{F}_{r_{2}}|\mathcal{F}_{r_{1}} \setminus \{j\})}$$

(3.7)

$\mathbb{P}_{r}(j \in \mathcal{F}_{r_{2}}|\mathcal{F}_{r_{1}} \setminus \{j\})$ represents the probability that hospital j is chosen to negotiate in period $t = 2$ (resulting in the network of $\mathcal{F}_{r_{2}}$), conditional on no breakdown, after deviating and rejecting an offer during period $t = 1$. ρ_{r}^{I} is identified by within-hospital across-insurer variation in prices. For example, do some insurance companies negotiate lower prices at all hospitals? ρ_{j}^{H} is identified by within-insurer across-
hospital variation, conditional on those hospital’s marginal surplus. For example, do certain hospitals negotiate higher prices across all insurance companies, conditional on the marginal surplus they provide? That negotiated prices are not included in the estimation of other stages helps to clarify the variation in the data that identifies these parameters.

One difference between my model and the Nash-in-Nash model is that hospitals which are excluded from the network may have an effect on hospitals who are included. Town and Vistnes (2001) describes why excluded hospitals may affect a hospital’s bargaining leverage: “With HMOs contracting with multiple hospitals to form networks, a hospital’s bargaining leverage depends both on its own characteristics and on the characteristics of other hospitals inside and outside the network. In particular, if the HMO’s best alternative to contracting with a high-priced hospital is to replace that hospital with another, the high-priced hospital’s bargaining leverage depends on the hospital’s incremental value to the network relative to other hospitals that could replace it.” This is incorporated into my theoretical model through the probability of being picked after deviating. If hospital \(j \)'s probability of being picked in the period after deviating is affected by how many (or which) hospitals are excluded, then that would effect the continuation value of hospital \(j \).

However, the probability of being chosen to make an offer after deviating is not observable, since by definition it does not occur in equilibrium. This may require a more complete model of network formation which might depend on factors like insurers’ interactions with hospitals in other markets (e.g., does an insurer contract with a hospital in a plan it offers in its employer-sponsored insurance or its Medicare Advantage line of business?) and dynamic factors (e.g., did its network include that hospital in previous years?). While an interesting avenue of research, I consider this outside the scope of this paper.

The assumption of hospitals being chosen with equal probability after deviating is
arbitrary and likely to be an unrealistic measure of the competitive effect of excluded hospitals. Therefore, in some specifications, I include a reduced-form parameter, θ, which captures the correlation between the substitutability of excluded hospitals and the negotiated prices of hospitals in the network. I also present a specification without this parameter, since it is not structural parameter.

To measure the substitutability of excluded hospitals, I calculate the number of “acceptable replacement” hospitals that are excluded from the observed network but would provide sufficient surplus to be able to reach an agreement with the insurer after a hospital in the observed network deviates. For example, in a market where hospitals A and B are within one mile of each other and hospital C is fifty miles away, an insurer may only need one of A and B, but require C. Suppose the insurer selects $\{A, C\}$; then if C deviates, it will have probability one of being picked again, while A has a one-half probability of being picked because B is an acceptable replacement for it.

Given the number of acceptable replacement hospitals, I parameterize the probability of hospital j being selected after deviating with insurer r as follows:

$$
\hat{P}_r(j \in F_{r2}|F_{r1}\setminus\{j\}; \rho^H, \rho^I, \theta) = \exp(\theta \cdot \log(P_r(j \in F_{r2}|F_{r1}\setminus\{j\}; \rho^H, \rho^I))
$$

where $P_r(j \in K_2|K_1\setminus\{j\}; \rho^H, \rho^I)$ represents the equal probability chance of being picked to offer after deviating, which is one divided by the number of acceptable hospitals plus one for hospital j itself. The advantage of this functional form is, if there are no replacement hospitals (i.e., if this is a broad-network), then $\hat{P} = 1$, because $P = 1$ (and $\log(P) = 0$). If $P < 1$ and $\theta = 0$, then $\hat{P} = 1$ and there is no correlation between negotiated price and the number of excluded hospitals. If $P < 1$ and $\theta = 1$, then $\hat{P} = P$, which is consistent with the naive assumption of equal probability among acceptable hospitals. $\theta \in (0, 1)$ implies a correlation between these two extremes.
θ captures the reduced-form effect of having excluded hospitals that are close substitutes. θ is identified by variation in the number of acceptable replacement hospitals which may vary across hospitals within a network, as in the case of hospitals $\{A, C\}$ given above. That is, this parameter is identified by variation in each in-network hospital’s characteristics and how they compare to excluded hospitals, conditional on the observed networks. To test the sensitivity of this parameter, I present four parameterizations. (1) I do not include this parameter. (2) I include one θ which does not vary across hospital-insurer pairs. (3) I include an insurer-specific θ_r. (4) I include a hospital-specific θ_j. Including an insurer-specific θ_r might be preferred if certain insurers can use the threat of exclusion more effectively than others. For example, if they contract with a hospital in another market, such as the employer-sponsored insurance market, the threat of exclusion may carry extra weight or other hospitals may be worse substitutes than implied by the model. Likewise, a hospital-specific θ_j may be preferred if certain hospitals are more difficult to exclude. For example, a star hospital may not be a close substitute for others. The reduced-form parameter would capture these effects. I leave the details of computing the number of acceptable replacement hospitals to Appendix B.3.

To estimate this model once I have computed $\hat{P}_r(j \in K_\tau2\{j\}; \rho^H, \rho^I, \theta)$, for that draw of parameters, I can compute the transfer implied by the model:

$$
\frac{x_{jr}(\mathcal{F}; \rho^H, \rho^I, \theta)}{\Pi_j^{\text{MARG}}(\mathcal{F}, \mathcal{F}_r\{j\}, p(\mathcal{F}), K)}
$$

where $x_{jr}(\mathcal{F}; \rho^H, \rho^I, \theta)$ is given by Equation 3.7 (except using \hat{P}). I find the set of parameter values ρ^H, ρ^I, θ that minimize the distance between the model-predicted

\[\text{52 I cannot include a } \theta_{jr} \text{ because the variation needed to identify this parameter is based on either within-hospital or within-insurer variation in the number of acceptable replacement hospitals.}\]
split of surplus and the observed split of surplus given by:

\[
\frac{\Pi_{jr}^H(\mathcal{F})}{\Pi_{jr}^{MARG}(\mathcal{F}, \mathcal{F}_{\mathcal{F} \setminus \{j\}}, p(\mathcal{F}), K)}
\]

3.6 Results

This section presents the estimation results of my model. I show that consumers value closer hospitals, broader networks, and lower premiums, as expected. The main point of these results are that they are all similar to those in the literature, which facilitates the comparison of the bargaining models. Then I discuss the estimation results for the bargaining parameters, which are the focus of this paper. I present results for the model with and without allowing for exclusion. I use these results in the counterfactual and use the counterfactual to aid the interpretation of the bargaining parameters.

3.6.1 Demand Estimation Results

In Stage 5, consumers who got sick choose which hospital to attend. Table 3.5 shows the results of the hospital demand regressions. The first column does not include age-hospital interactions, while the second does. In both, the coefficient on distance in miles is roughly \(-0.016\). This implies an elasticity of \(-0.16\), meaning that a one-percent increase in distance to a hospital leads to a .16 percent lower chance of attending that hospital. The negative coefficient on distance is common in the literature, for example Town and Vistnes (2001), Prager (2016), and Ho and Lee (2017) all find negative coefficients on distance.

In Stage 4, Nature decides which consumers get sick and what conditions they get. I determine the probability of being treated for condition \(d\) for a given gender-age group. Table 3.6 presents the probability of an individual being treated for condition \(d\). Injuries, diseases of the musculoskeletal system, and neoplasms were the most
common conditions. Roughly 2.25 percent of the sample had an outpatient visit in 2014 for an injury, and 1 percent for neoplasms. Table 3.7 presents the probability of having a hospital visit by age category. The probability of having a condition is rising in the age of the patient. A person age 56-65 has an average of .2 hospital visits.

In Stage 3, consumers choose their health plans, based on the premiums, networks, and other plan characteristics. I present results for the willingness to pay (WTP) for the networks first, since it was estimated separately. Table 3.8 presents summary statistics on the WTP measure. The first row shows the mean WTP for all plans, then breaks out WTP for narrow and broad-network plans. Narrow-network plans have lower WTP than broad-network plans since they have fewer hospitals. The later rows show WTP by age group. Older patients have higher WTP because they are more likely to get sick, and, conditional on getting sick, they are more likely to use popular hospitals.

Table 3.9 presents the results for the WTP for the network. The coefficient is a statistically significant .5, which corresponds to an elasticity of .09. This coefficient is of the expected sign, which Prager (2016), Ho and Lee (2017), and Ericson and Stanc (2015) find as well. Since I did not estimate a copay elasticity, the interpretation differs from the other papers in the literature, as I do not rescale the WTP measure into dollars.

Table 3.10 presents the insurer-specific premium sensitivities. The second column provides an indicator for whether that plan had a broad or narrow network. The third column presents the parameter estimates, that are all between −.0009 and −.00025. I also present elasticities because the parameter estimates are difficult to interpret. Each consumer type (defined by their age-gender-county) will have their

\[^{53}\] Neoplasms are abnormal growths of tissue. Much of the spending in this category is associated with cancer.
own elasticity since the market share of each plan varies by type. The fourth column presents the unweighted across-types mean market share-premium elasticity for each insurer. The market share-premium elasticities are all between -1.5 and -3. These results in line with the literature, Ho and Lee (2017) find -1.2, Cutler and Reber (1998) find -2 and Prager (2016) finds from -0.4 to -0.6. The elasticities may be larger than others in the literature due to fiercer competition in this market; the Colorado market has more insurers than any of the other papers cited.

3.6.2 Bargaining Estimation Results

Table 3.11 and Table 3.12 list the generic bargaining parameter results for each hospital and insurer, respectively. The specification I report uses the insurer-specific θ_r, though the qualitative results in this section do not change based on the specification I use. In each table, I present the model assuming the networks are endogenously and exogenously formed. Assuming the networks are exogenous in this case is equivalent to setting $\hat{P} = 1$.

Because the model assumed the generic bargaining parameters represent subjective beliefs about the risk of breakdown, larger values correspond to less bargaining power. The level of the parameters are difficult to interpret, transfers depend on an insurer’s parameter relative to a hospital’s parameter. In both tables when exclusion is assumed endogenous the generic bargaining parameters are larger, but for narrow-network plans the magnitude of that difference is much larger than for broad-network plans or hospitals. The model with exogenous exclusion overstates narrow-network plans’ relative bargaining power, because a narrow-network plan’s use of the threat of exclusion is accounted for in its generic bargaining parameter; their strategic choice is being treated as a characteristic of the plan.

To aide the interpretation of the generic bargaining parameters, the fifth and sixth columns of Table 3.12 present the split of surplus assuming $\hat{P} = 1$ for both models. I
use hospital 6 and plug the parameters into Equation 3.7 (and set $\Pi^{MARG}_{jr} = 1$). This shows how the endogenous and exogenous models differ in how they split surplus, as only determined by the generic bargaining parameters. The broad-network plans have similar splits of surplus across both models, while the narrow-network plans have much larger transfers for the model with endogenous networks.

Table 3.13 presents the results for the insurer-specific θ_r values. I still need to compute standard errors. All the values are closer to .5 than 0 or 1. If these values are statistically different than 0, that would suggest that insurer-hospital pairs negotiate lower prices when there are more acceptable replacement hospitals excluded from that insurer’s network. This would provide some evidence of a negative correlation between the number of substitutable hospitals and negotiated prices. If the parameter estimates are statistically different than 1, that would suggest that equal probability of choosing replacement hospitals is too extreme. To interpret the coefficients, consider the case with three acceptable replacement hospitals. Including the deviating hospital implies an equiprobability value of $P = .25$. When $\theta = .5$, the implied probability would be $\hat{P} = .75$.54 I use the counterfactual analysis to interpret the magnitude of this effect.

3.7 Counterfactuals

Throughout this paper I have argued that exclusion is an important aspect of competition in health care markets. In this section I show how incorporating exclusion into the model can produce different counterfactual estimates than the Nash-in-Nash model. The counterfactual I compute is that there is a law that restricts exclusion, so each insurer chooses to have a broad network. I assume that breakdown under the

54 $\hat{P} = exp(.5 \cdot log(.25))$.

95
counterfactual is to simply have one deviating player be excluded. Unlike in estimation, this requires computing counterfactual prices. I compute new prices, then update the surplus values and repeat in a fixed-point algorithm. I do this for both endogenous and exogenous networks. In the counterfactual, $\hat{P} = 1$ because there are no longer acceptable replacement hospitals.

Table 3.14 presents the ratio of prices before and after the law, at hospitals included in the observed networks. These results do not include the effect of shifting patients to different hospitals. That is, the results should be interpreted as the mean change in price for the same services at the same hospital, similar to the reduced-form analysis. In the model where the networks are assumed exogenous, if the marginal surplus is constant, the prices will remain constant; the generic bargaining parameters are held fixed, while the other two determinants of prices, the threat of exclusion and the marginal surplus, are assumed constant. However, the marginal surplus declines in the counterfactual, because the insurer is distributing its patients across more hospitals. In the counterfactual the model with exogenous networks has 36 percent lower prices.

In the model with endogenous networks, while the marginal surplus falls, the insurers also lose the bargaining leverage due to exclusion in the counterfactual. The difference between the columns demonstrates the magnitudes of the effect of bargaining leverage. The first row presents the case that $\theta = 1$, which assumes that hospitals are chosen with equiprobability by Nature. In this case the endogenous exclusion result suggests prices will rise by 110 percent due to the law. The second row shows when there is one common θ for all hospitals and insurers. The third and fourth rows show when there are insurer- and hospital-specific θ values. All three

55 If exclusion is not allowed, then an insurer might not be allowed to market their plan under breakdown. However, this makes marginal surplus very large for each negotiation (as the hospitals can destroy all of the insurer’s profit). This has a large effect on broad-network plans, which is an unrealistic feature of that counterfactual and distracts from the analysis of bargaining power.
rows show prices rising roughly 50 percent under the counterfactual law. I believe these results are overstated because I have not yet accounted for hospital marginal costs. This overstates hospital bargaining power, because they appear to have larger profits. Removing the threat of exclusion increases prices for hospitals with a lot of bargaining power more than those with little bargaining power who would not negotiate high prices even without exclusion.

To summarize, I have showed that restricting insurers’ ability to exclude hospitals may lead to higher negotiated prices, which is in line with conventional wisdom. I am still working on a full welfare analysis, but the results for negotiated prices suggest that restricting insurers’ ability to exclude may raise premiums for consumers and potentially hurt welfare, in some settings.

3.8 Limitations and Extensions

I believe the main limitation of this paper is how it accounts for the benefits of a network adequacy policy (in the welfare analysis I plan to provide). Regulators worry that consumers, not knowing which conditions they will get in the following year, will not account for these diseases when choosing a plan. A thorough welfare analysis of network adequacy policy should account for the fact that consumers often do not search over providers, do not account for uncertainty in the way my model assumes, and provider lists are often wrong, difficult to find, or misleading. Indeed, the literature on consumer choice of health insurance has found considerable evidence of consumer inconsistencies, inertia, inattention, and other “behavioral hazards”. Without these features, restricting plan choice is difficult to justify, given that broad-network plans are also available in my setting.

56 Haeder et al. (2016) provide evidence of misleading physician network lists.

External validity is also a concern for this study. While my results are consistent with the health policy literature, which has argued that limiting an insurer’s ability to exclude may increase health care costs, the magnitude of the effect depends on the characteristics of each market. Markets vary in the amount of insurer competition, hospital competition, and bargaining power between insurers and hospitals. Each of these factors will effect the costs of a network adequacy policy. In 2014, Denver’s non-group market was especially competitive, there were 12 insurers present. Furthermore, in rural areas with fewer hospitals exclusion may not be possible.

Finally, I abstract away from selection in this paper to focus on the contribution to the bargaining model used in the hospital-insurer bargaining literature. However, adverse selection may be a concern for policy regarding networks. For example, Shepard (2016) provides evidence that networks may also be used to avoid high cost patients. In a follow-up paper Liebman and Panhans (2016) explores the interaction between hospital-insurer bargaining and adverse selection.

3.9 Conclusion

Health care spending accounts for roughly 17 percent of gross domestic product in the United States. Because of this, there is considerable policy interest in cost control. One aspect of cost control used by insurance companies is to form networks. While there are a number of reasons networks reduce insurance costs, I focus on the role of bargaining leverage. I present empirical evidence consistent with this story. Then, I model the role of exclusion by using the intuitive idea that the threat of exclusion limits a hospital’s ability to ask for higher prices. I use this model to evaluate a counterfactual network adequacy law and find that consistent with the health policy community’s warnings, these laws may increase costs.

This paper also shows how failing to incorporate the threat of exclusion into the Nash-in-Nash bargaining framework can be problematic. The Nash-in-Nash bargain-
ing model is very general and allows for rich models of bilateral oligopoly that can be feasibly estimated. Because of this, it is growing in popularity, and it has been used to model many different markets. The standard Nash-in-Nash model may be reasonable in other settings, where the threat of exclusion is not an institutional feature of the market or excluded firms are not good substitutes for included firms. However, in cases like hospital-insurer bargaining, where the threat of exclusion is an institutional feature of the market, my model shows that it may be important to account for the networks and the bargaining leverage they provide.

Table 3.1: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow</td>
<td>9</td>
<td>0.56</td>
<td>0.53</td>
</tr>
<tr>
<td>Hospitals (if Narrow)</td>
<td>5</td>
<td>5.60</td>
<td>1.82</td>
</tr>
<tr>
<td>Premiums (Monthly)</td>
<td>9</td>
<td>323.22</td>
<td>48.18</td>
</tr>
<tr>
<td>Enrolled In Narrow</td>
<td>131980</td>
<td>0.71</td>
<td>0.45</td>
</tr>
<tr>
<td>Age</td>
<td>131980</td>
<td>37.18</td>
<td>18.66</td>
</tr>
<tr>
<td>Female</td>
<td>131980</td>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>Has Claim</td>
<td>131980</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>Payment (All Visits)</td>
<td>17124</td>
<td>1736</td>
<td>4178</td>
</tr>
<tr>
<td>Payment (In Network Hosp)</td>
<td>12472</td>
<td>1628</td>
<td>3993</td>
</tr>
<tr>
<td>Payment (Narrow Networks)</td>
<td>8382</td>
<td>1543</td>
<td>3129</td>
</tr>
<tr>
<td>Payment (All Claims)</td>
<td>65582</td>
<td>453</td>
<td>1544</td>
</tr>
<tr>
<td>Payment (In Network Hosp)</td>
<td>47814</td>
<td>424</td>
<td>1520</td>
</tr>
<tr>
<td>Payment (Narrow Networks)</td>
<td>35195</td>
<td>367</td>
<td>1091</td>
</tr>
</tbody>
</table>

The first panel presents plan-level data and only includes plans I was able to match with the CO APCD data. Premiums and network data are from the CO Department of Insurance. All subsequent data are from the CO APCD. The second, third, and fourth panel present data at the enrollee, visit, and claim level, respectively. Visits and claims are only from outpatient hospital settings.
Table 3.2: Correlations between Network Size and Prices

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Indicator</td>
<td>-0.236***</td>
<td>-0.266***</td>
<td>-0.289**</td>
<td>-0.111</td>
</tr>
<tr>
<td></td>
<td>(0.0396)</td>
<td>(0.0465)</td>
<td>(0.120)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Observations</td>
<td>47814</td>
<td>47814</td>
<td>47814</td>
<td>65582</td>
</tr>
<tr>
<td># Networks</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Hospital Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Service Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>In-Network Only</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Standard errors, in parentheses, are clustered by network. The unit of observation is a claim line. The dependent variable is log price per claim. Narrow indicates that the network includes less than 70% of hospitals in my sample. All columns have service fixed effects. Columns (1) and (2) have fixed effects for the hospital and vary the definition of service (CPT4 code versus CPT4 code and modifier). Column (3) omits the hospital fixed effect. Column (4) includes out-of-network claims.

Table 3.3: Correlations between Network Size and Prices

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Hospitals</td>
<td>0.0491**</td>
<td>0.0508**</td>
<td>0.0782**</td>
<td>-0.0774***</td>
</tr>
<tr>
<td></td>
<td>(0.0175)</td>
<td>(0.0167)</td>
<td>(0.0183)</td>
<td>(0.0155)</td>
</tr>
<tr>
<td>Observations</td>
<td>35195</td>
<td>35195</td>
<td>35195</td>
<td>52963</td>
</tr>
<tr>
<td># Networks</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Hospital Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Service Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>In-Network Only</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Standard errors, in parentheses, are clustered by network. The unit of observation is a claim line. The dependent variable is log price per claim. Hospitals represent the number of hospitals in network. Only narrow-network plans were included in this regression. All columns have service fixed effects. Columns (1) and (2) have fixed effects for the hospital and vary the definition of service (CPT4 code versus CPT4 code and modifier). Column (3) omits the hospital fixed effect. Column (4) includes out-of-network claims.
Table 3.4: Correlations between Network Size and Premiums

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Indicator</td>
<td>-0.119</td>
<td>-0.165</td>
<td>(0.0967)</td>
<td>(0.101)</td>
</tr>
<tr>
<td>Number of Hospitals</td>
<td>0.0163</td>
<td>0.0218*</td>
<td>(0.00992)</td>
<td>(0.00946)</td>
</tr>
<tr>
<td>Silver Indicator</td>
<td>0.166***</td>
<td>0.166***</td>
<td>(0.0180)</td>
<td>(0.0180)</td>
</tr>
<tr>
<td>Gold Indicator</td>
<td>0.316***</td>
<td>0.316***</td>
<td>(0.0639)</td>
<td>(0.0627)</td>
</tr>
<tr>
<td>Observations</td>
<td>9</td>
<td>9</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, *** p < 0.01

Standard errors, in parentheses, are clustered by network. The dependent variable is the monthly premium for a 40-year-old non-smoker. The unit of observation is a plan-metal value. Metal levels are from the CO Department of Insurance and are not available in the CO APCD data. Narrow indicates that the network includes less than 70% of hospitals in my sample. Columns (1) and (2) only use the silver plan premium, which matches the rest of the analysis. Columns (3) and (4) include bronze- and gold-level premiums, with controls for the metal level. This regression only includes data from the Denver, CO rating area.
Table 3.5: Demand for Hospitals

<table>
<thead>
<tr>
<th>Distance (Miles)</th>
<th>-0.142***</th>
<th>-0.144***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.00196)</td>
<td>(0.00200)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease-Hospital FE</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-Hospital FE</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Mean Elasticity	-1.453	-1.479
Std Dev Elasticity	0.922	0.938
Observations	14441	14441

Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Standard errors are in parentheses. The unit of observation is a county-disease-age-sex-hospital. The dependent variable is the difference in the log market share of each hospital and the log market share of the outside option. Both columns include disease-hospital fixed effects. Column (2) includes age-hospital fixed effects.
Table 3.6: Prevalence of Condition Categories

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certain Conditions Originating in the Perinatal Period</td>
<td>0.01</td>
</tr>
<tr>
<td>Complications from Pregnancy, Childbirth and the Puerperium</td>
<td>0.29</td>
</tr>
<tr>
<td>Congenital Anomalies</td>
<td>0.05</td>
</tr>
<tr>
<td>Diseases of Genitourinary System</td>
<td>0.88</td>
</tr>
<tr>
<td>Diseases of the Blood and Blood-forming Organs</td>
<td>0.10</td>
</tr>
<tr>
<td>Diseases of the Circulatory System</td>
<td>0.49</td>
</tr>
<tr>
<td>Diseases of the Digestive System</td>
<td>0.69</td>
</tr>
<tr>
<td>Diseases of the Musculoskeletal System</td>
<td>1.36</td>
</tr>
<tr>
<td>Diseases of the Nervous System</td>
<td>0.63</td>
</tr>
<tr>
<td>Diseases of the Respiratory System</td>
<td>0.38</td>
</tr>
<tr>
<td>Diseases of the Skin and Subcutaneous Tissue</td>
<td>0.16</td>
</tr>
<tr>
<td>Endocrine, Nutritional and Metabolic Diseases</td>
<td>0.34</td>
</tr>
<tr>
<td>Infectious and Parasitic Diseases</td>
<td>0.13</td>
</tr>
<tr>
<td>Injury and Poisoning</td>
<td>2.25</td>
</tr>
<tr>
<td>Mental Illness</td>
<td>0.15</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>1.00</td>
</tr>
<tr>
<td>Residual Codes, Unclassified</td>
<td>2.93</td>
</tr>
<tr>
<td>Symptoms, Signs and Other Ill-defined Conditions</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Conditions are defined as CCS codes. Prevalence is the number of visits per enrollee. Numbers are percentages.

Table 3.7: Prevalence of Conditions by Age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 0-18</td>
<td>2.67</td>
</tr>
<tr>
<td>Age 19-25</td>
<td>7.62</td>
</tr>
<tr>
<td>Age 26-35</td>
<td>11.18</td>
</tr>
<tr>
<td>Age 36-45</td>
<td>14.58</td>
</tr>
<tr>
<td>Age 46-55</td>
<td>16.87</td>
</tr>
<tr>
<td>Age 56-65</td>
<td>21.50</td>
</tr>
<tr>
<td>Total</td>
<td>12.40</td>
</tr>
</tbody>
</table>

This table displays the average number of visits per enrollee in each age group. Numbers are percentages.
Table 3.8: Summary Statistics for WTP for Networks

<table>
<thead>
<tr>
<th>Table 3.8: Summary Statistics for WTP for Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>mean</td>
</tr>
<tr>
<td>All Enrollees</td>
</tr>
<tr>
<td>Age 0-18</td>
</tr>
<tr>
<td>Age 19-25</td>
</tr>
<tr>
<td>Age 26-35</td>
</tr>
<tr>
<td>Age 36-45</td>
</tr>
<tr>
<td>Age 46-55</td>
</tr>
<tr>
<td>Age 56-65</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

The unit of observation is age-gender-county-network. Summary statistics are unweighted means, standard deviations of WTP measure.

Table 3.9: Demand for Networks

<table>
<thead>
<tr>
<th>Table 3.9: Demand for Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of Network</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed Effect</th>
<th>Network</th>
<th>County-Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Elasticity</td>
<td>0.0893</td>
<td>0.200</td>
</tr>
<tr>
<td>Std Dev Elasticity</td>
<td>0.0652</td>
<td>0.146</td>
</tr>
<tr>
<td>Observations</td>
<td>131980</td>
<td>131980</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

The unit of observation is age-gender-county-network. Dependent variable is the log of aggregate market share minus log of number uninsured. OLS regression includes county and network fixed effects.
Table 3.10: Premium Sensitivity

<table>
<thead>
<tr>
<th>Network Id</th>
<th>Narrow Ind</th>
<th>α_{1r}</th>
<th>Mean Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-0.00032</td>
<td>-1.88</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-0.00028</td>
<td>-1.70</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-0.00038</td>
<td>-2.12</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-0.00033</td>
<td>-1.92</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-0.00027</td>
<td>-1.78</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-0.00062</td>
<td>-2.76</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-0.00086</td>
<td>-2.97</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.00029</td>
<td>-1.85</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.00043</td>
<td>-1.93</td>
</tr>
</tbody>
</table>

The unit of observation is age-gender-county-network. Plan specific premium sensitivities are determined using first-order condition for optimal premium setting, then solving for α_{1r}, the premium-sensitivity parameter. Observed premiums and prices are used. Estimated, rather than observed, hospital and plan market shares are used. First four rows correspond to broad-network plans, last five narrow-network plans. Elasticities vary by age-gender-county because the market shares vary, elasticity column presents the unweighted mean across each type.

Table 3.11: Hospital-Specific Bargaining Parameters, ρ^H_j

<table>
<thead>
<tr>
<th>Hospital Id</th>
<th>Endogenous Exclusion</th>
<th>Exogenous Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.93</td>
<td>0.87</td>
</tr>
<tr>
<td>2</td>
<td>0.84</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>0.60</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>0.84</td>
<td>0.71</td>
</tr>
<tr>
<td>5</td>
<td>0.83</td>
<td>0.70</td>
</tr>
<tr>
<td>6</td>
<td>0.50</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>0.58</td>
<td>0.42</td>
</tr>
<tr>
<td>9</td>
<td>0.61</td>
<td>0.49</td>
</tr>
<tr>
<td>10</td>
<td>0.68</td>
<td>0.51</td>
</tr>
<tr>
<td>11</td>
<td>0.49</td>
<td>0.30</td>
</tr>
<tr>
<td>12</td>
<td>0.66</td>
<td>0.50</td>
</tr>
<tr>
<td>13</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>14</td>
<td>0.65</td>
<td>0.48</td>
</tr>
</tbody>
</table>

The second and third columns are hospital-specific generic bargaining parameters, ρ^H_j. Smaller values mean more bargaining power (smaller belief about subjective probability of breakdown). Interpretation depends on value relative to insurer bargaining parameter. This specification allows the θ_r to vary by insurer. The exogenous exclusion model sets $P = 1$.

105
Table 3.12: Insurer-Specific Bargaining Parameters, ρ^I

<table>
<thead>
<tr>
<th>Network Id</th>
<th>Narrow Ind.</th>
<th>\hat{P}</th>
<th>$P = 1$</th>
<th>\hat{P}</th>
<th>$P = 1$</th>
<th>Split</th>
<th>Split</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.59</td>
<td>0.29</td>
<td>0.37</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.10</td>
<td>0.02</td>
<td>0.09</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.29</td>
<td>0.16</td>
<td>0.22</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.12</td>
<td>0.07</td>
<td>0.10</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.74</td>
<td>0.14</td>
<td>0.42</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.81</td>
<td>0.20</td>
<td>0.44</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.72</td>
<td>0.04</td>
<td>0.41</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.35</td>
<td>0.10</td>
<td>0.26</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.74</td>
<td>0.06</td>
<td>0.42</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The third and fourth columns are insurer-specific generic bargaining parameters, ρ^I. Smaller values mean more bargaining power (smaller belief about subjective probability of breakdown). This specification allows the θ_r to vary by insurer. The exogenous exclusion model sets $\hat{P} = 1$. The fifth and sixth columns display the split of surplus, given by Equation 3.7, with hospital 6 to demonstrate how the parameters interact.

Table 3.13: Insurer-Specific Exclusion Parameters θ_r

<table>
<thead>
<tr>
<th>Network Id</th>
<th>Parameter Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>0.56</td>
</tr>
<tr>
<td>8</td>
<td>0.67</td>
</tr>
<tr>
<td>9</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Larger values correspond to stronger (negative) relationship between number of acceptable replacement hospitals and hospital’s share of surplus. 0 would correspond to no correlation, while 1 would correspond to equiprobability of a deviating hospital being picked.
Table 3.14: Counterfactual Negotiated Prices

<table>
<thead>
<tr>
<th>Type of Variation</th>
<th>With Exclusion</th>
<th>Nash-in-Nash</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = 1$</td>
<td>1.56</td>
<td>0.62</td>
</tr>
<tr>
<td>One θ</td>
<td>0.99</td>
<td>0.62</td>
</tr>
<tr>
<td>θ_r by Ins.</td>
<td>1.27</td>
<td>0.62</td>
</tr>
<tr>
<td>θ_j by Hosp.</td>
<td>1.20</td>
<td>0.62</td>
</tr>
</tbody>
</table>

This table reports the results of different counterfactual simulations where exclusion is not allowed. Each row presents a different set of θ parameters which capture the relationship between number of acceptable replacement hospitals and hospital’s share of surplus. The first row assumes $\theta = 1$ which corresponds to assuming equiprobability of a deviating hospital being picked. The second row allows for one θ value. The third and fourth rows allow the θ to vary by insurer and hospital, respectively. Breakdown has one hospital dropped from the network. The exogenous exclusion model sets $\mathbb{P} = 1$.

107
Hospital-Insurer Bargaining in Selection Markets

4.1 Introduction

Hospitals are one of the most active industries for mergers and acquisitions. More than 1700 hospitals were involved in acquisitions between 1994 and 2000 Cuellar and Gertler (2003). At the same time, many local hospital markets have come to be dominated by two to three large hospital systems (Moriya et al., 2010). Vogt and Town (2006) argue that from 1990 to 2003 the HHI for the market increased by fifty percent for typical person living in a metropolitan statistical area. A number of studies argue that consolidation has led to large increases in hospital prices Vogt and Town (2006). There has also been substantial concern about the impact of hospital and physician consolidation on prices, quality and ultimately health insurance premiums and coverage FTC (2004).

The concerns about premium growth is exacerbated by the Affordable Care Act where much of the coverage is purchased in a marketplace setting, which, unlike employer sponsored insurance requires consumers to pay most of the premiums. The concern this paper raises is that rising premiums could lead relatively healthy con-
sumers to decide against purchasing insurance, raising premiums for other consumers. Indeed, we argue standard merger analyses may understate the welfare loss due to mergers in markets with adverse selection.

A typical merger analysis seeks to quantify the anti-competitive effects of a merger. For example, do hospitals gain more bargaining power by merging? However, in a market with adverse selection, a merger may also effect welfare by changing the pool of patients who are insured. We present a simple model with the following intuition: if a merger leads to hospitals to negotiate higher prices, this may lead to higher premiums, and the healthiest consumers being priced out of the market. This may raise premiums even more. Therefore, a hospital merger may also have welfare consequences through the channel of adverse selection. This has policy consequences as our paper suggests anti-trust policy should be tighter in more adversely selected markets.

Ultimately, the degree to which welfare loss is understated depends on how selected the market is (i.e. are those that drop coverage much sicker or only somewhat sicker than the pre-merger risk pool) and consumers’ premium sensitivities. The difficulty in assessing the welfare loss however is that price effects and selection occur in different markets. In the upstream market hospitals set higher prices in their negotiations with insurers. While adverse selection occurs in the downstream market where insurers make decisions over what premiums to charge. We use the Nash-in-Nash bargaining model, proposed by Horn and Wolinsky (1988) to specify a model which takes into account the bilateral oligopoly structure of the market. This is similar to Gowrisankaran et al. (2014) and Ho and Lee (2017). However, to our knowledge, this is the first paper to account for the vertical structure of the industry while taking adverse selection into account.

To compute the welfare effects, we estimate demand for hospitals and insurance, similar to Capps et al. (2003). To incorporate selection we include measures of health
status in the previous year. We argue that due to the guaranteed issue regulations in the Affordable Care Act that, while patients have private information about their health status, insurers may not price on previous years’ health status, which is a first order determinant of future costs. Therefore, our use of observed health status captures much of the role of selection. This is a similar argument to Finkelstein and Poterba (2014) which argues that selection can be estimated on observables which are not used in pricing. We then estimate the Nash-in-Nash bargaining model using these estimates of demand.

We show that without accounting for selection that star hospitals have under-stated bargaining parameters, plans will offer those hospitals less if they drive sick patients to their services, as in (Shepard, 2016). This is accounted for in the hospital bargaining parameter since the surplus function ignores the value. We then use our estimates to simulate a merger, both using estimates which account for adverse selection and estimates that do not.

4.2 Literature Review

This paper contributes to a growing literature on the role of market structure on adverse selection. It is most closely related to Mahoney and Weyl (2016) who show that a monopolist insurer exacerbates the welfare loss due to selection. Similar to us, if a monopolist insurer charges supracompetitive premiums that may lead the healthiest consumers to leave the market. Our paper incorporates a role for upstream markups to also lead to supracompetitive premiums, through markups to hospitals rather than insurers.

Our paper is also related to Cutler and Reber (1998), Bundorf et al. (2012), Tebaldi (2016), and Lustig (2010) who empirically examine the role of adverse selection and imperfect competition, though without necessarily examining how one exacerbates the other. Shepard (2016) examines whether high cost hospitals lead to
selection.

This paper is also related to a growing literature on hospital-insurer bargaining. Gowrisankaran et al. (2014) shows that a model of bargaining is necessary is simulating hospital mergers since assuming hospitals have price setting power would imply hospitals have negative marginal costs when estimating hospital profit functions. Our paper is more similar to Ho and Lee (2017) in that our empirical setting takes place in a insurance marketplace rather than using the employer sponsored market. Our paper builds on this literature by being the first to incorporate adverse selection into a model of Nash-in-Nash hospital-insurer bargaining.

4.3 Theory

We demonstrate the intuition for the model by considering a competitive insurance market with N consumers. We show that if there is adverse selection in the market that this will exacerbate the welfare loss due to supracompetitive pricing. To clarify, we define adverse selection as sicker patients being more likely to purchase insurance or purchase more generous insurance. Let consumers vary by their expected medical costs net of markup, ν, and an idiosyncratic value of insurance, ϵ. Let r be a percentage markup for each unit of medical care changed by provider, so expected medical costs are given by $\nu_i \cdot r$. I model linear utility functions, where we can think of the utility functions as being an approximation to a model in which ν represents the expected costs of a consumer and ϵ represents their degree of risk aversion. The utility for consumer i when they have purchased insurance is given by:

$$U^I_i = -\text{premium} + \epsilon_i$$

When consumer i is uninsured, they are liable for their medical costs. And the
utility when they do not have insurance is given by:

\[U_i^U = -\nu_i \cdot r \]

A consumer signs up for insurance if their utility from being insured is greater than being uninsured. Therefore demand is given by:

\[D = \sum_i \mathbb{1}(-\text{premium} + \epsilon_i > -\nu_i \cdot r) \]

We assume that \(\epsilon \sim Unif[-.5,.5] \). Premiums will be solved for in equilibrium and markups and the distribution of \(\nu \) will vary by case.

4.3.1 No Selection Case

We model there being no selection as having \(\nu \) be constant. If \(\nu \) is constant then costs do not vary across consumers, so there is no selection (on costs). Because the insurance market is assumed to be competitive, \(\text{premium} = \nu \cdot r \). Therefore, due to the linearity of the utility functions, \(D = \sum_i \mathbb{1}(\epsilon_i > 0) = .5 \cdot N \). Notice that this is true regardless of the markup \(r \). As markup increases, the cost of insurance increases in turn, not affecting the insurance purchase decision. Welfare is not affected by hospital markups in this simplified model because the quantity of insurance purchased does not change. While this property represents a lower bound to the welfare loss due to market power, it helps to clarify interaction between market power and selection.

Note that regardless of the markup the model is in the efficient equilibrium: all consumers for which \(\epsilon > 0 \) purchase insurance.

4.3.2 Incorporating Adverse Selection

To incorporate adverse selection, suppose that \(\nu \sim Unif[0,1] \). In this case consumers with a large \(\nu \) will be more likely to signup for insurance and will have higher costs, leading to adverse selection. Figure 4.1 presents simulated results when \(r = 1 \),
that is there is no markup and $r = 1.1$, which would occur if upstream providers negotiated a ten percent markup. The dashed lines represent average cost curves, while the solid lines demand curves. The downward sloping cost curves represent adverse selection, as the share of the population insured increases the average cost of the insured population falls. The thick lines represent when there is a markup. There are two different demand curves because as the markup rises the cost of being uninsured rises shifting the demand (as a function of premiums) outward.

![Figure 4.1: Demand and Average Cost Curve Under Adverse Selection](image)

In the no markup case, premiums are .75 and the quantity insured is .28. When there is an upstream markup of 10 percent, premiums rise to .85, a 13 percent increase in premiums. This is driven by the fact that demand falls to .25, an eleven percent drop in demand – which increases average costs. By simply assuming selection, quantity insured falls to .28 already well below the efficient level of insurance. However, upstream markups exacerbate this because the quantity falls even further. This highlights the interaction between upstream markups (which cause no drop in quantity without selection) and selection, since quantity declines are larger when upstream firms capture a markup.
4.4 Structural Model

While the previous section demonstrates that it is theoretically possible that a hospital merger can exacerbate selection, the magnitude of this concern is an empirical question. The impact of this interaction will depend on how much selection there is, how much market power a hospital obtains in a merger, and the passthrough rate of higher negotiated prices to consumers through higher premiums. To provide empirical estimates for the magnitudes, we use the model of the hospital-insurance market that follows Ho and Lee (2017). The notation and discussion will follow Liebman (2017) (chapter 2 of this dissertation) closely, along with Shepard (2016) who incorporates adverse selection into the Capps et al. (2003) insurance demand model. We exploit the guaranteed issue and community rating features of the Affordable Care Act that insurers cannot charge consumers different premiums based on their health status. Therefore, we incorporate selection using consumers health status in the previous year, which Finkelstein and Poterba (2014) refer to as “unused observables.”

We model the hospital-insurer market in a similar way to Prager (2016), Ho and Lee (2017), and Liebman (2017):

Stage 1: Prices and the network are negotiated between insurers and hospitals.

Stage 2: Insurers set their premiums.

Stage 3: Consumers choose which health plan to join.

Stage 4: Nature determines which consumers get sick.

Stage 5: Consumers who got sick choose which hospital to attend.

Stage 5 - Consumers who got sick choose which hospital to attend.

Consumer i, who lives in county m, is enrolled in health plan r, and gets sick with condition d, has to choose a hospital in its health plan’s network. The utility of
hospital \(j \) for a consumer is given by:

\[
 u_{i,m,j} = \gamma_1 \text{distance}_{mj} Z_{id} + \gamma_2 X_{jd} Z_{id} + \delta_{jd}^H + \epsilon_{im,jd}^H
\]

\(Z_{id} \) are consumer characteristics. For consumers that we observe in previous years of data, \(Z_{id} \) includes measures of previous health status which incorporates a correlation between health status and hospital choice. \(\text{distance}_{mj} \) is the distance from the patient’s county to hospital \(j \). \(X_{jd} \) and \(\delta_{jd}^H \) correspond to observable and unobservable hospital characteristics, respectively. The distance coefficient is identified by variation in hospital choice probabilities across counties. Patient characteristics are identified based on differences in hospital choice probabilities for consumers with different characteristics. We estimate the model using maximum likelihood.

Stage 4 - Nature Determines Which Consumers Get Sick

In stage 4, there are no strategic decisions to be made, as Nature determines which consumers get sick. Let the probability of getting sick with disease \(d \) be given by \(f_{id}(Z_{id}) \). Consumers probability of getting sick can depend on their characteristics. This can depend on their age, gender, and which conditions they have had in previous years of the data. For instance, a consumer with hypertension or diabetes in the previous year will almost surely have that hypertension or diabetes again in the current year, and they may also be more likely to develop ischemic heart disease. The probabilities that consumers of certain types get sick in the following year, \(f_{id}(Z_{id}) \), are observed in the data.

Stage 3 - Consumers Choose health plans

In stage 3, consumers choose their health plan. Following Town and Vistnes (2001) and Capps et al. (2003), I model utility as the value of premiums, the expected value
of the network, and other plan characteristics:

\[U_{ir} = \alpha_1(Z_i) \text{premium}_{ir} + \alpha_2 E(u_{ir}(Z_i)) + \xi_{ir} + \epsilon^P_{ir} \]

\(\text{premium}_{ir} \) is the premium that consumer \(i \) would face, which is, by law, constant across counties within a rating area, except by age. Premium sensitivities are allowed to vary by consumer characteristics, \(Z_i \). \(E(u_{ir}(Z_i)) \) is the expected utility of the providers in health plan \(r \)'s network. This is parameterized following the formulation in Capps et al. (2003), which is the consumers option value of their hospital network, accounting for probability that they get sick and need to choose a hospital. We allow this value to depend on consumer observables, including past health status. This captures that consumers who are more likely to get sick, or who prefer certain hospitals may value having a broader network. We discuss the importance of having past health status enter the model twice after discussing bargaining estimation.

Stage 2 - Insurers Choose Premiums

In stage 2, I assume that insurers engage in Nash-Bertrand competition over premiums, given that their networks and marginal costs (which are the prices they pay hospitals) are fixed.

Stage 1 - Providers and Insurers Bargain over Prices and the Network

We now specify the bargaining model. Let there by \(r = 1, ..., R \) insurers in a market and \(j = 1, ..., N \) hospitals. Let there be \(s = 1, ..., S \) hospital systems. A hospital system will be denoted by \(S \), where \(j \in S \) if hospital \(j \) is a member of that hospital system. I denote the set of hospitals in system \(s \) as \(J_s \). The Nash bargaining solution between a hospital system and insurer is defined as the price which maximizes the Nash product. Following Horn and Wolinsky (1988), the Nash product is defined as the difference in profits for the insurer and the hospital system when the hospital
system is and is not included in the network. That is the surplus minus the surplus in the case of disagreement. The insurers’ surplus for some network \mathcal{F} is denoted by:

$$\Pi^I_r(F, p) = \sum_i \left[\text{premium}_{ir}(\mathcal{F}, p_r) - \sum_{d \in D} f_{id}(Z_i) \sum_{j \in \mathcal{J}_r} p_{jdr}(\mathcal{F}, \Pi_r) \cdot \sigma_{imjd}(F_r) - \text{other costs}_i \right] \times S_{imr}(\text{premium}(\mathcal{F}, p), \mathcal{F})$$

The insurers profit is given by the premiums they receive minus the costs they pay out to hospitals to reimburse for the care of their patients. Each of the parameters of the surplus function are observed or estimated in another stage of the model.

The Nash product is then defined as:

$$NP_{rs} = (\Pi^I_r(\mathcal{F}, p) - \Pi^I_r(\mathcal{F} \setminus j \in S_s, p))^b_{r(s)} \times (\sum_{j \in \mathcal{J}_s} \Pi^H_{jr}(\mathcal{F}, p))^{b_{s(r)}}$$

where $\Pi^H_{jr}(\mathcal{F}, p)$ denotes the hospital’s profit function as a function of the network and a vector of equilibrium prices. Following the notation of Gowrisankaran et al. (2014), $b_{r(s)}$ denotes insurer r’s bargaining weight with hospital system s and $b_{s(r)}$ denotes hospital system s’s bargaining weight with insurer r. Consistent with the literature, we normalize $b_{s(r)} + b_{r(s)} = 1$, so these weights define how firms split surplus between themselves.

Then the Nash bargaining solution is the vector of prices which maximizes the Nash product:

$$p^*_{rj} = \max_{p_{rj}} NP_{rs}(p_{rj} \mid p^*_{-rj})$$

where p^*_{-rj} is the equilibrium price vector for all other insurer-hospital pairs in the market. We assume that if an insurance company and a hospital system disagree that the entire system is dropped. Similar to Gowrisankaran et al. (2014), a hospital merger will allow hospitals to negotiate higher prices since a disagreement would
mean that more hospitals are being dropped from the system. That is, the difference between the insurers profit and disagreement value is larger.

As discussed during the stage of the model where consumers choose health plans, observed characteristics enter in two locations in this specification. First, healthier consumers may be less premium sensitive. Second, healthier consumers may value networks less. If healthier consumers are less premium sensitive then healthier consumers will sort into cheaper plans, regardless of their valuations for the services provided. If hospitals merge, this would lead to higher markups and lead to the healthiest consumers to shift across plans, regardless of whether the generosity of the plans change. On the other hand if the services change, for example if a new hospital is acquired by a system and therefore added to a network, then consumers who value that hospital may join the plan, also potentially worsening the risk pool for the insurer. Both of these mechanisms lead to more selection after a merger, and potentially higher premiums for consumers as the healthiest consumers sort towards less generous plans or drop out of the insurance market.

4.5 Conclusion

In this paper, we highlight how any increase in costs to an insurer may worsen selection. Due to the prevalence of hospital mergers, we focus on that mechanism for increasing insurers costs. In doing so, we bring together a literature on selection in competitive markets, which does not consider the role of hospital market power and a literature on hospital-insurer bargaining, which does not account for selection. We show that theoretically hospital mergers exacerbate selection, and therefore the welfare loss to a merger may be understated if selection is not accounted for. Finally, we present a structural model of the hospital-insurer market which accounts for adverse selection, which will allow policymakers empirically examine the magnitudes of the welfare loss due to selection compared to the welfare loss using the merger...
simulation framework without accounting for selection.
Appendix A

Chapter 2 Appendix

The left panel is the unweighted distribution of the reimbursement level, and the right panel is the unweighted distribution of reimbursement changes. Source: CMS Part B National Summary
Table A.2: OLS and IV Estimates of the Effect of MMS on Shortage Days

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year ≥ 2005 × MMS</td>
<td>74.58**</td>
<td>130.8*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(35.12)</td>
<td>(70.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.493)</td>
<td>(4.821)</td>
<td>(2.090)</td>
<td>(3.085)</td>
</tr>
<tr>
<td>Constant</td>
<td>17.62*</td>
<td>56.96**</td>
<td>27.60***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.403)</td>
<td>(23.81)</td>
<td>(10.53)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>3094</td>
<td>1701</td>
<td>1701</td>
<td>2714</td>
<td>2714</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>308</td>
<td>152</td>
<td>152</td>
<td>244</td>
<td>244</td>
</tr>
<tr>
<td>R²</td>
<td>0.169</td>
<td>0.167</td>
<td>0.223</td>
<td>0.222</td>
<td>0.193</td>
<td>0.193</td>
</tr>
<tr>
<td>Drug Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed Effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IV Regression</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, *** p < 0.01

Standard errors, in parentheses, are clustered at the drug level. The dependent variable is shortage days in a year. Off patent is 15 years since earliest Orange Book approval. Columns (1) and (2) are the OLS and IV estimates using the IMS MMS in levels, rather than logs, as the treatment variable, respectively. Columns (3) and (4) use log of MMS again, but only include drugs whose median price is below the sample median drug price. Columns (5) and (6) only use 2003 and 2004 to calculate the IMS MMS. Each regression contains molecule fixed effects and indicator variables for each year from 2002 to 2012.
Table A.3: First Stage - MarketScan MMS on IMS MMS

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS</td>
<td>0.524***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0430)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log MMS</td>
<td>1.153***</td>
<td>1.173***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0690)</td>
<td>(0.0569)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.0242**</td>
<td>-1.319***</td>
<td>-0.922***</td>
</tr>
<tr>
<td></td>
<td>(0.0102)</td>
<td>(0.272)</td>
<td>(0.209)</td>
</tr>
<tr>
<td>Observations</td>
<td>308</td>
<td>152</td>
<td>244</td>
</tr>
<tr>
<td>R^2</td>
<td>0.327</td>
<td>0.651</td>
<td>0.637</td>
</tr>
<tr>
<td>F-stat</td>
<td>148.6</td>
<td>279.3</td>
<td>425.1</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Standard errors, in parentheses, are clustered at the drug level. First step in IVs, OLS of MarketScan MMS on IMS MMS. Column (1) runs both MMS measures in levels rather than logs. Column (2) is in logs, but only includes drugs whose median price is below the sample median drug price. Column (3) only uses 2003 and 2004 to calculate the IMS MMS.

Table A.4: First Stage - Predicted MMS × Year ≥ 2005

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Patent</td>
<td>0.0129</td>
<td>-0.629**</td>
<td>-0.248</td>
</tr>
<tr>
<td></td>
<td>(0.0123)</td>
<td>(0.251)</td>
<td>(0.200)</td>
</tr>
<tr>
<td>Predicted MMS</td>
<td>1.242***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.239)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted Log MMS</td>
<td>0.976***</td>
<td>1.062***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0599)</td>
<td>(0.0605)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3094</td>
<td>1701</td>
<td>2714</td>
</tr>
<tr>
<td># Drugs</td>
<td>308</td>
<td>152</td>
<td>244</td>
</tr>
<tr>
<td>R^2</td>
<td>0.523</td>
<td>0.919</td>
<td>0.884</td>
</tr>
<tr>
<td>F-stat</td>
<td>16.42</td>
<td>161.1</td>
<td>134.9</td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Standard errors, in parentheses, are clustered at the drug level. This is the first stage in 2SLS where the instrument is predicted MMS from Table A.3 interacted with ASP reimbursement. Column (1) runs both MMS measures in levels rather than logs. Column (2) is in logs, but only includes drugs whose median price is below the sample median drug price. Column (3) only uses 2003 and 2004 to calculate the IMS MMS. Each regression also contains indicator variables for each year from 2002 to 2012, which are omitted from the table.
Appendix B
Chapter 3 Appendix

B.1 Data Appendix

Data on premiums and networks are collected from the CO Department of Insurance website and insurance company websites. There are 12 companies in the market who offer 22 different networks. The claims data always indicate the insurance company, but only a few companies indicate which network the consumer has enrolled in. Of these 12 companies, four companies in the data either did not submit their claims or had too few enrollees for me to use their claims with any sort of precision. These companies corresponded to six networks. Three other networks, while technically offered in the Denver rating area were focused in other parts of the state and had very little enrollment. For one company, I could not determine which of their claims corresponded to the individual market. Finally, three companies offered a pair of networks which I could not distinguish in the claims data. However, for only one of the networks were the set of hospitals different. For these three pairs networks, I treat the two networks as one, and for the one with different hospitals, I use the smaller network to avoid characterizing out-of-network visits as in-network. This
leaves me with nine networks total, across seven companies. For simplicity, I treat the two companies with observably different networks as different companies and use the terms network, insurer and company interchangeably.¹

The premium data are by company, network and metal level (metal levels: bronze, silver, gold and platinum correspond to the actuarial value of the plans). In the claims I do not observe the metal level, but the networks and negotiated prices do not vary by metal level. Throughout the draft I use the cheapest silver plan offered for that network as the premium.²

The sample of hospitals I use is the set of hospitals classified in the American Hospital Association directory as General Medical/Surgical hospitals. This excludes rehabilitation hospitals and children’s hospitals. I also exclude Veterans Affairs hospitals. This leaves 17 hospitals and I drop two others since they have very few claims. I match the hospitals using a fuzzy match by name, with the claims data, then hand check them with their National Provider Identifier (NPI) in the national database of providers.³

B.2 Complete Bargaining Model

In this section, I propose the complete version of my bargaining model. Compared to the stylized version, I allow for many insurers and heterogeneity of surplus. The discussion in this section closely follows the discussion of the stylized version, with changes made as appropriate. This model is meant to provide foundations for the empirical framework, so many of the assumptions were made with the five-stage model in mind, however, I make a few modifications to keep this section self-contained

¹ In future work, I plan to account for within company competition.

² By law, plans are allowed to charge different premiums for each age group, but only up to a three-to-one ratio (that is, a plan may charge a 64-year-old only three times higher premiums than a 21-year-old). I adjust premiums for each age group accordingly, using a table from ... in their insurance filings.

³ https://npiregistry.cms.hhs.gov/
and highlight points which concern later stages of the game or estimation in footnotes.

B.2.1 Fundamentals

Consider a bargaining game between R insurers and N hospitals. Let R and N denote the set of insurers and hospitals, respectively. At $t = 0$, each insurer r publicly commits to $K_r \in N^*$, how many hospitals it would like to agree with, which remains a fixed constant for the remainder of the game.\(^4\)

Negotiations start at time period $t = 1$, step b.\(^5\) Let F_{rt} and A_{rt} denote the sets of hospitals who have and have not reached an agreement before period t. In each period, every hospital j is either in F_{rt} or A_{rt} for each insurer. That is, F_{rt} and A_{rt} are a partition of N for all t. At the beginning of each period, the set of hospitals who will either make or receive an offer is chosen. I refer to this set of hospitals as the “bargaining set,” denoted K_{rt}. Either Nature or the insurer selects the set K_{rt} out of the set A_{rt} such that the number of hospitals selected, plus those who have already reached an agreement, equal the number of hospitals the insurer would like in the network, i.e., $K_r = |F_{rt}| + |K_{rt}|$. To simplify the model, I assume that Nature will only choose hospitals that create enough surplus so that the hospital-insurer pair could potentially reach an agreement.\(^6\)

\(^4\) Commitment is a key assumption; without commitment the insurer would not exclude and would lose the leverage gained from exclusion. In practice these contracts are renegotiated every year or every few years, and not all hospitals negotiate simultaneously. Furthermore, many of these insurance companies operate in many geographic markets, with different types of providers (hospitals, physicians, ambulatory care centers, etc.) and across many market segments (Medicare Advantage, health exchanges, individual and employer insurance, etc.). Reneging in one market could make the exclusion threat less credible in others.

\(^5\) All periods after the first start with a step a.

\(^6\) Exclusion is exogenous when a hospital does not have enough surplus to reach an agreement. As Capps et al. (2003) point out, this will occur if added cost of a hospital (due to substitution towards that hospital and its marginal cost of treating patients) is higher than the marginal benefit of including that hospital.

\(^7\) Because I allow for externalities between hospitals, it is possible that if Nature is picking one hospital at a time then an earlier picked hospital may not provide enough surplus for the pair to reach an agreement. Instead, Nature determines all the sets of hospitals where each hospital could
Once the set \mathcal{K}_{rt} is specified, the game moves to the negotiation phase, step c, of period t. When t is odd, the insurer makes offers to all hospitals in \mathcal{K}_{rt} simultaneously. When t is even, all hospitals in \mathcal{K}_{rt} make offers, denoted x_{jr}, to the insurer simultaneously. A player who receives an offer has a binary choice to either accept or reject that offer. If the offer between hospital j and the insurer is accepted, hospital j joins the set \mathcal{F}_{rt+1} and remains in \mathcal{F}_r for all subsequent periods. If an offer is rejected at period t, that hospital joins the set \mathcal{A}_{rt+1}. The game ends for insurer r when K_r agreements have been made. Transfers are made at the end of the game.\(^8\)

In order to have price determinacy, models of bargaining require a friction or cost of negotiating. I include an exogenous probability of breakdown, similar to Binmore et al. (1986). Starting in period $t = 2$ and in every following period, before \mathcal{K}_{rt} is set, in step a, Nature determines whether a breakdown occurs. I allow hospitals and insurers to have asymmetric beliefs about the subjective probability of breakdown denoted by ρ^H_j and ρ^I_r, respectively.\(^9\) When a breakdown occurs, the game ends and no further agreements can be made, though the surplus created and transfers previously agreed to remain. All excluded hospitals, either due to the insurer reaching K_r agreements or breakdown, receive zero surplus from that insurer. Renegotiation of contracts is not allowed. The beliefs about the probability of breakdown are assumed to be constant throughout time and do not vary based on which hospitals have reached agreements. Players do not discount future surplus or transfers.

\(^8\) For the purposes of the bargaining game, I assume that surplus is paid at the end of the period. In the full model, surplus is paid to the insurer (through premiums) in Stage 3, and the insurer makes transfers to hospitals in Stage 5. As I highlight later, players are negotiating over expected surplus in this stage.

\(^9\) Asymmetric beliefs are allowed for in Binmore et al. (1986), with the assumption of some appropriate behavioral model, for example heterogenous priors. I follow Binmore et al. (1986) and do not specify this aspect of the model because it is not a key feature of the model. The main results of the model can be shown with symmetric beliefs. However, asymmetric beliefs help highlight the concerns endogenous networks raise for the reduced-form analysis and are an important feature of the empirical model where the interpretation of this parameter is different.
For clarity, I respecify the timing of the model:

t=0. Each insurer r publicly commits to size of their network, K_r.

$t = 1, 3, 5, ...$ (if $|F_r| < K_r$ agreements have been reached):

a. (Except period $t = 1$) Nature decides whether there is a breakdown.

b. Each insurer r picks which hospitals to make an offer to K_r.

c. Each insurer r makes simultaneous offers to the hospitals in K_r.

d. Hospitals in K_r simultaneously decide whether to accept or reject their offer(s).

$t = 2, 4, 6, ...$ (if $|F_r| < K_r$ agreements have been reached):

a. Nature decides whether there is a breakdown.

b. With equal probability $\mathbb{P}(\cdot)$ Nature chooses $K_r - |F_r|$ hospitals to make an offer K_r to each insurer r.

c. Hospitals in K_r make simultaneous offers to each insurer r.

d. Insurers simultaneously decide whether to accept or reject each offer.

The game stops when K hospitals have reached agreement or breakdown occurs. Then payments are made.

I treat surplus as a primitive that takes as an input the network of hospitals and transfers agreed upon by all hospital-insurer pairs and returns a dollar amount.\(^\text{10}\)

That is, for any network G_r and set of transfers x, $\Pi_r(G, x)$ is the total surplus

\(^{10}\) In the empirical section I specify the surplus function. I treat surplus as a primitive here because all of the inputs are determined at other stages of the game, conditional on the outcome of the bargaining game. Therefore, hospitals and insurers can determine the expected surplus values at any state of the world. Intuitively, this is the value of the expected premiums that the insurer takes as revenue, minus the expected sum of marginal costs of the services provided to all the hospitals in network.
generated. I omit the r subscript for G and the jr subscript for x because this function depends on the networks of all insurers and transfers for all hospital-insurer pairs. That surplus depends on the networks and transfers of all players allows for flexibility in the externalities between hospitals and insurers. I include transfers in this section because they affect the optimal premium setting for an insurer and insurers compete over premiums. I assume that surplus is declining in transfers and that adding any hospital to the network, holding transfers to all hospitals fixed, will increase surplus.\footnote{I assume all players are risk neutral.} The surplus functions allow for non-transferable utility because the surplus depend on the transfers. Neither Binmore et al. (1986) nor Collard-Wexler et al. (2016) allow for non-transferable utility, but Crawford and Yurukoglu (2012a) does. I do not have an analytic solution with non-transferable utility, but can solve the model numerically. For this section, I assume transferable utility, that is, hospital j’s negotiated transfer with insurer r does not affect the total surplus created by insurer r’s network in its negotiations with hospital j. In practice if a hospital negotiates a larger transfer, that may increase the insurer’s premiums, reducing the total surplus available. This precludes a closed-form solution because larger transfers would reduce surplus, which would lower the agreed-upon transfer. This assumption is simply expositional, in the empirical analysis, I use a fixed-point algorithm to solve for each premium-transfer pair.

Throughout this section, I refer to surplus kept by insurers or hospitals and also allow for these values to differ in the case of a breakdown.\footnote{Again, these terms will all be explicitly specified in the empirical section, but for expositional simplicity these values are taken as primitives in the bargaining game.} The term $\Pi^I_r(G, x, K)$ will represent the surplus insurer r captures, which is the total surplus, minus the

\footnote{In the five-stage model, transfers effect surplus through premiums. Therefore, the sum of expected costs across all hospitals, not the transfer to any particular hospital, is the object of interest.}
markups to the hospitals. Likewise, $\Pi^H_{jr}(G, x, K)$ represents the surplus hospital j receives from patients enrolled in insurer r’s plan. Finally, I use $\Pi^B_r(G, x, K)$ and $\Pi^B_{ib}(G, x, K)$ to denote the total surplus created and the surplus kept by insurer r during a breakdown, respectively.

I assume an equilibrium exists and that all players know which equilibrium will be played. I assume that players know the surplus functions, Π, and beliefs about the probability of breakdown, ρ, for all the players. Throughout the bargaining stage, insurers do not know the outcomes of decisions that other insurers make (including the size of the networks, K, the bargaining sets, \mathcal{K}, the set of agreements reached, \mathcal{F}, or transfers, x).14 That is, insurers do not update their information about other insurers once decisions are made.

During negotiations, hospitals know the size of the network, K, the bargaining set, \mathcal{K}, and any agreements that have been made, \mathcal{F}. Hospitals never learn the transfers other hospitals are offered, offer, or agree to throughout the game.15 To rule out informational asymmetries, I assume that the hospitals do not use their information with one insurer when negotiating with a different insurer. Likewise, I do not allow insurers to use information about their negotiations with other hospitals.

To give an example of these informational assumptions, consider a multilateral negotiation where each hospital sends a delegate to negotiate with a delegate from each insurer. Each insurer is located in a separate building, so delegates from different insurers cannot communicate, nor can delegates from one hospital negotiating with different insurers. Once in the building, there is a waiting room where the in-

14 For the purposes of the bargaining game, I assumed that surplus was paid at the end of the period. Information about other insurer’s networks and premiums are not known until after Stage 2, when premiums are set. These informational assumptions may be realistic if insurers do not reveal information about their networks to others prior to selling their products. My empirical setting is the first year of the exchange marketplace, which may restrict insurers’ ability to look at the networks in the previous year. Information about other insurers’ prices are proprietary.

15 Other hospital’s negotiated prices are proprietary.
surer announces the size of the network, K_r.16 Then, the insurer lists all the hospital delegates who will be called to negotiate, so all the delegates at that building know which hospital delegates were included in the bargaining set. Then all the hospital delegates in the bargaining set go into separate offices, each with a separate insurer delegate. Offers are made without any communication outside of the pair of delegates negotiating. Finally, after offers are accepted or rejected in that period, which agreements are made is announced to all the delegates at that building.

While the model in this section allows for a much richer and more realistic empirical framework, the drawback is that it increases the number of strategies available and the number of resulting equilibria. This requires strong assumptions to regain tractability. However, even if this was a less restrictive framework, I do not have data on whether other strategies are used in practice, and if they are, they will be accounted for in the bargaining parameters of the empirical model. While these are strong restrictions on the model, this is a critique of the Nash-in-Nash model generally. One interpretation of my paper is as a constructive criticism of these restrictions: I am allowing for an additional strategy (the threat of exclusion) for which data are available and demonstrating how to incorporate it into the tractable and rich empirical framework the Nash-in-Nash model provides.

\subsection*{B.2.2 Equilibrium Strategy Profile}

In this subsection, I propose a strategy profile which is a Markov-perfect equilibrium (MPE). The concept of an MPE restricts the set of equilibria to the subset of subgame-perfect Nash equilibria for which the only aspect of the history that influences strategies is the current state. In particular, this implies that if negotiations happen at $t + 1$, the probability of any hospital in A_{rt+1} to be chosen to bargain at $t + 1$ is independent of the identity of hospitals which rejected an offer at t.

16 The hospital delegates in the waiting room are A_{rt}.

130
In period $t = 0$, each insurer chooses its profit-maximizing size of the network, given its expectation about the network sizes of other insurers. Let $\tilde{\Pi}_t^I(K_r; K_{-r})$ be the surplus the insurer receives in equilibrium when choosing network size K_r, given that they expect other insurers to choose size K_{-r}. In equilibrium each insurer chooses K_r such that $\tilde{\Pi}_t^I(K_r; K_{-r}) \geq \tilde{\Pi}_t^I(K'_r; K_{-r})$ for all $K'_r \leq N$.

In odd periods $t = 1, \ldots, \infty$, step b, the insurer picks a bargaining set \mathcal{K}_{rt} such that $|\mathcal{K}_{rt}| + |\mathcal{F}_{rt}| = K_r$. When making this choice, the insurer chooses its profit-maximizing network. Let $\Pi_t^I(\mathcal{G}_{rt}, \mathcal{G}_{-rt}, x, K)$ denote the expected surplus to the insurer given the equilibrium outcomes when insurer r chooses network \mathcal{G}_{rt} and expects all other insurers to choose the networks \mathcal{G}_{-r} and transfers x at t. Then the insurer chooses the network \mathcal{G}_{rt} such that $\Pi_t^I(\mathcal{G}_{rt}, \mathcal{G}_{-r}, x, K) \geq \Pi_t^I(\mathcal{G}_{rt}', \mathcal{G}_{-r}, x, K)$ for all \mathcal{G}_{rt}' such that $|\mathcal{G}_{rt}'| = K_r$ and $\mathcal{F}_{rt} \subseteq \mathcal{G}_{rt}$. \(^{17}\)

Let $V_{jrt+1}(\mathcal{F}_{rt+1}, \mathcal{F}_{-r}, x, K)$ and $W_{rt+1}(\mathcal{F}_{rt+1}, \mathcal{F}_{-r}, x, K)$ denote hospital j’s and insurer r’s expected value of having not reached an agreement before the beginning of period $t + 1$, conditional on expectations about future agreements with insurer r, \mathcal{F}_{rt+1}, networks formed by other insurers, \mathcal{F}_{-r}, and expectations about others’ transfers x. \(^{18}\) Given that players know the bargaining set when making or receiving an offer, players can determine which hospitals will have reached agreements before receiving their offers in period t. Therefore, in negotiations with hospital j, the continuation value to the hospital and insurer during the offer stage of period t is $V_{jrt+1}(\mathcal{F}_{rt+1}\setminus\{j\}, \mathcal{F}_{-r}, x, K)$ and $W_{rt+1}(\mathcal{F}_{rt+1}\setminus\{j\}, \mathcal{F}_{-r}, x, K)$, where \mathcal{F}_{rt+1} takes into account those who have already reached an agreement (\mathcal{F}_{rt+1}) and those who are expected to reach an agreement (some subset of \mathcal{K}_{rt}). This excludes hospital j because the negotiation including hospital j is the one where a deviation is being

\(^{17}\) The condition $\mathcal{F}_{rt} \subseteq \mathcal{G}_{rt}$ simply means that they are choosing the entire network, conditional on \mathcal{F}_{rt} having already agreed.

\(^{18}\) Because \mathcal{A}_{rt+1} and \mathcal{F}_{rt+1} partition \mathcal{N}, it is sufficient to just use \mathcal{F}_{rt+1} as the state space.
considered. Because I use the MPE solution concept, the time period does not affect the value functions, except for whether the state is even or odd. However, I use t subscripts to clarify timing. In periods, $t = 1, ..., \infty$, step c, the players which make offers propose their counterpart’s continuation value. The player who is offered their continuation value will accept.

I assume that in equilibrium there will be immediate agreement:\footnote{Without Assumption A.ImmAgg, the model is not fully specified. In particular, expectations about the network in future periods and whether there is enough surplus available to reach agreements need to be considered. Expectations no longer matter because the case where the deviating hospital is chosen is the only relevant case. Assuming immediate agreement also assumes that each hospital in the network provides enough surplus to be included.}

Assumption ImmAgg (Immediate Agreement). *Suppose the value of the primitives is such that a possible equilibrium involves immediate agreement (K_r agreements are reached in period $t = 1$ for each r) and that this equilibrium is played.*

In the simplified model there are two reasons why it is unprofitable for the insurer to delay. First, the expected costs of breakdown are higher if fewer hospitals have agreed at any point in time. Second, at least in the stylized model delay improves the continuation value of a hospital who reaches an agreement at $t = 1$ because the probability they are picked again if they deviate is higher than when all hospitals agree at period $t = 1$. This is a similar argument to Möller (2007) who argues that when the timing of agreements is endogenous, there is an incentive for simultaneous agreements when the externalities between players weakens over time. Finally, in the more general model, the insurer may also be left with a less profitable network if they allow Nature to choose which hospitals remain.

B.2.3 Determining Continuation Values

Now, I discuss the equilibrium outcomes and compute the continuation values, given the strategies specified in the previous section. While all hospitals agree in the
first period, continuation values depend on the expected value for hospital \(j \) after deviating from the equilibrium and rejecting the offer. Consider hospital \(j \)'s decision to deviate from the equilibrium and reject the offer (in period \(t = 1 \) only). Deviating hospital \(j \)'s expected value for period \(t = 2 \), given equilibrium strategies, simplifies to:

\[
V_{j_{t-2}}(K_{r1}\{j\}) = \rho^H_j \cdot 0 \\
+ \left[\Pi_r(K_{r1}, x(K_{r1})) - \sum_{i \in (K_{r1}\{j\})} \Pi^H_{ir}(K_{r1}, x(K_{r1})) - W_{t=3}(K_{r1}\{j\}, x(K_{r1})) \right] \\
\times (1 - \rho^H_j) \cdot \mathbb{P}(j \in K_{r2}|K_{r1}\{j\})
\]

where \(\mathbb{P}(j \in \tilde{F}_r|F_r, K_r) \) denotes the probability that hospital \(j \) is included in network \(\tilde{F}_r \), given that the hospitals in \(F_r \) have already reached an agreement and that \(K_r \) hospitals will ultimately reach an agreement (barring a breakdown). I drop notation for other networks (both \(F_{-r} \) and \(K \)) because the player’s expectations about these values are unchanging. With probability \(\rho^H_j \), breakdown occurs and the hospital gets nothing. With probability \((1 - \rho^H_j) \), agreements are made possible in period \(t = 2 \). In period \(t = 2 \), with probability \(\mathbb{P}(j \in K_{r2}|K_{r1}\{j\}) \), hospital \(j \) will be chosen to make an offer. The most the hospital can ask for is all the surplus the insurance company receives, net of what it pays out to other hospitals and the insurer’s continuation value. Because in equilibrium all hospitals reach an agreement at \(t = 1 \), in considering the value of deviating, hospital \(j \) expects the payments to all other hospitals are formed with the expectation that all hospitals in \(K_{r1} \) will reach an agreement at \(t = 1 \).

If hospital \(j \) were to deviate, then the network would consist of all the hospitals in the original bargaining set except hospital \(j \), i.e., \(F_{r2} = K_{r1}\{j\} \).\(^{20}\) Since I am focusing on a hospital that deviated, by definition \(j \in K_{r1} \).

\(^{20}\) Since I am focusing on a hospital that deviated, by definition \(j \in K_{r1} \).
computing hospital j’s value of deviation, I focus on the case where it is picked in the following period. Therefore, the input to $\Pi_r(\cdot)$ is \mathcal{K}_{r1} because, conditional on hospital j’s offer being accepted, the final state will be \mathcal{K}_{r1}.\footnote{Note that in this case all transfers would be the same as if it happened in period $t = 1$, since the other hospitals reached this agreement with an expectation that all hospitals would reach an agreement. The strategic situation is the same for hospital j as it was in period $t = 1$.} Finally, the input to $W_{r=3}(\cdot)$ is $\mathcal{K}_{r1}\setminus\{j\}$ because if the offer is not accepted, then the state going into period $t = 3$ will be $\mathcal{K}_{r1}\setminus\{j\}$. However, all other transfers will have been agreed upon under the expectation that \mathcal{K}_{r1} would have been the outcome of the negotiations in $t = 1$. Notice that until the final agreement is made, the set of hospitals which will have agreed at any given period remains unchanged at $\mathcal{K}_{r1}\setminus\{j\}$.

Now, I solve for the insurer’s value function by considering the case where it deviates at period $t = 2$. In this case, the insurer will pick the most profitable network \mathcal{K}_{r1} again, so it chooses the same hospital j which deviated previously. The insurer’s expected value in $t = 3$, given that the hospitals in $\mathcal{K}_{r1}\setminus\{j\}$ have agreed, is:

$$W_{r=3}(\mathcal{K}_{r1}\setminus\{j\})$$

\begin{equation}
= (1 - \rho_r^I) \left[\Pi_r(\mathcal{K}_{r1}, x(\mathcal{K}_{r1})) - \sum_{i \in (\mathcal{K}_{r1}\setminus\{j\})} \Pi_i^B(\mathcal{K}_{r1}, x(\mathcal{K}_{r1})) - V_{j,t-4}(\mathcal{K}_{r1}\setminus\{j\}, x(\mathcal{K}_{r1})) \right]
+ \rho_r^I \Pi_r^{IB}(\mathcal{K}_{r1}\setminus\{j\}, x(\mathcal{K}_{r1}))
\end{equation}

With probability $(1 - \rho_r^I)$, the game goes forward and the insurer offers hospital j its continuation value, keeping the remainder of the surplus that was not paid out to other players. With probability ρ_r^I, breakdown occurs and the insurer receives $\Pi_r^{IB}(\mathcal{K}_{r1}\setminus\{j\}, x(\mathcal{K}_{r1}))$. Notice that transfers are determined based on the expectation that \mathcal{K}_{r1} will have been formed, since these were the expectations of other hospitals in \mathcal{K}_{r1}, besides deviating hospital j.\footnote{Note that in this case all transfers would be the same as if it happened in period $t = 1$, since the other hospitals reached this agreement with an expectation that all hospitals would reach an agreement. The strategic situation is the same for hospital j as it was in period $t = 1$.}
B.2.4 Bargaining Results

To calculate transfers, I consider a unilateral deviation by each hospital $j \in K_{r1}$ separately. Because of immediate agreement, a unilateral deviation would imply there is only one additional agreement remaining. At this point the state of the game does not change from period $t = 2$ until an agreement is reached (conditional on the state being even or odd). Because the value functions only depend on the state, and the state only depends on whether the time is even or odd, $V_{jrt=2}(K_{r1}\{j\}, x(K_{r1})) = V_{jrt=4}(K_{r1}\{j\}, x(K_{r1})) = \ldots = V_{j even}(K_{r1}\{j\}, x(K_{r1}))$ and likewise

$W_{rt=3}(K_{r1}\{j\}, x(K_{r1})) = W_{rt=5}(K_{r1}\{j\}, x(K_{r1})) = \ldots = W_{r odd}(K_{r1}\{j\}, x(K_{r1})).$

Therefore, for each insurer-hospital pair I have two unknowns ($V_{j even}(\cdot)$ and $W_{r odd}(\cdot)$) and two equations linear in the unknowns, so there exists a unique solution that can be represented with a closed form (conditional on $\mathbb{P}(j \in K_{r2}|K_{r1}\{j\})$). Proposition 3 presents this solution:

Proposition 3. The equilibrium outcome of this game is given by:

$$x_{jr}(K_{r1}) = \frac{\Pi^{MARG}_{jr}(K_{r1}) \cdot \left[\mathbb{P}(j \in K_{r2}|K_{r1}\{j\}) \cdot (1 - \rho^H_j) \right] \cdot (\rho^I_j)}{1 - (1 - \rho^I_j) \cdot [(1 - \rho^H_j) \cdot \mathbb{P}(j \in K_{r2}|K_{r1}\{j\})]}$$

Where the marginal surplus is defined as:

$$\Pi^{MARG}_{jr}(K_{r1}) = \Pi_r(K_{r1}, x(K_{r1})) - \sum_{i \in (K_{r1}\{j\})} \Pi^H_{ir}(K_{r1}, x(K_{r1})) - \Pi^B_{ir}(K_{r1}\{j\}, x(K_{r1}))$$

Note that marginal surplus is not a value that I am assuming, but rather this is a derived value.
Relationship to Rubinstein Outcomes

My first result states that when $K_r = N$, meaning the insurer chooses not to exclude, the model predicts N outcomes that match the outcomes in Rubinstein (1982). In particular, $K_r = N$ implies that $\mathbb{P}(\cdot) = 1$, i.e., hospitals who reject an offer in the previous period will be picked with probability one. The solution reduces to:

Corollary 4. When $K = N$ and $\mathbb{P}(\cdot) = 1$, the equilibrium outcome simplifies to:

$$x_{jr}(N) = \frac{\Pi_{jr}^{MARG}(N) \cdot (1 - \rho_j^H) \cdot \rho_j^l}{1 - (1 - \rho_j^H) \cdot (1 - \rho_j^l)}$$

Allowing for exclusion, the results are the same as the Rubinstein result, except that the hospitals’ risk of breakdown parameters are multiplied by their probability of being chosen, as highlighted by the brackets in Proposition 3. One way to interpret this is that my result is distinguishing the risk of breakdown from the risk of exclusion due to the narrow-network. This also demonstrates how my model nests the Nash-in-Nash solution. When there is no exclusion (or the probability of being picked after deviating equals 1), each negotiation becomes the outcome of a pairwise Rubinstein bargain, conditional on all the other negotiations. Collard-Wexler et al. (2016) provides sufficient conditions under which this limits to the Nash-in-Nash solution, similar to how Binmore et al. (1986) demonstrates that Rubinstein (1982) limits to the Nash solution. The remaining results show how my model extends the Nash-in-Nash model.

Narrow Networks Negotiate Smaller Transfers

My next result shows that the model with exclusion can imply smaller transfers. This will be true if the following assumptions hold:

Assumption SN (Smaller Network). For positive numbers l: $\mathbb{P}(\cdot; K) \leq \mathbb{P}(\cdot; K + l)$
Assumption SN (A.SN) states that the probability of a hospital being selected in the following period is smaller compared to the case where the insurer chose a smaller network size in period $t = 0$. In a setting where hospitals are all acceptable and have equal probability of being chosen this is a natural property. A smaller network, holding N constant, means more hospitals are excluded. Therefore, if a hospital deviates, there are more available hospitals to fill their slot, so the deviating hospital has a lower chance of being picked again.

As a counterexample, suppose there are four hospitals and one insurer. If the network size is $K = 2$, then the following networks are chosen with equal probability $\{1, 2\}, \{2, 3\}, \{2, 4\}$. If the network size is $K = 3$ then the following networks are chosen with equal probability $\{1, 3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}$. Consider hospital 2’s decision to deviate when $K = 2$ and after $\{2, 3\}$ has been offered. In this case, hospital 2 knows with probability 1 it will be selected to negotiate in the following period. Now, suppose that $K = 3$ and $\{1, 2, 4\}$ have been offered to. After deviating, hospital 2 has a one-half probability of being included in the following period.

Assumption CMS (Constant Marginal Surplus). For positive numbers l:

$$
\Pi_{j,r}^{MARG}(K; K) = \Pi_{j,r}^{MARG}(K; K + l)
$$

Assumption CMS (A.CMS) states that the marginal surplus generated by a hospital is constant in the size of the network. While the functional form in the empirical section will imply lower marginal surplus, A.CMS isolates the role of bargaining leverage from changing the amount of surplus to be split. Without accounting for the changing probability of exclusion, lower marginal surplus would imply that insurers with larger networks negotiate smaller transfers. I argue that this effect is offset by the exclusion effect, which is why in the data insurers with larger networks are observed paying larger transfers.

Proposition 5. Under assumptions A.SN and A.CMS, insurers with smaller net-
works negotiate smaller transfers.

This is a straightforward consequence of Proposition 3. Intuitively, the reason this occurs is that by excluding, the insurer is increasing the probability the hospital gets zero, which worsens the hospital’s continuation value. Why this worsens the continuation value is clear from equation B.1, as the value function is multiplied by \(P(j \in K_r | K_{r1} \setminus \{j\}) \). If hospital \(j \) disagrees when many hospitals are excluded, the probability it gets nothing \((1 - P(j \in K_r | K_{r1} \setminus \{j\})) \) is large. When few hospitals are excluded, the probability of getting nothing is smaller, so the value of deviating is larger.

B.3 Defining Acceptable Replacement Hospitals

To determine the probability that hospital \(j \) is picked after deviating in period \(t = 1 \), I calculate the number of otherwise excluded hospitals that provide enough surplus to make agreement with the insurer feasible. I refer to these as “acceptable replacement” hospitals. For hospitals not in \(K_{r1} \), their continuation in even periods is zero: In equilibrium they do not maximize the insurer’s profit, so they will not be picked again in \(t = 3 \). Therefore, any surplus they can extract at period \(t = 2 \) from the insurer would make them better off. This simplifies checking which hospitals are acceptable because I only need to check whether:

\[
\Pi^I_r (\mathcal{F}_r \cup \{i\} \setminus \{j\}, \mathcal{F}_{-r}, p(\mathcal{F}), K) > (1 - \rho^I)\Pi^I_r (\mathcal{F}, p, K) + \rho^I \Pi^{IB}_j (\mathcal{F}, \mathcal{F}_{-r} \setminus \{j\}, p(\mathcal{F}), K)
\]

That is, hospital \(i \) is acceptable if they provide enough surplus such that the insurer would be better off paying them their marginal cost, rather than offering nothing and waiting until the following period, where with probability \(\rho^I \) the insurer receives their breakdown value and with probability \((1 - \rho^I) \) it matches with hospital \(j \).\(^{22}\)

\(^{22}\) That is the insurer decides whether to make an offer to hospital \(i \) or wait to match with hospital \(j \) in the following period.
As with the breakdown case, because this is after a deviation from hospital \(j \) in period \(t = 1 \), the other hospitals in network have negotiated with the expectation that \(\mathcal{F} \) would form, so I use observed prices for all other hospitals and price equal to marginal cost for hospital \(i \). Therefore, \(\Pi^I_r(\mathcal{F}_r \cup \{i\}\setminus\{j\}, \mathcal{F}_{-r}, p(\mathcal{F}), K) \) is defined as:

\[
\Pi^I_r(\mathcal{F}_r \cup \{i\}\setminus\{j\}, \mathcal{F}_{-r}, p(\mathcal{F}), K) = \sum_i \left[\text{premium}_{ir}(\mathcal{F}_r \cup \{i\}\setminus\{j\}, \mathcal{F}_{-r}, p) - \sum_{dr \in D} \frac{r_{id}}{s_{ir}} \sum_{k \in \mathcal{F}_r \cup \{i\}\setminus\{j\}} p_{kdr}(\mathcal{F}_r, \Pi_r, K) \sigma_{ikd}(\mathcal{F}_r \cup \{i\}\setminus\{j\}) \right] \\
\times S_{imr}(\text{premium}_{i}(\mathcal{F}_r \cup \{i\}\setminus\{j\}, \mathcal{F}_{-r}, p), \mathcal{F}_r \cup \{i\}\setminus\{j\}, \mathcal{F}_{-r})
\]

Premiums and the market share values depend on the observed network, minus hospital \(j \) and plus hospital \(i \). Because all prices are observed (including for hospital \(i \) where it equals marginal cost), \(\Pi^I_r(\mathcal{F}_r \cup \{i\}\setminus\{j\}, \mathcal{F}_{-r}, p(\mathcal{F}), K) \) can be computed prior to estimation. For every insurer and every hospital \(j \) in that insurer’s observed network, I compute this value for every hospital \(i \) excluded from the observed network to check whether \(i \) is an acceptable replacement.

143

Prager, E. (2016), “Tiered Hospital Networks, Health Care Demand, and Prices,”.

Vogt, W. B. and Town, R. J. (2006), “How Has Hospital Consolidation Affected the Price and Quality of Hospital Care?”

Eli Sellinger-Liebman was born June 23, 1989 in Berkeley, CA. He graduated magna cum laude from American University in 2010 with a B.A. in Political Science with a second major in Economics and a minor in Mathematics. He then worked at the Bureau of Economic Analysis from 2010 to 2012 before starting his Ph.D at Duke University in 2012. He earned his M.A. at Duke in 2014. He earned a Ph.D. in Economics from Duke University in May 2017. He will be joining the faculty of the University of Georgia in the Fall of 2017.