Aging and health - A systems biology perspective

Reviewed by Chiranjib Chakraborty


Department of Bio-informatics School of Computer & Information Sciences Galgotias University Greater Noida 203 201 Uttar Pradesh, India drchiranjib@yahoo.com

Copyright © Indian Journal of Medical Research

This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Systems biology is presently a field of interest for computational biologists to collect comprehensive biological datasets to gain information about the constituent molecules. With the help of this subject, one can solve problems of compound biological regulatory systems as this field can offer knowledge and new opportunities for practical application natural science.

This book provides valuable information on ageing and health-related issues, not only for basic ageing researchers, but also for health care professionals who are inclined to learn more about the role of systems biology in ageing and health. The book includes an introduction and 13 chapters with 36 figures and nine tables. In each section, leading experts have shared their scientific knowledge about their field of expertise related to ageing, covering a broad range of topics such as ageing networks, modulating mTOR, diet-microbiota-health, etc. In every chapter, the authors entail the reader on a journey through the current advances in ageing with a cover image that represents nutshell of the core topic.

The “Introduction” provides a background of systems biology, its importance in the field of biology as well as a brief description of each chapter contributed by different authors. The first chapter entitled “Introduction to the Theory of Aging Networks” describes systems biology and its use in the perception of the dynamics of ageing using network mathematics. The chapter starts with a history of network analysis and ends with possible genes and protein systems that control an organism’s life span using graph theory.

The second chapter, “Applications to Aging Networks”, includes additional network concepts and applications of the systems biology of ageing. These concepts and models have been used on two model organisms namely, *Saccharomyces cerevisiae* and *Caenorhabditis elegans*.

In the third chapter, “Computational Systems Biology for Aging Research”, study of the ageing process is discussed through the dynamic computational modelling using differential equations. It also describes how different computational models can illustrate complicated age-related disorders allied with unhealthy ageing using this platform.

Chapter 4 entitled “How Does the Body Know How Old It Is? Introducing the Epigenetic Clock Hypothesis” starts with biological clocks which assist in controlling circadian cycles, seasonal rhythms and other normal processes such as growth, development, sexual development, etc. in both animals and
plants. A number of ageing clocks have been projected in this section such as cellular senescence
suprachiasmatic nucleus, involution of the thymus, the hypothalamus, etc. Finally, the author suggests a
novel epigenetics based candidate for an ageing clock, which is the state of chromosome methylation
especially in stem cells. However, this hypothesis needs to be validated.

In the fifth chapter, “The Great Evolutionary Divide: Two Genomic Systems Biologies of Ageing” the
authors describe two different types ageing in species. This section also provides an evolutionary
argument that ageing in various species with frequent sexual recombination is moderately diverse. One
type of systems biology of ageing spotlights the effects on mutants, transgenic, combinations, etc. The
patterns of ageing related to genome-wide effects, as well as genetic drift on the abundant polymorphic
loci have also been commented on.

The sixth chapter entitled “Development and Ageing: Two Opposite but Complementary Phenomena”
discusses two different and corresponding aspects of ageing. To compare from the evolutionary point
of view, several systems biology techniques to represent ageing-related networks for human and
murine models have been used. Finally, validation of the DevAge molecular model has also been dealt
with.

An individual's health deficits accumulate during the life span and may be reflected in ageing, which is
discussed in the chapter entitled “Aging as a Process of Deficit Accumulation: Its Utility and Origin”.
Here, the frailty index which is related to the biological age of the individual. A stochastic dynamics
framework has been applied to model the standard recovery time that expands with age.

The eighth chapter entitled “Low-Grade Systemic Inflammation Connects Aging, Metabolic Syndrome
and Cardiovascular Disease” describes the connection of ageing with metabolic syndrome like diabetes
and cardiovascular disease and its constant association with inflammatory conditions. The mechanistic
target of rapamycin (mTOR), of the PI3K family, is extensively discussed for nutrient response
pathway and is also shown to modulate the ageing process. The next chapter entitled “Modulating
mTOR in Aging and Health” discusses the ageing process in evolutionarily different organisms as the
mTOR activity is thought to prolong the life process from lower to higher organisms like yeast to
rodents. Presently, scientists are studying the clinically accepted mTOR complexes and related
signaling network which, may provide new promises for interference in human ageing and age-related
diseases through the modulation of a particular pathway.

Chapter 10 entitled “Melatonin and Circadian Oscillators in Aging - A Dynamic Approach to the
Multiply Connected Players” describes melatonin and its relation to ageing from the systems biology
point of view. This hormone plays a vital role in modulating the mitochondrial electron flux, the redox
balance as well as inhibits unnecessary free radical development. It also controls the essential circadian
clocks and is necessary for high-amplitude rhythms. This chapter also discusses the association of the
failure of melatonin release and rhythms to aging and age-related disease.

The subsequent chapter, “Diet-Microbiota-Health Interactions in Older Subjects: Implications for
Healthy Aging” suggests that with the help of a healthy lifestyle and modern medicine, people can live
longer. The chapter also relates the adult microbial population correlates, markers of inflammation and
co-morbidity as well as the nutritional status and finally concludes with the significance of the
microbial population and related metabolites in a healthy ageing process with the importance of diet
modulation.

In chapter 12, entitled “Systems Biology Approaches in Aging Research”, systems biological
advancements have been discussed. Features of the chief methodology such as refined mathematical
and computational tools, mathematical modelling and data sets, etc have been detailed. It has been
suggested that the present systems biological methods from other research fields can be worked out for
new ageing-specific systems biological research methodology.
The last chapter provides an investigational proof for rapamycin on survival and carcinogenesis in the mouse model. It shows that rapamycin is a molecule for pharmacological intervention that can necessitate life period expansion and cancer deterrence.

In conclusion, the editors have succeeded in bringing new systems biology perspectives to clinicians and basic scientists working in ageing and health research. Although seemingly aimed at ageing scientists and systems biology experts, this book should be read by everyone, especially those who work in clinical segments.

Articles from The Indian Journal of Medical Research are provided here courtesy of Medknow Publications