Genetic Control of Genomic Alterations Induced in Yeast by Interstitial Telomeric Sequences

by

Anthony Ridley Moore

University Program of Genetics and Genomics
Duke University

Date:_______________________
Approved:

Thomas Petes, Supervisor

Sue Jinks-Robertson

David MacAlpine

Beth Sullivan

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program of Genetics and Genomics in the Graduate School of Duke University

2018
ABSTRACT

Genetic Control of Genomic Alterations Induced in Yeast by Interstitial Telomeric Sequences

by

Anthony Ridley Moore

University Program of Genetics and Genomics
Duke University

Date: __________________________
Approved:

Thomas Petes, Supervisor

Sue Jinks-Robertson

David MacAlpine

Beth Sullivan

Abstract submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program of Genetics and Genomics in the Graduate School of Duke University

2018
Abstract

Telomeric sequences are often located internally on the chromosome in addition to their usual positions at the ends of the chromosome. These internally-located telomeric sequences have been termed “interstitial telomeric sequences” (ITSs). In humans, ITSs are non-randomly associated with translocation breakpoints in tumor cells and with chromosome fragile sites (regions of the chromosome that break in response to perturbed DNA replication). We previously showed that ITSs in yeast stimulated point mutations in DNA sequences adjacent to the ITS as well as several types of chromosomal rearrangements. The major class of these rearrangements was the terminal inversion, which inverted the chromosome segment between the ITS and the “true” chromosome telomere. In the current study, we examined the genetic control of these events. We show that the terminal inversions likely occur by the formation of a double-stranded DNA break within the ITS, followed by repair of the break utilizing the single-strand annealing pathway. The point mutations induced by the ITS require the error-prone DNA polymerase zeta. Unlike the terminal inversions, these events are not initiated by a double-stranded DNA break, but likely result from error-prone repair of a single-stranded DNA gap or recruitment of DNA polymerase zeta in the absence of DNA damage.
Dedication

I dedicate this thesis to my friends and family who have been unparalleled sources of support through my academic career.
Contents

Abstract ..iv

List of Tables ...ix

List of Figures ...x

1. Introduction ..1

1.1 Genome instability: general considerations ...2

1.2 DNA replication and genome instability ...4

1.3 Fragile sites ..11

1.3.1 Fragile sites in mammalian cells ..12

1.3.2 Fragile sites in the yeast Saccharomyces cerevisiae ..14

1.4 Repair of DSBs by recombination ..17

1.4.1 Non-homologous end-joining (NHEJ) ...18

1.4.2 Homologous recombination (HR) ..18

1.4.2.1 Reciprocal crossovers (double-strand break repair; DSBR)19

1.4.2.2 Gene conversion events unassociated with crossovers (synthesis-
dependent strand annealing, SDSA) ..22

1.4.2.3 Non-reciprocal duplication of a chromosome arm (break-induced replication, BIR) ..22

1.4.2.4 Loss of a tandem repeat (single-strand annealing, SSA)23

1.5 Structure and function of telomeres and interstitial telomeric sequences25

1.5.1 General features of telomeres and telomere-associated proteins25

1.5.2 ITSs and fragile sites in higher eukaryotes ...28
3.1.3 Analysis of the effects of drugs/chemical agents on ITS-induced instability ... 83

3.2 Novel assays for ITS-induced genomic alterations ...85

3.2.1 Genetic detection of DSBs using a gross chromosome rearrangement assay ... 86

3.2.2 Genetic detection of events that reverse terminal inversions91

3.2.3 Assays for the effects of the ITS on mitotic and meiotic recombination93

3.2.4 Genetic alterations associated with an ITS that is a “true” telomere96

3.3 Analysis of the mechanism of mutagenesis that results in telomeric insertions into the URA3 coding sequence ..99

3.4 Summary ..100

Appendix ..102

Bibliography ...113

Biography ...134
List of Tables

Table 1: Rates of 5-FOA^r, ura3 point mutations, and terminal inversions..........................54

Table 2: Strain names, constructions, and genotypes...102

Table 3: Primers used for strain construction or analysis of genome rearrangements…108

Table 4: Numbers of different types of 5-FOA^r derivatives in the wild-type strain PG329 and in various mutant derivatives of PG329...112
List of Figures

Figure 1: DNA replication and DNA replication checkpoints ..5

Figure 2: Secondary DNA structures with recombinogenic potential7

Figure 3: Alternative mechanisms for bypassing a DNA lesion in the leading strand9

Figure 4: Repair of a DSB by different pathways of homologous recombination21

Figure 5: Single-strand annealing (SSA) pathway..24

Figure 6: System used to detect ITS-induced genomic alterations31

Figure 7: Genome rearrangements associated with interstitial telomeric sequences33

Figure 8: Base substitutions in URA3 induced by GAA/CTT repeats located 1 kb away.37

Figure 9: Different classes of genomic alterations induced by ITSs44

Figure 10: Point mutations induced by DSBs within adjacent (GAA)n repeats57

Figure 11: Mechanisms for the repair of a DSB in the URA3-Int-(TGTGTGGG)15 reporter
 gene. ...63

Figure 12: Model for genomic instability associated with the ITS73

Figure 13: Assays for gross chromosomal rearrangements89

Figure 14: Detection of the reversal of a terminal inversion93

Figure 15: Genetic assay for mitotic crossing-over ..98

Figure 16: Sequence analysis of an ITS-induced mutation in URA399
1. Introduction

Although telomeric sequences (by definition) are usually located at the ends of the chromosome, the genomes of most eukaryotes also have telomeric repeats located at internal chromosome sites. These sequences are called “interstitial telomeric sequences” or ITSs, and previous results (described below) indicate that ITSs can generate both chromosome rearrangements and local mutations. In my thesis, I have investigated the genetic regulation of this type of instability in yeast by measuring the rate of chromosome rearrangements and ITS-associated mutations in strains with mutations affecting DNA replication, homologous recombination, and telomere-length regulation. My results, as well as findings from other labs, suggest that ITSs result in a slowdown or stall of the DNA replication fork. This stall increases the probability of a double-stranded DNA break (DSB). The repair of the DSB leads to the formation of a terminal inversion by the single-strand annealing pathway of homologous recombination. Alternatively, slowing of the replication fork or nicking of the ITS can stimulate point mutations in the sequences flanking the ITS. I show that these mutations are dependent on the error-prone DNA polymerase zeta.

Below, I review some general features of genetic instability (Section 1.1), followed by a discussion of the evidence that many of the lesions that produce instability are generated during DNA replication (Section 1.2). I will then discuss genomic sequences that are prone to break during replication (Section 1.3), and
pathways of homologous recombination that can produce chromosome rearrangements (Section 1.4). In Section 1.5 of the Introduction, I will review the structure and function of telomeres and ITSs, and the evidence that ITSs are prone to breakage (fragile sites). Lastly, I will discuss previous studies demonstrating that DSBs can elevate the frequency of mutations in adjacent sequences (Section 1.6). Throughout this Introduction, I will emphasize genetic instability that occurs spontaneously rather than events induced by exogenous agents such as ultraviolet light.

1.1 Genome instability: general considerations

The continued propagation of cells requires a high degree of accuracy in maintaining the genome (Morita et al., 2010). One source of instability is misincorporation errors by replicative DNA polymerases. Although the replicative polymerases are relatively accurate, having an intrinsic error rate of about 10^{-4}/base/round of replication (Kunkel, 2009), this rate extrapolated over the genome would be problematic. However, most cells have two systems that recognize misincorporation errors, resulting in a much lower rate of base mutations (about 10^{-10}/base/round of replication; Griffiths et al., 2000). The replicative DNA polymerases delta and epsilon have a proofreading exonuclease that recognizes and removes misincorporated bases, and the mismatch repair system removes errors that are missed by the proofreading exonuclease (Kunkel, 2009). Most of the spontaneous mutations that are observed in wild-type yeast strains are not the consequence of mistakes made by the replicative
polymerases, but are mutations introduced by error-prone DNA polymerases. This issue will be discussed further in Section 1.6 of the Introduction.

In addition to accurate DNA replication, the chromosomes must be properly segregated. Chromosome segregation involves the attachment of microtubules to the kinetochore, and a checkpoint system that monitors a lack of bipolar attachment of microtubules to the kinetochore (Wang et al., 2014). The rate of spontaneous chromosome loss per chromosome per cell division is about 10^{-5} (Hartwell and Smith, 1985). Although one might assume that yeast cells with extra chromosomes would not be at a selective disadvantage, Torres et al. (2007) showed that all aneuploid yeast strains grow slowly relative to euploid strains.

As will be described below, an important initiator of genome instability is the DSB, often (although not always) generated during DNA replication. A single unrepaired DSB would result in chromosome loss and would be haploid-lethal. In yeast, as in other eukaryotes, there are two systems to repair DSBs, homologous recombination and non-homologous end-joining (Symington et al., 2014). Although homologous recombination is usually regarded as an error-free mode of repair, DSBs formed in repeated genes (such as Ty elements) can result in deletions, duplications or inversions if the repeats are located on one homolog (Mieczkowski et al., 2006). Alternatively, homologous recombination between repeated genes on different homologs can produce translocations. In addition, as discussed in Section 1.6, repair of DSBs is often mutagenic.
Because of the intrinsic accuracy of the mechanisms of DNA replication and chromosome segregation, the rates of genomic alterations in wild-type strains are usually very low. However, mutations in various error-correcting systems, such as the mismatch repair system, can greatly elevate the level of instability (Aguilera and García-Muse, 2013). In addition, as will be discussed below, sequence motifs that have the ability to form secondary DNA structures (palindromes, quadruplex structures, etc.) are associated with DSB formation even in wild-type cells.

1.2 DNA replication and genome instability

DSBs formed during DNA replication are likely one of the most common causes of genome instability (Aguilera and García-Muse, 2013). The evidence that most DSBs are formed during the S-period is partly based on the observation that Rad52-containing recombination foci are much more common in the S-period than in other parts of the cell cycle (Symington et al., 2014). Despite the predominance of S-phase-related DSBs, there is strong genetic evidence that the DSBs that result in mitotic recombination between homologs often result from a G0/G1-induced DSB (Lee et al., 2009; St. Charles et al., 2013). The replication-associated DSBs can be elevated by mutations that affect the basic replication machinery (including replication checkpoints) or by certain sequence motifs (fragile sites). These two factors will be discussed separately below.

In yeast, replication is initiated at defined origins and regulated initiation requires 42 polypeptides including the ORC and Mcm proteins (Yeeles et al., 2015).
Following the initiation of DNA synthesis, there is coupled replication of the leading and lagging strands with the leading strand being replicated by DNA polymerase epsilon, and the lagging strand being replicated by DNA polymerases alpha and delta (Aguilera and Garcia-Muse, 2013). In addition to the DNA polymerases, the basic replisome includes the helicase complex MCM2-7-Cdc45-GINS, the PCNA sliding clamp, and the RFC clamp loader (Fig. 1).

Figure 1: DNA replication and DNA replication checkpoints

Not all of the proteins that are involved in replication (for example, those involved in initiating DNA synthesis) are shown. Template strands are in blue, and the newly-synthesized DNA is depicted in red. During replication, the MCM helicase proteins unwind the parental DNA strands. The leading strand is largely duplicated by DNA polymerase epsilon, whereas the lagging strand is replicated by DNA polymerases alpha (the primase) and delta. PCNA, which acts as processivity factor for the replicative DNA polymerases, is loaded by the replication factor C (RFC) complex. The Rrm3 and Tof1 proteins are involved in DNA fork stabilization and the DNA damage checkpoint (Aguilera and Gomez-Gonzalez, 2008). The Sgs1p has numerous roles, one of which is to reverse aberrant recombination structures at the fork (Symington et al., 2014). In the figure, a fork-blocking DNA lesion (shown as a red star) results in the accumulation of single-stranded DNA on the lagging strand. The single-stranded DNA becomes coated with RPA, signaling the Mec1p-dependent DNA damage checkpoint. In addition, a DSB on the right end of the DNA molecule
results in recruitment of the Mre11p/Rad50p/Xrs2p (MRX) complex, and the subsequent activation of Tel1p. Mec1p and Tel1p are both very large kinases with multiple targets required for the DNA damage checkpoint (Symington et al., 2014). After Aguilera and Gomez-Gonzalez, 2008.

In addition to the basic replisome, there are several other proteins associated with stabilization of the replication fork including Tof1p, Mrc1p, and Csm3p (Aguilera and Garcia-Muse, 2013). The helicase Rrm3p is not required for replication of most yeast sequences, but rrm3 mutant strains have elevated rates of fork breakage at chromosomal regions that have certain non-nucleosomal proteins associated with DNA (inactive replication origins, tRNA genes, transcriptionally silenced regions, etc.) (Ivessa et al., 2003).

Along with fork-stalling protein-DNA barriers, replication forks can be stalled or broken by R-loops, collisions with the transcription machinery, damaged nucleotides, and secondary structures in the DNA (Aguilera and Garcia-Muse, 2013; Mirkin and Mirkin, 2007). Certain types of stalled forks (for example, forks stalled as a consequence of DNA damage on the leading strand) result in large single-stranded gaps. These single-stranded regions become bound by RPA, and activate the Mec1-dependent checkpoint (Cha, 2002). Alternatively, the stalled fork may be broken, activating the Tel1-/Mec1-dependent checkpoint (Lucca et al., 2004; Aguilera and Garcia-Muse, 2013). Both DSBs and large single-stranded gaps are shown in Fig. 1.
If large single-stranded regions are formed at the replication fork, secondary DNA structures that are susceptible to cleavage may be formed. For example, if there are closely-spaced inverted repeats, a “hairpin” structure may be formed (Fig. 2A); as will be discussed below, such sequences are hotspots for chromosome rearrangements in yeast (Gordenin et al., 1992; Lobachev et al., 2002; Lemoine et al., 2005). Palindromes in double-stranded DNA could form cruciform structures (Fig. 2B), although the likelihood of such structures under normal growth conditions has been debated. In addition, certain G-rich sequences, when single-stranded, can form non-canonical base-base interactions, resulting in a structure called a “quadruplex” (Fig. 2C) (Sen and Gilbert, 1988). Quadruplex motifs are common in the yeast genome (Capra et al., 2010), and are enriched at mitotic recombination breakpoints (Song et al., 2014; Zheng et al., 2016). The enzymes involved in cleaving these structures to generate recombinogenic DNA lesions are not known.

Figure 2: Secondary DNA structures with recombinogenic potential

Certain DNA sequences, particularly when single stranded, can adapt a variety of secondary structures that are potential sites of cleavage, resulting in recombinogenic DSBs (Mirkin, 2006). A. Hairpin structure formed in single-stranded
DNA by palindromic DNA sequences. The palindromes may be perfect or interrupted by mismatched bases. For example, the CAG/GTC triplet repeat can form a palindrome in which every third base is mismatched. B. Cruciform. A palindromic sequence, if double-stranded, can be extruded as a cruciform structure (Lilley and Kemper, 1984). C. G-quadruplex structure. G-rich sequences containing at least four interspaced runs of three guanines can fold into a secondary structure called a G-quadruplex. This structure has non-canonical base-pairing (after Leon-Ortiz et al., 2014).

If the replication fork is stalled at a damaged base on the leading strand, a variety of possible mechanisms for bypassing or removing the damaged base have been proposed (Aguilera and Garcia-Muse, 2013). One possibility is that an error-prone polymerase capable of inserting a base opposite the damaged base is recruited (Vaisman and Woodgate, 2017). After a short tract of DNA is synthesized, the normal replicative polymerase (DNA polymerase epsilon on the leading strand) replaces the error-prone polymerase (Fig. 3A). As described in Section 1.6, this mechanism is an important cause of mutagenesis.

Alternatively, when the replication fork is blocked, it may regress, forming a structure called a “chicken foot” (Fig. 3B). There are two possible fates of the chicken-foot intermediate. Following limited DNA synthesis within the intermediate, the DNA strands may unwind, re-forming the replication fork (upper part of Fig. 3B). Another possibility is that the cruciform-like structure may be cleaved to generate a DSB (lower part of Fig. 3B) than may be repaired by break-induced replication. Alternatively, if the DNA lesion results in blocked converging replication forks generating two broken ends,
this DSB could be repaired by the standard double-strand break repair pathway. These types of recombination events will be discussed in Section 1.4.2.

Lastly, the damaged base on the leading strand may lead to switching of the template strand to the other arm of the replication fork (Fig. 3C). Once synthesis occurs beyond the region of the damaged base, the switch can be reversed and replication can be continued.

![Image](https://via.placeholder.com/150)

Figure 3: Alternative mechanisms for bypassing a DNA lesion in the leading strand.

As in Fig. 1, the template DNA strands are in blue, and the newly-synthesized strands are in red. The lesion is shown as a small triangle on the leading strand. A. Lesion bypass using an error-prone DNA polymerase. Following the block to the replicative DNA polymerase, an error-prone DNA polymerase (for example, DNA polymerase zeta) is recruited to the replication fork, and a base is inserted opposite the blocking lesion. After a small amount of synthesis by the error-prone polymerase (indicated by a dotted green line), the replicative polymerase epsilon replaces the...
error-prone polymerase, and DNA synthesis continues. B. Formation and resolution of a “chicken-foot” structure. There is a partial regression of the replication fork, and pairing occurs between the newly-synthesized strands. Following DNA synthesis in this structure, the fork re-forms (shown as pathway 1) or is cleaved by structure-specific nuclease to form a broken chromatid (pathway 2). In pathway 2, this cleaved chromatid could be repaired by a break-induced replication event involving the intact sister chromatid. C. Lesion bypass by template switching to a sister chromatid. In this mechanism, which is similar to that shown in Fig. 3B, the newly-synthesized leading strand switches to the sister chromatid. Following a limited amount of synthesis, the strand switches back to the original template, resulting in lesion bypass (after Aguilera and Gomez-Gonzalez, 2008).

The three mechanisms shown in Fig. 3 are not a complete set of the proposed bypass mechanisms. Others are described in Yeeles et al. (2013). The evidence for most of these pathways is scant, although chicken-foot-like DNA structures have been observed by electron microscopy (Neelsen and Lopes, 2015). For some fork-stalling structures, it is clear how a DSB is generated. For example, replication of a nicked template will yield a DSB. For other structures, it is less clear. Since the reversed fork forms a structure similar to a Holliday junction, it is plausible that the DSB is generated by junction resolvases. Hickson and Mankouri (2011) showed that X-shaped DNA intermediates that accumulated in sgs1 yeast cells undergoing replication stress could be processed by Holliday junction resolvases. It is likely that DSBs can be formed at stalled replication forks by a variety of mechanisms.

Two further points should be mentioned. First in wild-type cells grown under normal conditions, the level of genetic instability is low. One method of monitoring the rate of DSB formation is by measuring the rate of mitotic recombination in diploids. The
rate of mitotic recombination on the right arm of chromosome IV in wild-type cells grown under non-stressed conditions is \(6 \times 10^{-5}/\text{division}\) (St. Charles and Petes, 2013). In yeast cells under replication stress produced by low levels of DNA polymerase delta, the frequency of recombination is elevated about 500-fold. Second, all recombinogenic lesions are not generated during DNA replication. As mentioned above, about two-thirds of the spontaneous mitotic exchanges between homologs are associated with DSBs formed during G0 or G1 (Lee et al., 2009; St. Charles and Petes, 2013). In addition, the DSBs that occur within tracts of GAA/CTT accumulate in cells in stationary phase (Tang et al., 2011; Saini et al., 2013a). Although the mechanism by which these GAA/CTT tracts get broken is not entirely clear, components of the mismatch repair system are required (Kim et al., 2008).

1.3 Fragile sites

As mentioned above, in yeast, reduction in the level of DNA polymerases greatly elevates the rate of mitotic recombination and various classes of chromosome rearrangements (Song et al., 2014; Zheng et al., 2016). The breakpoints for these alterations are not random in the yeast genome but are concentrated in certain regions. The sequences that break when cells are exposed to replication stress are termed “fragile sites.” Below, I will summarize some of the properties of fragile sites in mammalian cells and in yeast. I will discuss the special class of fragile sites caused by interstitial telomere sequences in Section 1.5.
1.3.1 Fragile sites in mammalian cells

Fragile sites were first defined in the analysis of karyotypes in mammalian cells as chromosome regions that broke when DNA replication was inhibited (Glover and Stein, 1988). The most common inducer of common fragile sites is aphidicolin, which is an inhibitor of the replicative DNA polymerases (Tedeschi et al., 1987). There are two general classes of fragile sites: common and rare. The common fragile sites, located at the same genomic positions in most individuals, account for 95% of known fragile sites (Dillon et al., 2010). Common fragile sites tend to be regions of the mammalian genome that are late-replicating, and that are non-randomly associated with very large transcription units (Durkin and Glover, 2007; Wilson et al., 2015). In addition, common fragile sites have an over-representation of microRNA-encoding sequences (Durkin and Glover, 2007). However, there is no single sequence motif that defines a common fragile site.

One factor regulating the frequency of breakage at common fragile sites is the DNA damage checkpoint. Mutations in ATR (the mammalian equivalent of yeast MEC1) substantially elevate the frequency of chromosome breakage at fragile sites (Casper et al., 2002). These observations suggest that common fragile sites represent regions where replication forks are stalled under conditions of replication stress. In a cell with a wild-type DNA damage response, replication can resume without chromosome breakage.
However, if the checkpoint is defective, a very high rate of breakage occurs (Durkin and Glover, 2007).

In contrast to common fragile sites, rare fragile sites often occur in a region of triplet repeat expansions. Several genetic diseases such as Huntington disease, fragile X syndrome, Friedrich’s ataxia, and myotonic dystrophy are caused by triplet repeat expansions. Based partly on the observation that many of the triplet repeats associated with rare fragile sites are capable of forming secondary structures, it is plausible that such structures may block the replication fork resulting in an increased probability of chromosome breakage (Freudenreich, 2007).

One reason for studying common fragile sites is that these sequences are over-represented as breakpoints for chromosome rearrangements observed in tumor cells (Durkin and Glover, 2007). Up to 80% of the breakpoints of gross chromosomal rearrangements in early tumors occur at fragile sites (Ozeri-Galai et al., 2011). There are several likely explanations for this association. First, a number of fragile sites are located at tumor suppressor genes (Popescu, 2003), and disruption of this region will predispose the cell to tumor formation. It is also likely that the chromosome rearrangements observed at fragile sites are a symptom of DNA replication stress in cancer cells (Macheret and Halazonetis, 2015), and these rearrangements do not directly contribute to oncogenesis.
1.3.2 Fragile sites in the yeast *Saccharomyces cerevisiae*

Many of the features of mammalian fragile sites are conserved in yeast. In yeast, fragile sites were mapped by looking for loss of heterozygosity in diploid strains that were heterozygous for single-nucleotide polymorphisms (SNPs) and had low levels of DNA polymerase alpha (Song *et al.*., 2014) or DNA polymerase delta (Zheng *et al.*., 2016). Hotspots for breakage were associated with chromosomal regions in which replication forks moved slowly, even in wild-type strains. These regions included quadruplex sequences, regions containing tRNAs, binding sites for the helicase Rrm3p, and replication-termination sequences (Song *et al.*., 2014; Zheng *et al.*., 2016). A region of chromosome VII with multiple tRNA genes (associated with replication fork stalling) was a hotspot for chromosome rearrangements, particularly when replication was perturbed (Admire *et al.*., 2006).

Another type of sequence that has an elevated frequency of breakage, under both normal growth conditions and DNA replication stress, is the palindrome. Sequences that are palindromic could form either a hairpin (if one strand forms a secondary structure) or a cruciform (if both strands form secondary structures) (Fig. 2). Gordenin *et al.* (1992) showed that palindromic sequences associated with the bacterial transposon Tn5 were excised from yeast at low frequency in wild-type strains, but at high frequency in strains with a mutation in *POL3*, the gene encoding DNA polymerase delta. Lemoine *et al.* (2005) showed that the rate of genetic rearrangements associated with an inverted pair
of Ty elements was elevated more than 100-fold by DNA replication stress. The enzymes that catalyze the breakage at palindromes have not been determined. Although cleavage of hairpin structures in *E. coli* is catalyzed by the SbcCD complex (bacterial equivalent of the Rad50/Mre11 complex) (Eykelenboom *et al.*, 2008), the Mre11/Rad50/Xrs2 complex in yeast is not involved in generating DSBs at palindromes formed by inverted Alu repeats (Lobachev *et al.*, 2002) or by inverted Ty elements (Casper *et al.*, 2009). In addition, although DSBs that formed in a yeast plasmid with a palindromic sequence were dependent on Mus81-Mms4 (Coté and Lewis, 2008), *mus81* mutants did not block DSB formation for inverted repeats on a chromosome (Lobachev *et al.*, 2002). It is possible that more than one enzyme is capable of cleaving the secondary structure associated with palindromes.

Another class of yeast fragile sites are trinucleotide repeats. With the realization that certain trinucleotide repeats were capable of expansion and that these expansions resulted in a number of human diseases, a number of investigators investigated the properties of these sequences when they were inserted into the yeast genome (Freudenreich, 2007). The three types of repeats that were studied most extensively were CAG/CTG, CCG/GGC, and GAA/CTT. The CAG/CTG and CCG/GGC repeats, when single-stranded, are capable of forming hairpin structures in which two of three bases are paired and one is unpaired; in yeast, both types of repeats stimulate mitotic recombination in a length-dependent manner (Freudenreich *et al.*, 1998; Balakumaran *et
Hydroxyurea increased the rate of CAG/CTG-induced recombination events, as expected if these tracts are fragile sites (Freudenreich et al., 1998). CGG/GCC repeats, but not CAG/CTG repeats result in slowed or blocked replication forks (Pelletier et al., 2003).

In contrast to the other trinucleotide repeats, GAA/CTT tracts form triplex structures rather than hairpins (Mirkin, 2006). In yeast, these tracts can block replication forks in an orientation-dependent manner (Krasilnikova and Mirkin, 2004). GAA/CTT tracts stimulate chromosome rearrangements as well as mitotic recombination in yeast (Kim et al., 2008; Tang et al., 2011). By gel analysis, DSBs associated with the tracts can be detected, and these DSBs accumulate in stationary phase, indicating that at least some DSBs are independent of a replication fork block (Tang et al., 2011; Zhang et al., 2012). Formation of these DSBs required enzymes of the mismatch repair system (Kim et al., 2008). Expansions of the GAA/CTT tracts were observed in yeast, and these expansions were elevated in strains with defective DNA replication (Zhang et al., 2012; Saini et al., 2013a). Lastly, GAA/CTT tracts stimulate the rate of mutations in adjacent DNA sequences, and this stimulation is dependent on the error-prone DNA polymerase zeta (Tang et al., 2013). This effect will be discussed further in Section 1.6.

In summary, in both yeast and mammalian cells, fragile sites are often repetitive sequences that can form secondary structures, and that are associated with replication fork blockages. As described above, mutations in the DNA damage checkpoint gene
ATR result in elevated breaks at common fragile sites (Casper et al., 2002). Cha and Kleckner (2002) showed that strains with mutations in MECl, the yeast equivalent of ATR, had chromosomal regions in which replication forks moved slowly, and DSBs occurred within these replication-slow zones. Thus, the genetic regulation of fragile sites in yeast and mammalian cells may be similar. In Section 1.5, I will discuss another class of yeast fragile site caused by interstitial telomeric sequences.

1.4 Repair of DSBs by recombination

As described above, DSBs can be produced at fragile sites when cells are under replication stress. There are likely many additional sources of DSBs including both endogenous and exogenous DNA damage. Unrepaired DSBs in a haploid strain lead to inviability, since the damage results in chromosome fragments that lack either a centromere or a telomere. Since the dominant pathway for repair of DSBs in yeast is homologous recombination, I will only briefly discuss non-homologous end-joining.

For purposes of this thesis, I will assume that most recombination events are initiated by DSBs, although a small fraction may involve repair of a single-stranded gap (Davis and Maizels, 2014). Analysis of mitotic recombination between homologs showed that the properties of gene conversions and crossovers induced by an I-SceI-induced DSB closely mimicked the properties observed for spontaneous recombination events (Hum and Jinks-Robertson, in preparation).
1.4.1 Non-homologous end-joining (NHEJ)

As the name implies, in this pathway, broken ends are joined by mechanisms that involve little (microhomology-mediated end-joining; MMEJ) or no (“classic” NHEJ) homology (Daley et al., 2005; Symington and Gautier, 2006). The classic pathway requires the Ku proteins (to prevent degradation of the broken ends and hold the ends together), and DNA ligase IV; the Mre11/Rad50/Xrs2 complex is also required (Daley et al., 2005). In general, the joined molecule has no alterations in sequence or has the addition or deletion of a very small number of bases. In contrast, MMEJ always involves the loss of up to 10 bases that expose homologies in the recessed single-strands. Both classic NHEJ and MMEJ are regarded as error-prone modes of repair relative to homologous recombination (Heidenreich et al., 2003). Unlike homologous recombination, NHEJ is restricted to G1 of the cell cycle, and occurs primarily in haploid rather than diploid cells (Symington and Gautier, 2011).

1.4.2 Homologous recombination (HR)

In the homologous recombination pathway, the broken ends are repaired using homologous sequences. If the DSB occurs in single-copy sequences, the template may be a sister chromatid or a homolog (for a diploid strain). If the DSB occurs in a repeated gene, the template may be a repeat on the same chromosome or a different chromosome. Crossovers between repeats on the same chromosome can generate deletions,
duplications, and inversions; crossovers between repeats on other homologs can result in translocations.

The early steps in HR are the same for a number of different pathways. Following DSB formation, the broken ends are resected 5’ to 3’, resulting in single-stranded “tails.” These single-stranded regions then invade the intact template to initiate the event. Below, I will discuss the HR pathways leading to the following products: 1) reciprocal crossovers (double-strand break repair; DSBR), 2) gene conversion events unassociated with crossovers (synthesis-dependent strand annealing, SDSA), 3) non-reciprocal duplication of a chromosome arm (break-induced replication, BIR), and 4) loss of a tandem repeat (single-strand annealing, SSA).

1.4.2.1 Reciprocal crossovers (double-strand break repair; DSBR)

The HR pathway for crossovers is shown in Fig. 4. Following DSB formation, both ends are resected 5’ to 3’. In yeast, the initial processing involves the Mre11/Rad50/Xrs2 complex and Sae2p (Mimitou and Symington, 2008; Zhu et al., 2008). More extensive resection utilizes two redundant pathways: Exo1p and/or Sgs1p/Dna2p. The resulting single-stranded ends are bound by RPA, which is then replaced with Rad51p; efficient loading of Rad51p requires Rad52p (Symington et al., 2014). The Srs2p helicase has an anti-recombination role at this step, removing Rad51p from the single-stranded DNA (Symington et al., 2014). One Rad51-bound end invades the intact homologous sequence, creating a D-loop. The 3’ invading end acts as a primer for DNA
polymerase delta-mediate extension of the D-loop. In the crossover pathway (middle panel of Fig. 4), the second broken end then pairs with the displaced single-strand. Following fill-in synthesis and ligation, a double Holliday junction (dHJ) is formed. Cleavage of the junction by HJ resolvases (Mus81-Mms4, Slx1-Slx4, or Yen1) can lead to a crossover of flanking sequences or resolution as a non-crossover. Alternatively, the dHJ can be resolved into a non-crossover product by the action of Sgs1p-Top3p-Rmi1p (Symington et al., 2014) (not shown in Fig. 4).

In the DSBR pathway, both products resulting from resolution of the dHJ have regions of heteroduplex, strands of DNA derived from two different chromosomes. Repair of mismatches within these heteroduplexes produces gene conversion events (Symington et al., 2014). Most mitotic crossovers are associated with adjacent regions of gene conversion (Charles and Petes, 2013).
Figure 4: Repair of a DSB by different pathways of homologous recombination

The two interacting DNA molecules are shown in blue and red. Recombination is initiated by a DSB on the blue molecule, with each broken end resected 5' to 3'. One broken end then invades the intact donor molecule forming a heteroduplex. The 3' invading end is then extended by DNA polymerase. Middle panel (double-strand break repair; DSBR). The second end pairs with the D-loop resulting in a second heteroduplex region. The double Holiday junction (dHJ) is then cleaved by resolvases. Cleavages at the positions marked 1, 2, 5, and 6 generate molecules with heteroduplexes on both donor and recipient DNA molecules with flanking markers in the original parental configuration. Cleavages at the positions marked 1, 2, 3, and 4 result in flanking markers in the recombinant configuration. Left panel (break-induced replication; BIR). The left end of the blue DNA molecule is lost, and the right end forms a replication fork that duplicates the left end of the red DNA molecule by conservative DNA replication. Right panel (synthesis-dependent strand annealing; SDSA). Following strand invasion and DNA synthesis, the invading end
dissociates from the donor DNA molecule, and re-associates with the other broken end. This mechanism leads to a region of heteroduplex on the recipient DNA molecule without an associated crossover. (After Symington et al., 2014).

1.4.2.2 Gene conversion events unassociated with crossovers (synthesis-dependent strand annealing, SDSA)

Although some conversion events reflect the DSBR pathway discussed above, other conversions occur by a different mechanism, synthesis-dependent strand annealing (SDSA). In this pathway (right side of Fig. 4), the invading end disassociates from the template before second-end capture. As a consequence, the template molecule is unchanged, and there is a single region of heteroduplex on the chromosome that was originally broken. Although this pathway requires the same proteins for strand invasion as the DSBR pathway, the HJ resolvases are not required.

1.4.2.3 Non-reciprocal duplication of a chromosome arm (break-induced replication, BIR)

Following a DSB, one broken end may be lost or, alternatively, one broken end may lack homology to the intact template. In this circumstance, the repair event occurs by invasion of the remaining end into the intact homolog, followed by conservative DNA synthesis (Kraus et al., 2001; Donnianni and Symington, 2013; Saini et al., 2013b) duplicating a chromosome arm (left side of Fig. 4). Break-induced replication (BIR) is likely to be an important pathway of repair of collapsed replication forks if replication forks are limited to one side of the DSB (for example, for DSBs located near the telomere) (Lydeard et al., 2007). BIR requires DNA polymerase delta (Malkova and Ira, 2013).
The BIR pathway can generate several types of genetic alterations. First, during DNA synthesis, the invading strand can dissociate from the template and reassociate with a different template, producing chromosomes that are a mosaic of two different homologs (Smith et al., 2007). Second, BIR events initiated within a repeated sequence can produce non-reciprocal translocations (Mieczkowski et al., 2006). Lastly, BIR events are associated with a high rate of mutagenesis, producing frameshifts at a rate of 1000-fold higher than “normal” DNA synthesis (Malkova and Ira, 2013). Although BIR is an important pathway for certain lesions, it should be emphasized that DSBs in a wild-type diploid are usually repaired by the DSBR and SDSA pathways described above rather than by BIR. Ho et al. (2010) found less than 10% of I-SceI-induced DSBs were repaired by BIR.

1.4.2.4 Loss of a tandem repeat (single-strand annealing, SSA)

The single-strand annealing (SSA) pathway of recombination usually involves loss of one repeat of a tandem duplication. This pathway was first described to explain recombination between repeated thymidine kinase genes in mouse cells (Lin et al., 1984), but has been subsequently observed in other genetic systems including yeast (Ivanov et al., 1996). In the most common depiction of the pathway (Fig. 5), a DSB occurs between two repeated genes oriented in the same direction. The broken ends are processed until the regions of homology are exposed in single strands. The homologous regions can then base pair, leaving single-stranded unpaired flaps. The pairing process requires
Rad52p, but not Rad51p; Rad59p stimulates the pairing (Symington et al., 2014). The single-stranded branches are removed by the nucleotide excision repair proteins Rad1p and Rad10p, and the mismatch repair proteins Msh2p and Msh3p (Ivanov and Haber, 1995; Sugawara et al., 1997). As will be described in Chapter 2 of my thesis, SSA is the main pathway for the generation of inversions involving the interstitial telomeric sequences.

![Figure 5: Single-strand annealing (SSA) pathway.](image)

In this figure, a pair of repeated genes (red rectangles) separated by a non-repeated sequence is shown. A DSB occurs in the non-repeated sequence. Following 5’ to 3’ resection, annealing occurs between the repeats. The resulting intermediate has single strand branches that are subsequently removed by a complex of Msh2p/Msh3p/Rad1p/Rad10p (Symington et al., 2014). Although SSA is usually shown as occurring within a single DNA molecule, it has been suggested that half crossovers can be generated by SSA (Smith et al., 2009).
1.5 Structure and function of telomeres and interstitial telomeric sequences

In this section of the Introduction, I will first discuss general features of telomeres and telomere-associated proteins, emphasizing yeast telomeres (Section 1.5.1). I will then discuss interstitial telomeric sequences in mammalian cells and the evidence that such sequences are fragile sites (Section 1.5.2). Finally, I will summarize the evidence the yeast ITSs stimulate chromosome rearrangements, as well as point mutations in adjacent sequences (Section 1.5.3).

1.5.1 General features of telomeres and telomere-associated proteins

Eukaryotic chromosomes are linear, and the ends (telomeres) of the chromosomes are known to have a number of special properties. Studies of X-ray-induced DSBs in maize and Drosophila showed that the broken ends produced by X-rays, unlike telomeres, tended to fuse with other broken ends (McClintock, 1931; Muller, 1938); however, telomeres behaved as though they had a protective cap that prevented such fusions. In addition, as pointed out by Watson (1972), since all known DNA polymerases replicate 5’ to 3’ and require a primer, the known replication mechanisms would not suffice to completely replicate a linear DNA molecule.

The first sequence information concerning telomeres was obtained for the micronuclear chromosomes of Tetrahymena (Blackburn and Gall, 1978). These telomeres have a simple repeat of GGGGTT/CCCCAA, with the G-rich repeats at the 3’ end. This general structure is conserved in most eukaryotes, although the sequence of the repeat
varies. In most vertebrates, including humans, the G-rich strand has TTAGGG repeats (Meyne et al., 1989). In the yeast Saccharomyces cerevisiae, the telomeric sequences are not perfect repeats, but have the form poly G\textsubscript{13}T (Shampay et al., 1984); in wild-type strains, these sequences are 350-500 bp in length (Walmsley and Petes, 1985). In yeast, the telomeric repeats are also located at sub-telomeric positions (Walmsley et al., 1984).

There are several types of proteins associated with telomeres: proteins associated with protecting the telomeres from degradation and fusion with other telomeres (“cap” proteins), proteins involved in telomere replication, and proteins involved in DNA damage checkpoints. Some proteins function in more than one of these roles. The protein complex that protects the telomere from degradation in mammalian cells is the shelterin complex composed of TIN1, TPP1, TRF1, TRF2, Rap1, and POT1 (de Lange, 2010). Proteins that compose the telomere “cap” in S. cerevisiae include Cdc13p, Rap1p, Rif2p, Rif1p, Yku70p, and Yku80p (Wellinger and Zakian, 2012). In addition to protecting the ends from degradation, these proteins prevent the recruitment of the Mre11p/Rad50p/Xrs2p complex and Tel1p to the ends; if the telomeres are uncapped, the MRX complex and Tel1p arrest the cells at a checkpoint (Wellinger and Zakian, 2012).

Eukaryotic telomeres with very few exceptions are replicated by telomerase. This RNA-protein complex, first described in Tetrahymena (Greider and Blackburn, 1987), contains an RNA molecule that has telomeric repeats and a reverse transcriptase
activity. The RNA component is used to extend the 3’ end of the G-rich strand. In *S. cerevisiae*, the protein sub-units of telomerase are encoded by *EST1, EST2, and EST3*, and the RNA component is encoded by *TLC1* (Wellinger and Zakian, 2012). This mechanism represents the solution to the end-replication problem pointed out by Watson (1972).

Although telomerase is the predominant pathway of telomere replication in wild-type cells, when telomerase is mutated, a recombination-dependent pathway can be used in telomere elongation in both yeast (Lundblad and Blackburn, 1993) and mammalian cells (Stewart, 2005).

Many different mutants result in telomeres that are either longer or shorter than found in wild-type cells. Askree *et al.* (2004) found more than 150 different non-essential genes that affected telomere length. The mutated genes that lead to very short or complete loss of telomeres include *est1, est2, est3, tlc1, tel1, mre11, rad50, xrs2, yku70*, and *yku80* (Wellinger and Zakian, 2012). The proteins encoding these proteins often have multiple roles. For example, Tel1p is involved in the recruitment of telomerase, but is also a protein required for the DNA damage checkpoint induced by DSBs (Wellinger and Zakian, 2012). In addition to their effect on telomere length, the Yku proteins have roles in non-homologous end-joining, telomere clustering, and telomere silencing (Boulton and Jackson, 1996; Hediger *et al.*, 2006; Marvin *et al.*, 2009). Mutations in *RIF1* or *RIF2* have the opposite effects on telomere length, leading to extended telomeres (Wotton and Shore, 1997). Both proteins have a role in formation of the telomere cap,
and affect the binding of Rap1p, a protein with multiple roles including telomere
capping and telomere silencing (Pardo and Marcand, 2005; Hardy et al., 1992). Rap1p
also functions as a transcriptional repressor/activator at non-telomeric sites, and
becomes localized to DNA repair genes following DNA damage (Tomar et al., 2008).

In many organisms, genes located close to telomeres undergo transcriptional
silencing (also called telomere-position effect or TPE). In yeast, this silencing requires the
Sir2, Sir3, Sir4, and Yku proteins (Wellinger and Zakian, 2012). Loss of TPE in these
mutants is likely primarily a consequence of loss of the histone deacetylase activity of
Sir2p, resulting in an increased level of the transcription-stimulating acetylation of
histones H3 and H4 (Wellinger and Zakian, 2012). The TPE can extend approximately
10-15 kb from the telomere ends, although the extent of TPE shows some chromosome-
to-chromosome dependence (Pryde and Louis, 1999).

1.5.2 ITSs and fragile sites in higher eukaryotes

Using FISH probes, investigators were able to detect interstitial telomeric repeats
in a large number of vertebrate species (Meyne et al., 1990). Two classes of ITSs have
been described in the mammalian genome. Long heterochromatic (>100 kb) ITSs are rare
and generally located in pericentric regions (Ruiz-Herrera et al., 2008). These sequences
are thought to be derived by fusions of two acrocentric chromosomes during evolution
(Lee et al., 1993; Fagundes and Yonenaga-Yassuda, 1998; Pellegrino et al., 1999). Human
chromosome 2, which contains a heterochromatic ITS, appears to represent the fusion of two ancesterl ape chromosomes in the primate lineage (IJdo et al., 1991).

Short ITSs are stretches of telomeric repeats, ranging from a few to a few hundred base pairs, are distributed at internal sites of the chromosomes. DNA sequence analysis indicates that there are many short ITSs in most mammalian genomes: 83 in humans, 79 in chimpanzees, 244 in mice, and 250 in the rats (Ruiz-Herrera et al., 2008). The sequences flanking the telomeric insertion are often associated with deletion or duplications of a small number of bases, suggesting that these insertions may be generated by the repair of DSBs by the non-homologous end-joining pathway (Rouet et al., 1994). The likely mechanism of producing short ITSs is that a broken end is used as a template for synthesis of a small number of telomeric repeats, and this end is re-joined with the other broken end by non-homologous end-joining (Ruiz-Herrera et al., 2008). In yeast, about 1% of the DSBs in strains unable to repair DSBs by homologous recombination, are “healed” by telomerase (Kramer and Haber, 1993). Thus, the formation of short ITSs is a fairly common event.

As described above, fragile sites are defined as chromosome regions that are susceptible to breakage when cells are exposed to DNA replication stress (Durkin and Glover, 2007). Several types of studies link telomeric sequences and a sub-set of fragile sites. First, a number of studies show a correlation between the position of fragile sites and ITSs. For example, 19 of 116 fragile sites in humans co-localize with ITSs (Lin and
Yan, 2008). Bosco and de Lange (2012) showed that DSBs were induced at an ITS on human chromosome 2, and that the ITS became bound to the TRF1 component of shelterin. Second, Sfeir et al. (2009) showed that TTAGGG telomeric repeats in human cells delay DNA replication, and mutations of the shelterin complex TRF1 cause fragility of the terminal repeats. Third, Alvarez et al. (1993) found that ITSs in Chinese hamster ovary (CHO) cells were more prone to X-ray-induced breakage than “normal” genomic sequences. Fourth, Kilburn et al. (2001) demonstrated that insertion of telomeric sequences into an intron of an APRT gene in CHO cells stimulated genomic rearrangements at this locus about 30-fold. Fifth, ITSs are over-represented at the breakpoints of chromosome alterations observed in tumor cells (Lin and Yan, 2008).

Although the correlation between ITSs and fragile sites argues that ITSs are susceptible to DNA breakage, an alternative possibility is that genomic regions that are susceptible to DNA breakage are preferred targets for insertion of an ITS (Desmaze et al., 2004; Wilt et al., 1994; Boei et al., 1997). One way of distinguishing these two possibilities is to insert an ITS into the chromosome, and to determine the effect of this insertion on the frequency of genomic rearrangements. As described in the next section, such experiments demonstrate that ITSs in yeast stimulate both chromosome rearrangements and point mutations in adjacent sequences.
1.5.3 Genomic alterations induced by yeast ITSs

In our prior collaboration with the lab of Sergei Mirkin, we developed a yeast strain that could be used to assay ITS-induced genomic instability (Aksenova et al., 2013). In this strain, a cassette with an intron-containing wild-type URA3 gene and a closely-linked TRP1 gene was inserted near ARS306 on chromosome III (Fig. 6). In three isogenic strains, the intron contained either 0, 8, or 15 copies of the telomeric repeat TGTGTGGG. This repeat is found within the TLC1 gene that encodes RNA component of telomerase (Singer and Gottschling, 1994). Genomic alterations that resulted in a Ura⁻ phenotype were selected using medium containing 5-fluoro-orotate (5-FOA). Strains with 15 copies of the telomeric repeat had rates of 5-FOA-resistance that were about 60-fold higher than strains with no ITS (Aksenova et al., 2013).

Figure 6: System used to detect ITS-induced genomic alterations

In this figure, blue and red colors signify the G-rich and C-rich telomeric sequences, respectively. The URA3::ITS gene contains an intron with telomeric repeats; most of our experiments were done with 15 copies of the repeat (TGTGTGGG). The green arrows show the location of primers used to diagnose various genomic changes. Arrows show Ty elements. There are three clusters of such elements on chromosome III: the left arm hotspot (LAHS) located near URA3::ITS, fragile site 1 (FS1), and fragile site 2 (FS2). As described in the text, the starting strain is Ura⁻ and sensitive to 5-fluoro-orotate (5-FOA). Derivatives with genomic alterations (shown in Fig. 7) were selected on plates containing 5-FOA. (Aksenova et al., 2013).
Using a combination of PCR, Southern analysis, DNA sequencing, and CHEF (contour-length homogeneous electric field) gels, we observed multiple types of genomic changes. Using primers that closely flank the ITS (shown as green arrows in Figs. 6 and 7), about one-third of the 5-FOA-resistant strains produced a PCR fragment of the same size observed in the starting strain. By sequence analysis, we showed that these strains had point mutations induced in the URA3 sequences flanking the ITS (Fig. 7A); these strains were also Trp+. There were also several other classes of ITS-induced chromosome alterations. Class 1 strains had a 70 kb terminal inversion involving the ITS sequence and the left telomere (Fig. 7B). We suggested that these inversions were induced by a DSB within the ITS, followed by recombination with the telomere. In Class 1 strains, we observed a PCR fragment using one primer (shown in orange) near the left telomere and the centromere-proximal primer within the URA3 reporter (shown in green). In addition, because the strains with the inversion had a longer ITS segment than the original strain, the strains were Trp+ as a consequence of telomeric silencing. Since this silencing can be reversed by nicotinamide, Class 1 strains grew on plates lacking tryptophan, but containing nicotinamide (Aksenova et al., 2013).

Class 2 strains had a deletion of a portion of the URA3-ITS gene as a consequence of a gene conversion event between the URA3::ITS gene and ura3-52 on chromosome V (Fig. 7C); the ura3-52 allele has a Ty insertion. In Class 3 and 4 strains, a break in the DSB resulted in a 70 kb acentric mini-chromosome (Fig. 7D). The left end of the centromere-
containing fragment was resected to generate an end in one of the Ty elements located centromere-proximal to the ITS sequence. The resulting end recombined in a BIR event with Ty elements located on the right arm of chromosome III (Class 3, Fig. 7D), or with a Ty element located on a non-homologous chromosome (Class 4). Class 4 events are not shown in Fig. 7, but are similar to Class 3.

Figure 7: Genome rearrangements associated with interstitial telomeric sequences

Chromosomes are depicted as single lines as in Fig. 6. The green and orange arrows show the locations of primers used to diagnose various genomic alterations. The presence of the ITS elevated the rates of all of the described genetic changes by more than a factor of 20 compared to the rates observed in the isogenic strain without the ITS. All alterations were detected as 5-FOA-resistant derivatives. A. Point
mutations within the URA3 coding sequence. A PCR fragment was observed when the primers shown in green were used to examine genomic DNA. No alteration in chromosome structure was observed, and DNA sequence analysis showed that the coding sequences contained base substitutions. As will be discussed in Chapter 2, this event is likely the result of repair of a single-stranded gap within the ITS or a replication fork stall, followed by recruitment of an error-prone DNA polymerase. B. Terminal inversions. In this class of alteration, no PCR fragment was detected with the green primers, but a fragment was generated when the amplification was done with the orange and centromere-proximal green primers. In addition, these strains were Trp− when examined on omission medium lacking tryptophan, but Trp+ when analyzed on omission medium lacking tryptophan but containing nicotinamide. These phenotypes are a consequence of the epigenetic silencing of the TRP1 gene by telomeric repeats. The strains with the inversion generally had a longer tract of telomeric sequences than the starting strain. C. Gene conversion between URA3::ITS and ura3-52. A small number of the 5-FOA-resistant derivatives were the result of a gene conversion event between URA3::ITS and ura3-52 (an allele caused by the insertion of a Ty element into the URA3 coding sequence). It was suggested that this class of event was initiated by a DSB in the ITS, followed by processing of the broken ends into the URA3 coding sequence (centromere-distal broken end) and into one of the Ty elements on III (centromere-proximal broken end). The resulting ends were repaired using the ura3-52 sequence on chromosome V as a template. This chromosome alterations was confirmed by PCR, and Southern analysis. As expected, this class of strain is Trp− on omission plates with or without nicotinamide. D. Generation of an acentric mini-chromosome and a centromere-containing version of chromosome III with a duplication of the right end. We suggest that this class was initiated by a DSB in the ITS. The centromere-distal fragment could be detected by CHEF gel analysis. The centromere-proximal fragment was resected into one of the Ty elements on the left arm of III that was subsequently repaired by a BIR event involving Ty elements on the right arm of III. A chromosome of the expected size was observed by CHEF gel analysis, and comparative-genome-hybridization microarrays detected the expected duplication of sequences (after Aksenova et al., 2013).

These results demonstrate that ITSs in yeast can stimulate both point mutations and chromosome rearrangements. In my thesis research, I examine the genetic regulation of these two types of ITS-induced alterations. As will be discussed further elsewhere, I used a strain identical to the one used by Aksenova et al. except I deleted
the *ura3*-52 gene. In this genetic background, almost all of the 5-FOA-resistant strains had either point mutations or inversions rather than more complicated chromosome rearrangements.

1.6 DSB-associated point mutations in yeast

Although mutations are often thought to be generated locally by misincorporation of a DNA base, there is increasing evidence that certain DNA sequences can stimulate mutations in flanking DNA (reviewed by Shah and Mirkin, 2015). Although this phenomenon was first observed in mammalian cells (Vasquez and Wilson, 1998), we will limit our discussion of this type of mutagenesis to yeast.

Holbeck and Strathern (1997) showed that an HO-induced DSB elevated the rate of reversion of a closely-linked mutation more than 100-fold, and this effect required the error-prone DNA polymerase zeta whose catalytic subunit is encoded by *REV3*. As described in Section 1.3 above, a number of types of sequence motifs including CCG/GGC, GAA/TCC, CTG/GAC, and short palindromes are associated with elevated levels of DSB formation in yeast. Elevated levels of mutations located within about 1 kb of GAA/CTT tracts were observed in several studies (Shishkin *et al.*, 2009; Shah *et al.*, 2012; Tang *et al.*, 2013), and this mutagenesis was dependent partly (Shah *et al.*, 2012) or almost entirely (Tang *et al.*, 2013) on polymerase zeta. Palindromic sequences composed of an inverted pair of Alu repeats (derived from the human genome) stimulated mutations in a *URA3* reporter located about 500 bp from the palindrome about 10-fold,
and most of this stimulation was dependent on polymerase zeta. In contrast, although
the mutation rate is greatly elevated in DNA sequences duplicated by BIR, these
mutations are generated largely independently of DNA polymerase zeta (Deem et al.,
2011).

DNA polymerase zeta is recruited to the replication fork in order to bypass
various types of DNA lesions (Gan et al., 2008). There is also evidence that this
polymerase can be recruited to a stalled replication fork even in the absence of overt
DNA damage (Northam et al., 2010). DNA polymerase zeta and other error-prone DNA
polymerases have an expanded active site relative to those in the error-free replicative
DNA polymerases, allowing the DNA lesion to be bypassed. In yeast, DNA polymerase
zeta is responsible for more than half of “spontaneous” mutations (Quah et al., 1980;
Zhong et al., 2006), and over 90% of UV-induced mutations (Lemontt, 1972). In yeast,
recruitment of DNA polymerase zeta at a DNA lesion can produce Rev3p-dependent
mutations up to 1 kb away (Kochenova et al., 2015). Polymerase zeta is conserved in
higher eukaryotes, and mice that lack this enzyme die as embryos (Lange et al., 2016).

Based on these and related observations, we suggested that Rev3p-dependent
mutations associated with GAA/CTT repeats could be explained by the mechanism
shown in Fig. 8 (Tang et al., 2013). Following a tract-associated DSB, the two broken ends
are processed 5’ to 3’. Because of the repetitive nature of the tracts, the two ends can
reanneal, and the resulting gap could be filled in using DNA polymerase zeta. By this
model, one would expect a loss of GAA/CTT repeats associated with the induced ura3 mutation, and such a loss was observed (Tang et al., 2013). As will be discussed in Chapter 2, we also have evidence that point mutations induced by ITSs, although Rev3p-dependent, do not occur by this mechanism. We suggest that these mutations are induced by single-stranded gaps or involve recruitment of DNA polymerase zeta to the replication fork in the absence of DNA damage.

![Diagram](image)

Figure 8: Base substitutions in URA3 induced by GAA/CTT repeats located 1 kb away

We showed that a tract of 230 GAA/CTT repeats resulted in a 40-fold stimulation of mutations in a URA3 reporter. In the figure, we show only 12 repeats. Associated with the base substitution in the URA3 gene was a loss of repeats from the triplet repeat tract. The induced mutations were dependent on DNA polymerase zeta. We suggested that a DSB within the repetitive tract was processed to generate large single-stranded gaps. Reannealing of the broken ends, followed by filling the gaps...
with an error-prone DNA polymerase is the likely source of the induced mutations and the loss of repeats from the tract.

2. Genetic control of genomic alterations induced in yeast by interstitial telomeric sequences

In many organisms, telomeric sequences can be located internally on the chromosome in addition to their usual positions at the ends of the chromosome. In humans, such interstitial telomeric sequences (ITSs) are non-randomly associated with translocation breakpoints in tumor cells and with chromosome fragile sites (regions of the chromosome that break in response to perturbed DNA replication). We previously showed that ITSs in yeast generated several different types of instability including terminal inversions (crossovers between the ITS and the “true” chromosome telomere) and point mutations in DNA sequences adjacent to the ITS. In the current study, we examine the genetic control of these events. We show that the terminal inversions likely occur by the single-strand annealing pathway of DNA repair following formation of a double-stranded DNA break within the ITS. The point mutations induced by the ITS require the error-prone DNA polymerase zeta. Unlike the terminal inversions, these events are not initiated by a double-stranded DNA break, but likely result from error-prone repair of a single-stranded DNA gap or recruitment of DNA polymerase zeta in the absence of DNA damage.
2.1 Introduction

The ends (telomeres) of the chromosomes have several properties that distinguish them from most genomic sequences. In most organisms, duplication of the telomeres involves the ribonucleoprotein complex called “telomerase” that adds telomeric repeats to the 3’ end of the chromosome by utilizing a reverse transcriptase and an RNA template (Greider and Blackburn 1985). In addition, telomeres have a structure (the cap) that distinguishes the natural end of the chromosome from ends produced by DNA damage (Wellinger and Zakian 2012). This distinction is necessary for several reasons. First, uncapped telomeres would activate the DNA damage checkpoint, halting the cell cycle. Second, uncapped telomeres could fuse by non-homologous end-joining to produce either circular chromosomes (fusions of the left and right ends of the same chromosome) or dicentric chromosome (fusions of telomeres of different chromosomes) (Kupiec 2014). Both types of chromosome aberrations have been observed in strains with defective capping such as tel1 mec1 strains (Craven et al. 2002; Mieczkowski et al. 2003). Finally, telomere capping prevents internal deletions of telomeric repeats as a consequence of homologous recombination (Wang et al., 2004).

One last unusual property of the telomeres in some organisms (including S. cerevisiae) is their ability to transcriptionally silence genes located nearby (Gottschling et al. 1990). The relationship of telomere silencing to the other functions of the telomere is unclear.
In yeast, as in most organisms, the telomeric sequences are simple repeats (Wellinger and Zakian 2012). Unlike most organisms, in *Saccharomyces cerevisiae*, the repeat is imperfect of the form C\textsubscript{1-3}A/G\textsubscript{1-3}T. Wild-type strains have a double-stranded region of this sequence of about 300 bp, and a single-stranded 3' G\textsubscript{1-3}T “tail” of about 15 bases (Wellinger and Zakian 2012). There are a large number of proteins that bind directly to telomeric DNA or indirectly to the telomere by binding to other proteins including Rap1p, Cdc13p, Stn1p, Ten1p, Rif1p, Rif2p, Sir2p, Sir3p, Sir4p, Yku70p, Yku80p, Rfa1p, Rfa2p, Rfa3p, Est1p, Est2p, Est3p, as well as the telomerase RNA TLC1 (Kupiec 2014). In addition to the proteins that usually reside at the telomere, there are proteins that have a more transient interaction (such as Tel1p/Mec1p and the Mre11p/Rad50p/Xrs2p complex), present at certain times in the cell cycle or when the telomeres shorten below a critical length. In addition to proteins that act directly at the telomere, many yeast genes exert an effect on telomere length. A total of 350 yeast genes (about 6% of total genes) affect telomere lengths directly or indirectly (Ungar *et al.* 2009).

In many organisms, telomeric sequences can be found embedded within the chromosome. These interstitial telomeric sequences (ITSs) were first detected by in situ hybridization (Meyne *et al.* 1990; Azzalin *et al.* 1997) and, subsequently, by DNA sequencing. The human genome contains more than 100 ITSs that have a minimum repeat length of four (Azzalin *et al.*, 2001); other estimates of the number of ITSs per genome are as high as 714 (Simonet *et al.* 2011). ITSs likely have two sources. Large ITSs
of several hundred basepairs of repeats are thought to arise as the result of telomere-
telomere fusion during evolution (Lin and Yan, 2008). Chromosome 2 of humans
represents such a fusion (IJdo et al. 1991). A more common source of small ITSs (4-20
repeats) is likely the telomerase-mediated addition of sequences to broken ends,
preceding their re-connection by non-homologous end-joining (NHEJ) (Lin and Yan,
2008). In the yeast S. cerevisiae, most ITSs are located in sub-telomeric regions (Walmsley
et al. 1984).

Two lines of evidence suggest that ITSs may represent breakage-prone sites in
the mammalian genome (Lin and Yan 2008). First, ITSs are significantly over-
represented in translocation breakpoints observed in tumor cells. Second, fragile sites
(regions of the genome prone to breakage in conditions of DNA replication stress) are
enriched for ITS sequences. In addition, meiotic recombination hotspots are associated
with ITSs in hamster cells (Ashley and Ward 1993) and avian mini-chromosomes
(Nanda et al. 2002). Although these observations suggest that ITS sequences are
themselves prone to breakage, they do not rule out the alternative possibility that ITSs
sequences are inserted into the genome near breakage-prone sequences without
themselves being hotspots for breakage. Below, we will show that ITSs can induce
certain types of chromosome rearrangements by themselves.

We have recently begun to investigate the effect of ITSs on genome stability in
the yeast Saccharomyces cerevisae (Aksenova et al. 2013, 2015). The system used by
Aksenova et al. (2013) and in the present study is shown in Fig. 9A. We constructed a
URA3 gene that contained an intron with either 8 or 15 copies of the yeast telomeric
repeat (TGTGTGGG). Most of the analysis was done with the 15-copy repeat. This gene
(URA3::Int (TGTGTGGG)15) was inserted on chromosome III near ARS306 about 70 kb
from the left end. We determined the rate of mutations of this gene by measuring the
frequency of 5-fluoro-orotate resistance (5-FOAR), a phenotype associated with ura3
mutant strains. The purple and orange arrows in Fig. 9 show the location of primers that
were used to diagnose the genomic alterations.

The rate of 5-FOAR was elevated by the ITS about 100-fold compared to the rate
for an intron-containing URA3 in the same location without the ITS (Aksenova et al.
2013). About half of these Ura- derivatives had point mutations in ura3 (Fig. 9B), and the
remainder had chromosome alterations of several different types. A common alteration
was a terminal inversion of the sequences located between the ITS and the true telomere;
we assume that this rearrangement was initiated by a DSB within the ITS (Fig. 9C). By
PCR, the Ura- derivatives shown in Fig. 9B produce a fragment with the purple pair of
primers but not with one purple and one orange primer. In contrast, the terminal
inversion arrangement yielded a PCR product with the orange and centromere-proximal
purple primers, but not with the two purple primers. The event shown in Fig. 9D is a
gene conversion between URA3::Int (TGTGTGGG)15 on chromosome III, and ura3-52 (a
Ty insertion within *URA3* on chromosome V. We hypothesized that this event was a consequence of a DSB in the ITS that was processed into 5’ end of *URA3* on the left broken end and a Ty element (shown as an arrow) on the right broken end. In addition to the events shown in Fig. 9, we also found strains that contained a 70 kb mini-chromosome containing the region between the left telomere and the ITS, and a *CEN3*-containing chromosome rearrangement in which the Ty elements on the left arm of III recombined with Ty elements on the right arm of III or with other Ty elements in the genome (Aksenova *et al.* 2013).
Figure 9: Different classes of genomic alterations induced by ITSs.

Telomeres and ITSs are shown as paired red and blue lines with red and blue representing the CA-rich and GT-rich strands, respectively. The top strand is shown with the 5’ end on the left side. Only telomeric repeats with the GT-rich strand on the 3’ end have telomere function. Black arrows indicate Ty elements, and purple and orange arrows indicate the orientations and positions of primers used to diagnose genomic alterations. The ITS is replicated by forks initiated at ARS306. The figure is not drawn to scale.

In our earlier study, we did not examine the genetic regulation of the chromosome alterations that were induced by the ITS when the telomeric repeats were oriented as shown in Fig. 9A (G-rich strand on the Watson strand as defined in the Saccharomyces Genome Database). However, we analyzed the regulation of a different
type of genetic alteration that occurs when the C-rich telomeric strand is on the Watson strand (Aksenova et al. 2015). In this orientation, strains with the URA3::Int (ACACACCC)₁₅ allele are 5-FOA-resistant and genomic rearrangements cannot be selected by the same procedure as for the URA3::Int (TGTGTGGG)₁₅ allele. Strains with the URA3::Int (ACACACCC)₈ allele, however, are somewhat 5-FOA-sensitive, and most of the 5-FOA⁺ derivatives of these strains have expansions of the telomeric tracts. We found that the expansions were dependent on two recombination pathways both requiring Rad6p: a gap-repair requiring the homologous recombination proteins Rad51p and Rad52p, and a post-replication repair (PRR) pathway utilizing Rad5p. We suggested that telomeric proteins bound to the ITS result in fork stalling, and a Tof1p-mediated pause. This pause then facilitated template switching (PRR pathway) or gap filling (HR pathway). This model is supported by the observations that ITSs result in stalled replication forks in yeast (Anand et al. 2012; Goto et al. 2015), that the ITS is bound by the telomeric protein Rap1p (Aksenova et al. 2013; Goto et al. 2015), and that Rap1p-bound sequences can generate DSBs (Goto et al. 2015).

Below, we examine the genetic regulation of ITS-induced events in a strain that is identical to that used in Aksenova et al. (2013) except for a deletion of ura3-52. In this background, almost all of the 5-FOA⁺ derivatives represent point mutations in ura3 or terminal inversions. We show that the ITS-induced point mutations occur on both sides of the ITS, and require DNA polymerase zeta. The error-prone polymerase appears to be
recruited to the ITS in the absence of a DNA lesion or to an ITS-associated single-stranded DNA gap rather than to a double-stranded DNA break. In contrast, the terminal inversion is likely initiated by an ITS-associated DSB, followed by processing of the broken end, and annealing of the left telomere to the centromere-containing broken end by the single-strand annealing (SSA) pathway.

2.2 Materials and Methods

2.2.1 Yeast strains and plasmids

The genotypes and details of construction for the strains used in this study are in Table 2 (Appendix), and the primers used in strain constructions/strain analysis are in Table 3 (Appendix). Most strains are derivatives of the previously described haploid SMY749 (Aksenova et al. 2013). This strain is isogenic with the commonly-used lab strain S288c and has the genotype: MATa leu2-Δ1 trp1-Δ63 ura3-52 his3-200 ade2Δ::kanMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)15-TRP1; the reporter gene with the ITS is located on chromosome III (Fig. 9A). As described in Table 2, we isolated a derivative of SMY749 (PG329) in which we replaced ura3-52 with a drug resistance marker (natMX4). Mutant derivatives of PG329 lacking various genes involved in DNA repair, recombination or telomere elongation were also generated (Table 2). The deletions were constructed by standard procedures using PCR fragments containing drug-resistance markers; these fragments were obtained by amplifying plasmids containing either
hphMX4 or natMX6 as described in Table 2. All insertions and deletions were confirmed by PCR.

2.2.2 Yeast media

In most experiments, standard media were used (1991). Medium with 5-fluoro-orotate (5-FOA) contained 1 gram of 5-FOA and 40 mg of uracil per liter in synthetic dextrose complete medium (SD-complete). Medium containing 5-FOA and canavanine had the same amount of uracil and 5-FOA, but contained 120 mg of canavanine per liter; in addition, the medium lacked arginine. The medium used to check for silencing of TRP1 expression was SD-tryptophan medium containing 70 mg of nicotinamide per liter. Sporulation medium was standard (Guthrie and Fink 1991).

2.2.3 Measurements of rates of genetic alterations in strains with URA3-Int-(TGTGTGGG)$_{15}$-TRP1 on chromosome III

We measured several types of genetic instability in our analysis. In most of the studies, we first determined the rate of 5-FOAR derivatives in strains that contained the URA3-Int-(TGTGTGGG)$_{15}$-TRP1 reporter gene integrated on chromosome III. For these experiments, the strains were streaked on rich growth medium (YPD), and allowed to form colonies at 30° C. Individual colonies were then grown as small patches on YPD for one day. Individual patches were resuspended in water and various dilutions were plated to SD-complete or SD-medium containing 5-FOA. In each experiment, we examined about 20 independent colonies, and we performed two separate experiments for each strain. Based on the total number of cells in the patch and the number of 5-FOAR
derivatives, we calculated a rate of formation of 5-FOA-resistance for each strain using the method of the median (Lea and Coulson 1949).

We found three classes of 5-FOAr derivatives: Class 1 (point mutations within the URA3 reporter), Class 2 (terminal inversions involving the ITS), and Class 3 (uncharacterized chromosome rearrangements). For each strain, we examined about 20 independent 5-FOAr derivatives using a series of tests. First, we performed PCR with all the isolates using the primers UIRL1/UIRL2 and UIRL2/CHR413R (Fig. 9A). UIRL1/UIRL2 flank the ITS sequence, and produce a PCR product if there is a point mutation (Class 1). The UIRL2 and CHR413R primers produce a PCR product if there is a terminal inversion (Class 2). Failure to detect a PCR product with either set of primers indicates Class 3. Second, we tested whether the 5-FOAr derivatives failed to grow in medium lacking tryptophan but could grow in medium lacking tryptophan that contained nicotinamide. Because terminal inversions result in a larger insertion of telomeric sequences near the TRP1 gene, the TRP1 gene is silenced epigenetically, and this silencing is reversible by nicotinamide (Akesnova et al. 2013). In contrast, most Class 3 strains are Trp$, but the tryptophan requirement cannot be reversed with nicotinamide. Using the criteria described above, we found that >90% of the strains were Classes 1 and 2 with Class 3 representing a minor fraction. We calculated the rates of formation of Classes 1 and 2 by multiplying the proportion of these events among the 5-FOAr derivatives by the rate of 5-FOAr.
2.2.4 Determination of 95% confidence limits (CL) on rate measurements

For calculation of 95% CL on the median rates of 5-FOAr derivatives, we used the ranking method described previously (Wierdl et al. 1996). The procedure for determining the 95% CL of the rates of Class 1 and Class 2 isolates is more complex because both the CLs on the rates of 5-FOAr and on the proportions of each class must be considered. The 95% limits on the proportions of each class were calculated using the Vassarstat website (http://vassarstats.net). If the rate of Class 1 or Class 2 events is Q and the rate of 5-FOAr is A and the proportion of Class 1 or Class 2 events is B, we calculate the error (confidence interval) for Q (\(\delta Q\)) by the equation:

\[\delta Q = Q \times \sqrt{\frac{\delta A}{A^2} + \frac{\delta B}{AB}} \]

To illustrate the method used to calculate the 95% confidence limits of Class 1 and Class 2 events, we will use the data from the wild-type strain PG329. The median rate of 5-FOAr derivatives was 18.6 \times 10^{-7} (95% CL of 14-24 \times 10^{-7}) (Table 1). Of 107 5-FOAr mutants examined, 52 had point mutations (Table S3); this proportion is 0.486 (95% CL of 0.39-0.58). The rate of point mutations was 19 \times 10^{-7} \times 0.49 = 9.0 \times 10^{-7}. To obtain the upper CL limit on this rate, we used the following protocol: 1. Subtract the median rate of 5-FOAr from the rate representing the upper 95% CL; 24 \times 10^{-7} – 18.6 \times 10^{-7} = 5.4 \times 10^{-7}; 2. Divide the value of Step 1 by the median rate of 5-FOAr; (5.4 \times 10^{-7})/(18.6 \times 10^{-7}) = 0.30; 3. Square the value obtained in Step 2; (0.30)^2 = 0.09. Steps 4-6. Perform the
comparable steps with the data for the proportion: Step 4. 0.58-0.486 = 0.094; Step 5.
\((0.094)/(0.486) = 0.19\). Step 6. \((0.19)^2 = 0.036\). Step 7. Add the values calculated for Steps 3
and 6; 0.09 + 0.036 = 0.126; Step 8. Take the square root of the value calculated for Step 7;
\((0.126)^{1/2} = 0.35\). Step 9. Multiply the value obtained in Step 8 by the rate of point
mutations; 0.35 \times 9.0 \times 10^{-7} = 3.15 \times 10^{-7}. The upper 95% CL is equal to the median rate of
the point mutations plus the value calculated in Step ; 9.0 \times 10^{-7} + 3.15 \times 10^{-7} or 12.2 \times 10^{-7}.
Performing comparable steps for the lower 95% CL, we calculate a value of 6.1 \times 10^{-7}. In
summary, for point mutations, the rate is 9.1 \times 10^{-7} (95% CL of 6.1-12.2 \times 10^{-7}). Similar
calculations for the terminal inversions yield a rate of 9 \times 10^{-7} (CL of 5.9-12 \times 10^{-7}). These
values and those for the mutant strains are in Table 1.

2.3 Results

The starting wild-type strain used in our study (PG329) had the same \textit{URA3::Int}
(TGTGTGGG)\textsubscript{15} reporter gene (Fig. 9A) used in our previous study (Aksenova \textit{et al.} 2013).
The only difference between PG329 and the strain used in our previous study is that the
\textit{ura3-52} gene (\textit{URA3} with an insertion of a Ty element in the coding region) in the strain
used previously was removed, being replaced by the \textit{natMX6} drug resistance gene. Our
experimental approach was to determine the rate of 5-FOA8 derivatives and the types of
genomic alterations associated with these derivatives in the wild-type strain and in
strains with mutations affecting various pathways of recombination, DNA repair, and
telomere length regulation.
In our previous analysis, we showed that the ITS sequences greatly stimulated the rate of 5-FOA-resistance, elevating both the rates of point mutations in \textit{URA3} and chromosome rearrangements (Aksenova \textit{et al.} 2013). In PG329, the rate of 5-FOA-resistance was $1.86 \times 10^{-6}/\text{division}$ (95% confidence limits [CL] of $1.4-2.4 \times 10^{-6}$) (Table 1). In a strain isogenic with PG329 in which the reporter gene lacked the ITS sequence (AM21), the rate of 5-FOA-resistance was $3.57 \times 10^{-8}/\text{division}$ (95% CL of $1.7-23 \times 10^{-8}$), a 52-fold decrease. We examined independent 5-FOAR derivatives of PG329 in the various mutant strains to classify them into three classes. If we obtained a PCR product using primers that closely flanked the ITS (UIRL1 and UIRL2 in Fig. 9), we concluded that these strains had point mutations in the \textit{URA3} coding sequence. This conclusion was confirmed by sequence analysis of the reporter gene (described below). Class 1 strains were also Trp+. Class 2 strains failed to produce a PCR product with the UIRL1 and UIRL2 primers, but produced a PCR product using the primers UIRL2 and CHR413R, as expected for a terminal inversion (Fig. 9C). In addition, Class 2 strains were Trp− when analyzed in standard tryptophan omission medium, but Trp+ when examine in tryptophan omission medium containing nicotinamide. These phenotypes are diagnostic of a terminal inversion because such inversions resulted in a larger insertion of telomeric sequences near the \textit{TRP1} gene, producing an epigenetic silencing of \textit{TRP1} (Aksenova \textit{et al.} 2013). Lastly, Class 3 strains fail to produce a PCR product with either UIRL1/UIRL2 or UIRL2/CHR413R primers. These strains were Trp− when examined on either the
standard tryptophan omission medium or tryptophan omission medium containing nicotinamide. Although we have not characterized Class 3 strains in detail, based on our previous study (Aksenova et al. 2013), most of these derivatives likely have an acentric mini-chromosome containing sequences centromere-distal to the ITS, and a derivative of chromosome III with fusions between centromere-proximal Ty elements on the left arm of III with ectopic genomic Ty elements. Class 3 events for both wild-type and mutant strains were less than 10% of the total 5-FOA\(^R\) derivatives.

Of the 107 independent 5-FOA\(^R\) derivatives of PG329 examined, we observed 52 Class 1, 51 Class 2, and 4 Class 3 events (Table 4). Based on the rate of 5-FOA\(^R\) derivatives, and the proportions of Class 1 and Class 2 events, we calculated the rates of point mutations and terminal inversions in PG329. These calculations for PG329 and the various mutant derivatives are in Table 1. The genetic regulation of these ITS-associated genomic alterations is described below.

Before we discuss specific mutations, we mention a few general considerations about the effects of various mutants. Since the genome destabilizing effects of the ITS are local rather than genome-wide, we assume that the ITS represents a sequence motif that is prone to formation of a DNA lesion (DSB or single-strand nick) or a DNA structure (for example, a stalled replication fork) that can generate instability by recruiting error-prone DNA polymerases or by promoting template switching even in the absence of direct DNA damage. The probability of generating such events is
presumably dependent on proteins that recognize the ITS either specifically as a telomere-like sequence or non-specifically as a fork-stalling sequence. In previous studies, the ITS was shown to bind the telomere-associated protein Rap1 (Aksenova et al. 2013) and to stall replication forks (Anand et al. 2012; Goto et al. 2015). Binding of proteins could either facilitate or reduce replication fork stalling. Whatever the nature of the DNA structure that initiates genome instability, if Class 1 and Class 2 events are initiated by the same type of event, mutants that affect the frequency of the initiating event will elevate or reduce the rates of both Class 1 and Class 2 events simultaneously. If Class 1 and Class 2 events are initiated by different types of DNA lesions and/or structures, we expect to see mutants that affect one class but not the other. Regardless of the event that initiates the genome alteration, it is likely that the steps that result in a Class 1 and Class 2 event will be different, since Class 1 events involve point mutations that do not alter the structure of the chromosome whereas Class 2 events represent recombinational interactions between the telomere and the ITS sequence.

From the analysis described below, we conclude that Class 1 and Class 2 events are initiated differently, and many of the subsequent steps in generating these classes utilize different proteins. In Table 1, we compare the rates of Class 1 and 2 in the mutant strains with the wild-type strains in two different ways. If the median rates in the mutant strains are outside the 95% confidence limits of those in the wild-type strain,
but the confidence limits of the rates overlap for the wild-type and mutant, we denote
the mutant rates with one asterisk.

Table 1: Rates of 5-FOAr, \textit{ura3} point mutations, and terminal inversions1

relative to wild-type is shown in red and a reduction in blue.

![Table 1: Rates of 5-FOAr, \textit{ura3} point mutations, and terminal inversions1

![Table 1: Rates of 5-FOAr, \textit{ura3} point mutations, and terminal inversions1

2.3.1 Analysis of ITS-associated point mutations

We sequenced 29 independent Class 1 strains derived from PG329. 83% were
single-base substitutions, 7% were single-base deletions/insertions, and 10% had more
than one closely-linked alteration. Similar numbers were found centromere-distal and centromere-proximal to the ITS insertion. To confirm that ITS-induced mutagenesis in PG329 occurred locally rather than on a genome-wide basis, we examined mutation rates at the CAN1 locus in PG329 and in a strain lacking the ITS insertion (SMY803). The mutation rates to canavanine-resistance were very similar in the two strains, 2.2×10^{-7}/division (CL 1.6-3.3 x 10^{-7}) in PG329 and 1.4×10^{-7}/division (CL 1.4-3.9 x 10^{-7}) in SMY803.

In both yeast and mammalian cells, certain sequence motifs including Z-DNA, palindromes, quadruplex DNA, and triplex DNA have been shown to induce mutations in nearby reporter genes (Shah and Mirkin 2015). This phenomenon has been called “repeat-induced mutagenesis” (RIM; Shah et al. 2012). One RIM-causing repeat is the triplex-forming GAA repeat associated with Friedreich’s ataxia which elevates mutations in adjacent genes more than 100-fold in some assays (Shishkin et al. 2009; Shah et al. 2012; Tang et al. 2013; Saini et al. 2013). Long (230 repeats) GAA tracts were also associated with formation of a double-stranded DNA break in cells in G1/G0 of the cell cycle (Tang et al. 2013; Saini et al. 2013). The RIM of the GAA repeats was strongly dependent on the error-prone DNA polymerase zeta in one study (Tang et al., 2013), but showed partial dependence or no dependence the two other studies (Shah et al. 2012; Saini et al. 2013). In addition, Tang et al. found that, in those strains with a point mutation in the URA3 reporter gene, 85% of such strains also had alterations (96% deletions, 4% additions) in the length of the GAA tract. Most of the deletions were
between 10 and 75 repeats in length. In strains without a ura3 point mutation, only 5% had an altered GAA tract.

To account for these findings, we suggested that RIM was initiated by a DSB within the GAA tract, and processing of the broken ends by 5’ to 3’ degradation (Tang et al. 2013). Reannealing of these broken ends, followed by repair of the two single-stranded gaps by DNA polymerase zeta would be expected to cause an elevated rate of mutations in the linked reporter gene and a decrease in the length of the GAA tract (Fig. 10). To determine whether a similar mechanism explained the ITS-mediated RIM, we examined the length of the ITS in 37 strains that had a Class 1 event. No alteration was observed in 34 strains, two gained one copy of the telomeric repeat, and one gained three copies. These results argue that the model shown in Fig. 10 does not explain the ITS-induced point mutations and that these mutations are not likely to reflect repair of an ITS-associated DSB. Alternatives are that the Class 1 events result from the recruitment of error-prone DNA polymerase to ITS-associated single-stranded gaps or from the recruitment of the error-prone polymerase to a slow-moving or stalled replication fork in the absence of DNA damage (Northam et al. 2014).
Figure 10: Point mutations induced by DSBs within adjacent (GAA)$_N$ repeats.

The two strands of DNA containing a URA3 gene adjacent to a (GAA)$_N$ tract are shown. As described in the text, (GAA)$_N$ tracts are frequently broken in both replicating and non-replicating yeast cells. DSB formation, followed by 5' to 3' resection of the broken ends, results in products that can reanneal. Reannealing, followed by gap repair with an error-prone DNA polymerase zeta (Rev3p), could produce a mutation in one strand of the linked URA3 gene. Replication of this product would result in one Ura$^+$ and one Ura$^-$ cell. This mechanism would result in loss of (GAA) repeats.

Most of the Class 1 events require the activity of DNA polymerase zeta. The rate of Class 1 events was lowered about ten-fold in the rev3 derivative of PG329 (AM12) that lacks DNA polymerase zeta (Table 1). Lack of the mismatch repair proteins Msh2 (strain AM24) or Msh6 (strain MD659) had no effect on Class 1 events. This result is consistent with Rev3-dependence of Class 1 events, since the mismatch repair system fails to
efficiently correct mutations caused by DNA polymerase zeta (Lehner and Jinks-Robertson 2009). To ensure that the msh2 strain AM24 was deficient in mismatch correction, we compared the rate of forward mutations at the CAN1 locus in the wild-type strain PG329 and the msh2 mutant strain AM24. As expected, the can1 mutation rate was increased in the msh2 strain by about six-fold (2.2 x 10^7/division [CL, 1.6-3.3 x 10^7] in PG329 versus 1.3 x 10^6/division [0.8-2.2 x 10^6] in AM24).

Mutations in RAD51 and RAD52 significantly elevated the rate of Class 1 events, and mutations in SIR2, RAD50, and MRE11 significantly lowered the rate of Class 1 events. Elevated levels of mutations in rad51 and rad52 strains have been observed previously (Huang et al. 2003). This elevation is thought to reflect the channeling of the repair of DNA lesions from the error-free homologous recombination pathway to error-prone pathways (Kunz et al. 1989). The mutations observed in rad52 strains are dependent on Rev3p (Endo et al. 2007). For the ITS-initiated events, one potential error-free pathway of lesion processing is sister-chromatid recombination; sister-chromatid exchange would be expected to be reduced in rad51 and rad52 strains. Mutations affecting non-homologous end-joining (lig4; Schär et al. 1997) or PRR (mms2 and rad18; Boiteux and Jinks-Robertson 2013) had no significant effect on the rate of point mutations.

Loss of the histone deacetylase encoded by Sir2p reduced the rate of Class 1 events about two-fold, but elevated the rate of Class 2 events about three-fold. One
interpretation of this result is that Class 1 and 2 events reflect competing pathways of repair. Since telomeric silencing represses both gene expression and recombination (Gottschling et al. 1990; Mieczkowski et al. 2007), loss of Sir2p might result in an elevated frequency of terminal inversions and, therefore, a reduction in ITS-associated point mutations. Loss of Sir2p substantially elevates expansions of the ITSs (Aksenova et al. 2015), and increases the rate of recombination of replication forks stalled within the ribosomal RNA genes (Benguria et al. 2003).

Mutant strains that lack either the Rad50p or the Mre11p had about eight-fold reduced levels of Class 1 and Class 2 events. The levels of reduction are roughly the same for the two classes of events in the two mutant backgrounds (Table 1). The Mre11p/Rad50p/Xrs2p (MRX) complex has many cellular roles including: acting at an early step in processing DSBs, loading cohesin to the DSB in order to channel its repair to the sister chromatid, and promoting telomere elongation (Symington et al. 2014; Wellinger and Zakian 2012). In \textit{in vitro} experiments, Mre11p also binds G4 DNA and cuts it as an endonuclease (Ghosal and Muniyappa 2005). In addition, Mre11p is an endonuclease capable of cleaving hairpin structures and a 3' to 5' single-stranded exonuclease (Symington 2016). Based on these observations, one interpretation of the reduction in Class 1 and 2 ITS-stimulated events is that the MRX complex is involved in making DNA lesions in the ITS. One possible model is that the MRX complex nicks the ITS complex. If this nick is specific to G4 DNA, it is likely to occur on the G-rich strand.
when it is the lagging strand template. Alternatively, the complex might be able to nick both the G-rich and C-rich strands. If the nick is expanded into a gap that is repaired by DNA polymerase zeta, a point mutation is produced.

Since sae2 mutations share many of the phenotypes of nuclease-dead versions of Mre11p, Sae2 is thought to be required to activate the Mre11 endonuclease, although the mechanism of this activation is unclear (Symington 2016). We found that the sae2 mutation reduced the rate of Class 1 events to approximately the same extent as observed for mutants of the MRX complex, although the rate of Class 2 events was not significantly affected (Table 1). This result suggests that the nuclease activity of Mre11p is required for Class 1, but not Class 2 events.

There are several arguments consistent with the possibility that slowing or stalling of the replication fork at the ITS contributes to the elevated level of point mutations. First, the ITS is associated with stalled replication forks and the amount of stalling is elevated by the rrm3 mutation and reduced by the tof1 mutation (Anand et al. 2012). In strains with the opposite orientation of the ITS from that used in the present study, the tof1 mutation lowered the rate of tract expansions (Akesenova et al. 2015). Based on these and other observations (Ivessa et al. 2002; Mohanty et al. 2006), we expected that tof1 and rrm3 would reduce and elevate, respectively, the rates of ITS-induced point mutations. As expected the tof1 mutation reduced the rate of point mutations, but the rrm3 mutation had no effect on this rate (Table 1). Although the
interpretation of the rrm3 strain is not straightforward, it is possible that the delay from loss of Rrm3 is too transient to affect the recruitment of DNA polymerase zeta. In this context, it should be pointed out that most of the experiments characterizing the effects of Rrm3 on fork pausing were done with ITS sequences that were 500 bp rather than the 120 bp sequences used in our study (Ivessa et al. 2002).

2.3.2 Genetic regulation of terminal inversions

In PG329 and the various mutant derivatives, a DSB in the ITS produces an acentric fragment in which the broken end has the correct orientation (the G-rich strand at the 3’ end) to be a functional telomere. The broken end associated with the centromere has the C-rich strand at the 3’ end where it cannot function as a substrate for telomerase. After processing of the broken ends by 5’ to 3’ degradation (Symington et al. 2014), there are several possible mechanisms for repairing the broken ends (Fig. 11). The ends could reanneal, and this reannealing would likely result in loss of one or more telomeric repeats (Fig. 10 and 11A). If the DSB occurred in S or G2, the broken ends could be repaired using the sister chromatid as a substrate (Fig. 11B). This type of repair would be difficult to detect since most such events would not produce a 5-FOA® derivative. Thirdly, the telomere of the chromosome could pair with centromere-containing broken end, resulting in an inversion. Since the telomeres are generally considerably longer than the ITS, the resulting intermediate would likely have single-strand tails that would have to be removed (Fig. 11C).
The intermediate shown in Fig. 11C is very similar to that proposed for the single-strand annealing (SSA) pathway. Following formation of the DSB, an early step in the pathway is processing for the broken ends to produce 3’ protruding single strands. Since this step involves two redundant pathways, no single mutant is expected to eliminate end-processing (Mimitou and Symington 2009). The subsequent step is reannealing of complementary single strands, termed single-strand annealing (SSA). SSA requires the strand annealing activity of Rad52p, but does not require Rad51p (Symington et al. 2014). Rad59p promotes the single-strand annealing activity of Rad52p (Davis and Symington 2001), although rad59 mutants have a smaller effect on SSA than rad52 mutants in most assays. The completion of the SSA event often requires the removal of single-stranded tails. This step utilizes a complex of Msh2p/Msh3p/Rad1p/Rad10p (Sugawara et al. 1997).
Figure 11: Mechanisms for the repair of a DSB in the URA3-Int- (TGTGTGGG)$_{15}$ reporter gene.

As in Fig. 9, the CA-rich and GT-rich telomeric strands are shown in red and blue, respectively. All products are initiated by a DSB within the ITS, followed by 5’ to 3’ resection of the broken ends. An arrow indicates the orientation of the chromosomal segment between the left telomere and the reporter gene. A. Reannealing of broken ends. If the repair event does not involving the flanking URA3 coding sequences, this mechanism would not be expected to produce a 5-FOAR derivative. B. Repair of DSB by sister chromatid recombination. As in Fig. 9A, this mechanism would not result in a 5-FOAR derivative. C. Repair of DSB resulting in terminal inversion. Following processing of the broken ends, the left telomere could undergo an SSA event with the centromere-proximal broken end to generate the inversion. Since the telomeric tract is longer than the ITS, the reannealed intermediate is likely to contain a single-stranded DNA tail that would require Msh2p/Msh3p/Rad1p/Rad10p for its removal.
The effects of various mutants on the rates of terminal inversions strongly support the conclusion that terminal inversions reflect SSA (Fig. 11C). The rad52 mutation lowered the rate of terminal inversions ten-fold, whereas rad51 resulted in no significant reduction (Table 1). The rad59 mutation decreased the rate of terminal inversions about four-fold. Loss of the Msh2 or Rad1 proteins reduced the rates of terminal inversions 14-fold and 7-fold, respectively. Neither loss of Lig4p nor loss of the PRR proteins Rad18 and Mms2 had significant effects on terminal inversions (Table 1).

As described above, loss of the Sir2p elevated the rate of terminal inversions about three-fold (Table 1). One possible explanation of this result is that the telomeric silencing associated with the natural telomere reduces the efficiency of SSA. Elimination of this silencing in the sir2 mutant strain, therefore, results in increased Class 2 events. Loss of the Tel1p also results in approximately three-fold more terminal inversions. Although the interpretation of this result is not clear, it is possible that recruitment of telomerase to telomeric repeats results in less efficient SSA. Since Tel1p is involved in recruiting telomerase to the telomeres, loss of Tel1p could allow more efficient SSA. It is unlikely that the short telomeres characteristic of tel1 strains (Lustig and Petes 1986) contributes directly to elevated rate of Class 2 events. The mre11 and rad50 strains have equally short telomeres and a reduced level of Class 2 events (as described below), and the rif1 mutation that results in extended telomeres (Hardy et al. 1992) has no significant effect on Class 2 events (Table 1).
In common with the Class 1 events, Class 2 events were significantly reduced by the *rad50*, *mre11*, and *tof1* mutations. We suggest that the Mre11/Rad50/Xrs2 complex may be involved in creating a DNA lesion at a Tof1-mediated stalled replication fork. Since the *sae2* mutation does not reduce the rate of Class 2 events, the nuclease activity of Mre11p is not likely required to produce the DNA lesion. However, the MRX complex may be required for recruiting the cellular nucleases responsible for the ITS-associated DSB.

The rate of Class 2 events was reduced in strains lacking Srs2p, Sgs1, and Rrm3p (Table 1). Although all three of these proteins are helicases, it is possible that the effects of these mutations involve different mechanisms. Srs2p is an anti-recombinase that destabilizes the Rad51-ssDNA complex (Symington *et al.* 2014). Loss of Srs2p may elevate the rate of repair of the ITS-associated DSB by sister-chromatid recombination, reducing the frequency of terminal inversions. In addition, since the Srs2p can unwind certain types of secondary DNA structures (Niu and Klein 2017), this role may be important in mediating SSA between the telomeric repeats.

Since mutants lacking Sgs1p, similar to those without Srs2p, have a hyper-Rec phenotype (Watt and Hickson 1996), the first mechanism proposed to explain the loss of Class 2 events for the *srs2* strain may also apply to the *sgs1* strain. Alternatively, the reduction in Class 2 events may reflect the role of Sgs1 in end processing. Lastly, Sgs1p
can unwind G4 DNA structures associated with telomeres (Sun et al. 1999), and loss of this activity may inhibit the SSA reaction between telomeric sequences.

The lowered rate of Class 2 events in the *rrm3* strain was quite unexpected. Since Rrm3p promotes replication fork progress through ITS and other hard-to-replicate sequences (Ivessa et al. 2002), we expected that loss of Rrm3p would lead to elevated DSB formation in the ITS and increased formation of the terminal inversion. However, Muñoz-Galván et al. (2017) showed recently that loss of Rrm3 led to reduced levels of certain types of recombination events. Although most of these studies concerned sister-chromatid recombination, it is possible that SSA is also stimulated by Rrm3p. In addition, as pointed out above, the ITS used in our studies is about one-fourth as large as the ITS used in the fork-stalling studies of Ivessa et al. 2002).

2.4 Discussion

As discussed in the Introduction, a variety of different types of sequences have been associated with chromosome rearrangements, and the genetic regulation of these events has been examined for several types of repeats. Below, we discuss four classes of these sequences: ITS sequences in which the telomeric tract is inverted with respect to the flanking *URA3* coding sequences, (GAA)$_N$ triplet repeats, (CTG)$_N$ triplet repeats, and short inverted palindromes. Most of the comparisons with our current analysis are complicated by the use of different reporters monitoring different types of genomic rearrangements in different chromosome contexts. In particular, many of these studies
examined the regulation of repeat expansion rather than chromosome rearrangements induced by the repeats (Polleys et al. 2017).

2.4.1 Comparison of genetic regulation of ITS-induced events with the regulation of other fragile sites

In the current study, the GT-rich ITS sequence is oriented such that the GT-rich sequence would be located in the transcript (Fig. 9). In the opposite orientation (as discussed in the Introduction), most of the 5-FOA⁸ derivatives are a consequent of tract expansions rather than point mutations or terminal inversions (Aksenova et al. 2015). The rate of expansions was elevated by the sir2 mutation, and reduced by mutations in srs2, rad5, rad51, rad52, rad6, and tof1. We suggested that tract expansions were promoted by a slow-moving replication forks (reflecting the binding of telomeric proteins and Tof1p), and lesions associated with this pausing could be repaired by either homologous recombination or PRR. In the current study, the rates of Class 1 and 2 events are independent of Rad51p and the PRR proteins. In both experiments, Sir2p negatively influences the frequency of genomic alterations. It should be emphasized that the two sets of results are not in conflict since one assay is designed to detect large expansions, point mutations, and genomic rearrangements, whereas the other assay is sensitized to detect expansions as small as a single repeat (Aksenova et al. 2015). In addition, the rate of small expansions (4 x 10⁴/division) in one assay is about 200-fold greater than the rate of point mutations plus terminal inversions (2 x 10⁶/division) in the other.
The \((\text{GAA})_N\) repeat associated with the trinucleotide expansion disease Friedreich’s ataxia causes orientation-dependent replication pauses in yeast (Krasilnikova and Mirkin, 2004), and stimulates homologous recombination and chromosome rearrangements (Kim et al. 2008; Tang et al. 2011). Using an assay that was similar to the one employed in the current study, Shishkin et al. (2009) showed that \((\text{GAA})_N\) tracts expand in yeast and induce mutations in nearby sequences. Expansion rates were elevated in \(\text{tof1}\) strains, but reduced in strains deficient in PRR. Loss of Sgs1 also reduced the rate of expansions. The rate of point mutations was not substantially affected in strains with mutations in \(\text{rrm3, rad50, srs2, sgs1, rad6 or rad5}\) (Shishkin et al. 2009). In different studies, the levels of point mutations were either completely or partially dependent on Rev3 (Tang et al., 2013; Shah et al. 2012; Saini et al. 2013). Both tract expansions, as well as tract fragility, were elevated in cells with defects in DNA replication (Zhang et al. 2012; Saini et al. 2013); expansions were also strongly elevated in \(\text{rad27}\) mutants (Tsutakawa et al. 2017). Mutations in \(\text{tof1}\) and \(\text{mre11}\) also substantially elevated GCR as did mutations affecting transcription initiation (Zhang et al. 2012). DSBs associated with large \((\text{GAA})_N\) tracts were visualized by Southern analysis (Kim et al. 2008), and DSB formation was dependent on Msh2p. Since \((\text{GAA})_N\)-associated DSBs were observed in stationary phase cells in addition to cycling cells (Tang et al. 2011; Zhang et al. 2012), their formation does not require a replication fork block. Based on these observations, Zhang et al. (2012) suggested that there were at least two pathways
resulting in repeat expansions and repeat fragility. In one pathway, secondary DNA structures (H-DNA) formed at the replication fork were processed to generate expansions and DSBs. In the second pathway, DSBs could be formed in R-loops involving the (GAA) tract independent of DNA replication. In general, the genetic regulation of the stability of (GAA)\textsubscript{n} tracts is quite different from that observed for the ITSs, although several aspects of the RIM process appear similar.

Repeats of the trinucleotide CTG/CAG are unstable in yeast, undergoing frequent deletions (Freudenreich et al. 1997). The deletion frequency is highest when the CTG tract (expected to form relatively stable hairpin structures) is on the lagging strand template. The CTG/CAG tracts also stimulated recombination between flanking direct repeats and were associated with DSB formation (Freudenreich et al. 1998); the \textit{rad27} mutation, required for processing of Okazaki fragments, elevated the rate of CTG/CAG tract expansions. Subsequent studies showed that \textit{rad27} and a number of other mutations affecting DNA synthesis (for example, \textit{cdc9} and \textit{pri2-1}) increased both tract expansions and tract fragility (Callahan et al. 2003). In contrast to our observations that strains lacking Srs2p and Sgs1 have reduced levels of ITS-induced terminal inversions, such strains have elevated fragility of CTG/CAG tracts (Kerrest et al. 2009). Mutations that reduced the efficiency of mitotic recombination (\textit{rad52}, \textit{rad51}, \textit{mre11} and others) elevated tract fragility (Sundararajan et al. 2010). From these and other observations, Sundararajan et al. suggest that hairpin formation within the CTG strand can be repaired
by gap filling (leading to tract expansion) or can result in a one-ended or two-ended DSB. These DSBs can be repaired by HR-dependent reactions or remain unrepaired. Repair of a one-ended break by break-induced replication often leads to large-scale tract expansions (Kim et al. 2017). It is difficult to compare the observations with CTG/CAG repeats with our analysis of the ITS-induced events, since our current study emphasizes different types of genetic instability (point mutations and terminal inversions) from those examined for the CTG/CAG repeats (repeat alterations and breaks in the tract). One common factor is the likely involvement of a slow-moving or stalled replication fork in the production of the initiating DNA lesion. The secondary structures formed in the two types of repeats are different, as are most of the repeat-associated proteins.

Another class of sequences associated with DSB formation and RIM is palindromic sequences. Inverted repeats stimulate recombination and chromosome rearrangements (Lobachev et al. 1998; Narayanan et al. 2006; Van Hulle et al. 2008) and RIM (Saini et al. 2013). Inverted repeats are associated with replication fork stalling (Voineagu et al. 2008). DSBs at the inverted repeats result in hairpin-capped ends that are subsequently processed by the MRX complex (Lobachev et al. 2002). The enzymes required to generate the DSBs have not been identified. Mutants resulting in compromised DNA replication elevate GCR events associated with the palindromes (Zhang et al. 2012). Similar to the ITS-induced point mutations, most of the RIM mutants induced by palindromes are Rev3p-dependent (Saini et al. 2013). These results argue that
secondary DNA structures (hairpins or cruciforms) associated with replication of the palindromes are processed to yield DSBs (Voineagu et al. 2008; Saini et al. 2013). These broken ends can be repaired by standard recombination with the homolog, by ectopic recombination to generate chromosome rearrangements, or by a mutagenic process that generates RIM.

Although no single mechanism explains the genetic instability associated with the sequences described above, two common properties are that the sequences, when single-stranded, are capable of forming secondary structures, and that they are associated with slow-moving or stalled replication forks. For the palindromes, (GAA)_N, and CTG/CAG repeats sequences, direct evidence for DSB formation exists, whereas for the ITS, the evidence for DSB formation is less direct. The differing effects of various DNA repair, recombination, DNA synthesis, and replication fork stabilizing proteins are likely a consequence of structure-specific resolution of DNA secondary structures, sequence-specific binding of proteins, and different enzymatic requirements to complete the genomic rearrangement of the specific assays.

2.4.2 Proposed mechanism for ITS-induced genomic alterations

In Fig. 12, we summarize our current understanding of the mechanisms of ITS-induced point mutations and terminal inversions. We emphasize that this model is tentative. Since many of the mutants that we examined in this study affect proteins that have multiple cellular roles, an unambiguous interpretation of the mutant phenotypes
was challenging. We suggest that much of the ITS-induced instability is initiated by replication forks that are slowed or blocked by ITS-bound telomeric proteins. This suggestion is supported by the observations that the ITS stalls replication forks, and is bound by Rap1p (Anand et al. 2012; Aksenova et al. 2013; Goto et al. 2015). Although we failed to detect an ITS-induced DSB by Southern analysis in our study, Goto et al. (2015) observed a DSB associated with a 250 bp-ITS, one approximately twice as large as that used in our study. Loss of Tof1 reduced the fraction of stalled forks (Anand et al. 2012), and reduced the rates of point mutations and terminal inversions (Table 1). Loss of Tel1p may elevate instability by reducing the recruitment of telomere-binding proteins and, consequently, reducing fork stalling; alternatively, a loss of telomere-binding proteins may increase the accessibility of the ITS to the enzymes that produce the recombinogenic DNA lesions.
Figure 12: Model for genomic instability associated with the ITS.

The black circles are the telomere-binding Rap1 proteins, and the three-component circle is a complex of Sir2-4. The URA3 coding sequences are shown as paired orange and purple lines. The reporter gene is replicated from an origin (ARS306) located to the left of the reporter. We suggest that many of the events are initiated by a replication fork block caused by the binding of telomere proteins to the ITS. The strength of the block is enhanced by Tof1p, since mutants of Tof1p lower the frequency of instability. Pathway suppressing and enhancing effects of various proteins are shown as “T-bars” and horizontal arrows, respectively. A. Repeat-induced mutagenesis (RIM). We hypothesize that the stall results in single-stranded nicks in the ITS catalyzed directly or indirectly by the Mre11/Rad50/Xrs2 complex. A nick in the GT-rich (blue) strand, followed by expansion of the nick into the gap and filling-in the gap utilizing the Rev3p DNA polymerase, would result in point mutations in the centromere-proximal coding sequences of URA3. A nick in the CA-rich (red) strand would result in mutations in the centromere-distal portion of URA3. By this mechanism, point mutations would not be associated with alterations in the length of the ITS. B. Terminal inversions. Details of this pathway are given in the text.
Although blocked replication forks are associated with genetic instability in many yeast studies, the enzymes responsible for generating the recombinogenic DNA lesions, with a few exceptions, are not characterized. Since strains that lack either Rad50p or Mre11p have reduced rates of both point mutations and terminal inversions (Table 1), we suggest that the Mre11p/Rad50p/Xrs2p complex may be responsible, directly or indirectly, for production of single-stranded nicks and DSBs within the ITS. Since \textit{sae2} mutants result in the same quantitative reduction in Class 1 events as mutations of the MRX complex, the postulated nicks are likely the result of the Mre11p-associated nuclease. If this nuclease nicks the G-rich strand (as shown in Fig. 12A), 5’ to 3’ processing of the nick, followed by repair of the gap with the error-prone Rev3p polymerase would induce mutations in the centromere-proximal coding sequence. If the initiating nick occurs on the C-rich strand, we would expect the induction of point mutations in the centromere-distal \textit{URA3} coding region. Since we observe a similar frequency of \textit{ura3} mutations in both regions flanking the ITS, by this mechanism, both strands would have to be nicked with similar frequencies. 5’ to 3’ expansion of the nick into a gap that includes the flanking \textit{URA3} coding sequences would be performed by either Exo1p or the Sgs1p/Dna2p complex (Mimitou and Symington 2009). Strains with the \textit{exo1} mutation have wild-type rates of point mutations and terminal inversions (Table 1), as is expected if these modes of processing are redundant. Alternatively, it is
possible that only the G-rich strand is nicked but the nick can be expanded into a gap by nucleases that act 3’ to 5’ (Mre11p; Symington 2016) as well as those that act 5’ to 3’ (Exo1p or Sgs1p/Dna2p, as described above).

It is also possible that Rev3p is recruited to the stalled replication fork by the MRX complex in the absence of DNA damage, since recruitment of error-prone polymerases in the absence of DNA damage has been observed previously (Northam et al. 2014). Although this model cannot be excluded, it fails to explain the reduction in point mutations in the sae2 strain. One other alternative model is that the point mutations are induced by a DSB that occurs near, but not within, the ITS. If this DSB was repaired by a Rev3p-dependent mutagenic process involving the sister chromatid, an elevated rate of mutations could be observed in the URA3 coding sequences without an alteration in the number of repeats in the ITS. In a study of ITS sequences that were about twice as large as those used in our study, Makovets et al. (2004) found that some of the fork pauses occurred about 100 bp upstream of the ITS. By this model, the ratio of point mutations to terminal inversions reflects the ratio of DSBs outside of and within the ITS.

The terminal inversions are likely initiated by a DSB within the ITS that is then resected by the same pathways used for other DSBs (Fig. 12B). Although the rate of Class 2 events is substantially reduced by mutants of the MRX complex, the sae2 mutation does not reduce the frequency of Class 2 events. Thus, these events are not
dependent on the Mre11p-associated nuclease. One interpretation of this result is that MRX is indirectly involved in the production of DSBs at the ITS. This complex has numerous signaling roles such as activation of the Tel1p kinase (Gobbini et al. 2016). It is possible that one of these roles is to activate the nuclease that induces DSBs within the ITS.

Although we show the inversion in Fig. 12B as occurring between two linear substrates, it is possible that the inversion is promoted by a pre-existing T-loop formed between the telomere and the ITS. Such interactions have not been reported in yeast. However, Wood et al. (2014) have reported this type of interaction in human lymphocytes.

Since strains with the sir2 mutation have elevated levels of terminal inversions, we suggest that the ITS recruits a low level of the Sir2/Sir3/Sir4 complex. This low level reduces the likelihood of a DSB within the ITS, but is not sufficient to inactivate URA3 transcription. As noted above, sir2 mutants have an elevated level of ITS expansions (Aksenova et al. 2015), and elevated rates of recombination at stalled replication forks in the ribosomal RNA genes (Benguria et al. 2003). Following DSB formation and end processing, the left telomere anneals to the broken ITS sequence, inverting the region between the telomere and the reporter gene. This process has the requirements expected for the SSA pathway: Rad52p, Rad59p, Msh2p, and Rad1p. The first two proteins are involved in the annealing of single strands, and the last two are required for the removal
of branched structures formed as a consequence of annealing. The removal of branches likely requires two additional proteins, Msh3p and Rad10p, in addition to Msh2p and Rad1p (Sugawara et al. 1997).

It is more difficult to unambiguously assign the inversion-stimulating roles of Srs2p, Sgs1p, and Rrm3p. We suggest that Srs2p may act in an anti-recombinogenic role in a competing pathway of repair of the DSB by sister chromatid exchange. An elevation in this pathway could reduce the rate of terminal inversions. Sgs1p could play a similar role or could directly stimulate the SSA pathway by removing secondary structures formed within the single-stranded telomeric sequences. Since we expected loss of Rrm3p to elevate the level of instability, the reduced frequency of terminal inversions in the *rrm3* mutant was unexpected. Based on the recent results of Muñoz-Galván et al. (2017), we suggest that the Rrm3p may promote SSA.

In summary, although the proposed pathways shown in Fig. 12 are tentative, our data strongly argue that the genetic instability associated with ITS sequences is qualitatively and quantitatively different from that associated with other types of repeated sequences.
3. Conclusion and Future Directions

In this thesis, I examined the genetic regulation of genomic rearrangements resulting from the insertion of telomeric sequences internally on the yeast chromosome. Using strains in which the interstitial telomeric sequences (ITSs) were inserted into an intron within the URAS3 gene (Aksenova et al., 2013), I confirmed that ITSs stimulate two types of events: point mutations within the URAS3 coding sequences and terminal inversions. By constructing various mutant strains with the URAS3-ITS reporter, I showed that induction of the point mutations required the error-prone DNA polymerase zeta. Based on my observation that the number of telomeric repeats was unchanged in strains with ura3 point mutations, I suggested that the induction of mutations reflected a single-stranded gap in telomeric repeats rather than a double-stranded break or, alternatively, DNA polymerase zeta was recruited to the ITS insertion in the absence of a DNA lesion (see Chapter 2). In contrast to the ITS-induced point mutations, ITS-induced inversions are likely a consequence of repair of a double-stranded DNA break (DSB). I found that the rate of terminal inversions was substantially reduced by mutations affecting the single-strand annealing pathway of homologous recombination.

Although my studies have led to an increased understanding of the mechanism of ITS-induced genomic changes, many questions remain. First, since a complete survey of the genes that elevate or reduce the rate of ITS-induced mutations has not yet been performed, our knowledge of the mechanism(s) of ITS-induced events is incomplete,
Second, although we have genetic evidence consistent with an elevated rate of DSB formation within the ITS sequence, it is necessary to have stronger supporting data for DSB formation. Third, if the ITSs are a “fragile site”, we expect that perturbation of DNA synthesis should elevate the rate of ITS-induced instability. This expectation has not been examined in detail. Fourth, the ITS employed in our study is short compared to the average yeast telomere and consists of perfect repeats of the telomere core sequence rather than the imperfect repeats found for the true telomeres. Fifth, we found that two of the “point mutations” induced by the ITS within URA3 reflected an insertion of a small region of telomeric DNA. An interesting extension of my analysis would be to discover the mechanism of this type of mutation. During my thesis research, I generated some data relevant to these experiments. However, the results thus far are preliminary rather than definitive.

I will divide the discussion of these future directions into three general areas: (3.1) Characterization of other genes or treatments that stimulate ITS-induced genetic changes, (3.2) Novel assays for ITS-induced genomic alterations, and (3.3) Analysis of the mechanism of mutagenesis that results in telomeric insertions into the URA3 coding sequence.
3.1 Characterization of other genes or treatments that stimulate ITS-induced genetic changes

This section of the chapter will include three sub-divisions: (3.1.1) Search for additional mutants affecting the rate of ITS-induced alterations, (3.1.2) Effects of reduced levels of replicative DNA polymerases on ITS-induced mutations), and (3.1.3) Analysis of the effects of drugs/chemical agents on ITS-induced instability.

3.1.1 Search for additional mutants affecting the rate of ITS-induced alterations

In the experiments described in Chapter 2, I examined the effects of mutations in pathways of DNA repair, recombination, and telomere metabolism on the rates of terminal inversions and point mutations. My analysis was limited to a small fraction of the genome. In addition, since I used null mutations, I could not examine mutations in essential genes. Another approach would be to screen directly for mutations that elevate ITS-induced genome stability. This approach should allow the identification of hypomorphic mutations in essential genes.

For this analysis, I will mutagenize a haploid wild-type strain with the \textit{URA3-ITS} reporter (PG329). Ultraviolet light will be used as the mutagen, since UV results in a broad spectrum of mutations. From previous studies in the lab, a UV dose resulting in 0.1-1% survival produces >20 mutations/cell (D. Kiktev, personal communication). We can expose our PG329 cells to this dose of ultraviolet radiation (UV). Individual colonies (at least 10,000) will be screened for those that have much elevated or reduced levels of
5-FOA-resistance. When candidate mutants have been identified, at least ten individual colonies from each mutant will be examined to determine whether the elevation/reduction of events is reproducible. For those mutants with reproducible effects, the rate of 5-FOA-resistant derivatives will be determined using the methods described in Chapter 2.

The mutants that have a reproducibly elevated or reduced levels of 5-FOA-resistance will be crossed with a wild-type strain of opposite mating type that contains the \textit{URA3-ITS} reporter. The diploid will be sporulated, and we will determine whether the mutant phenotype segregates 2:2. For strains that have this segregation pattern, we will sequence genomic DNA from the original mutant, as well as spores with the mutant phenotype. An analysis of these sequences should allow us to identify which mutation co-segregates with the mutant phenotype.

Subsequent experiments depend on the nature of the mutant gene. If the gene is not essential, we will examine the effect of a null mutation on ITS-induced genetic instability. It is also possible that a mutant phenotype could be generated by an alteration in the \textit{URA3:ITS} reporter gene. For example, an increase or decrease in the length of the ITS sequence could result in higher or lower rates of instability, respectively. Therefore, an examination of the length of the ITS by PCR will be done before genomic sequencing of the mutant strains.
3.1.2 Effects of reduced levels of replicative DNA polymerases on ITS-induced mutations

As discussed in the first chapter, in mammalian cells, certain DNA sequences (fragile sites) are susceptible to breakage when the cells are exposed to replication stress. ITSs are one class of fragile sites in mammalian cells, although it is not clear whether ITSs in yeast are fragile sites. Previously, we have determined what DNA sequences in yeast are hotspots for breakage in cells with low levels of DNA polymerase alpha (Song et al., 2014) or DNA polymerase delta (Zheng et al., 2016). Although these studies were not done in strains with ITSs, we found that regions of the genome with the potential to form G4 quadruplex structures were enriched at the breakpoints of the chromosome rearrangements. Therefore, it would be useful to look at the effects of low levels of these polymerases on ITS-induced events directly.

We will construct haploid strains with the URA3::ITS reporter and with a fusion gene (GAL-POL1 or GAL-POL3) in which the level of the Pol1p (the catalytic sub-unit of DNA polymerase alpha) or Pol3p (the catalytic sub-unit of DNA polymerase delta) can be regulated by the amount of galactose in the medium. In our previous studies, we found that cells with the fusion genes produce about 10% of the wild-type level of DNA polymerase when grown in medium with 0.005% galactose, 3% raffinose, and about three-fold more DNA polymerase than the wild-type level when grown in medium containing 0.05% galactose, 3% raffinose (Lemoine et al., 2005; Kokoska et al., 2000). The
low levels of DNA polymerase increase the rates of mitotic recombination about two
orders of magnitude.

For the strains with either the GAL-POL1 or the GAL-POL3 genes and the
URA3::ITS reporter, we will examine the rate of 5-FOA-resistance on medium containing
either 0.005% or 0.05% galactose. Assuming that we observe an elevation in rates, we
will determine what fraction of the 5-FOA-resistant colonies reflect point mutations
compared to terminal inversions. Based on the results described in Chapter 2, I expect a
relative increase in terminal inversions since inversions are likely initiated by a DSB.

3.1.3 Analysis of the effects of drugs/chemical agents on ITS-induced instability

An alternative approach to the use of mutants for determining the mechanisms
responsible for ITS-induced chromosome alterations is the use of drugs or chemical
agents that have defined mechanisms of action. Although there are many such agents, I
will restrict my discussion to two, hydroxyurea (a drug that reduces the pools of
deoxyribonucleotides) and Phen-DC3 (a chemical that binds to quadruplex structures).

These experiments will involve growing our haploid strain with the URA3::ITS
gene in media that contains different concentrations of these compounds. Hydroxyurea
(HU) inhibits DNA synthesis by inhibiting ribonucleotide reductase, thereby lowering
the pools of deoxyribonucleotides (dNTPs) (Alvino et al., 2007). Following treatment of
the cells with various concentrations of HU, the cells will be plated on solid medium
with 5-FOA (to determine the frequency of 5-FOA\(^\text{r}\) derivatives) and on medium without
5-FOA (to determine cell number). By analyzing multiple independent cultures, we can determine whether HU elevates or represses ITS-related instability. As in the experiments described in Chapter 2, we will use PCR and other approaches to determine the effects of HU on point mutations and on terminal deletions. As a control, we will also examine the effects of HU on strains that have an insertion of URA3 with an intron that lacks the ITS.

One possible result of this experiment is that we will observe an elevated level of terminal inversions reflecting an elevated level of DSBs. One reason for this expectation is that the lower level of dNTPs is likely to reduce the rate of DNA fork movement, increasing the rate of fork stalling. However, the lower level of dNTPs may also stimulate the rate of misincorporation by DNA polymerases, and elevate the rate of point mutations. Lastly, since HU will slow replication throughout the genome, the S-phase checkpoint will be activated. The effect of checkpoint activation on the rate of ITS-induced genomic rearrangements is not predictable. In a preliminary experiment, we found that HU did not substantially affect the rate of 5-FOA-resistance of a strain with the URA3::ITS reporter, although the effect of HU treatment on point mutations versus terminal inversions has not yet been determined.

The G-rich strand of most types of telomeres can form a G4-quadruplex structure in vitro (Maizels, 2006). The drug Phen-DC3 binds to and stabilizes telomeric G4-quadruplex structures, inhibiting their unwinding (Piazza et al., 2010). Treatment of
yeast strains that contain the CEB1 human minisatellite induces alterations in the length of these satellites (Piazza et al., 2010). Two different types of experiments could be done with the drug. First, one could determine whether treatment of strain with the URA3-ITS reporter gene elevates the rate of 5-FOA-resistant derivatives; if an elevation is observed, the types of changes would be determined. Second, one could determine whether treatment with the drug altered the length of the ITS insertion. This determination could be made by PCR using primers that flank the ITS. Alternatively, since the URA3-ITS reporter gene is located very close to the TRP1 gene and since increases in length of the ITS result in epigenetic silencing of the reporter (Aksenova et al., 2013), we could screen for increases in the length of the ITS using omission medium that lacks tryptophan. It is also possible that the binding of Phen-DC3 to the ITS sequence will reduce the rate of instability. Either a significant increase or decrease in ITS-induced events would be interesting.

The experiments described above were restricted to the discussion of two compounds. There are, however, many other inhibitors (for example, inhibitors of topoisomerases) or DNA-binding drugs (such as DAPI) that could be examined for their effects on ITS-induced genomic changes by the same methods as discussed above.

3.2 Novel assays for ITS-induced genomic alterations

All of the experiments described in Chapter 2 were based on one specific assay, the loss of function of a URA3::ITS construct inserted near ARS306 on chromosome III.
Although valuable information was obtained using this assay, there are other assays that could reveal different aspects of ITS-induced genetic instability. In this section of Chapter 3, we will describe four modifications of our previous assay: 3.2.1 (Genetic detection of DSBs using a gross chromosome rearrangement assay), 3.2.2 (Genetic detection of events that reverse terminal inversions), 3.2.3 (Assays for the effects of the ITS on mitotic and meiotic recombination), and 3.2.4 (Genetic alterations associated with an ITS that is a “true” telomere).

3.2.1 Genetic detection of DSBs using a gross chromosome rearrangement assay

Our assay of ITS-induced genomic alterations does not measure the rate of DNA lesions that occur within the ITS. Presumably, many of the lesions are repaired by events that do not produce a 5-FOA-resistant colony. For example, a DSB within the ITS could be repaired by sister chromatid recombination or by a simple reannealing of the broken ends. In addition, if DSBs within the ITS do not undergo repair efficiently, many of the ITS-associated DSBs would likely lead to cell inviability. Therefore, we have begun developing an assay that is more directly a measurement of the frequency of DSB formation within the ITS.

This assay is based on one developed by the Kolodner lab to measure gross chromosome rearrangements (GCRs). The most commonly used form of the assay is shown in Fig. 13A. A copy of the wild-type URA3 gene is re-located from the middle of the left arm of chromosome V to a position near the CAN1 locus, located about 30 kb
from the left telomere (Chen and Kolodner, 1999). This strain is sensitive to both 5-fluoro-orotate and canavanine, but derivatives that contain various types of GCRs can be selected by plating cells on medium containing both drugs. An important feature of this assay is that there are no essential genes located centromere-distal to the URA3/CAN1 cassette. The canavanine-resistant 5-FOA-resistant derivatives have a variety of chromosome alterations including terminal deletions, chromosome translocations, and interstitial deletions. In strains with terminal deletions, new telomeres are added to form a new terminus (Chen and Kolodner, 1999). The rate of de novo telomere formation on a non-telomeric end is very low (Kramer and Haber, 1993). In general, the rate of GCR events in a wild-type cell is also extraordinary low, about 10^{10}/division.

A variant of this assay was designed to look for DSBs in a simple repetitive tract (CAG/GTC) located on a yeast artificial chromosome (YAC) (Callahan et al., 2003). In this assay, repeats with sequence of C₄A₄/G₄T₄ (telomeric repeats derived from Oxytricha) were inserted at a position centromere-proximal to the CAG/GTC tract; in addition, the URA3 gene was inserted centromere-distal to the CAG/GTC tract (Fig. 13B). Thus, a DSB within the CAG/GTC tract could result in a broken end that could be processed into the Oxytricha repeats, and these repeats could act as a substrate for telomerase; the Oxytricha repeats had been shown previously to be a good substrate for yeast telomerase (Pluta et al., 1984). Since this type of event would result in loss of the URA3 marker, it was selected on medium containing 5-FOA.
We propose using a similar assay to detect DSBs associated with the ITS. The
$URA3$-ITS would be inserted centromere-proximal to the $CAN1$ locus in the orientation
such that the 3’ strand of the ITS is the G-rich strand (Fig. 13C). A DSB formed at the ITS
would cause loss of the $CAN1$ gene and the centromere-distal half of $URA3$ and,
therefore, result in a canavanine-resistant 5-FOA-resistant derivative. The ITS is in the
correct orientation to function as a telomere. For this assay, therefore, the rate of CanR 5-
FOAR derivatives should be similar to the rate of DSB formation.
Figure 13: Assays for gross chromosomal rearrangements.

In each portion of the figure, the red and blue rectangles indicate the CA-rich and GT-rich yeast telomeric strands, respectively. All telomeres have the GT-rich sequences at the 3' end. A. The “classic” gross chromosomal rearrangement (GCR) assay developed by Chen and Kolodner (1999). This assay was designed to detect DSBs in haploid strains that occurred between URA3 and the first centromere-proximal essential gene (PCM1) located about 10 kb away. These events were selected by plating cells on medium containing both 5-FOA and canavanine. Numerous classes of events (translocations, large deletions, etc.) were observed; in the event
shown in this figure the broken chromosome was “healed” by addition of telomeric repeats. B. Assay to monitor DSB formation in CAG/CTG trinucleotide tract (Callahan et al., 2003). The components of this assay were inserted on a yeast artificial chromosome. A DSB within the CAG/CTG tract result in a broken end that can be resected into C₄A₄/G₄T₄ tract derived from the *Oxytricha* telomeres. This sequence is readily used as a substrate by yeast telomerase (Pluta et al., 1984). Cells with this event are selected on medium containing 5-FOA. The CA-rich and GT-rich *Oxytricha* telomeres are shown in green and purple colors, respectively. The CAG and CTG strands are indicated in black and orange, respectively. C. Assay to detect DSBs in the ITS. The *URA3::ITS* reporter gene is inserted on chromosome V in the orientation such that a DSB in the ITS would form a functional telomere. Events would be selected as Can₅ 5-FOA₅ derivatives.

In preliminary experiments, we constructed a strain with this new assay. Unfortunately, following insertion of the *URA3::ITS* reporter on chromosome V, the strain was petite. We are currently constructing a wild-type version of this strain. Our rate measurements of the petite derivative, however, indicated a rate of Can₅ 5-FOA₅ derivatives that was about two to three orders of magnitude higher than the rate of 5-FOA₅ derivatives on chromosome III (1₀⁻³-1₀⁻⁴ versus 1₀⁻⁶). Assuming that we find a similar result with the wild-type strain with this new assay, we would conclude that DSB formation in the ITS often results in genomic changes that were not recovered in our original assay. Once the rate measurements in the wild-type strain have been determined, one could test the effects of various mutants affecting chromatin structure, DNA repair, and telomere maintenance.
As mentioned above, we have also attempted to detect DSBs by Southern analysis of CHEF gels. We found no convincing evidence of DSB formation at the ITS. In previous studies, we found that site-specific DSBs were difficult to detect unless 1-10% of the molecules were broken (Casper et al., 2009; Tang et al., 2011). Since our preliminary analysis suggests that about 0.1% of the molecules experience an ITS-associated DSB, our failure to detect these breaks physically is not surprising.

3.2.2 Genetic detection of events that reverse terminal inversions

In our usual assay, we selected for strains to become 5-FOA-resistant, and we found approximately equal numbers of terminal inversions and point mutations in the *URA3* coding sequences. We expect the class of 5-FOA-resistant derivatives that are terminal inversions to be capable of reversion to Ura⁺ by an inversion between the ITS and the telomere (Fig. 14A). Why should this inversion be any different from the original inversion? In our original assay, the inversion event occurred between a 120 bp ITS element containing 15 copies of the repeat TGTGTGGG, and the telomere of chromosome III that has about 350 bp of the sequence poly G1-3T. In most of the terminal inversions, the new ITS sequence was expanded to more than 300 bp, and was a mixture of TGTGTGGG repeats and more canonical telomeric sequences. It is possible, therefore, that in strains with the terminal inversion, the new ITS element has properties that are more similar to a true telomere than the (TGTGGGG)₁⁵ repeat.
We plan to start with a strain with a terminal inversion, and determine the rate of Ura\(^+\) derivatives. If a reversal of the terminal inversion occurs, it is possible that the strain will not be Ura\(^+\) because of epigenetic silencing. We previously found that long insertions of telomeric repeats could silence expression of the \(TRP1\) gene located near the \(URA3\) reporter, and that this silencing was reversible in medium containing nicotinamide (Aksenova \textit{et al.}, 2013). Consequently, we will determine the rate of Ura\(^+\) derivatives using standard omission medium lacking uracil, and in omission medium lacking uracil and containing nicotinamide. The Ura\(^+\) strains will be characterized by PCR and CHEF gels to find out whether they represent a simple reversal of the original inversion or a more complicated genomic rearrangement.

In very preliminary experiments, we showed that Ura\(^+\) derivatives could be isolated from the 5-FOA\(^r\) derivatives with the terminal inversions. Although these Ura\(^+\) strains were not characterized in detail, PCR analysis indicated that the strains has the PCR product expected for the reversal of the inversion (Fig. 14B). Surprisingly, however, about 15% of these strains also had a PCR product expected if the original inversion was retained. One interpretation of this result is that the reversal of the inversion is associated with a very high rate of non-disjunction of chromosome III. The mechanisms involved in this process will require further study.
3.2.3 Assays for the effects of the ITS on mitotic and meiotic recombination.

Since it is likely that the terminal inversions are associated with formation of DSBs within the ITS, we would expect that ITSs should stimulate mitotic crossovers between homologs in a diploid strain. We previously developed a simple assay for such
events on chromosome V as shown in Fig. 15 (Lee et al., 2009). We will use diploids derived from haploid strains that have polymorphisms that allow mapping of the position of loss of heterozygosity (LOH) resulting from crossovers (Lee et al., 2009; Tang et al., 2011). One homolog contained the can1-100 allele, an ochre mutation in CAN1 that is suppressible by the SUP4-o suppressor; the other homolog had an allelically-placed copy of SUP4-o that replaces CAN1. In addition, the diploid is homozygous for the ade2-1 ochre allele. The ade2-1 mutation in diploids with no suppressor results in red colonies. Strains with one or two copies of SUP4-o form pink and white colonies, respectively. Thus, the starting diploid forms pink Can^5 colonies (Lee et al., 2009). A crossover between CEN5 and the can1-100/SUP4-o insertions can generate a Can^8 red/white sectored colony.

For the assay, we will construct two diploid strains, both with markers arranged as in Fig. 15. One strain will be homozygous for URA3 genes that have an intron without the ITS inserted at the usual location of URA3 between CEN5 and the can1-100/SUP4-o marker. The second strain will be homozygous for the URA3::ITS reporter at the same location. We will determine the frequency of Can^8 red/white sectored colonies for the two strains. If we find that the strain with the ITSs has an elevated rate of such colonies, we will use SNP-specific microarrays to map the location of the LOH events (St. Charles and Petes, 2013). If the ITSs stimulate crossovers, we will find that the LOH events occur at the site of the ITS insertion.
In a previous study, we found that an insertion of 51 bp of telomeric DNA upstream of the coding sequence of *HIS4* or *ARG4* strongly stimulated meiotic recombination (White et al., 1993). In a preliminary experiment recently, we found no ITS-associated stimulation of meiotic gene conversion using the *URA3::ITS* construct. There are two plausible interpretations of this preliminary observation. First, it is possible that telomeric sequences stimulate recombination when located upstream of the coding sequence but not within the coding sequence. In yeast, meiotic recombination is usually initiated by DSB formation between genes rather than within genes (Petes, 2001). Alternatively, meiotic recombination may be stimulated by the poly G$_{13}$T sequences characteristic of the true telomeres but not by repeats of TGTGTGGG.

This issue could be explored further by two types of experiments. First, we could construct a strain in which the (TGTGTGGG)$_{15}$ insertion is placed upstream of *HIS4* in a diploid that has one wild-type and one mutant *HIS4* gene. This construction would be done in the same genetic background used by White et al. (1993). The diploid would be sporulated and we would measure the rate of gene conversion. This rate would be compared to the strains previously examined that have no telomeric insertion or the 51 bp telomere insertion. The second type of experiment would be to construct a diploid in which the 51 bp telomeric insertion replaces the (TGTGTGGG)$_{15}$ ITS in the intron of the *URA3* reporter. The diploid would be homozygous for the insertion and heterozygous for a mutation within the *ura3* coding sequence. The diploid would be sporulated and
the rate of gene conversion of the heterozygous strain would be measured. This rate would be compared to isogenic strains with the URA3::(TGTGTGGG)₁₅ reporter or a pair of URA3 genes that have an intron but no telomeric sequences. Taken together, these experiments should allow us to determine whether the stimulation of meiotic recombination by telomeric repeats is context-dependent or dependent on the sequence of the ITS.

3.2.4 Genetic alterations associated with an ITS that is a “true” telomere

As mentioned previously, the ITS used in my study is shorter than the native telomeres and has a different sequence (15 perfect repeats of TGTGTGGG instead of the imperfect poly G₁₅T sequence). Since these differences may affect the binding of telomeric proteins to the ITS which may, in turn, affect the fragility of the ITS, we will construct a strain in which a 300 bp poly G₁₅T sequence is placed in the intron of the URA3 reporter gene. We will then measure the rate of 5-FOA-resistant derivatives, and determine whether the rates of different types of events are similar to that observed in our original strain. One technical issue that may arise is that the longer tract of telomeric DNA may result in silencing of the reporter gene, precluding the isolation of 5-FOA-resistant variants. We can circumvent this problem by doing our rate measurements in medium containing nicotinamide or by using sir2 derivatives. If we observe differences from our original URA3::ITS strain, we would examine the genetic regulation of the new ITS using methods similar to those employed previously.
If we find significant differences in the behavior of the ITS when we use more natural telomeric repeats, one possibility is that these telomeres more effectively bind telomeric proteins. Although the ITS used in our study binds Rap1p (Aksenova et al., 2013), we have not examined the binding of any other telomeric proteins. We could examine the binding of other telomeric proteins by constructing epitope-tagged versions of these proteins, and determining their occupancy on the two classes of ITS by chromatin immunoprecipitation.
Figure 15: Genetic assay for mitotic crossing-over.

This assay is similar to that described by Lee et al. (2009). The strain before the crossover is sensitive to canavanine and forms pink colonies. Following the crossover, both daughter cells are canavanine-resistant, with one cell giving rise to white colonies and the other giving rise to red colonies. Thus, a Can^R red/white sectored colony is formed. The red and black circles indicate polymorphisms that can be used to map the location of the crossover using microarrays.
3.3 Analysis of the mechanism of mutagenesis that results in telomeric insertions into the URA3 coding sequence

Most of the ITS-induced point mutations observed in my experiments were single base substitutions. However, I twice observed mutant strains with the same three closely-linked mutations (A to G, insertion of a T, and A to T) shown in Fig. 16. These multiple alterations result in an 12-bp region that resembles a telomere. Based on the low probability that these multiple changes would occur independently, it is likely that these mutations were inserted from some type of telomere template. Before examining the source of these mutations, we would design a quick screen for their detection, since they represent only a small fraction of the total 5-FOA-resistant isolates.

Figure 16: Sequence analysis of an ITS-induced mutation in URA3.

Part of the sequence of a 5-FOA\(^\text{R}\) isolate derived from the \textit{URA3::ITS} strain is shown. The top line of letters shows the sequence in mutant strain, and the bottom line shows the sequence of the wild-type strain. The region outlined in the orange box indicates the region of the mutant substitutions. The identical mutation was found twice in our analysis.
One method of screening 5-FOA-resistant isolates for those that have the telomere-like sequence is by PCR. We could design one primer that perfectly matches the mutant insertion and a second from elsewhere in the *URA3::ITS* reporter. By PCR, we could screen 5-FOA-resistant derivatives in batches of ten looking for the diagnostic band. Once we have developed this assay, we could look for the source of the telomeric sequences that create the mutant. The most likely source is the ITS sequence itself since it is located near the mutant sequence. Once we have established the rate of the telomeric mutant insertion in the strain with the ITS, we will measure the rate in a strain lacking the ITS. If none of the telomeric mutations are detected in the strain lacking the ITS, it would argue that the ITS is the source of the mutations, possibly introducing the mutations by some type of template switch.

Alternatively, if the frequency of the unusual *ura3* mutation is not affected by the ITS, it would argue that the mutation might be introduced by the action of telomerase. This possibility could be checked by determining the frequency of this type of mutation in strains lacking telomerase. One reason the investigation of this issue is important is that such mutations may be relevant to the mechanism by which interstitial telomeric sequences are generated.

3.4 Summary

Although the results obtained in my thesis and in our collaboration with the Mirkin lab have revealed some of the properties associated with ITSs, there is still much
to learn. The experiments proposed in this chapter would help define the nature of genomic rearrangements associated with these interesting sequences.
Appendix

Table 2: Strain names, constructions, and genotypes.

<table>
<thead>
<tr>
<th>Strain Name</th>
<th>Relevant genotype</th>
<th>Construction or source</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMY749</td>
<td>Wild-type; URA3-Int-(TGTGTGGG)_15-TRP1 reporter on III</td>
<td>Aksenova et al. (2013)</td>
<td>(\text{MAT}^\text{a} \text{leu}2\Delta1 \text{trp}1\Delta63 \text{ura}3\Delta52 \text{his}3-200 \text{ade}2\Delta::\text{kanMX4} \text{III}(75594-75641)::\text{URA3-Int-(TGTGTGGG)}_{15}\text{-TRP1})</td>
</tr>
<tr>
<td>SMY752</td>
<td>Wild-type; URA3-Int-(TGTGTGGG)_8-TRP1 reporter on III</td>
<td>Aksenova et al. (2013)</td>
<td>(\text{MAT}^\text{a} \text{leu}2\Delta1 \text{trp}1\Delta63 \text{ura}3\Delta52 \text{his}3-200 \text{ade}2\Delta::\text{kanMX4} \text{III}(75594-75641)::\text{URA3-Int-(TGTGTGGG)}_{8}\text{-TRP1})</td>
</tr>
<tr>
<td>SMY803</td>
<td>Wild-type; URA3-Int-TRP1 reporter on III</td>
<td>Aksenova et al. (2013)</td>
<td>(\text{MAT}^\text{a} \text{leu}2\Delta1 \text{trp}1\Delta63 \text{ura}3\Delta52 \text{his}3-200 \text{ade}2\Delta::\text{kanMX4} \text{III}(75594-75641)::\text{URA3-Int-TRP1})</td>
</tr>
<tr>
<td>PG329</td>
<td>Wild-type; URA3-Int-(TGTGTGGG)_{15}-TRP1 reporter on III; ura3\Delta52::natMX6</td>
<td>SMY749 transformed with PCR fragment amplified from pAG25 (Goldstein and McCusker, 1999) using primers URA3::NATKOF and URA3::NATKOR</td>
<td>(\text{MAT}^\text{a} \text{leu}2\Delta1 \text{trp}1\Delta63 \text{his}3-200 \text{ade}2\Delta::\text{kanMX4} \text{ura}3\Delta52::\text{natMX6} \text{III}(75594-75641)::\text{URA3-Int-(TGTGTGGG)}_{15}\text{-TRP1})</td>
</tr>
<tr>
<td>AM21</td>
<td>Wild-type; URA3-Int-TRP1 reporter on III; ura3\Delta52::natMX6</td>
<td>SMY803 transformed with PCR fragment amplified from pAG25 using primers URA3::NATKOF and URA3::NATKOR</td>
<td>(\text{MAT}^\text{a} \text{leu}2\Delta1 \text{trp}1\Delta63 \text{his}3-200 \text{ade}2\Delta::\text{kanMX4} \text{ura}3\Delta52::\text{natMX6} \text{III}(75594-75641)::\text{URA3-Int-TRP1})</td>
</tr>
<tr>
<td>Strain</td>
<td>Description</td>
<td>Transformation Details</td>
<td>Genetic Markers</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MD689</td>
<td>rad1Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 (Goldstein and McCusker, 1999) using primers RAD1::HYGF and RAD1::HYGR</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rad1Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_{15}-TRP1</td>
</tr>
<tr>
<td>MD644</td>
<td>tel1Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers TEL1::HYGF and TEL1::HYGR</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 tel1Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_{15}-TRP1</td>
</tr>
<tr>
<td>MD686</td>
<td>rad59Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers RAD59F and RAD59R</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rad59Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_{15}-TRP1</td>
</tr>
<tr>
<td>MD646</td>
<td>sml1Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers SML1::HYGF and SML1::HYGR</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 sml1Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_{15}-TRP1</td>
</tr>
<tr>
<td>MD647</td>
<td>rif1Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers RIF1::HYGF and RIF1::HYGR</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rif1Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_{15}-TRP1</td>
</tr>
<tr>
<td>AM24</td>
<td>msh2Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 (Guo et al., 2017) using primers MSH2-KANF and MSH2-KANR</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 msh2Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_{15}-TRP1</td>
</tr>
<tr>
<td>ID</td>
<td>Description</td>
<td>Transformation Details</td>
<td>Genotype</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MD649</td>
<td>(rad52\Delta) derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers RAD52_KO_F and RAD52_KO_R</td>
<td>MATa (leu2-\Delta1\ trp1-\Delta63\ his3-200\ ade2-\Delta::kanMX4\ ura3-52::natMX6\ rad52-\Delta::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_15-TRP1</td>
</tr>
<tr>
<td>AM26</td>
<td>(elg1\Delta) derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers ELG1F and ELG1R</td>
<td>MATa (leu2-\Delta1\ trp1-\Delta63\ his3-200\ ade2-\Delta::kanMX4\ ura3-52::natMX6\ elg1-\Delta::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_15-TRP1</td>
</tr>
<tr>
<td>MD653</td>
<td>(exo1\Delta) derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers EXO1-::HYGF and EXO1-::HYGR</td>
<td>MATa (leu2-\Delta1\ trp1-\Delta63\ his3-200\ ade2-\Delta::kanMX4\ ura3-52::natMX6\ exo1-\Delta::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_15-TRP1</td>
</tr>
<tr>
<td>MD688</td>
<td>(sgs1\Delta) derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers SGS1-::HYGF and SGS1-::HYGR</td>
<td>MATa (leu2-\Delta1\ trp1-\Delta63\ his3-200\ ade2-\Delta::kanMX4\ ura3-52::natMX6\ sgs1-\Delta::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_15-TRP1</td>
</tr>
<tr>
<td>MD655</td>
<td>(rad51\Delta) derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers RAD51_KO_F and RAD51_KO_R</td>
<td>MATa (leu2-\Delta1\ trp1-\Delta63\ his3-200\ ade2-\Delta::kanMX4\ ura3-52::natMX6\ rad51-\Delta::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)_15-TRP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MD687</td>
<td>lig4Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers LIG4::HYGF and LIG4::HYGR</td>
<td>MATα *leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 lig4Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)₁₅-TRP1</td>
</tr>
<tr>
<td>MD657</td>
<td>sir2Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers SIR2::HYGF and SIR2::HYGR</td>
<td>MATα *leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 sir2Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)₁₅-TRP1</td>
</tr>
<tr>
<td>MD658</td>
<td>mus81Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers MUS81::HYGF and MUS81::HYGR</td>
<td>MATα *leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 mus81Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)₁₅-TRP1</td>
</tr>
<tr>
<td>MD659</td>
<td>msh6Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers MSH6 F and MSH6 R</td>
<td>MATα *leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 msh6Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)₁₅-TRP1</td>
</tr>
<tr>
<td>MD691</td>
<td>rad50Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers RAD50_KO_F and RAD50_KO_R</td>
<td>MATα *leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rad50Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)₁₅-TRP1</td>
</tr>
<tr>
<td>MD661</td>
<td>top1Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers TOP1::HYG KO F and TOP1::HYG KO R</td>
<td>MATα *leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 top1Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)₁₅-TRP1</td>
</tr>
<tr>
<td></td>
<td>sae2Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers SAE2 KO F and SAE2 KO R</td>
<td>MATa leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 sae2Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AM12</td>
<td>rev3Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 using primers REV3::KANF and REV3::KANR</td>
<td>MATa leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rev3Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>AM13</td>
<td>mre11Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 using primers MRE11::KANF and MRE11::KANR</td>
<td>MATa leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 mre11Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>AM15</td>
<td>srs2Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 using primers SRS2::KANF and SRS2::KANR</td>
<td>MATa leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 srs2Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>AM14</td>
<td>rrm3Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 using primers RRM3::KANF and RRM3::KANR</td>
<td>MATa leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rrm3Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>AM17</td>
<td>mms2Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 using primers MMS2F and MMS2R</td>
<td>MATa leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 mms2Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>AM26</td>
<td>rad18Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pSR955 using primers RAD18::KANF and RAD18::KANR</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 rad18Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>MD674</td>
<td>tof1Δ derivative of PG329</td>
<td>PG329 transformed with PCR fragment amplified from pAG32 using primers TOF1_F and TOF1_R</td>
<td>MATα leu2-Δ1 trp1-Δ63 his3-200 ade2Δ::kanMX4 ura3-52::natMX6 tof1Δ::hphMX4 III(75594-75641)::URA3-Int-(TGTGTGGG)$_{15}$-TRP1</td>
</tr>
</tbody>
</table>
Table 3: Primers used for strain construction or analysis of genome rearrangements.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence 5’-3’</th>
<th>Strain constructed or strain analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP1::HYG KO F</td>
<td>TAAAAGAATCTAAGGAGGGGTAGCTGAAATTTGA AACCGCTAAAACGTCGTCGAC</td>
<td>Construction of MD661</td>
</tr>
<tr>
<td>TOP1::HYG KO R</td>
<td>ACTTGATGCCTGGAATTATTTTGCTTCCCTATGCTCGT TTTTTGGCTGATCGATTTAGTCGAC</td>
<td>Construction of MD661</td>
</tr>
<tr>
<td>TEL1::HYGF</td>
<td>TTAGGAAAAAGCGCTTCAAGAGAGAAGGAAACGTCGTCGAC</td>
<td>Construction of MD644</td>
</tr>
<tr>
<td>TEL1::HYGR</td>
<td>TTAGGAAAAAGCGCTTCAAGAGAGAAGGAAACGTCGTCGAC</td>
<td>Construction of MD644</td>
</tr>
<tr>
<td>SML1::HYGF</td>
<td>CAGAAGCTATGGGGAGAGAGAAGGAAACGTCGTCGAC</td>
<td>Construction of MD646</td>
</tr>
<tr>
<td>SML1::HYGR</td>
<td>CAGAAGCTATGGGGAGAGAGAAGGAAACGTCGTCGAC</td>
<td>Construction of MD646</td>
</tr>
<tr>
<td>SIR2::HYGF</td>
<td>TTTCTACTCAACAGCTGACTTACGTCGACGACTGTCGAC</td>
<td>Construction of MD657</td>
</tr>
<tr>
<td>SIR2::HYGR</td>
<td>TTTCTACTCAACAGCTGACTTACGTCGACGACTGTCGAC</td>
<td>Construction of MD657</td>
</tr>
<tr>
<td>SGS1::HYGF</td>
<td>ATTATGTTGTTATATATATTTATATCTATACGTCGAC</td>
<td>Construction of MD688</td>
</tr>
<tr>
<td>SGS1::HYGR</td>
<td>ATTATGTTGTTATATATATTTATATCTATACGTCGAC</td>
<td>Construction of MD688</td>
</tr>
<tr>
<td>MUS81::HYGF</td>
<td>GCCCAAAATTTATTAATTTAATTTGATACGAACATTTACGTCGAC GTCATTTGAGGTGACGTCGAC</td>
<td>Construction of MD658</td>
</tr>
<tr>
<td>MUS81::HYGR</td>
<td>GCCCAAAATTTATTAATTTAATTTGATACGAACATTTACGTCGAC GTCATTTGAGGTGACGTCGAC</td>
<td>Construction of MD658</td>
</tr>
<tr>
<td>RIF1::HYGF</td>
<td>ACCGTATAGTTATATATTTATATCTATACGTCGAC GTCATTTGAGGTGACGTCGAC</td>
<td>Construction of MD647</td>
</tr>
<tr>
<td>RIF1::HYGR</td>
<td>ACCGTATAGTTATATATTTATATCTATACGTCGAC GTCATTTGAGGTGACGTCGAC</td>
<td>Construction of MD647</td>
</tr>
<tr>
<td>RAD59F</td>
<td>AAGGTTTACAGTACGACGCTGACTTACGTCGAC</td>
<td>Construction of MD686</td>
</tr>
<tr>
<td>RAD59R</td>
<td>ATCAAGGAAAAATATTTTGATAGCTGACTTACGTCGAC</td>
<td>Construction of MD686</td>
</tr>
<tr>
<td>RAD50_KO_F</td>
<td>GTGTAGCAACCTCATGAGGGCAGAAAACACAAGGAAACGTCGAC GGAACAGGAGGCCGTACGTCGACGTCGAC</td>
<td>Construction of MD691</td>
</tr>
<tr>
<td>RAD50_KO_R</td>
<td>GTGTAGCAACCTCATGAGGGCAGAAAACACAAGGAAACGTCGAC GGAACAGGAGGCCGTACGTCGACGTCGAC</td>
<td>Construction of MD691</td>
</tr>
<tr>
<td>RAD51_KO_F</td>
<td>AAAGAGCAGACGTAGTTATTTGTTAAAGGCTACTTATTTGTATCGTCGACGTCGAC</td>
<td>Construction of MD655</td>
</tr>
<tr>
<td>Construct Paper</td>
<td>Oligonucleotide</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RAD51_KO_F</td>
<td>GAGAATTGAAAGTAAACCTGTGTAAATAGAAGACAA</td>
<td>Construction of MD655</td>
</tr>
<tr>
<td>RAD52_KO_F</td>
<td>CAAACAGGAGGTTGCAAGAAGCTGTAAGGTTCTGGTCGTTGGTTTACGCGTACGTACGAGCTGGC</td>
<td>Construction of MD649</td>
</tr>
<tr>
<td>RAD52_KO_F</td>
<td>GAGTAATAAAATATGAGTGGAAAATTTTTATTTTGTTCTGGTCGTAATTTTGAGCTGGC</td>
<td>Construction of MD649</td>
</tr>
<tr>
<td>RAD1::HYGF</td>
<td>TAAATGTGTTTTAATATTTGCATCTACCTTGGAATCATTTCCAGGCTACGAGCTGGG</td>
<td>Deletion of RAD1 in MD689</td>
</tr>
<tr>
<td>RAD1::HYGR</td>
<td>TCGCATTTATACTGATGTTTTCAAAGCTGAGCTGGCAGCTGTTC</td>
<td>Deletion of RAD1 in MD689</td>
</tr>
<tr>
<td>MSH6 F</td>
<td>TTTTATTGGGCAAGCAAAGTGTTTTGACAAAGCAGCATTATCAGGCTGCGTACGAGCTGCAGC</td>
<td>Construction of MD659</td>
</tr>
<tr>
<td>MSH6 R</td>
<td>ACTTTTTTTTTTTTTATTCTTACATACATCGTAATTTGTTGAGCTGTTGTCG</td>
<td>Construction of MD659</td>
</tr>
<tr>
<td>LIG4::HYGF</td>
<td>ACTAAAATAAAAATCTAGAAGCAAGAAATAGAAGGTTGTTCTGACAGCTGACAGCTGAC</td>
<td>Construction of MD687</td>
</tr>
<tr>
<td>LIG4::HYGR</td>
<td>GATGATATTTAAATAATTTACTTCAAGGCTCGCATGAATTTGTCGAGCGTACGAGC</td>
<td>Construction of MD687</td>
</tr>
<tr>
<td>EXO1::HYGF</td>
<td>ACCACATTTAAAAGAGCAGCTGAAAAAATCGAAGCTGAGCTGAGCTGAC</td>
<td>Construction of MD653</td>
</tr>
<tr>
<td>EXO1::HYGR</td>
<td>TTTTATTGGGCAAGCAAAGTGTTTTGACAAAGCAGCATTATCAGGCTGCGTACGAGCTGCAGC</td>
<td>Construction of MD653</td>
</tr>
<tr>
<td>SAE2 KO F</td>
<td>CATAACCTGACTTTTCTCTGACAGCTGAGCTGAC</td>
<td>Construction of MD708</td>
</tr>
<tr>
<td>SAE2 KO R</td>
<td>GTATTGGAATGAAATAAAGAATGATGAGTCGCTGGCAGCTGATCGATGAGCTGAC</td>
<td>Construction of MD708</td>
</tr>
<tr>
<td>ELG1F</td>
<td>ATCGTATTGCTACATAGCTTCCATCTTCTGATAGGTTCTGATAGGTTCTGGTACGAC</td>
<td>Construction of AM26</td>
</tr>
<tr>
<td>ELG1R</td>
<td>TTTTATATACATAGGTTGCTCTCAGTTGACAGCGCAAGCTTCTATGACATGAGCTGAC</td>
<td>Construction of AM26</td>
</tr>
<tr>
<td>MRE11::KANF</td>
<td>GCCGACAGCAATTCGCATCTGAGCTGATGAGCTGAC</td>
<td>Construction of AM13</td>
</tr>
<tr>
<td>MRE11::KANR</td>
<td>AAGCCCTTGTTAAATTAGGATAATTATAAATAGGACGGCACTAGTGGATCG</td>
<td>Construction of AM13</td>
</tr>
<tr>
<td>MMS2F</td>
<td>ATGTCAAAGGTGTATGTTATTAAAGGTTGAAAGGATTCGCTGAGCTGATGAGCTGAC</td>
<td>Construction of AM17</td>
</tr>
<tr>
<td>MMS2R</td>
<td>CTAAAGGTTTCTTCTTCTGTTGAGCAATTTTCTTCTGTCTGCTGGTTGCTGACAGCTGATGAGCTGAC</td>
<td>Construction of AM17</td>
</tr>
<tr>
<td>MSH2-KANF</td>
<td>GCTGACCTCACATCAAAATCTCAGATTAAAGATGATGTCCCATATCCAGAACTCAGGATGATGAGCTGAC</td>
<td>Construction of AM24 and AM35</td>
</tr>
<tr>
<td>Gene</td>
<td>Primer Sequence</td>
<td>Construction</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>MSH2-KANR</td>
<td>CTATCGATTCTCACTTTAGTAGATCGTGTTGAAATATATATTATAACAAACAGGGCGGTAGTGGGATCTCTAGTGATCTG</td>
<td>Construction of AM24 and AM35</td>
</tr>
<tr>
<td>REV3::KANF</td>
<td>ATGTCGAGGGAGTCGACAGCAATACAGAGCGATACGTTAGATCCATCTTCTGAAAGGCGACTAGTGATCTG</td>
<td>Construction of AM12</td>
</tr>
<tr>
<td>REV3::KANR</td>
<td>TTACACATTTTAGATGAAATGCTTAGCTTTCCCTTTGAAAGGCGACTAGTGATCTG</td>
<td>Construction of AM12</td>
</tr>
<tr>
<td>RRM3::KANF</td>
<td>GAGAGAACAAGCCTAAAAGTGCAGAGATTGGTTCTTATTAGACATTCGGCTGAGCTCG</td>
<td>Construction of AM14 and MD698</td>
</tr>
<tr>
<td>RRM3::KANR</td>
<td>AGAAGAAGAACATTCAACTAGATATGCATTATTTCGTGCAAGAGGCTGACTGATCTG</td>
<td>Construction of AM14 and MD698</td>
</tr>
<tr>
<td>SRS2::KANF</td>
<td>CAGTTAAAATCTCAACAGAGCGAGCGGCCCTCTTTGATTACACTAGGGTGTCGAGTC</td>
<td>Construction of AM15</td>
</tr>
<tr>
<td>SRS2::KANR</td>
<td>TCCAATAGTTGAGTCGAGCAGAATGCTACTAATCGAGCAGACTAGTGATCTG</td>
<td>Construction of AM15</td>
</tr>
<tr>
<td>RAD18::KANF</td>
<td>AAGAAACCAATCCGCAAGTGCAGACTACGCTACTAAGGCGACACCTCGTGATCAGCAGCAGGCTGACTGATCTG</td>
<td>Construction of AM26</td>
</tr>
<tr>
<td>RAD18::KANR</td>
<td>AATTATTAACCAAAATGTGCACAAGCTAAACACAGGCTTAGTTTATAATATAGGAGGCGACACCTGTCGACGCAGTTCGAC</td>
<td>Construction of AM26</td>
</tr>
<tr>
<td>TOF1_F</td>
<td>CATCTACTCTTTGTTGGGTTTCTGATTTTTATTTATATAGGAGGCGACACCTGTCGACGCAGTTCGAC</td>
<td>Construction of MD674</td>
</tr>
<tr>
<td>TOF1_R</td>
<td>GTGTTTCTAAAAATTACACGATTAAAGGGATATTACTACTATTACATATTACAGCATTTACAGCATCGAGCTCG</td>
<td>Construction of MD674</td>
</tr>
<tr>
<td>TELCassF</td>
<td>GAGATGTAGTACCCACCTCAGGT</td>
<td>Construction of MD619</td>
</tr>
<tr>
<td>TELCassR</td>
<td>CGTCGTCAGATACAGCAGTACG</td>
<td>Construction of MD619</td>
</tr>
<tr>
<td>URA3::NATK_F</td>
<td>GGATTAGTTTTTGACCCATCAAAGAAGGTTATGTTGCTGTTGTTGTCAGGTACCTCATAAAGTCGACGGCTGAC</td>
<td>Construction of PG329</td>
</tr>
<tr>
<td>URA3::NATK OR</td>
<td>TCCAATTTTTTTTTTTTGCTCATATAGAAAAACTTTACGACGCAGATTCCATCGATAGATCAGCTCG</td>
<td>Construction of PG329</td>
</tr>
<tr>
<td>UIRL1</td>
<td>GAAAGTAACAAAGGAAACCTAGAGGGA</td>
<td>Primer used in conjunction with UIRL2 to diagnose size of ITS and presence of rearranged cassette (Aksenova et al., 2013)</td>
</tr>
<tr>
<td>UIRL2</td>
<td>TACAGATCGATCAATATAGGAGGT</td>
<td>See above</td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>V-651R</td>
<td>CTGCAGTTTAGCAGGCATCA</td>
<td>Primer used in conjunction with UIRL2 to diagnose inversion in AM37</td>
</tr>
<tr>
<td>Chr3_413R</td>
<td>GGAGACAGGTTAAAATCAGG</td>
<td>Primer used to diagnose inversion; coordinates 395-413 on III</td>
</tr>
<tr>
<td>UseqF</td>
<td>GATTCGGTAATCTCCGAACAG</td>
<td>Primer used to sequence ura3 point mutations</td>
</tr>
<tr>
<td>UseqR2</td>
<td>GAAAGGGCCTCGTGATACGCCTA</td>
<td>Primer used to sequence ura3 point mutations</td>
</tr>
</tbody>
</table>
Table 4: Numbers of different types of 5-FOA^r derivatives in the wild-type strain PG329 and in various mutant derivatives of PG329.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Strain</th>
<th>Total 5-FOA<sup>r</sup> derivatives analyzed</th>
<th># Point mutations</th>
<th># Inversions</th>
<th># Other</th>
<th>Chi-square p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>PG329</td>
<td>107</td>
<td>52</td>
<td>51</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>rad1Δ</td>
<td>MD689</td>
<td>77</td>
<td>70</td>
<td>7</td>
<td>0</td>
<td><0.0001</td>
</tr>
<tr>
<td>tel1Δ</td>
<td>MD644</td>
<td>37</td>
<td>15</td>
<td>20</td>
<td>2</td>
<td>0.5598</td>
</tr>
<tr>
<td>rad59Δ</td>
<td>MD686</td>
<td>35</td>
<td>29</td>
<td>5</td>
<td>1</td>
<td>0.0007</td>
</tr>
<tr>
<td>sml1Δ</td>
<td>MD646</td>
<td>33</td>
<td>17</td>
<td>16</td>
<td>0</td>
<td>0.9203</td>
</tr>
<tr>
<td>rif1Δ</td>
<td>MD647</td>
<td>38</td>
<td>18</td>
<td>20</td>
<td>0</td>
<td>0.8875</td>
</tr>
<tr>
<td>msh2Δ</td>
<td>AM24</td>
<td>80</td>
<td>74</td>
<td>5</td>
<td>1</td>
<td><0.0001</td>
</tr>
<tr>
<td>rad52Δ</td>
<td>MD649</td>
<td>36</td>
<td>35</td>
<td>1</td>
<td>0</td>
<td><0.0001</td>
</tr>
<tr>
<td>elg1Δ</td>
<td>AM26</td>
<td>33</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>0.175</td>
</tr>
<tr>
<td>exo1Δ</td>
<td>MD653</td>
<td>31</td>
<td>16</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sgs1Δ</td>
<td>MD688</td>
<td>38</td>
<td>33</td>
<td>3</td>
<td>2</td>
<td><0.001</td>
</tr>
<tr>
<td>rad51Δ</td>
<td>MD655</td>
<td>34</td>
<td>20</td>
<td>14</td>
<td>0</td>
<td>0.5169</td>
</tr>
<tr>
<td>lig4Δ</td>
<td>MD687</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0.8875</td>
</tr>
<tr>
<td>sir2Δ</td>
<td>MD657</td>
<td>38</td>
<td>4</td>
<td>33</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td>mus81Δ</td>
<td>MD658</td>
<td>37</td>
<td>24</td>
<td>12</td>
<td>1</td>
<td>0.138</td>
</tr>
<tr>
<td>msh6Δ</td>
<td>MD569</td>
<td>38</td>
<td>20</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>rad50Δ</td>
<td>MD691</td>
<td>30</td>
<td>23</td>
<td>7</td>
<td>0</td>
<td>0.0204</td>
</tr>
<tr>
<td>top1Δ</td>
<td>MD661</td>
<td>37</td>
<td>17</td>
<td>20</td>
<td>0</td>
<td>0.773</td>
</tr>
<tr>
<td>rev3Δ</td>
<td>AM12</td>
<td>41</td>
<td>7</td>
<td>34</td>
<td>0</td>
<td>0.0005</td>
</tr>
<tr>
<td>mre11Δ</td>
<td>AM13</td>
<td>28</td>
<td>13</td>
<td>15</td>
<td>0</td>
<td>0.865</td>
</tr>
<tr>
<td>srs2Δ</td>
<td>AM15</td>
<td>64</td>
<td>50</td>
<td>14</td>
<td>0</td>
<td>0.0007</td>
</tr>
<tr>
<td>rrm3Δ</td>
<td>AM14</td>
<td>38</td>
<td>31</td>
<td>6</td>
<td>1</td>
<td>0.0004</td>
</tr>
<tr>
<td>mms2Δ</td>
<td>AM17</td>
<td>29</td>
<td>12</td>
<td>17</td>
<td>0</td>
<td>0.472</td>
</tr>
<tr>
<td>rad18Δ</td>
<td>AM26</td>
<td>36</td>
<td>15</td>
<td>21</td>
<td>0</td>
<td>0.4708</td>
</tr>
<tr>
<td>tof1Δ</td>
<td>MD674</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>0.4795</td>
</tr>
<tr>
<td>sae2Δ</td>
<td>MD708</td>
<td>37</td>
<td>8</td>
<td>27</td>
<td>1</td>
<td>0.0092</td>
</tr>
</tbody>
</table>
Bibliography.

Kokoska RJ, Stefanovic L, DeMai J, Petes TD. (2000). Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol 20(20):7490-504

Tang, W., Dominska, M., Gawel, M., Greenwell, P. W., and Petes, T. D. (2013). Genomic deletions and point mutations induced in *Saccharomyces cerevisiae* by the trinucleotide repeats (GAA•TTC) associated with Friedreich's ataxia. DNA Repair 12, 10–17.

Biography

Anthony Ridley Moore was born in Lakenheath, England to Paulisa Moore and Alexander Moore. He was raised in Charlotte, NC where he was honored as senior of the year by Mecklenburg County. He completed his undergraduate studies and research at Rice University under the mentorship of Dr. Michael Kohn. He worked at Houston biotech SeqWright prior to matriculating at Duke University.

Duke University
Ph.D. Genetics and Genomics 2018

Rice University, Houston TX
B.S. Evolutionary Biology 2009

Harding University High School 2005
Diploma, Summa Cum Laude