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SPECTRAL ANALYSIS OF DATA GENERATED BY SIMULATION 
EXPERIMENTS WITH ECONOMETRIC MODELS' 

BY THOMAS H. NAYLOR, KENNETH WERTZ, AND THOMAS H. WONNACOTT2 

This paper is concerned with the use of spectral analysis to analyze data generated by com- 
puter simulation experiments with models of economic systems. An example model serves 
to illustrate two different applications of spectral analysis. First, spectral analysis is used to 
construct confidence bands and to test hypotheses for the purpose of comparing the results 
of the use of two or more alternative economic policies. Second, spectral analysis is em- 
ployed as a technique for validating an econometric model. 

1. INTRODUCTION 

DURING THE PAST decade computer simulation experiments with econometric 
models have become a commonly employed tool for analyzing the behavior of 
complex economic systems. While economists have improved the estimation 
process and have considerably enhanced the descriptive power of their econo- 
metric models, there have been fewer imposing gains made in the statistical analysis 
of the resulting output. 

The major impetus behind the use of simulation by econometricians and 
economic policy makers is the possibility (and opportunity) of validating econo- 
metric models and testing and evaluating alternative economic policies before 
they are put into effect on actual economic systems. Complete exploitation of 
simulation experiments with econometric models implies a thorough analysis of 
the data so generated. Yet as Burdick and Naylor [5, 31, 32] have pointed out in 
recent articles, a preoccupation with model building among many econometricians 
simulating economic systems has unduly diverted attention from experimental 
design considerations in general, and output analysis in particular. 

Consider, for example, the monetary and fiscal policy simulation experiments 
with the economy of the United States described in the literature by Adelman 
[1, 2], De Leeuw [7], Duesenberry et al. [8], Fromm [12], and Liu [29]. Data analysis 
for each of these simulations was limited to either graphical or tabular presenta- 
tions describing the pattern of error terms and simulated time paths of one or more 
endogenous variables such as GNP, short term interest rates, or total employ- 
ment. To be sure, we have no intention of downgrading graphical and tabular 
analysis. But if one employs fairly high-level techniques such as two and three 
stage least squares to estimate the parameters of an econometric model to be 
used for simulation purposes, it is difficult to understand why one would be 
satisfied with the limited information content of rather elementary methods of 
output analysis. 

The principal aim of this paper is to approach the problem of analyzing data 
generated by computer simulation experiments with econometric models. For 

' This research was supported by National Science Foundation Grant GS-1 104 and is a part of a 
collection of studies entitled "Design of Computer Simulation Experiments for Economic Systems." 

2 We are indebted to Mr. W. Earl Sasser of the Econometric System Simulation Program at Duke 
University for a number of helpful comments. Mr. David Patterson wrote the computer programs. 
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this task we have selected "spectral analysis," a statistical technique frequently 
employed in the physical sciences and more recently applied by economists to 
analyze the behavior of economic time series [6, 13, 14, 15, 20, 34, 37, 38]. 

There are at least four reasons why one might want to consider spectral analysis 
as a technique for analyzing data generated by simulation experiments with an 
econometric model. 

First, data generated by simulation experiments are usually highly auto- 
correlated, e.g., GNP in period t is likely to be highly correlated with GNP in 
period t - k. It is well known that when autocorrelation is present in sample 
data that the use of classical statistical estimating techniques (which assume the 
absence of autocorrelation) will lead to underestimates of sampling variances 
(which are unduly large) and inefficient predictions. Several methods are available 
for treating this problem. (1) Simply ignore autocorrelation and compute sample 
means and variances over time, thereby incurring the aforementioned statistical 
problems. (2) Divide the sample record length into intervals that are longer than 
the interval of major autocorrelation and work with the observations on these 
supposedly independent intervals. This method suffers from the fact that "the 
choices of sample record length and sampling interval seem to have neither enough 
prior nor posterior justification in most cases to make this choice much more 
than arbitrary" [10]. (3) Replicate the simulation experiment and compute sample 
means and variances across the ensemble rather than over time. This method 
may lead to excessive computer running time and fail to yield the type of informa- 
tion that is desired about a particular time series. (4) Employ a sampling theory 
such as spectral analysis in which the probabilities of component outcomes in a 
time series depend on previous outcomes in the series. With spectral analysis the 
problems associated with methods (1) and (2) can be successfully avoided without 
replicating the experiment. 

Second, "when one studies a stochastic process, he is interested in the average 
level of activity, deviations from this level, and how long these deviations last, 
once they occur" [10]. Spectral analysis provides this kind of information. 

Third, with spectral analysis it is relatively easy to construct confidence bands 
and to test hypotheses for the purpose of comparing the simulated results of the 
use of two or more alternative economic policies. Frequently it is impossible to 
detect differences in time series generated by simulation experiments when one 
restricts himself to simple graphical analysis. 

Fourth, spectral analysis can also be used as a technique for validating an 
econometric model of an economic system. By comparing the estimated spectra 
of simulated data and corresponding real world data one can infer how well the 
simulation resembles the system it was designed to emulate [10].3 

2. AN EXAMPLE MODEL 

To illustrate the application of spectral analysis to simulation experiments 
with econometric models, we have chosen a stochastic version of the Samuelson- 

3 We return to this topic in a different context in a later section. See also [33, 34]. 
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Hicks multiplier-accelerator model [22, 43] as an example model. This model 
has two principal attributes. First, it is a relatively simple model and well known 
to economists. Second, although an analytical solution exists for certain special 
cases of this model, it still possesses many of the characteristics of more complex 
econometric models that do not lend themselves to straightforward analytical 
solutions. The model consists of the following parameters, variables, and func- 
tional relationships. 

Parameters 

(1) b: accelerator coefficient; 
(2) c1: marginal propensity to consume in period t - 1, 0 < c1 < 1; 
(3) C2: marginal propensity to consume in period t - 2, 0 < C2 <.1; 

(4) g: governmental parameter. 

Exogenous Variables 

(5) ut: a stochastic variate with a known probability distribution, expected 
value, and variance; 

(6) vt: a stochastic variate with a known probability distribution, expected 
value, and variance. 

Endogenous Variables 

(7) C,: consumption in period t; 
(8) I,: investment in period t; 
(9) G,: governmental expenditure in period t; 
(10) Yt: national income in period t. 

Operating Characteristics 

(11) f(u): probability density function of u,; 
(12) f(v,): probability density function of vt; 

(13) Ct: c1Yt1 + c2YA2 + ut; 
(14) It: b(Yt1 - Yt2) + vt; 
(15) Gt: g Yt -1. 

Identity 

(16) Yt: Ct + It + Gt. 

By substituting the values of Ct, It, and Gt given by equations (13), (14), and (15) 
respectively into equation (16) we obtain 

(17) Yt = wt-a1, Yt-a2yt_2 
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where 

(18) wt = ut + Vt, 

(19) a1= -(c1 + b + g), 

(20) a2= b-c2. 

If we assume that national income is measured in terms of deviations Yt from its 
equilibrium value, then the final form of equation (17) which determines the time 
path of national income is 

(21) Yt = wt- ayt- -a2Yt-2 

Equation (21) describes a second order autoregressive process. The complete 
analytical solution for yt is given by [3, 23]: 

t-2 

(22) yt = k1rt + k2rt + E Rjwt- 
j o 

where r1 and r2 are the characteristic roots of (2 1), k1 and k2 are arbitrary constants 
determined by the initial conditions, and )j is given by 

(23) A= r4 -rJ 
ri -r2 

The solution for the time path of national income is composed of two parts- 
a transient response and a stochastic response. The usual procedure for determining 
the dynamic properties of the solution of difference equation models in economics 
is to suppress the stochastic part of the solution and to analyze only the deter- 
ministic solution. This is equivalent to looking at the expected value of the time 
path of national income in our model. Philip Howrey [23] has shown that dis- 
regarding the disturbance term in the Samuelson-Hicks model may be quite 
misleading. He has demonstrated that stabilization policies designed to increase 
the stability of the system by reducing the modulus of the roots may in fact increase 
the variance of the system. 

If our model were a simultaneous equation model (and nonrecursive), non- 
linear, and of higher order than two, then analytical solutions would become 
increasingly difficult, and the benefits from using a computer to generate the 
time paths of the endogenous variables increase considerably. Although one 
could clearly perform experiments with our simple example model without a 
computer, it does serve to illustrate many of the experimental design problems 
which are associated with more complex econometric models involving higher 
order nonlinear systems of difference equations. 

3. SIMULATION RUNS 

Three separate simulation runs, each of which consisted of a sample size of 
two hundred, were made with the Samuelson-Hicks model. In each run ut and 
vt were assumed to be independent normally distributed random variables with 
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expected values equal to zero and variances equal respectively to a' and U2 4 

Run 1 

The first simulation run consisted of the generation of two hundred consecutive 
values of Yt using the following parameters and starting values: 

C1 = .375, yo = 7.0, 

C2= .300, Y1 = 2.5, 

b= 1.15, 

g= .05, 

u 2 + U2 38.26, 
~u + 

from which 

a1 = -1.575, 

a2 = .85, 

w 2= 38.26. 

The output of run 1 may be considered as the result of a given monetary policy 
(b = 1.15) and a given fiscal policy (g = .05) over time. 

Run 2 

The parameters of run 2 are identical with those of run 1 in nearly all respects; 
the only difference between the two runs lies in the stream of we's generated in 
each run. The set of we's generated in run 2 are different from those generated in 
run 1 even though they have the same mean, variance, and probability distribution. 
This result is achieved by simply changing the starting value of the pseudo- 
random number generator used in run 2. 

Run 3 

The parameters and starting values for run 3 are given by 

c1 = .375, yo = 7.0, 

C2 = .300, y1 = 2.5, 

b = 1.05, 

g = .25, 

u 2 + U2=38.26, 'u + 

4 See Chapter 4 of Naylor, Balintfy, Burdick, and Chu [31] for a collection of FORTRAN sub- 
routines for generating stochastic variates on a computer. 
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whence 

a1 = -1.675, 

a2= .75. 

Both the monetary policy (b = 1.05) and the fiscal policy (g = .25) used in run 3 
are different from their counterparts in run 1. 

4. THEORY OF SPECTRAL ANALYSIS 

Since Granger and Hatanaka [14] and Nerlove [37] have previously presented 
and interpreted the theory of spectral analysis for economists, it will not be 
necessary to include a detailed treatment of the theory underlying spectral analysis 
in this paper. The definition of terms and the description of the spectral methods 
used to establish confidence intervals to analyze data generated by simulation 
experiments, however, require that we at least review some of the basic elements 
of spectral theory. The reader should consult the references for a complete account 
of the theory of spectral analysis.5 

Spectral analysis considers data arranged in a series according to historical 
time. When one so plots the movement of many economic variables through 
time, he often observes a remarkable degree of smoothness in the curve; that is, 
although a variable assumes values that are at different times relatively high and 
low, its path, nevertheless, progresses evenly enough to suggest that the current 
value of that variable is related to its past values. In short, the data of such a 
time series appear to be autocorrelated. It is essentially the quantification and 
evaluation of this autocorrelation at which spectral analysis is aimed, after the 
data have been transformed into the frequency domain.6 

The application of spectral analysis to a time series (whether it be actual or 
simulated) yields two types of information: (i) the magnitudes of deviations from 
the average level of a given activity and (ii) the period or length of these deviations, 
both of which require the transformation of the time series into the frequency 
domain. To obtain this information from a time series we make use of the following 
notation. 

Denote a particular stochastic generating process or ensemble by {Xt, t E T}, 
from which a "sample" time series {xt, t = 1, 2, ... , n} is taken. It is important 
to note that {X,j will indicate the manner in which {xt} is formed for all t; but, 
due to its stochastic nature, {X,j cannot determine exactly the value of the series 
at any particular t. By studying the series one attempts to approximate the 
structure of the generating process. 

5 See Blackman and Tukey [4], Granger and Hatanaka [14], Grenander and Rosenblatt [16], 
Hannan [18], Jenkins [24], Nerlove [37], Parzen [39], Quenouille [41], Rosenblatt [42], Tukey [44], 
and Wiener [45]. 

6 There exist methods other than spectral analysis to quantify and evaluate autocorrelation, notably 
a parametric representation by autoregressive or moving average processes. The relevance of these 
methods and others to the analysis of data generated by simulation experiments with econometric 
models will be treated in a future paper. 
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The generating process can be described (in part) in terms of its first and second 
moments :' 

(24) Ht E[Xt], 

(25) u 2 E[(Xt-_ut)2], 

(26) y(t, s) = E[(Xt - t)(X ( - ], 

where E denotes the mathematical expectation across the ensemble, Pt is the 
expected value (mean) of the process at time t, u2 is the variance of the process 
at time t, and y(t, s) is the autocovariance of the process between observations at 
times t and s. 

Estimation of these parameters may be accomplished if one has M independent 
samples from {Xt}; i.e., {xk, k = 1, 2, ..., M}. By cutting across the ensemble at 
t = to, for example, one could calculate the ensemble average estimating Pto: 

I M k 

(27) Mto - 
Mk=1 ~0 

Estimates of U2 and y(s, t) may be obtained in a similar fashion. Although it is 
usually impossible to sample across the ensemble in the case of economic time 
series in the "real world," with computer simulation it is possible to replicate a 
given series by simply altering the starting value of the pseudorandom number 
generator used to generate the series. 

We shall consider a special class of series whose first and second moments are 
not functions of time; i.e., there is no trend in the mean or variance of the series 
and its autocovariance is a function of time lag only. In symbols, 

(28) E[Xt] it, 

(29) E[(Xt -,)2] = U2 

(30) E[(Xt - p)(X, - j)] = - s) for all t, s, 

YT ) 

where -c = t - s. 
Estimates of these parameters can be obtained from a single time series by 

using respectively the following formulas, 

I n 

(31) x=- E xt, 
nt=l 

I 1 
(32) S =-Z (xt-X)2, 

1"- 
(33) C - n E (xt - X)(xt+, X)- 

Throughout this paper Greek letters will be used to denote parameters which characterize the 
stochastic process as a whole and the corresponding English letters to denote statistical estimators 
(random variables) based on a single time series. 
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where y(O) = u2 and c0 = s2. Such series are sometimes called stationary in the 
wide sense or stationary to the second order. 

The power spectrum is defined as the Fourier cosine transformation of the 
autocovariance: 

00 

(34) k(0) Yo + 2 E yTcos(wz), 0 < W <_ . 
T= 1 

The autocovariance may be recovered from the spectrum by means of the inverse 
transformation: 

1 dr=0 1 (35) yT = -J (w) cos(ar) d@, ) = 0,1,2. 

For the special case where z = 0 we obtain the variance as an integral of the 
spectrum: 

(36) u2 = Yo ={ 0(()d-. 

Hence, we speak of the spectrum as the "decomposition" of the variance of a 
time series. Estimators of the power spectrum usually take the following form: 

m 

(37) f (wj) = )oco + 2 E A4c, cos(wj-), 

where f(coj) is an estimate of the power spectrum averaged over a band of 
frequencies centered at wj, and 

(38) coj =-, j = 0, 1, 2, ..., m, 

(39) Al are weights, 

(40) m is the number of frequency bands to be estimated. 

The power spectrum gives the squared amplitude associated with oscillations 
at different frequencies w_); that is, the process is characterized in terms of inde- 
pendent additive contributions to the variance as they are located at each w-). 
Thus one plots 4(w) against (w) in theory; f (w) against woj in practice. A natural 
interpretation of a power spectrum is that if a band contributes a large pro- 
portion of the total variance, then it may be regarded as more important than a 
band where the power is less. 

The selection of m (number of frequency bands) and n (sample size) must be 
made with some degree of care in order to balance the conflicting requirements 
of resolution and statistical stability [4]. Granger and Hatanaka [14] and 
Blackman and Tukey [4] have suggested some arbitrary guidelines for choosing 
values of in and n. The former advise that "the amount of data required before it 
becomes sensible to attempt to estimate a spectrum would seem to be greater 
than 100," although "crude spectra have occasionally been estimated with n as 
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low as 80." These recommended levels would form an important barrier to 
investigators validating annual models whose data are of short duration. Of 
course, the problem is less binding for quarterly models. On the simulation side, 
the issue of sample size melds with considerations of experimental design, which, 
as is shown in the next section, guided our choice of n = 200 and m = 25. In an 
earlier study [34], we used spectral analysis (with n = 119 and m = 24) to validate 
a nine equation econometric model of the textile industry using monthly data 
between 1953 and 1962. In this case the value of n was determined entirely by 
data availability. 

To obtain empirical estimates of the power spectrum we have used a computer 
program developed by Karreman [26] (and modified for the IBM 360/75) which 
is based on the Tukey-Hanning estimator [4, 13]. 

5. STATISTICAL PROPERTIES OF SPECTRA 

In this section we shall do four things. First, we compute the spectral estimates 
for the series generated by run 1 using the Samuelson-Hicks model and examine 
some of the properties of these estimates. Second, we formulate confidence bands 
for the purpose of comparing the estimated spectrum generated by run 1 with 
the corresponding theoretical spectrum for the Samuelson-Hicks model. Third, 
we formulate confidence bands for comparing the spectra of different computer 
runs using the Samuelson-Hicks model. Fourth, we use spectral analysis to 
calculate the total variance of different series generated by the Samuelson-Hicks 
model and formulate confidence intervals for comparing the variances of these 
series. 

At the outset, we observe that, for our selection of parameters, assumptions 
(28)-(30) are satisfied for the system (21). Many economic time series, however, 
require intermediate treatment before spectral techniques become directly 
applicable. Methods for detecting and removing a trending mean as well as for 
handling a series whose variance and/or autocovariance changes through time 
are discussed at length in [14]. Although most of these methods are familiar 
(e.g., polynomial regression to remove a trend in mean), it must be admitted that 
the possible necessity of this intermediate step has probably made spectral analysis 
less attractive than other (but not perfectly substitutable) modes of analysis. 

Without modifying our series, then, we pursue the four topics outlined for this 
section. 

Figure 1 displays the estimated spectrum f1(wo) for the series generated by 
run 1 using the Samuelson-Hicks model. (For convenience we use a logarithmic 
scale for the values of the spectrum.) The prominent peak in the empirical spectrum 
at j = 4 suggests that it is this frequency C(4 (or one very near to it) that is making 
the largest contribution to the variance of the process. What further meaning is 
attached to this particular frequency point depends upon the time dimensions of 
the data. For example, suppose (i) that the output of the Samuelson-Hicks model 
represented monthly data and (ii) that we are interested in the annual cycle 
(f = w;). Since wo = jfr/m and woj = 27rf, and thereforej = 2fm, we may substitute 
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FIGURE 1.-Estimated spectrumf1(w) for the Samuelson-Hicks model (run 1). 
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FIGURE 2.-Comparison of the estimated spectrum f(w) with the theoretical spectrum 01(w) for the 
Samuelson-Hicks model (run 1). 
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for f and m in order to locate the annual component. In this example, it occurs 
at j = 2 4, the approximate location, curiously enough, of the greatest power. 

Figure 2 shows the theoretical and estimated spectra corresponding to run 1 
of the Samuelson-Hicks model. The theoretical spectrum 01(O) can be calculated 
from the formula [23], 

2 

(41) +(Ow)-= 0 < 9 < , 

where, 

(42) T=I+a,e-i+a2e-2iw, 

(43) i= -1. 

The coefficients a1 and a2 were previously defined by -(c1 + b + g) and (b- C2). 

The shape of the spectrum is often as informative as a knowledge of the true power 
at a particular frequency.8 For example, Figures 1 and 2 suggest that the lower 
frequencies (roughly 0 < w) <7 /3) contribute much more to the variance of the 
process than do higher frequencies. 

The work of Blackman and Tukey [4] informs us that spectral estimates f(wj) 
have desirable statistical properties, provided the process X, is Gaussian (normal). 
One property in particular, the statistical independence of spectral estimates at 
nonadjacent frequencies, facilitates the interpretation of confidence intervals, a 
method of data analysis which is familiar to most economists. 

If the theoretical spectrum is reasonably smooth [4], the distribution of 

f(o)/+(wj) is approximately 1k/k with k = 2n/m degrees of freedom.9 Hence in 
order to gain some information about 0(wC) when the sample f (wj) are available, 
one may construct a (100-x) per cent confidence interval for 4(wJ).`0 Suppose 
o -.05 ; let X2%75,k and X%225,k be the percentiles of the x2 distribution with k degrees 
of freedom leaving 2.5 0 in the lower and upper tails respectively. Then 

(44) Pr X95k <f (j) < X025,k .95. 
k b(w)) k 

Solving for 4(o)), 

(45) Pr ,k/k < 4(i))< X29 95/k) 

The succession of confidence intervals at the frequency points wj (j = 0, 1,... , 

called a confidence band, is displayed in Figure 3 using the spectral estimates of 
the series generated by run 1 of the Samuelson-Hicks model. The theoretical 
spectrum 01(wo) is also plotted in Figure 3. We would normally expect about 
five per cent of the confidence intervals in the confidence band to be in error. 

8 See [13] for an elaboration of this point. 
' At the end points, j = 0 and j = m, the degrees of freedom drop to n/m. This applies for all estimated 

spectra throughout the paper. 
'o The reader may wish to contrast the interval developed in these pages with the interval described 

by Granger and Hatanaka [14]. 
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FIGURE 3.-Confidence band for spectral estimates of run 1 of the Samuelson-Hicks model. 

Reference to Figure 3, where our knowledge of the theoretical spectrum is utilized, 
reveals that two of the twenty-six intervals (wol and w021), or 7.7 per cent, do not 
cover the true values. 

The simultaneous confidence band offers a slightly different method of analysis; 
it permits one to state with probability 100-x that all of the confidence intervals 
are simultaneously true. 

Let us sketch the development of this band for a = .05.1" If Bi denotes the 
"error made on the jth frequency," and if we make Pr(Bj) = .05/(m + 1) 
(j = 0, 1, ... , m), then the probability of committing any error at all is 

(46) Pr(B0 or B1 or ... or Bin) < Pr(B0) + Pr(B1) + . + Pr(Bm) 

= (m + 1)[.05/(m + 1)] 

= .05 

The crucial inequality above does not require independence or any other hypo- 
thesis; indeed, if the events Bj are mutually exclusive, then the expression becomes 
an equality. 

Hence, when we allow an error rate of .05/(m + 1) for each frequency (and thus 
a total error rate of .05 at most), then .025/(m + 1) = .025/26 .001 probability 
is left in each tail of the distribution. The simultaneous confidence band assumes 

" An extended discussion of this proof appears in [11]. 
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the same form as the confidence band developed previously, although the simul- 
taneous band is obviously much wider than the latter. In symbols, 

(47) Pr[ f(0{0 < 0(cow) < 1( ] 95 j O 1O ...m. 
LX.Oo,/ X(.999,k/k 

Figure 4 depicts the 95 per cent simultaneous confidence band and the theoretical 
spectrum for run 1 with the Samuelson-Hicks model. This time all of the values of 
01(wo) lie within the confidence band. 
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I I l I r?-- .&t"l 

Wo 0 4 'S8 '12 'w16 'w2b, '24 

FIGURE 4. Simultaneous confidence band for spectral estimates of run 1 of the Samuelson-Hicks 
model. 

In the introduction to this paper we asserted that the primary interest of 
economists in simulation stems from the fact that with simulation it may be possible 
to validate econometric models and to compare the outcomes associated with 
alternative economic policies. Hence, economists are much more likely to be 
interested in constructing confidence bands to compare the estimated spectra of 
two series that are the result of the use of two different economic policies. Alter- 
natively, economists may be interested in comparing the estimated spectrum of a 
series generated by a simulation experiment with the estimated spectrum of the 
corresponding "real world" series as a means of verifying the results of the 
simulation. 
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Therefore, we next consider the comparison of two spectra via a confidence 
interval for the ratio Pj = 41(0j)/02(oj). Define R1 fd(oj)/f2(w1). We then 
obtain an F (variance-ratio) statistic 

(48) Fkl,k2 - - f2(0J)4102(0J) 

where k1 = k2= 2n/m is the degrees of freedom for each of the two x2 variates. 
To arrive at a 95 per cent confidence interval for Pj, let F.975,k,,k2 and F.o25,k1,k2 
be the percentiles of the F distribution leaving .025 probability in the lower and 
upper tails, respectively. It follows that 

PF <~~~R -<F02 k 95 (49) Pr F975kk2 `< 025,k,k .95. 

Solving for Pj, the 95 per cent confidence interval becomes 

(50) Pr R, j < Pi < FRij =9 95 
F025,k1,k2 .975,k1,k2 

Of course, a 95 per cent simultaneous confidence band may be derived for Pj, 
using nearly the same reasoning employed in the development of a 95 per cent 
simultaneous confidence band for 0(oj). The former may be expressed as 

(51) Pr Ri -<pj.< iR)j .9 5. 
F OO l,ki,k2 F.999,k1,k2 

For illustrative purposes we consider two examples. Suppose that we are 
interested in comparing the time path of national income generated by run 1 
(again using the Samuelson-Hicks model) with the time path of national income 

Yt 
+70 _l 

+50 I 

+30- I 

+ 10 I - f~ 
0 -1 -Time~~~I: 

I t1 il 

- 30 iiI il 

- 50 - Run I ~I 
Run 2 

- 70t 
FIGURE 5.-Comparison of two series {y(1)} and {jy(2)} generated by runs 1 and 2 respectively of the 

Samuelson-Hicks model. 
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generated by run 2. We recall that the only difference between run 1 and run 2 
lies in the fact that we use a different starting value for the sequence of pseudo- 
random numbers used to generate the stochastic variate w,. In other words, we 
know beforehand that the theoretical spectra of runs 1 and 2 are identical, i.e., 
P-1. Figure 5 shows the simulated time paths of the two relevant series {y4l)} 
and {jY(2)}. A cursory glance at Figure 5 might lead one to conclude that the two 
series have little in common and are the result of the use of two different economic 
policies. Despite their apparent dissimilarity when inspected visually, the two 
series have been generated in exactly the same manner (i.e., the factor loadings 
are identical), with one exception-namely, different starting values were used 
for the random number generator which supplies the stochastic term wt. 

We now bring a measure of order to the two series by constructing a 95 per cent 
simultaneous confidence band for P in Figure 6. As expected, the horizontal line 
P = 1 corresponding to the true ratio lies within the confidence band for all 
values of (O so- 7r). 

P8R 

100 

Upper Confidence Limit , 

I P-, I 

I I I I . I ., 

Wo > W4 W8 w12 wI6 420 WJ24 

FIGURE 6.- Simultaneous confidence band for comparing the empirical spectrafi(a)) andf2(wt) of two 
series {y(1)} anjy(2)} generated by runs 1 and 2 respectively of the Samuelson-Hicks model. 

For a second example, we compare the time path of national income generated 
by run I with that of run 3. Recall that run 3 represents the result of a change in 
monetary policy (accelerator coefficient) and a change in fiscal policy (govern- 
mental parameter). Constructing a 95 per cent simultaneous confidence band for 
P in Figure 7 we observe that the graph of the horizontal line P = I falls outside 
of the confidence band at 1, mit2, (05, (020, (022, and (024 thus showing that the 
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spectra are indeed different. As expected, the true ratio P, computed using 
formula (41) lies within the simultaneous confidence band, except at some high 
frequencies (w020, a)22, a)24), where "window leakage" [4] from the lower fre- 
quencies affects these weaker, and less important, frequencies. Figure 7 demon- 
strates even more specifically that the spectral shapes of run 1 and run 3 are 
different, because no horizontal line can be drawn which lies within the con- 
fidence band. If the spectral shapes were the same, i.e., if fi(w) = kf3(w)), for some 
k, then the ratio P would equal k and its graph would be a horizontal line. 

P aR I 

,'J Upper Confidence Limit | 

P=/ _I((A)/1+3(w) 
I ~ II 4s 

.10 | Lower Confidence Limit 

.010 r, 

(,0 D 4 (8 ('12 W16 ('20 w24 ' 

FIGURE 7.-Simultaneous confidence band for comparing the empirical spectraf1(o) andf3(o) of two 
series {y(l)} and {y(3)} generated by runs 1 and 3 respectively of the Samuelson-Hicks model. 

Thus far we have been concerned with the use of spectral analysis to decompose 
the variance of a time series into its frequency components [44]. We now consider 
the variance as a whole for a given time series. The natural estimator of a2 iS of 
course the sample variance s2. We would, therefore, hope to use classical x2 or 
F-ratio statistics to analyze the variance of a given time series or two or more 
series. Because the time series is autocorrelated, however, s2 does not generally 
have a x2 distribution with (n - 1) degrees of freedom. In a sense, the auto- 
correlation of the observations reduces the amount of information they provide 
about the variance, so that the number of degrees of freedom for s2 is less than 
(n - 1). In fact, if the observations xt are highly autocorrelated as in a pure sine 
wave, then s2 has only two degrees of freedom [4, p. 21-25]. To determine in 
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general the number of degrees of freedom for s2, we resort to its spectral 
decomposition. 

We begin by noting that equation (36) gives the theoretical variance a2 in terms 
of the spectrum 0. Similarly, the sample variance s2 is given in terms of the 
estimated spectrum f: 

(52) s ?= m= + f(wJ) + 

This formula requires that the weight AO in equation (37) be unity, a condition 
satisfied by every reasonable spectrum estimator. 

Thus s2 is displayed as the sum of somewhat12 dependent terms, each of which 
is a multiple of x2 on 2n/m degrees of freedom. Following a technique developed 
by Blackman and Tukey [4, p. 24], it can be shown that s2 essentially'3 follows a 
x2 distribution with degrees of freedom approximated by 

[f2) 
+ ' f ' "f) + 2 n 

(53) k = f()2 =1 f(x)+ )1 

+f(0] 
m- 

[f(w7r)22+ 
2 

+__j] + 
2 j=l 

We note in passing that if the spectrum f(w) is constant (corresponding to 
uncorrelated observations), then k reduces to n, which is approximately the 
correct value n - 1. Depending on the degree to which f (w) is not constant 
(correlated observations), k will be reduced. Now that the distribution of s2 is 
known, we can test a2 or construct confidence intervals for one series alone or a 
two series comparison. 

For example, to construct a confidence interval for /21U2, the ratio of variances 
of two series, we note that 

nIs2/aZkI 
(54) F = n2s /I k 

has an F (variance-ratio) distribution with kl, k2 degrees of freedom. If we let 

Fk,,k2,.975 and Fk1,k2,.025 denote the percentiles which leave 2.5 per cent of the 
probability in the lower and upper tails respectively, then 

I n~~ Is/~k 
(55) Pr Fk 1,k2,.97 < 2/az k < Fk k2-025 

= .95. 

Solving for 21U/2, we obtain our desired confidence interval: 

(nisik2 1 2 2 njs1k2 1 I 
(56) Pr 2 < U1/a2< n2s2kl Fk9,k2,.975 

~n2s2k, Fk1,k2,.025 n22,Il,2-7 

12 Blackman and Tukey [4] have shown that adjacent spectral estimates are correlated, but that 
nonadjacent estimates are practically uncorrelated. 

13 Strictly speaking, both here and in every other occurrence, it is ns2/a2 which has a X2 distribution 
and not s2. 
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For the comparison of runs 1 and 2, the actual 95 per cent confidence interval 
was computed to be 

(57) .429 < u21U2 < 1.72 

which contains the true value, unity. 

6. SPECTRAL ANALYSIS: A LARGER ROLE? 

In the foregoing text, we have employed spectral analysis in conjunction with an 
econometric model, albeit primitive. Not all writers would cast spectral (and 
cross spectral) analysis into so modest a role. Granger and Hatanaka would 
apparently have these techniques become the primary guides in reshaping and 
restating much economic theory, thus turning methodological biases away from 
"classical" model building and toward more "advanced" modes of time series 
analysis. The present authors do not now champion the exclusiveness of either 
model building or spectral techniques, but would insist that benefits can be 
derived from their joint and complementary use. 

In addition to the outlets for compromise that are proposed in the sections 
above, it is important to bring this same notion to the issue of prediction. One 
sometimes hears that whereas econometric models can generate forecasts and 
that knowledge of the power spectrum cannot, the latter is of little relevance to 
forecasters. According to this argument one would also be disposed to claim that 
it is the shovel that turns the earth, not man's understanding of cultivation, and 
therefore the latter is immaterial to farmers. Working from a different and more 
satisfactory premise-namely, how something is done affects what is done- 
we could contend that the spectral technique, as a tool of validation,-may be 
pertinent to forecasters. For when an econometric model generates a series for a 
variable, and that series yields a power spectrum which is fundamentally different 
than the spectrum of the actual data,'4 then the simulator learns that his model 
is defective at least along this dimension. What weight is to be attached to such 
information cannot be dictated, but an out-of-hand value of zero seems un- 
warranted. Until a model's predictative ability can be judged against actual data 
in future periods, its performance on tests of validation over past periods will 
certainly determine to a great extent how much confidence is to be given to the 
predicted levels, impact multipliers, and so on, which it currently produces. 

7. SUMMARY 

In this paper, we have attempted to demonstrate the potential value of spectral 
analysis as a technique for analyzing data generated by computer simulation 
experiments with econometric models. By constructing the appropriate con- 
fidence bands, spectral analysis enables one to validate the output of simulation 
experiments and to compare the results of alternative economic policies associated 
with different series generated by an econometric model. 

14 Subject, of course, to the problems of sample size and nonstationarity. 
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The application of spectral analysis to series generated by computer simulation 
experiments differs from the application of spectral analysis to "real world" 
economic series in two ways. First, with computer simulation we are not subject 
to the same type of sample size limitations that one encounters with economic 
time series. Second, with computer simulation we can sample across the ensemble, 
an alternative that is rarely available with actual economic series. As of yet, this 
opportunity has not been exploited by economists or simulators. 

Duke University 
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