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Abstract 

Purpose: To develop a novel computer-aided diagnosis (CAD) pulmonary 

nodule detection system that can not only perform real-time detection but also 

characterize quantitative nodule information based on deep learning methods. 

Method: We constructed a convolutional neural network (CNN) for automated 

pulmonary nodule detection and characterization.  Nodule detection was accomplished 

by customizing a detection algorithm (YOLO v3), which comprised of a feature extractor 

and a bounding box generator. The feature extractor had 19 convolutional layers with 7 

residual shortcut connections to extract features on input images at three different 

down-sampling scales (i.e. 4, 8, and 16). The bounding box generator had 7 

convolutional layers to determine the location and size of each detected nodule. A 

python-based characterization system was then developed to characterize size, 

diameter, and central coordinates of each detected nodule within the generated 

bounding box. This characterization system applied a non-maximum suppression 

algorithm to exclude nodules below true positive probability threshold. The system was 

trained and validated using ten-fold cross-validation with 300 CT scans from XCAT 

simulation and 888 patient CT scans from LIDC–IDRI public dataset, separately. System 

performance was evaluated using Free-Response Receiver Operating Characteristic 

(FROC) analysis, competition performance metric (CPM) score, as well as precision 

analysis of central coordinates and diameters.  
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Result: The developed CAD system achieved CPM scores of 0.99 in the 

simulation image study and 0.873 in the public database study. The average 

performance time per image was less than 0.1 second. Compared with ground truth 

data, the detection precision in diameter were 0.26 mm using simulated images and 1.05 

mm using public database, while the precision in central coordinate were 0.76 mm and 

1.44 mm, respectively.  

Conclusion: Preliminary evaluation showed that our proposed CAD system 

using deep learning methods was robust and achieved real-time nodule detection with 

high accuracy and characterization with high precision. 
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Introduction 

1.1 Lung cancer 

Lung cancer is the most commonly diagnosed cancer and the leading cause of 

cancer-related fatalities in the world. It accounts for 2.1 million (11.6%) new diagnoses and 

1.8 million (18.4%) cancer deaths, respectively.1 In 2018, over 150,000 people have 

succumbed to lung cancer, representing about 25 percent of all cancer deaths in the United 

States (US).2 The five-year survival rate for lung cancer is 18.6% in the US, which is lower 

than other leading sites, such as colorectal (64.5%), breast (89.6%), and prostate (98.2%).3 

Based on data from American Cancer Society, the five-year survival rate in localized non-

small cell lung cancer (NSCLC) is 60% and 29% in small cell lung cancer (SCLC). However, 

majority of lung cancer cases are diagnosed in advanced stages (stage III or stage IV), 

when the five-year survival rate is reduced to less than 10%.4 Nonobvious symptoms of 

lung cancer in early stages make diagnosis challenging. Low-dose computed tomography 

(LDCT) screening among high-risk populations is an effective way of early detection. 

Studies have found that it can decrease lung cancer mortality by almost 20%.5,6  

1.2 Computer-aided detection and diagnosis 

LDCT screen aims to detect pulmonary nodule, which is the small rounded or 

irregular opacity growth inside the lung. Pulmonary nodule can be caused by many 

reasons, including benign tumors, lung cancers, lung infections, autoimmune disorders, 

and vascular malformations. LDCT screen present all suspicious nodules. Diagnostic 
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testing or biopsy may be necessary to determine the type of nodule.  Previously, 

pulmonary nodule detection on CT images heavily relied on manual counting, which is 

labor-intensive, time-consuming, and inaccurate. Since the 1980s, several studies have 

been performed to develop techniques for automatic diagnosis of pulmonary nodules, 

which are known as computer-aided detection and diagnoses (CAD). CAD systems are 

classified into two categories: computer-aided detection system (CADe) and computer-

aided diagnosis system (CADx). The CADe system is responsible for detecting abnormal 

lesions in medical images. The CADx system provides medical aids by characterizing 

disease, such as type, severity, stage, or progression.7,8  Some CAD systems have both 

detection and diagnosis function.  

Developing a CAD system includes five steps: (1) data acquisition, (2) data pre-

processing, (3) lung segmentation, (4) nodule detection, and (5) false positive reduction. 

Some public databases are used in the development of CAD system. One such database 

called LIDC-IDRI (Lung Image Database Consortium and the Image Database Resource 

Initiative).9 Data pre-processing performs techniques (e.g. median filter, morphological 

hat, enhancement filter, etc.) on the CT images to exclude confusing structures inside the 

lung. Lung segmentation defines the regions of interest by using methods like 

thresholding and region growing. Nodule detection is to distinguish between true 

nodule from vessels, bronchi, and ribs inside regions of interest. Usually, nodule 

detection is followed by a false positive reduction step, which is a classifier to 
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distinguish the real nodule from nodule candidates based on the extracted features 

information.10 

Some published CAD techniques in recent years are reviewed in the following 

sections, which are divided into two categories: conventional CAD systems (Section 

1.2.1) and deep learning CAD systems (Section 1.2.2).  

1.2.1 Conventional CAD systems 

Conventional CAD systems are highly dependent on features designing.11 

Nodule candidates are detected by methods such as Hessian matrix 12-14, Stable 3D Mass-

Spring Models15, thresholding16, and 3D template matching17. Features - the useful 

information that characterize these candidates - are extracted from these candidates for 

false positive reduction. A summary of conventional CAD systems is shown in Table 1. 

Although several studies have shown remarkable progress such as high sensitivity 

12,14,16,17, they are subjective to high false positive rates, intermediate results bias, intense 

image pre-processing, as well as high feature annotation cost, which all impedes their 

clinical application.  
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Table 1: Review of conventional CAD systems 

Author  Year Method  Database 

Choi and 

Choi et al.  

2014 Feature descriptor guided by 3D shape of the 

object 

LIDC 

Santos et al. 2014 Gaussian mixture models, Tsallis entropy and 

SVM 

LIDC 

Cascio et al. 2012 Stable 3D Mass-Spring Models  LIDC 

Chen et al. 2012 an algorithm based on local 

intensity structure analysis and surface 

propagation in 3D chest CT images 

Private database 

and LIDC 

Ozekes et al.  2008 3D template matching and thresholding based 

on fuzzy logic  

16 exams with 16 

nodules in LIDC 

Suiyuan 

and Junfeng  

2012 Using shape features to segment pulmonary 

parenchyma and detect nodule by 

thresholding and region growing   

Private database 

 

1.2.2 Deep learning CAD system  

Deep learning has attracted great attention in clinical decision supporting 

approaches due to its encouraging performance. Convolutional neural network (CNN) 

is one deep learning technique widely used in image analysis.18 The most fundamental 

advantage of CNN is automatic features extraction. CNN extracts features – the unique 

and useful pattern in input images - in every location of input images by using shift-

invariant trainable filters. Meanwhile, it exploits interactions and hierarchical relation 

among features within the deep neural network by multi-layer convolution.19 It is less 

dependent on image pre-processing and independent on feature annotation. In both 

academia and the industry, significant progress has been made to apply deep learning 

techniques, especially CNN, to nodule classification, detection, and segmentation. There 
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is a rapid surge of interest in deep learning-based CAD studies. Less than 10 papers 

were available about deep learning-based pulmonary nodule diagnosis in 2015. 

However, the numbers of papers increased to over 30 in 2016 and reached over 100 in 

2017.20 

Early deep learning-based studies focused on nodule classification (Section 

1.2.2.1) and latest studies incorporated nodule classification into nodule detection 

(Section 1.2.2.2). Meanwhile, several studies achieved semantic nodule segmentation 

(Section 1.2.2.3).  

1.2.2.1 Pulmonary nodule classification 

Nodule classification is to distinguish between the nodules and non-nodules 

(N/NN), or more specifically, between malignant and benign nodules (M/B), in either 

cropped CT image patches or entire CT images. Table 2 summarizes the latest published 

papers. Hua et al. applied 2D CNN for pulmonary nodule classification.19  Setio et al. 

proposed a 2D multi-view CNN to reduce false positive.21 The network had a parallel 

architecture with multiple inputs corresponding to multiple view of candidate CT patch. 

Gruetzemacher et al. designed hierarchical CNN model for malignant nodule diagnosis 

in three steps: regions of interest generation, nodule classification, and malignancy 

determination.22 More recently, Kang et al. proposed a multi-view design that cropped 

CT volume into different sizes that offering different view areas.23  The generated nodule 

volumes were then fed into 3D CNN with residual and inception design. Zhu et al. used 
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3D CNN with dual path design to extract deep features. These deep features then were 

combined with nodule size information and nodule cropped image for classification.24 

Jin et al. used 3D CNN with residual network to function as a false positive reducer in 

their CAD system.25 

Table 2: Review of nodule classification CAD systems 

Authors  Year Methods Inputs Aim 

Hua et al.  2015 2D CNN  Cropped 2D 

CT image  

N/NN 

Setio et al. 2016 2D multi-view CNN Cropped 2D 

CT image  

N/NN 

Gruetzemacher 

et al. 

2016 2D hierarchical CNN  Not mentioned  N/NN 

and M/B 

Kang et al.  2017 3D multi-view CNN with 

residual and inception design 

Cropped 3D 

CT image 

N/NN 

and M/B 

Zhu et al. 2017 3D CNN with dual path 

design 

Cropped 3D 

CT image 

N/NN 

Jin et al.  2018 3D CNN with residual design  Cropped 3D 

CT image  

N/NN 

Annotation: N/NN: Nodule or non-nodule 

 M/B: Malignant or benign  

 

Some nodule classification methods have shown promising results: classification 

accuracies reach to90% 24,25 or have both sensitivities and specificities exceed 90%.23 

However, classification systems are incapable of localizing nodules within the images. 

They primarily serve as false positive reducers – the fifth step in a CAD design – and are 

not complete CAD systems.   
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1.2.2.2 Pulmonary nodule detection 

Several studies have achieved whole image automatic nodule detection by 

utilizing CNN algorithms in object detection. These CAD systems can be designed in 

one stage system that direct detects and localizes nodules or two stage system first 

generates nodule candidates and then proceeds false positive reduction. Table 3 

summarizes the latest public papers related nodule detection.  

Table 3: Review of nodule detection CAD systems 

 

Dou et al. used 3D CNN with an online sample filtering scheme to acquire the 

coordinates of suspicious nodules, following by a Hybrid-loss 3D CNN with residual 

block for false positive reduction.26 Faster regional-based convolutional neural network 

(faster R-CNN), proposed by  Ren et al., is one of the most widely used object detection 

algorithms.27 It designed a region proposal network for generating regions of interest 

and then applied precise object localization and classification to these regions of interest. 

Author  Year Method  Type 

Dou et al.  2017 3D CNN with an online sample filtering scheme to 

acquire the coordinate of suspicious nodule, following 

by a Hybrid-loss 3D CNN with residual block for false 

positive reduction. 

Two-stage 

Xie et al.  2019 2D Faster R-CNN with two region proposal network 

and one deconvolutional layer. 

One–stage 

Ding et al. 2017 2D Faster R-CNN with three neighboring axial slices as 

input, following by a 3D CNN for false positive 

reduction. 

Two-stage 

Zhu et al. 2017 3D Faster R-CNN with U-net-like encoder-decoder 

design.  

Two-stage 



 

8 

Many faster R-CNN-based CAD systems are available now. Ding et al. used 2D faster R-

CNN as nodule candidate generator, which combined three neighbouring slices in the 

axial direction as inputs.28 With generated nodule candidate, a 3D CNN that had six 

convolutional layers was used for false positive reduction. Xie et al. also used 2D faster 

R-CNN for detection.29  Its faster R-CNN structure has two region proposal networks 

and one deconvolutional layer. Zhu et al. used 3D faster R-CNN with a U-net encoder-

decoder structure for nodule detection.24 

1.2.2.3 Pulmonary nodule segmentation 

Nodule segmentation aims to achieve pixel-wised segmentation that provides 

morphological information. Ronneberger et al. proposed encoder-decoder U-net shape 

CNN for image segmentation.30  Lan et al. combined U-Net and residual network for 

nodule segmentation, which achieved dice coefficient of  71.9%.31 Similarly, Nam et al. 

used CT patches to achieve mean segmentation dice coefficient of 78.78%.32 

1.2.3 Luna 16 pulmonary nodule detection competition 

LUNA 16 is a CAD competition that use LIDC-IDRI database.33 Since this study 

also used this database and the result of our proposed CAD system was compared with 

some CAD systems submitted to this competition, a brief introduction of these systems 

are as follows: 

ZNET: ZNET used U-net for every axial slice. The nodule candidates were 

generated based on probability map from U-net output. Candidate masks were obtained 
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by thresholding. Morphological erosion was applied to candidate mask to remove 

partial volume effects. With nodule candidate generated, a 3D residual network was 

used for false positive reduction.   

Aidence: Aidence was a company that aiming for developing computer-aided 

diagnosis tools for radiologists based on deep learning (http://aidence.com/). The 

training database was National Lung Screening Trial (NLST) and LIDC-IDRI database 

was only used for validation.  

Jianpei CAD: JianPei was a CAD system developed by Hangzhou JianPei 

Technology company (http://www.jianpeicn.com). They proposed a two-stage nodule 

detection framework. 3D U-net and 2D U-net were both used for candidate detection. 

The inputs were 2D cropped axial slices (128x128) and 3D cropped CT volume 

(128x128x128). A deep 3D residual CNN was used for false positive reduction. The 

detection system was training on their in-house resource and LIDC-IDRI dataset was 

only used for validation.  

MOT_M5L: the multi-opening and Thresholding (MOT) was a CAD system to 

be combined into M5L system.34 3D region growing was used to segment lung volume. 

Multiple grey level thresholding and morphological processing were used to detect 

candidate nodule.35 Candidate nodule was separated from vascular structures based on 

segmentation method.36 

http://aidence.com/
http://www.jianpeicn.com/
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VISIACTLung: an FDA approved commercially available lung CAD system 

(MeVis Medical Solutions AG, Bremen, Germany) 

ETROCAD: a CAD system that first segmented nodule based on nodule and 

vessel enhancement filters and then located the center of nodule by computing 

divergence feature.37 

PAtech: This system was developed by Ping An Technology Company. It 

designed a 3D CNN with feature pyramid architecture for nodule detection and a 

following 3D CNN for false positive reduction. The inputs of the training set were 

128x128x128 cropped images.  

Resnet: a CAD system developed by Dou et al.26 

zhongliu_xie: a CAD system developed by Zhongliu Xie (Imperial College 

London). It used 3D region proposal U-net with dense and residual learning for lung 

nodule detection.  

1.2.4 Limitations of current CAD systems 

Although previous studies have proposed feasible methods for nodule detection 

and have achieved promising results. They still have the following limitations:  

(1) High false positive rate: some CAD systems have high false rate to reach an 

acceptable sensitivity;  

(2) Requirement of false positive reduction: some two-stage detection system 

need a false positive reduction design to reduce false positive rate.  
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(3) Intense image processing: some CAD systems require image pre-processing 

including lung segmentation and regions of interest generation.  

(4) High feature annotation costs. 

(5) High computation cost: some CAD systems were designed as deep 3D CNN, 

which is low efficient and occupies computation space. Furthermore, few 

papers mentioned their CAD systems’ capabilities in real-time detection.  

(6)  Complex two-stage detection process: some CAD systems need both 

candidate generation and false positive reduction to guarantee the detection 

accuracy. 

(7)  Fail to characterize quantitative nodule information, such as number, 

diameter, and location of nodules. 

1.3 Proposed method for pulmonary nodule detection 

Redmon et al. designed an object detection algorithm called You Only Look Once 

(YOLO).38 Contrary to faster R-CNN, YOLO combined regions of interest generation, 

object localizations, and classification into one step, which achieve one-stage detection 

with low false positive rate. YOLO had 24 convolutional layers and 2 fully connected 

layers. This algorithm divided image into grids and then predicted bounding boxes and 

class probability for each grid cell. Ramachandran et al. have achieved real-time nodule 

detection and localization by using YOLO-based deep learning model.39 This model 

achieved a sensitivity of 89% with six false positive per image, which was comparable to 



 

12 

the result reported by recent studies.  Later, Redmon and Farhadi forwarded a new 

version of YOLO algorithm that modified the method of predicting bounding box.40 

Instead of direct predicting bounding boxes, the algorithm will predict the offsets of 

predetermined sets of anchor boxes. The latest version, YOLO v3, presented by Redmon 

and Farhadi, incorporated the residual block into network.41 Furthermore, YOLO v3 

makes prediction across three different scales, which improved capabilities in detecting 

small object. However, no study has been performed to evaluate the performance of 

YOLO v3 in pulmonary nodule detection, which has the potential to achieve high 

accuracy one-stage real-time pulmonary nodule detection.   

1.4 Research Objective 

This study aims to develop a novel one-stage CAD system that can achieve 

automatic real-time pulmonary nodule detection in high sensitivity with minimized 

false positive rate, minimized image pre-processing requirement, and minimized 

computation cost. More specifically, this study aims to customize YOLO v3 algorithm 

for pulmonary nodule detection. Meanwhile this study aims to develop a 

characterization system that can be integrated to the CAD system for generating 

quantitative nodule information (i.e. number of nodule, size of nodules, and location). 
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2 Materials and Methods 

2.1 Data acquisition  

2.1.1 CT images simulation 

300 transverse CT scans with nodules in different diameters and locations were 

simulated by using Cardiac-torso (XCAT) digital phantoms. XCAT phantom can 

produce realistic 3D images with detailed whole-body anatomical information.42  

Simulation image resolution is 512x512 pixels and pixel width is 0.836 mm. Nodules 

were designed as a spherical shape because of well-circumscribed appearance of lung 

nodule.43 Nodules were randomly located within the lung tissue. The sizes of nodules 

ranged from 6mm to 20 mm with 1 mm interval, which was based on the study that only 

1% of the nodules are smaller than 5 mm and 80% of the nodules with a diameter up to 

20 mm.44  

2.1.2 Public database CT images acquisition 

The public database CT images came from LIDC–IDRI. 888 CT scans were 

included in this study based on the criteria that scan slice thickness no greater than 2.5 

mm. Each CT scan has nodule annotation information from four experienced 

radiologists. 1186 nodules that marked by at least three out of four radiologists were 

regarded as positive examples.  



 

14 

2.1.3 Image pre-processing 

Image pre-processing was minimized to keep the simplicity of the CAD system. 

All CT images pixel intensity value were rescaled into its Hounsfield Unit (HU) value.  

Pixels that have HU value larger than 1000 HU will be reassigned HU value equal to 

1000, while values outside the patient will be set to -1025 HU. All pixel intensities were 

normalized into the range of zeros to one, where zero stood for HU values equal to -1025 

and one stood for HU values equal to 1000.   

2D transverse CT slices containing the central slices of these nodules were 

extracted to form as dataset, which was then divided into ten subsets for ten-fold cross-

validation. 

2.2 CAD system design 

This CAD system was constructed by two subsystems: a nodule detection system 

and a characterization system. The nodule detection system was based on an object 

detection algorithm YOLO v3. It was comprised by a feature extractor for identifying 

nodules and a bounding box generator to determine the size of the detected nodule 

Section 2.2.1 gives a detailed explanation of nodule detection system. A following 

characterization system took the generated nodule bounding boxes as input and 

characterized all detect nodules based on lesion number, size, diameter, and central 

coordinates. Section 2.2.2 gives a detailed explanation of the characterization system.   
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The overall workflow of designing this CAD system can be seen in Figure 1. Data 

processing provided training data, validation data, and testing data to the nodule 

detection system. The detected nodule in nodule detection system then went through 

characterization for result evaluation. 

 

Figure 1: Research workflow 
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2.2.1 Nodule detection system 

Nodule detection system contained two parts: feature extractor and bounding 

box generator, which is displayed in Figure 2.   

 

Figure 2: Nodule detection system 
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2.2.1.1 Feature extractor  

The feature extractor was a residual network that contained seven residual units 

(ResUnit).  The detailed structure of feature extractor can be seen in Table 4. The residual 

network, proposed by He et al., had a shortcut operation that connected two non-

adjacent layers.45  The output of shallower layer skipped one middle layer and was 

summed with the output of the deeper layer. Residual network addressed vanishing or 

exploding gradients problem in the deep neural network. One ResUnit had three or two 

convolutional layers and a shortcut operation. Three-layer ResUnit has an extra 

convolutional layer to down-sample the inputs by setting stride equals to two. In each 

convolutional layer, the activation function used was leaky Relu (L-Relu). The slope of 

L-Relu in negative part was set to 0.1. Each convolutional layer followed by a batch 

normalization operation.  The shortcut operation in this network was after Relu 

activation function, which was different from the original residual network. Padding 

mode in each convolutional layer was same or valid. Same mode was used in the layers 

that have stride equals to one to keep the image dimension. Valid mode, which means 

no padding applied, was used in layers that have stride equals to two to avoid 

introducing useless boarder information during down-sampling.  

The feature extractor extracted features in three scales. The input images were 

down-sampled by a factor of 4, 8 or 16.  Correspondingly, the three outputs of feature 

extractor divided the input image into grid with dimensions 128×128, 64×64, or 32×32.  
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Feature maps grid cells in the same position are responsible for predicting the nodule 

located within the corresponding grid cell in the original image. 

Table 4: Feature extractor structure 

 Layer 

index 
Type Filters Size Stride 

Padding 

mode 

Activatio

n 
Output 

 1 Convolution 32 3x3 1 Same L-Relu 512x512x32 

ResUnit 

1 

2 Convolution 64 3x3 2 Valid L-Relu 256x256x64 

3 Convolution 32 1x1 1 Same L-Relu 256x256x32 

4 Convolution 64 3x3 1 Same L-Relu 256x256x64 

5 Residual: Adding layer 2 and layer 4  - 256x256x64 

ResUnit 

2 

6 Convolution 32 1x1 1 Same L-Relu 256x256x32 

7 Convolution 64 3x3 1 Same L-Relu 256x256x64 

8 Residual: Adding layer 5 and layer 7  - 256x256x64 

ResUnit 

3 

9 Convolution 32 1x1 1 Same L-Relu 256x256x32 

10 Convolution 64 3x3 1 Same L-Relu 256x256x64 

11 Residual: Adding layer 8 and layer 10  - 256x256x64 

ResUnit 

4 

12 Convolution 32 1x1 1 Same L-Relu 256x256x32 

13 Convolution 64 3x3 1 Same L-Relu 256x256x64 

14 Residual: Adding layer 11 and layer 14  - 256x256x64 

ResUnit 

5 

15 Convolution 128 3x3 2 Valid L-Relu 128x128x128 

16 Convolution 64 1x1 1 Same L-Relu 128x128x64 

17 Convolution 128 3x3 1 Same L-Relu 128x128x128 

18 Residual: Adding layer 15 and layer 17  - 128x128x128 

ResUnit 

6 

19 Convolution 128 3x3 2 Valid L-Relu 64x64x128 

20 Convolution 64 1x1 1 Same L-Relu 64x64x64 

21 Convolution 128 3x3 1 Same L-Relu 64x64x128 

22 Residual: Adding layer 19 and layer 21  - 64x64x128 

ResUnit 

7 

23 Convolution 128 3x3 2 Valid L-Relu 32x32x128 

24 Convolution 64 1x1 1 Same L-Relu 32x32x64 

25 Convolution 128 3x3 1 Same L-Relu 32x32x128 

26 Residual: Adding layer 23 and layer 25  - 32x32x128 
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2.2.1.2 Bounding box generator  

The precise location of the nodule is determined by the bounding box generator. 

Bounding box is a rectangular that can contour the nodule in the image.  The bounding 

box generator was composed of seven convolutional layers and one reshape layer. The 

structure of bounding box generator is shown in Table 5. 

Table 5: Bounding box structure 

Layer 

index 
Type Filters Size Stride 

Padding 

mode 
Activation Output 

1 Convolution 128 1x1 1 Same L-Relu ?x?x128 

2 Convolution 256 3x3 1 Sane L-Relu ?x?x256 

3 Convolution 128 1x1 1 Same L-Relu ?x?x128 

4 Convolution 256 3x3 1 Same L-Relu ?x?x256 

5 Convolution 128 1x1 1 Same L-Relu ?x?x128 

6 Convolution 256 3x3 1 Same L-Relu ?x?x256 

7 Convolution 18 1x1 1 Same L-Relu ?x?x18 

8 Reshape Reshape the array’s last dimension form 18 to 3x6 ?x?x3x6 
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The outputs of the bounding box generator were three four-dimension arrays 

with a size of 128x128x3x6, 64x64x3x6, or 32x32x3x6. The first two dimensions are those 

of the feature grid. The third dimension stands for the three anchors boxes in each grid 

cell. The fourth dimension stores the bounding boxes information. An illustration of 

output 3 array is shown in Figure 3.  

2.2.1.2.1 Anchor box 

Anchor boxes stands for the pre-defined bounding boxes that locate in upper left 

corner of every grid cell. Most of the pulmonary nodules have a similar shape and size: 

well-circumscribed and relatively fixed diameter ranges (0.3 cm to 3 cm). For this reason, 

in this study, nine anchor boxes in three size scales were determined, which are shown 

in Table 6. The varied length in widths and heights can cover all nodule’s morphological 

variation. Grids with high resolution mall size anchor boxes because they were used to 

detect nodule with small size. Thus, small, medium, and large size of anchor boxes 

correspond to ρςψρςψ, φτφτ, and σςσς grids, respectively.           

Figure 3: Example of output array 
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Table 6: Anchor box 

 Anchor box index Heights (pixels) Width (pixels) 

Small Size 

(128x128 grid) 

1 8 8 

2 10 10 

3 12 12 

Medium Size 

(64x64 grid) 

4 15 15 

5 20 20 

6 25 25 

Large size 

(32x32 grid) 

7 30 30 

8 35 35 

9 40 40 
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2.2.1.2.2 Bounding box prediction 

The bounding box information that reflects nodules’ coordinates and diameters 

is stored in the fourth dimension of the array. It contains six trainable elements, namely 

ὸ, ὸ, ὸ, ὸ, ὸ, and ὴ. As demonstrated in Figure 4, the training process is to let the 

detection system learn to shift the anchor box to fix the nodule into a box.  

Figure 4: Anchor box prediction  
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 ὸ and ὸ are central coordinate shifts from anchor box to predicted box. Thus, 

the central coordinates of the nodule are calculated by equation (1) and equation (2).  

 ὦ „ὸ ὧ (1) 

 ὦ „ὸ ὧ (2) 

Here, sigmoid activation is used to constraint the output value (ὸ and ὸ) between 0 to 

1. Ã and Ã are the offset from the top left corner of the grid. Using offsets instead of 

absolute coordinates will reduce the training complexity.40   

 ὸ and  ὸare height and width factors that correspond to the change of height 

and width between anchor box and predicted box. Thus, the predicted box’s height and 

width are expressed in equation (3) and equation (4). 

 ὦ ὴ ẗὩ  (3) 

 ὦ ὴẗὩ  (4) 

Here, ὴ  and  ὴ are the width and height of the anchor box. 

 ὸ stands for object score: it is a binary value that one indicates presence of an 

object inside the grid cell and zero indicate absence. ὴ stands for the probability that the 

object inside the grid cell belong to object category i. In this study, only one category is 

used: nodule.  Number of p value equals to number of detection category. Thus, only 

one p value is stored in the final output. The confident score (P) is determiend by 

equation (5), which reflects the detection systems’ confidence of detection result.   

0 ὸẗὴ (6) 
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2.2.1.2.3 Loss computation 

The loss function contains three parts: (1) object loss; (2) classification loss (3) 

bounding box loss, as shown in equation (7). 

 ὒ ὒ  ὒ ὒ   (7) 

The loss calculation methods are binary cross entropy (BCE) and square error 

(SE), which are defined in equation (8) and (9), respectively. 

 ὄὅὉὼȟὼ ὼẗÌÏÇὼ ρ ὼÌÏÇ ρ ὼ (8) 

 ὛὉὼȟὼ ὼ ὼ  (9) 

Object loss accounts for object prediction loss. It both calculates the existence 

object loss and the non-existence object loss, which is defined in equation (10). 

 
ὒ ȟ ὰέὫὸ ȟ ὰέὫρ ὸ    

(10) 

 

Classification loss calculates the error in predicting the object’s category, as 

shown in equation (11). Only one class category is used in this study, this loss equation 

is reserved for future multi-category study.  

 ὒ ȟ ὄὅὉὴὧȟὴǶὧ

ᶰ

  (11) 

Coordinate loss calculates the error in predicting bounding box. It compares the 

predicted bounding box coordinate (ὸȟὸȟὸ, ὸ   with ground truth bounding box 

(ὸǶȟὸǶ, ὸǶ, ὸǶ, which is shown in equation (12).  
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ὒ ȟ ὄὅὉὸȟὸǶ ὄὅὉὸȟὸǶ ὛὉὸȟὸǶ

ὛὉὸȟὸǶ   

 

(12) 

For equation abovementioned, the notations are shown in the table below. 

Notation Meaning 

ὸȟὸ predicted central location coordinate of bounding box 

ὸ, ὸ predicted bounding box height and width 
ὸ predicted object score 
ὴὧ predicted bounding box category 

‗    weighting factor of coordinate prediction loss 

ȟ  whether Ὦth anchor box in cell Ὥ has object, it is defined as 
ρ ὭὪ έὦὮὩὧὸ ὩὼὭίὸ

π ὭὪ έὦὮὩὧὸ ὨέίὩ ὲέὸ ὩὼὭίὸ
 

ȟ  is denoted as whether Ὦth anchor box in cell Ὥ has not object, it is 

defined as 
π ὭὪ έὦὮὩὧὸ ὩὼὭίὸ

ρ ὭὪ έὦὮὩὧὸ ὨέίὩ ὲέὸ ὩὼὭίὸ
. This is determined by a threshold 

value. Only predicted boxes which have an IoU of less than the 

threshold with any object are considered in the non-object loss 
ὼ The symbol ὼ refers to the corresponding ground truth value of 

predicted value (x) 

  

2.2.1.2.4 The influence of number of ResUnits 

To explore the influence of the number of ResUnits in nodule detection accuracy. 

Four architectures with different number of ResUnits in feature extractor were designed, 

which are shown in Table 7. Due to the computation memory limitation of the graphic 

card used in this study, the maximum number of ResUnits was set to seven. These four 

architectures were validated with same dataset in public database.  
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Table 7 Four architectures design 

2.2.1.2.5 Implementation details  

The training was based on Keras with TensorFlow as backend. Each training has 

500 epochs and training time is around 15 hours.  

2.2.2 Characterization system 

The characterization system applied non-maximum suppression algorithm to 

filter out nodules with low confident scores.46 As illustrated in Figure 5, when several 

 Number of ResUnits  Number of convolutional layers 

Architecture 1 ResUnit 1, 2, 3, 4, 5, 6, and 7. 19 

Architecture 2 ResUnit 1, 2, 3, 4, 6, and 7. 16 

Architecture 3 ResUnit 1, 2, 3, 6, and 7. 14 

Architecture 4 ResUnit 1, 2, 6, and 7. 12 

Figure 5 Non-maximum suppression 
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bounding boxes detect the same nodule simultaneously, on the bounding box that has 

higher confident score is kept.  

This characterization system gives a summarized report containing nodules’ 

quantitative information. The trained nodule detection system model is loaded in 

characterization system.  Input images pass through the detection model and generate 

the output that containing detected nodules. A confident threshold value is set to filter 

out nodules with confident score lower than this value. The quantitative information 

was extracted from the output, includes nodules’ number, central point coordinate, 

diameter, and the confident score. The final report is a summary of nodules within the 

input images 

2.3 Evaluation method  

The accuracy of the nodule detection system was evaluated by Free-Response 

Receiver Operating Characteristic (FROC) curve and competition performance matric 

(CPM). FROC curve plots sensitivity against false positive detection per image (FPPI) at 

various threshold setting.47  Sensitivity, or true positive rate, is defined in equation (13), 

which is the number of true positives (TP) nodules detection divided by total number of 

ground truth nodules should be detected (sum of true positive detection with false 

negative).  

 ίὩὲίὭὸὭὺὭὸώ
Ὕὖ

ὃὰὰ ὫὶέόὲὨ ὸὶόὸὬί

Ὕὖ

Ὕὖ Ὂὔ
 (13) 
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FPPI is defined in equation (14), which is the sum of false positive detection in each 

image (ὊὖὈ) divided by total number of images.  

CPM is defined as averaged sensitivity at seven FPPI values: 1/8, 1/4, 1/2, 1, 2, 4, and 8.   

Average mean square error was applied to evaluate the detection precision in 

diameter, which can be seen in equation (15). 

 Ὁὶὶέὶ
ρ

ὲ
Ὠ Ὠ    (15) 

Here Ὠ stands for predict diameter, Ὠ stands for ground truth diameter, and n stands for 

total number of nodules. Central coordinate precision was evaluated by equation (16). 

 Ὁὶὶέὶ
ρ

ὲ
ὼ ὼ ώ ώ    (16) 

Here (ὼȟώ  stands for predict coordinate, (ὼȟώ stands for ground truth coordinate, and 

n stands for total number of nodules.  

  

 ὊὖὖὍ
В ὊὖὈ

ὲ
 (14) 
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3 Results 

3.1 XCAT simulation study results 

The ten-fold cross-validation results using XCAT simulated images is displayed in 

Table 8. The average CPM scores is 0.99.   

Table 8 Ten-fold cross-validation results in simulation study 

 
FROC analysis CPM 

score 1/8 1/4 1/2 1 2 4 8 

validation 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

validation 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

validation 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

validation 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

validation 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

validation 6 0.97 0.98 0.98 0.98 1.00 1.00 1.00 0.99 

validation 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

validation 8 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 

validation 9 0.98 0.98 0.98 0.98 0.98 1.00 1.00 0.99 

validation 10 0.96 0.98 0.98 0.98 0.98 1.00 1.00 0.98 

average 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 

Examples of detection results from CAD systems is shown in Figure 6. This 

image has two ground truth nodules, as indicated in two blue boxes on the right image. 

Figure 6:  XCAT phantom simulated image study result example 
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Three nodules were detected, as indicated in the red box on the left. Nodule 1 and 

nodule 2 are ground truth nodules. The automatic generated confident scores are 

attached to each detected bounding box. It can be seen that two ground truth nodules 

have high confident scores (0.9992 and 0.9768) and the false positive detection has low 

confident score (0.2074). 

The ten-fold cross-validation results in performance time, and detection 

precision in central coordinate and diameter in simulation image study is shown in 

Table 9. The average detection time per image is 0.070 second. The average precision in 

central coordinates is 0.759 mm and the precision in diameter is 0.261 mm.  

Table 9 : Performance time, and detection precision in central coordinate and 

diameter in simulation image study 

 
Time per 

Image (s) 

Precision in central coordinates 

(mm) 
Precision in diameters (mm) 

validation 1 0.070 0.799 0.331 

validation 2 0.070 0.872 0.340 

validation 3 0.066 0.734 0.292 

validation 4 0.070 0.772 0.204 

validation 5 0.070 0.710 0.219 

validation 6 0.070 0.678 0.198 

validation 7 0.070 0.703 0.238 

validation 8 0.070 0.812 0.305 

validation 9 0.070 0.767 0.218 

validation 10 0.070 0.744 0.268 

average 0.070 0.759 0.261 
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3.2 Public database study results  

The detection performance on the public database was validated using ten-fold 

cross-validation. FROC analysis and CPM score results are shown in Table 10. The 

average CPM score is 0.873. Table 11 shows the ten-fold cross-validation results in 

performance time, and detection precision in central coordinate and diameter. The 

average detection time per image is 0.077 second. The average precision in central 

coordinates is 1.438 mm and the precision in diameter is 1.049 mm. 

Table 10: Ten-fold cross-validation results in public database study 

 
FROC analysis CPM 

score 1/8 1/4 1/2 1 2 4 8 

validation 1 0.760 0.846 0.882 0.911 0.960 0.976 0.984 0.903 

validation 2 0.626 0.799 0.889 0.918 0.952 0.960 0.968 0.873 

validation 3 0.681 0.755 0.833 0.895 0.933 0.959 0.976 0.862 

validation 4 0.681 0.773 0.850 0.869 0.921 0.931 0.961 0.855 

validation 5 0.657 0.768 0.825 0.880 0.919 0.951 0.992 0.856 

validation 6 0.638 0.745 0.852 0.880 0.902 0.934 0.951 0.843 

validation 7 0.689 0.827 0.861 0.900 0.919 0.932 0.968 0.871 

validation 8 0.719 0.797 0.846 0.921 0.960 0.991 1.000 0.890 

validation 9 0.761 0.832 0.899 0.927 0.963 0.974 1.000 0.908 

validation 10 0.689 0.827 0.861 0.900 0.919 0.932 0.968 0.871 

average 0.690 0.797 0.860 0.900 0.935 0.954 0.977 0.873 
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Table 11: Performance time, and detection precision in central coordinate and 

diameter in public database study 

 
Time per 

Image (s) 

Precision in central coordinates 

(mm) 
Precision in diameters (mm) 

validation 1 0.077 1.435 1.100 

validation 2 0.077 1.541 0.930 

validation 3 0.077 1.323 1.198 

validation 4 0.078 1.680 1.121 

validation 5 0.077 1.398 1.099 

validation 6 0.077 1.460 1.002 

validation 7 0.077 1.449 1.087 

validation 8 0.077 1.236 0.912 

validation 9 0.079 1.492 1.145 

validation 10 0.078 1.362 0.896 

average 0.077 1.438 1.049 

 

Figure 7 shows an example of detection result in the public database. This image 

has one ground truth nodule, as indicated in the blue box on the right image. Two 

nodules were detected, as indicated in red box on the left. Nodule 2 is ground truth 

Figure 7: Public database study result example 
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nodule. It is accurately detected with high confident score (0.4053). Nodule 1 is false 

positive detection that has low confident score (0.1170). 
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4 Discussion  

4.1 CAD system design  

  As mentioned in the introduction, popular CNN architectures such as faster R-

CNN and U-Net have demonstrated their capabilities in nodule detection. Studies has 

shown YOLO v3 has better detection accuracy when compared with faster R-CNN and 

U-Net. However, no study has been performed to evaluate the performance of YOLO v3 

in nodule detection. The results of this study demonstrated that YOLO v3 architecture 

was competent in nodule detection. Detailed performance evaluation is discussed in 

Section 4.2.  

Multiple adjustments for YOLO v3 have been made. A summary 

 of modification is shown in Table 12.  

Table 12: Architecture comparison 

 Original YOLO v3  Our CAD system  

Feature extractor 

design 

Darknet (53 convolutional 

layers) 

7 ResUnits (26 convolutional 

layers) 

Total number of 

layers  

106 50 

Up sampling Yes No 

Output dimension  16x16; 32x32; 64x64 32x32; 64x64; 128x128 

 

The original YOLO v3 algorithm was designed for multi-classes detection. It had 

over 100 convolutional layers to meet the requirement of extracting a high variety of 

features. Such a deep convolutional neural network is not necessary for pulmonary 

nodule detection as it only focuses on a single object. As such, in this study, the number 
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of convolutional layers in the feature extractor was reduced to 26; total number of layers, 

correspondingly, was reduced to 50. In this way, the implementation requirement of the 

algorithm is reduced. Simplifying the algorithm’s structure makes applying the 

algorithm in clinic more feasible. A low-performance GPU, such as GTX1060Ti in this 

experiment, is sufficient to load the algorithm for prediction. Meanwhile, the algorithm 

was designed to extract feature in two dimensions instead of in three dimensions in 

order to keep the real-time efficiency in low-performance GPU. Furthermore, the 

original YOLO v3 was designed for detecting both large and small objects. For these 

studies, the algorithm was customized to only focus on detecting objects that have a 

reasonable size (from several millimetres to several centimeter).  One such change was 

to increase the output dimension. Another change was adjusting anchor boxes to the 

sizes specified in Table 6. 

4.2 Results discussion 

4.2.1 Results discussion in simulated image and public database  

Results demonstrated that this CAD system achieved promising performance in 

both simulated images and public database images. The reason of choosing FROC curve 

and CPM score for detection accuracy evaluation is because false positive detection 

cannot be fully eliminated for every detection model. Using FROC curve and CPM score 

can fully evaluate the performance in both low threshold setting and high threshold 

setting. Specifically, CAD systems had better performance in the simulated images. One 



 

36 

reason is the simplicity of phantom image: the well-circumscribed shape of simulated 

nodules, no noise added to images, and homogeneous lung tissue. The function of the 

simulated image study is to examine the reliability of the detection system because 

nodules are all pre-defined with ground truth indication. The high precision in 

predicting diameter and central coordinates demonstrated this CAD system’s ability to 

precisely localize nodule. In public database study, although the average errors were 

slightly higher, the accuracy was still clinically acceptable.  The detection model trained 

by XCAT simulated data has poor performance in detecting public data patient image. 

This is also caused by the simplicity of the simulated nodules.   

4.2.2 Results comparison between different architectures 

Detection results with different architectures specified in Table 7 are shown in 

Table 13 and visualized in Figure 7. Result shows that the detection accuracy increases 

with number of ResUnit increases. Further work is required to explore the relationship 

between number of ResUnits and detection accuracy.  

Table 13: Result comparison in different architectures 

 
False positive per image 

CPM 
0.125 0.25 0.5 1 2 4 8 

Architecture 1 0.760 0.846 0.882 0.911 0.960 0.976 0.984 0.903 

Architecture 2 0.778 0.838 0.887 0.921 0.936 0.952 0.952 0.895 

Architecture 3 0.717 0.825 0.860 0.866 0.897 0.935 0.972 0.867 

Architecture 4 0.771 0.801 0.856 0.879 0.879 0.890 0.953 0.861 
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Figure 8: FROC curve for different architectures 

4.2.3 Results comparison between different CAD systems 

The CAD system’s detection performance in public database was compared with 

other CAD systems that used the same database. Figure 9 shows the FROC curves 

among our CAD system and other conventional CAD systems that submitted on LUNA 

16 challenge. It shows that our CAD system accomplished the best performance.  
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Figure 9: FROC curve comparison with conventional CAD systems 

Our detection result was also compared with other deep learning-based CAD 

systems. Figure 10 shows the comparison between our system with other 2D CNN 

systems. Our CAD system has better performance than CAD systems using 2D faster R-

CNN Xie, Yang, Sun, Chen, Zhang 29 and 2D U-Net (ZNET). It also gets comparable 

results with two-stage CAD systems 28 that has a 3D CNN architecture for false positive 

reduction after nodule detection.  
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Figure 10: FROC curve comparison with 2D deep learning-based CAD systems 

Many deep learning based-CAD systems perform 3D convolution operation to 

extract features within CT volumes instead CT slice. Our CAD system performance was 

also compared with these systems, which is shown in Figure 11. Results show that our 

CAD system out-performs several 3D based CAD systems (Dou et al., Zhu et al., 

CCELarfeCubeCnn). It also achieves the comparable results with the three best perform 

CAD systems (Pingan, JianPei, and Zhongliu_Xie).  Using 3D convolution operation 

results in high computation cost. Table 14 lists the implementation platform used in 

abovementioned CAD. It can be seen all these CAD systems used expensive graphic 

card that cost thousands dollar. It is not feasible for a hospital to buy such expensive 

facilities. In contrast, our CAD system can be implemented in a normal desktop, which 

is more practical in clinic.    
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Figure 11: FROC curve comparison with 3D based deep learning CAD systems 

Table 14: Implementation platform comparison 

 
Implementation platform Cost ($) 

Pingan 4 NVIDIA Tesla K80 7100 

JianPeiCAD 2 NVIDIA GTX Titan-X 4998 

Zhongliu Xie 2 NVIDIA Tesla K80 3550 

Xie et al. 1 NVIDIA Tesla K80 1775 

Dou et al.  1 NVDIA Titan X  1200 

Our 1 NVIDIA GTX 1060 Ti  400 

 

The overall CPM score comparison is shown on Figure 12. Our CAD system 

ranked 6 out of 13 CAD systems.  
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4.3 Limitations and future works 

The detection accuracy in low FPPI should be improved. Increasing number of 

ResUnits in the feature extractor is one method and adapting the algorithm into 3D 

CNN that extracts features in 3D CT volumes instead of 2D CT slices is another method. 

Increased number of ResUnits and 3DD CNN may result in real-time detection latency 

because of the increased computation cost. Further exploration should be performed to 

balance the detection accuracy and efficiency.   

Due to database limitation, nodule size smaller than 3 mm is not involved. The 

ability to detect nodule smaller than 3 mm may beneficial to nodule early diagnose. 

More dataset that includes nodule size smaller than 3 mm should be used in future 
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study. Furthermore, simulation image can be more realistic. The future study can 

simulate nodule with morphological variation and add noise to the simulated images.  

The effect of organ motion is not evaluated in this study. In future study, 4D CT 

dataset should be used to test the influence of organ motion in real-time nodule tracking. 

Furthermore, the detection accuracy may dependent on location of the nodule. Future 

study should evaluate the influence of nodule position in nodule detection.   

This study achieves the nodule detection and simple characterization. The 

algorithm can be modified for more specific nodule characterization, such as 

characterizing the type of nodule (benign tumor, lung cancers, infections, etc). It requires 

dataset with detailed annotations.  
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5 Conclusion 

Results evaluation showed that our proposed CAD system using deep learning 

methods was robust. It achieved real-time nodule detection with high accuracy and 

characterization with high precision. The performance time is within 0.1 seconds and the 

localization precision is about 1 mm. This CAD system can be directly implemented in a 

clinically available computer. It has potential clinical applications in real-time nodule 

detection and tracking, as well as nodule quantitative analysis. 
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