Spinal deformity management can be difficult. The decision for surgery, approach, number of levels, and surgical technique all present challenges. Even when other issues are managed appropriately the process of how to correct the deformity needs special consideration.

Numerous techniques have been studied including vertebra-to-rod, rod de-rotation, 3-rod-techniques, and cantilever maneuvers. While cantilever is the preferred technique when treating sagittal plane deformity, scoliosis often requires a combination of techniques due to the complexity of deformity in coronal and transverse planes.

This video illustrates an adult scoliosis correction using sequential reduction towers and de-rotation techniques. Using this method the step of hook holders is eliminated and tension is distributed evenly across the rod using sequential reduction of the reduction towers across the length of the rod. This has led to a very efficient correction of our deformity as well as a powerful de-rotation tool. We routinely use this technique for flexible and rigid deformities, which is assessed pre-op with a computed tomography.

The patient is a 67-yr-old female with prior lumbar decompressions and worsening back pain with radiculopathy. No significant sagittal malalignment is present but pelvic tilt is elevated and a coronal deformity exists. Pelvic incidence measures 59°, LL50°, PT28° and lumbar scoliosis shows a coronal Cobb angle of 50.8°. Briefly, surgery involved transpedicular instrumentation from T10-S1 with bilateral iliac screw fixation. To achieve mobility posterior column osteotomies were performed at T12-L1, L1-2, L2-3, L3-4, L4-5, and L5-S1 levels. TLIF was performed at L4-5, L5-S1 for fusion. Postoperative scoliosis X-rays demonstrated improved sagittal and coronal alignment with PI59°, LL59°, PT22°, and coronal Cobb angle of 12°.

KEY WORDS: Deformity, Scoliosis, Reduction
segments, this paper illustrates the amount of correction that one can expect to achieve in coronal alignment with the utilization of these towers. One key aspect of the technique involves contouring the rod to the desired alignment prior to reduction, and minimizing the amount of stress placed at the proximal end of the construct. The authors are to be commended for the video quality with good use of time lapse to provide a concise overview of what is oftentimes a challenging aspect of deformity surgery. This paper clearly illustrates the potential of corrective techniques with reduction towers, and with this video can be readily incorporated into the armamentarium of any surgeon who wishes to treat such pathology.

Victor Chang
Detroit, Michigan