221 A new look at an old disease: Is Pompe disease a neuromuscular disorder with CNS involvement?

Aditi Korlimarla, Steven Chen, Stephanie L. Austin, James M. Provenzale, Priya S. Kishnani, Duke University, Durham, NC, United States

Pompe disease is a lysosomal disorder caused by deficiency of acid-alpha glucosidase. Lately, there have been increasing reports of white matter (WM) involvement in the brain of children with Pompe disease. Purpose of this study was to describe the extent of WM involvement and rates of progression in children with Pompe disease. Methods included (1) a grading system using the Fazekas scale (quantitative assessment) on brain MRI-T2-weighted-Fluid Attenuated Inversion Recovery (T2-FLAIR) to measure WM hyperintense foci, (2) review of MRI by an experienced neuroradiologist (qualitative assessment). The Fazekas scale scoring was tailored for Pompe disease. Ten brain areas were assessed (each area scored 0 to 3) with IPD and 15 subsequent MRIs from 6/13 children (total 28 MRIs) were examined. Super-ficial areas (periventricular and then subcortical) were involved prior to the deeper areas of the brain. Repeat MRIs were conducted, which identified 12 previously unreported mutations. There was no significant difference in the incidence of MPS IIIA and IIIB in this Chinese cohort. The incidence of MPS IIIC was significantly lower than that of IIIA and IIIB. No IIID patient was found. The initial clinical symptoms of MPS III were atypical. When language retardation, mental retardation, and rough facial features occur, MPS III should be considered in combination with other clinical features, such as cerebral cortex atrophy. Hepatosplenomegaly and serrated teeth can be used clinically to preliminarily distinguish IIIA from IIIB. We emphasize the importance of establishing early diagnostic procedures so that gene therapy can be carried out as soon as possible to alter the disease prognosis.

doi:10.1016/j.jymgme.2019.11.229

222 Mini-COMET study: Safety, immunogenicity, and preliminary efficacy for repeat avalglucosidase alfa dosing in patients with infantile-onset Pompe disease (IOPD) who were previously treated with alglucosidase alfa and demonstrated clinical decline

David Kronn, Anais Brassièbre, Alexander Broomfield, James Davison, Sihoun Hahn, Priya S. Kishnani, Satoko Kumada, François Labarthe, Hirotaoka Ohki, Samia Pichard, Kristina An Haack, Carmen Fleurinck, Shuang He, Judith Johnson, Yin-Hsiu Chien; on behalf of the Mini-COMET investigators, New York Medical College, Valhalla, NY, United States, Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France, Manchester Center for Genomic Medicine, St Mary’s Hospital, Central Manchester Foundation Trust, Manchester, United Kingdom, Great Ormond Street Hospital, London, United Kingdom, University of Washington School of Medicine, Seattle Children’s Hospital, Seattle, WA, United States, Duke University Medical Center, Durham, NC, United States, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan, CHRU de Tours - Hôpital Clocheville, Tours, France, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan, Centre de Référence Maladies Héréditaires du Métabolisme, Hôpital Robert Debré, Paris, France, Sanofi Genzyme, Chilly-Mazarin, France, Ablynx, A Sanofi Company, Ghent, Belgium, Sanofi Genzyme, Cambridge, MA, United States, National Taiwan University Hospital, Taipei, Taiwan

Mini-COMET (NCT03019406) is an ongoing phase 2, open-label, ascending-dose, 3-cohort study, evaluating safety, pharmacokinetics, and preliminary efficacy of avalglucosidase alfa in patients aged ~18 years with infantile-onset Pompe disease (IOPD). Patients had been previously treated with any stable dose of alglucosidase alfa for ≥26 months and demonstrated either clinical decline (Cohorts 1 [n = 6] and 2 [n = 5]) or sub-optimal response (Cohort 3 [n = 11]). Cohorts 1 and 2 received alglucosidase alfa 20 or 40 mg/kg IV every other week (qow), respectively, for 6 months. Cohort 3 patients were randomized (1:1:1) to alglucosidase alfa 40 mg/kg IV qow (n = 5) or alglucosidase alfa (current stable dose for previous 6 months n = 6). Thereafter, all patients may enter a study extension (≤3 years on-study) to receive alglucosidase alfa 20 mg/kg qow (Cohort 1) or 40 mg/kg qow (Cohorts 2 & 3, and Cohort 1 patients with more rapid worsening of clinical decline). Interim data as of June 2019 are reported here. For Cohorts 1, 2, and 3 (only patients receiving alglucosidase alfa), respectively: mean ages (range) at alglucosidase alfa initiation were 7.6 (2–11), 8.1 (1–12), and 6.9 (4–10) years; mean (range) duration of alglucosidase alfa exposure was 78.6 (63.9–88.3), 59.0 (56.1–62.1), and 21.3 (14.1–26.3) weeks; and mean (range) number of infusions was 40.2 (33–45), 30.4 (29–32), and 11.6 (8–14). Overall, treatment-emergent adverse events (AEs) were generally mild to moderate; most frequently reported treatment-related AEs (2 patients each) were fall (Cohort 1) and rash (Cohorts 2 & 3). Nine patients (Cohort 1: n = 4; Cohort 2: n = 3; Cohort 3: n = 2) presented with serious AEs unrelated to treatment. In each cohort, 2 patients had at least 1 protocol-defined infusion-associated reaction. These interim results demonstrate that alglucosidase alfa was well-tolerated in enzyme replacement therapy-experienced IOPD patients. Updated safety data (including immunogenicity), as well as preliminary efficacy data, are planned for presentation. Funding: Sanofi Genzyme.

doi:10.1016/j.jymgme.2019.11.231