Association of genetic variants of FBXO32 and FOXO6 in the FOXO pathway with breast cancer risk

Haijiao Wang1,2,3 | Hongliang Liu2,3 | Lingling Zhao2,3,4 | Sheng Luo5
Tomi Akinyemiju3 | Shelley Hwang6 | Ying Yue1 | Qingyi Wei2,3,7,8

1Department of Gynecology Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
2Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
3Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
4Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
5Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
6Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
7Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
8Duke Global Health Institute, Duke University Medical Center, Durham, North Carolina, USA

Correspondence
Ying Yue, Department of Gynecology Oncology, The First Hospital of Jilin University, 71 Xinmin St, Changchun 130021, Jilin, China.
Email: yuey@jlu.edu.cn
Qingyi Wei, Duke Cancer Institute, Duke University Medical Center and Department of Medicine, Duke School of Medicine, 9055 LaSalle St, Durham, NC 27710, USA.
Email: qingyi.wei@duke.edu

Abstract
Forkhead box class O (FOXO) transcription factors play a pivotal role in regulating a variety of biological processes, including organismal development, cell signaling, cell metabolism, and tumorigenesis. Therefore, we hypothesize that genetic variants in FOXO pathway genes are associated with breast cancer (BC) risk. To test this hypothesis, we conducted a large meta-analysis using 14 published genome-wide association study (GWAS) data sets in the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) study. We assessed associations between 5214 (365 genotyped in DRIVE and 4849 imputed) common single-nucleotide polymorphisms (SNPs) in 55 FOXO pathway genes and BC risk. After multiple comparison corrections by the Bayesian false discovery probability method, we found five SNPs to be significantly associated with BC risk. In stepwise multivariate logistic regression analysis with adjustment for age, principal components, and previously published SNPs in the same data set, three independent SNPs (i.e., FBXO32 rs10093411 A>G, FOXO6 rs61229336 C>T, and FBXO32 rs62521280 C>T) remained to be significantly associated with BC risk (p = 0.0008, 0.0011, and 0.0017, respectively). Additional expression quantitative trait loci analysis revealed that the FBXO32 rs62521280 T allele was associated with decreased messenger RNA (mRNA) expression levels in breast tissue, while the FOXO6 rs61229336 T allele was found to be associated with decreased mRNA expression levels in the whole blood cells. Once replicated by other investigators, these genetic variants may serve as new biomarkers for BC risk.

KEYWORDS
breast cancer susceptibility, expression quantitative trait loci analysis, FOXO pathway, single-nucleotide polymorphism

Abbreviations: BC, breast cancer; BFDP, Bayesian false discovery probability; BREOGAN, Breast Oncology Galicia Network; CGPS, Copenhagen General Population Study; CI, confidence interval; CPS-II, Cancer Prevention Study II Nutrition Cohort; DRIVE, Discovery, Biology, and Risk of Inherited Variants in Breast Cancer; EPIC, European Prospective Investigation into Cancer and Nutrition; eQTL, expression quantitative trait loci; FBXO32, F-box protein 32; FOXO, Forkhead box; FOXC2, Forkhead box C2; FOXO6, Forkhead box O6; GWAS, genome-wide association study; LD, linkage disequilibrium; MAF, minor allele frequency; MCCS, Melbourne Collaborative Cohort Study; MEC, Multiethnic Cohort; NBHS, Nashville Breast Health Study; NHS, Nurses' Health Study; NHS 2, Nurses' Health Study 2; NRG, number of risk genotype; OR, odds ratio; PBCS, NCI Polish Breast Cancer Study; PC, principal component; PLCO, The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; SEARCH, Study of Epidemiology and Risk factors in Cancer Heredity; SMC, Swedish Mammography Cohort; SNP, single-nucleotide polymorphism; WHI, Women's Health Initiative.
INTRODUCTION

Worldwide data show a continuing increase in the incidence of breast cancer (BC) that has become the second leading cause of cancer deaths among women in the United States. In 2020, about 279,100 cases were diagnosed with and 42,690 died from BC in the United States. Therefore, additional biomarkers are needed to identify individuals who are at a greater risk of BC for early detection and prevention to reduce the incidence of BC.

Several risk factors (e.g., physical activities, unhealthy lifestyle, and reproductive factors) are known to contribute to BC risk, and gene mutations only explain approximately 9%-13% of the heritability of BC. It is well known that single-nucleotide polymorphisms (SNPs), the most common form of genetic variation, also contribute to BC risk, suggesting their importance as a molecular biological mechanism of carcinogenesis. In the post genome-wide association study (GWAS) era, it is possible to perform more sophisticated analyses to identify cancer risk-associated functional SNPs in a biological pathway manner. With such a targeted pathway-based and hypothesis-driven approach, investigators may identify cancer risk-associated SNPs from previously published GWAS data sets by using available genotyping data with further evaluation of their potentially biological functions.

It is known that forkhead box class O (FOXO) transcription factors are important regulators of gene expression and play a pivotal role in regulating a variety of biological processes, including organonal development, cell signaling, cell metabolism, and tumorigenesis. FOXOs are involved in the regulation of the upstream signaling pathway of PD-L1 by transcriptional or posttranslational manner. For example, FOXOs may inhibit PD-L1 expression in cancer cells and indirectly upregulate T-cell response. FOXOs are also considered putative tumor suppressors, because the activation of FOXOs inhibits cell cycle and induces apoptosis in various types of tumor cells. However, the role of FOXOs in carcinogenesis remains to be determined, because only few studies have investigated the effect of genetic variation in FOXO pathway genes on BC risk, such as an association of AKT1 gene mutation with BC risk in the high-altitude Ecuadorian mestizo population and the relationship between SIRT1 gene polymorphisms and BC in Egyptians.

Considering the importance of the FOXO pathway in the biology of carcinogenesis, it is very likely that genetic variants in FOXO pathway genes are associated with BC risk. To test this hypothesis, we conducted a targeted pathway-based and hypothesis-driven approach to identify SNPs of FOXO pathway-related genes and examined their associations with BC risk by using available genotyping data from 14 previously published GWAS data sets of 53,107 BC case-control study participants in the DRIVE study.

MATERIALS AND METHODS

Study participants

We performed a case-control meta-analysis of the participants from 14 out of the 17 previously published BC GWASs from the DRIVE study (phs001265.v1.p1), which is different from the DRIVE-genome-wide association meta-analysis (phs001263.v1.p1) previously used by other researchers, and the differences between the two data sets have been described in detail elsewhere. In brief, the major differences are as follows: (1) different sources of studies and (2) different data types: The DRIVE study we used has genotyping data with detailed SNP information, but the DRIVE study previously used by other researchers had the summary data only good for meta-analyses. The DRIVE study used in the present study was one of five projects funded in 2010 by the National Cancer Institute-supported Genetic Associations and Mechanisms in Oncology (GAME-ON). Among the 17 studies, “Women of African Ancestry Breast Cancer Study (WAABC)” was an African ancestry study and “The Sister Study (SISTER)” and “The Two Sister Study (2SISTER)” had different research designs from others and used cases’ sisters as controls; therefore, our meta-analysis excluded these three studies. As a result, a total of 28,758 BC cases and 24,349 controls in 14 GWAS studies of European ancestry participants were included in the final analysis, whose characteristics are summarized in Table S1.

These 14 DRIVE GWASs included Breast Oncology Galicia Network (BREOGAN); Copenhagen General Population Study (CGPS); Cancer Prevention Study-II Nutrition Cohort (CPS-II); European Prospective Investigation into Cancer and Nutrition (EPIC); Melbourne Collaborative Cohort Study (MCCS); Multi-ethnic Cohort (MEC); Nashville Breast Health Study (NBHS); Nurses’ Health Study (NHS); Nurses’ Health Study 2 (NHS-2); NCI Polish Breast Cancer Study (PBCS); The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO); Study of Epidemiology and Risk factors in Cancer Heredity (SEARCH); Swedish Mammography Cohort (SMC); and Women’s Health Initiative (WHI). Illumina Infinium OncoArray-500k BeadChip genotyping platforms were used for all of the GWAS data sets, and only sex and age at interview for all the participants were available to us, while three other variables including age at diagnosis, estrogen receptor status, and tumor histology type were available only for the cases; for age variables, we adopted the age at interview for the controls and the age at diagnosis for the cases. Each of the original studies approved by the institutional review boards of the participating institutions received written informed consent from the participants.

Identification of FOXO pathway genes and their SNP extraction

We selected candidate genes in the FOXO pathway according to the databases of Kyoto Encyclopedia of Genes and Genomes (KEGG), BIOCARTA, REACTOME, Canonical pathways, and Gene Ontology (GO) in the “Molecular Signatures Database v7.0 (MsigDB)” (http://software.broadinstitute.org/gsea/msigdb/search.jsp) used by the keyword “FOXO.” In total, we identified 55 candidate genes after excluding 16 duplicate genes (Table S2).
We performed quality control before imputation to avoid poor quality markers to be included with the following stringent criteria: (1) the minor allelic frequency (MAF) ≥ 1%, (2) missing rate ≤ 10%, (3) genotyping success rate ≥ 95%, and (4) Hardy–Weinberg equilibrium (HWE) p ≥ 1 × 10⁻⁶. SNPs located in the aforementioned 55 candidate genes and their ±500 kb flanking regions were imputed by using IMPUTE2 software with the reference panel from the 1000 Genomes Project data (Phase 3). After quality control, imputed SNPs within 2-kb up- and downstream of genes in the FOXO pathway were extracted for further analysis. SNPs for the final meta-analysis were selected with the following quality control criteria: (1) a genotyping call rate ≥ 95%; (2) imputed SNPs with an information score ≥ 0.80; (3) MAF ≥ 5%; and (4) HWE p ≥ 10⁻⁶.

2.3 | Statistical analysis

Principal components (PCs) were calculated for each of the GWASs, and their combined data set was evaluated by using the Genome-wide Complex Trait Analysis. The associations between the top 20 PCs and BC risk were evaluated by using univariate logistic regression analysis. Significant PCs together with age as covariates in the final model were adjusted for in further SNP association analysis. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP by unconditional logistic regression analysis with adjustment for covariates (age and significant PCs). The four previously published SNPs from the same DRIVE study were also adjusted in a logistic regression model to identify additional significant SNPs. A meta-analysis was further performed with the inverse variance method by combining the results of a log-additive model of the 14 studies. If the Cochran’s Q test p ≤ 0.1 or I² > 50%, a random-effects model was used; otherwise a fixed-effects model was employed.

The results were first corrected by false discovery rate for multiple testing correction. Because many SNPs under investigation were in high linkage disequilibrium (LD) as a result of imputation, the Bayesian false discovery probability (BFDP) approach was also used for multiple test correction in substitution for the false discovery rate, with a cut-off value of 0.8 as recommended.

We used a prior probability of 0.01 to detect an upper bound of 3.0 for an association with variant genotypes or minor alleles of the SNPs. The number of risk genotypes (NRGs) of the independent SNPs was counted as a genetic score and subsequently used to evaluate combined effects of the SNPs. Additionally, Manhattan and LD plots were constructed by Haplovview v4.2 and regional association plots for independent SNPs were produced by LocusZoom. Other statistical analyses were performed with SAS software version 9.4 (SAS Institute), R (version 3.5.0), and PLINK (version 1.90), if not specified otherwise.

2.4 | Functional analysis

Finally, we predicted potential functions of the identified independent SNPs with tools in online functional prediction website: RegulomeDB (http://www.regulomedb.org/) and HaploReg (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php). In addition, we performed an expression quantitative trait locus (eQTL) analysis to assess the associations between the SNPs and messenger RNA (mRNA) expression levels of their corresponding genes by using the genotyping and expression data from the lymphoblastic cell lines of 373 European descendants available in the 1000 Genomes Project and the Genotype-Tissue Expression (GTEx) project v8.p2 database (https://gtexportal.org/home/), which include genomic data from both whole blood and breast tissues. The samples used for the eQTL analysis are publically available but not from the DRIVE study.
RESULTS

3.1 Single locus analysis

The flowchart for the analysis is shown in Figure 1. The results of the top 20 PCs of the data sets are shown in Table S3. Because of the differences in genotyping platforms used by the 14 studies, there were a range between 6163 and 6429 SNPs in each individual study for further analysis. In total, the final meta-analysis of the 14 studies included 5214 SNPs that passed the quality control, including 365 genotyped SNPs and 4849 imputed SNPs. The distribution of information scores for those selected SNPs in each study is shown in Figure S1. The meta-analysis showed that 338 SNPs were significantly associated with BC risk in an additive genetic model ($p < 0.05$), and after multiple testing corrections by BFDP, five SNPs were still statistically noteworthy with BFDP < 0.8 (Figure 2). To further identify SNPs as independent predictors of BC risk, stepwise logistic regression analyses were performed to evaluate the independent effects of the five significant SNPs on BC risk with adjustment for age, significant PCs and another four previously published risk-associated SNPs in the same DRIVE study.20 As a result, three independent SNPs (i.e., $FBXO32$ rs10093411 A>G, $FOXO6$ rs61229336 C>T, and $FBXO32$ rs62521280 C>T) remained statistically significant in association with BC risk ($p = 0.0008$, 0.0011, and 0.0017, respectively), which were then used for further analyses (Table 1).

The types of the three SNPs and their associations with BC risk are presented in Table S4, of which SNP rs10093411 was genotyped, and the other two were imputed. No heterogeneity existed among the 14 GWASs for the effects of these independent SNPs. The forest plots of the three SNPs by the meta-analysis are summarized in Figure S2.
TABLE 2 Associations between three independent SNPs in the FOXO pathway genes and BC in the DRIVE study

<table>
<thead>
<tr>
<th>Genotype</th>
<th>NControl/NCase</th>
<th>Univariate analysis</th>
<th>Multivariate analysis^a</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>p</td>
<td>OR (95% CI)</td>
<td>p</td>
</tr>
<tr>
<td>FBXO32 rs10093411 A>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>13,782/15,954</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>8967/10,850</td>
<td>1.05 (1.01–1.08)</td>
<td>0.016</td>
<td>1.05 (1.01–1.09)</td>
<td>0.010</td>
</tr>
<tr>
<td>GG</td>
<td>1500/1949</td>
<td>1.12 (1.05–1.21)</td>
<td>0.002</td>
<td>1.13 (1.05–1.21)</td>
<td>0.001</td>
</tr>
<tr>
<td>Trend test</td>
<td></td>
<td></td>
<td></td>
<td>0.0003</td>
<td>0.0002</td>
</tr>
<tr>
<td>AG+GG</td>
<td>10,467/12,799</td>
<td>1.06 (1.02–1.09)</td>
<td>0.002</td>
<td>1.06 (1.02–1.10)</td>
<td>0.001</td>
</tr>
<tr>
<td>FOXO6 rs61229336 C>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>10,434/12,758</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>10,956/12,778</td>
<td>0.95 (0.92–0.99)</td>
<td>0.011</td>
<td>0.96 (0.92–0.99)</td>
<td>0.015</td>
</tr>
<tr>
<td>TT</td>
<td>2859/3217</td>
<td>0.92 (0.87–0.97)</td>
<td>0.004</td>
<td>0.92 (0.87–0.97)</td>
<td>0.004</td>
</tr>
<tr>
<td>Trend test</td>
<td></td>
<td></td>
<td></td>
<td>0.0009</td>
<td>0.001</td>
</tr>
<tr>
<td>CT+TT</td>
<td>13,815/15,995</td>
<td>0.95 (0.92–0.98)</td>
<td>0.002</td>
<td>0.95 (0.92–0.98)</td>
<td>0.003</td>
</tr>
<tr>
<td>FBXO32 rs62521280 C>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>19,400/22,590</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>4535/5801</td>
<td>1.10 (1.05–1.15)</td>
<td><0.0001</td>
<td>1.10 (1.05–1.14)</td>
<td><0.0001</td>
</tr>
<tr>
<td>TT</td>
<td>314/362</td>
<td>0.99 (0.85–1.15)</td>
<td>0.898</td>
<td>0.99 (0.85–1.16)</td>
<td>0.909</td>
</tr>
<tr>
<td>Trend test</td>
<td></td>
<td></td>
<td></td>
<td>0.0003</td>
<td>0.0005</td>
</tr>
<tr>
<td>CT+TT</td>
<td>4849/6163</td>
<td>1.09 (1.05–1.14)</td>
<td><0.0001</td>
<td>1.09 (1.04–1.14)</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of combined risk genotypes^b</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6519/7378</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>10,789/12,517</td>
<td>1.03 (0.98–1.07)</td>
</tr>
<tr>
<td>2</td>
<td>5862/7371</td>
<td>1.11 (1.06–1.17)</td>
</tr>
<tr>
<td>3</td>
<td>1079/1487</td>
<td>1.22 (1.12–1.33)</td>
</tr>
<tr>
<td>Trend test</td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>0–1</td>
<td>17,308/19,895</td>
<td>1.00</td>
</tr>
<tr>
<td>2–3</td>
<td>6941/8858</td>
<td>1.11 (1.07–1.15)</td>
</tr>
</tbody>
</table>

Abbreviations: BC, breast cancer; CI, confidence interval; DRIVE, Discovery, Biology, and Risk of Inherited Variants in Breast Cancer; FBXO32, F-box protein 32; FOXO, Forkhead box O; FOXO6, Forkhead box O6; OR, odds ratio; SNP, single-nucleotide polymorphism.

^aAdjusted for age, PC1, PC3, PC4, PC5, PC6, PC8, PC10, PC11, PC14, and PC16.

^bRisk genotypes were rs10093411 AG+GG, rs61229336 CC, and rs62521280 CT+TT.

associated with a significantly increased risk of BC (FBXO32 rs10093411 A>G: OR = 1.06, 95% CI = 1.03–1.09, and p = 1.55 × 10^-4; FBXO32 rs62521280 C>T: OR = 1.07, 95% CI = 1.03–1.11, and p = 8.35 × 10^-5), while the other SNP was associated with a significantly decreased BC risk (FOXO6 rs61229336 C>T: OR = 0.96, 95% CI = 0.94–0.99, and p = 5.53 × 10^-3). Regional association plots of these three independent SNPs in the 200 kb up- and downstream regions are presented in Figure S3. As shown in Table 2, the effects of the FBXO32 rs10093411 G, FOXO6 rs61229336 T, and FBXO32 rs62521280 T alleles on BC risk were statistically significant (the trend test in multivariate analysis: p = 0.0002, 0.001, and 0.0005, respectively).

3.2 Joint effect analysis

We subsequently combined risk genotypes of FBXO32 rs10093411 AG+GG, FOXO6 rs61229336 CC, and FBXO32 rs62521280 CT+TT into a genetic risk score as the NRG to assess the joint effect of the genotypes of these three independent SNPs on BC risk. All the participants were divided into four groups of zero, one, two, and three risk genotypes. The trend test indicated that the increased NRG was significantly associated with an increased BC risk (p < 0.0001; Table 2). According to the effect values and the frequency of each group, we further dichotomized all the participants into two groups: low risk
(0–1 NRG) and high risk (2–3 NRG), and we found that the risk associated with NRG was more evident in the high-risk group (in multivariate analysis: OR = 1.11, 95% CI = 1.07–1.15, p < 0.0001; Table 2). Further stratified analyses by subgroups of age, estrogen receptor (ER) status, and invasiveness showed that risk associated with NRG was more evident in the subgroup of age ≤ 60 (in multivariate analysis: OR = 1.13, 95% CI = 1.07–1.19, p < 0.0001), particularly among individuals with ER+. The cases with an invasive tumor. However, no heterogeneity or interaction was observed between these strata (all p > 0.05) (Table 3).

3.3 Genotype–phenotype correlation analysis

Functional prediction by RegulomeDB showed that FBXO32 rs10093411 A>G, FOXO6 rs61229336 C>T, and FBXO32 rs62521280 C>T had a RegulomeDB score of 3a, 7, and 5, respectively and that these SNPs may be located at transcription factor binding sites or DNase I regulating sites. We also searched for SNPs in high LD (r² > 0.8) with these three independent SNPs, and their functional prediction was made as well by using HaploReg. The results suggest that FBXO32 rs10093411 A>G is located in an intron and may change the motifs of MZF1; FOXO6 rs61229336 C>T is also located in an intron with the selected eQTL for three hits and may change the motifs of CACD, PU.1, and Zbtb3, which may be markers of promoter histone in THYM and enhancer histone in nine tissues; whereas FBXO32 rs62521280 C>T is located in the potential enhancer region with histone methylation in five tissues (Table S4). We further assessed the potential functions of these three independent SNPs by using data from the ENCODE Project, which suggests that FOXO6 rs61229336 C>T is located in DNase I hypersensitive sites and has considerable levels of H3K4Me1 acetylation (Figure S4).

We further explored correlations between genotypes of the three independent SNPs and their corresponding mRNA expression levels in the publically available RNA-seq data of lymphoblastoid cell lines generated from 373 European descendants in the 1000 Genomes Project. Unfortunately, no significant results were found (Figure S5). We further performed the correlation analysis by using data from the GTEX Project, and the results showed that rs10093411 A>G was not significantly associated with FBXO32 mRNA expression levels in breast tissue (p = 0.100; Figure 3A) and the whole blood (p = 0.260; Figure 3B); however, the rs62521280 C>T was significantly associated with decreased levels of mRNA expression of FBXO32 in breast tissues (p = 0.030, Figure 3C) but not for the whole blood (p = 0.540; Figure 3D). Although rs61229336 C>T was not significantly associated with levels of mRNA expression of FOXO6 in breast tissue (p = 0.180; Figure 3E), it was significantly associated with decreased levels of mRNA expression of FOXO6 in the whole blood (p = 8.70 × 10⁻⁴; Figure 3F).
4 | DISCUSSION

Some published studies have used the data from different GWAS studies to identify the associations between different pathway genes and BC risk, but few have investigated the association between FOXO pathway genes and BC risk. One study found that AKT1 rs3803304 may be a predictive biomarker for BC risk in the high-altitude Ecuadorian mestizo population. In another Egyptian population, SIRT1 rs3758391 and rs12778366 polymorphisms were found to be associated with both BC risk and prognosis. In the present study, we have investigated whether SNPs of FOXO pathway-related genes are associated with BC risk by using available genotyping data from the previously published 14 GWASs in the DRIVE study, and the study populations were different from the above-mentioned two studies. We identified three independent SNPs in two genes (i.e., FBXO32 rs10093411 and rs62521280 at 8q24.13, and FOXO6 rs61229336 at 1p34.2) to be associated with BC risk. There was a significant effect of the combined genotypes of these three SNPs on BC risk. In stratified analyses, all the results with \(p_{\text{inter}} > 0.05 \) suggested that there was no interaction between age and NRG in all subgroups. Further eQTL analyses showed that the FBXO32 rs62521280 T allele was associated with decreased mRNA expression levels in breast tissues, while the FOXO6 rs61229336 T allele was found to be associated with decreased mRNA expression levels in the whole blood cells. These eQTL results provide some support for the biological plausibility of the observed associations.

FBXO32, located on chromosome 8q24.13, encodes an F-box only protein 32 (FBXO32), an E3 ubiquitin ligase that is essential for hallmark phenotypic changes and gene expression underlying epithelial–mesenchymal transition as well as involved in the process of tumorigenesis. Several studies have indicated that FBXO32...
may be a functional tumor suppressor in some cancer types via promoter methylation.35–38 Even with the known importance of \textit{FBXO32} in cancers, few reported studies have investigated the roles of \textit{FBXO32} in BC risk. One study found that an increased expression of \textit{FBXO32} facilitated apoptosis of multiple BC cell lines,39 and another study showed that \textit{FBXO32} deficiency in BC cells led to the accumulation of Krüppel-like factor 4 and promoted tumorigenesis.40 A more recent GWAS study identified a locus in 1p34.2 as shares the same location as in BC. Although one GWAS study identified a locus on invasion of colorectal cancer cells,43 another study showed that was overexpressed in both colorectal cancer cell lines and tumor tissues,45 indicating that \textit{HIVEP3} may act as an oncogene in BC. One study showed that \textit{HIVEP3} was overexpressed in both colorectal cancer cell lines and tumor tissues and that \textit{FOXO6} knockdown inhibited the migration and invasion of colorectal cancer cells;43 another study showed that overexpression of \textit{FOXO6} promoted gastric cancer cell tumorigenicity through regulation of C-myc expression42; likewise, \textit{FOXO6} was also shown to be highly overexpressed in both breast cell lines and tumor tissues,45 indicating that \textit{FOXO6} may act as an oncogene in BC. Although one GWAS study identified a locus on \textit{HIVEP3} that shares the same location 1p34.2 as \textit{FOXO6},41 \textit{FOXO6} rs61229336 is not in LD with the previously published \textit{HIVEP3} rs79724016 (Figure S6b) without functional analysis. In the present study, we found that rs61229336 T allele might downregulate expression of the likely oncogenic \textit{FOXO6}, leading to a reduced BC risk. Nevertheless, we did not have additional experimental data that could explain how \textit{FOXO6} rs61229336 C>T influenced BC risk.

\textit{FOXO6}, located on chromosome 1p34.2, encodes a forkhead box protein O6 (FOXO6),42 but little is known about the roles of FOXO6 in tumorigenesis, especially in BC. One study showed that \textit{FOXO6} was overexpressed in both colorectal cancer cell lines and tumor tissues and that \textit{FOXO6} knockdown inhibited the migration and invasion of colorectal cancer cells;43 another study showed that overexpression of \textit{FOXO6} promoted gastric cancer cell tumorigenicity through regulation of C-myc expression42; likewise, \textit{FOXO6} was also shown to be highly overexpressed in both breast cell lines and tumor tissues,45 indicating that \textit{FOXO6} may act as an oncogene in BC. Although one GWAS study identified a locus on \textit{HIVEP3} that shares the same location 1p34.2 as \textit{FOXO6},41 \textit{FOXO6} rs61229336 is not in LD with the previously published \textit{HIVEP3} rs79724016 (Figure S6b) without functional analysis. In the present study, we found that rs61229336 T allele might downregulate expression of the likely oncogenic \textit{FOXO6}, leading to a reduced BC risk. Nevertheless, we did not have additional experimental data that could explain how \textit{FOXO6} rs61229336 C>T influenced BC risk.

It should be pointed out that there are several limitations in the present study. First of all, the small sample sizes in some of DRIVE GWAS studies, such as WAABCS with African Americans, were not sufficient for stratification analysis for ethnic differences in genetic background and therefore excluded from the analysis. Thus, the genotype data available for the analysis consisted of non-Hispanic Whites only; therefore, the results may not be generalizable to the general population. Second, several known risk factors, such as physical activities, unhealthy lifestyle, and reproductive factors, prevented us from performing complete adjustment in the analyses. Finally, the publically available data for the eQTL analysis was very limited, and gene expression analysis of biological samples from the participants in the DRIVE study was not performed, because relevant data from the samples of target breast tissues were not available.

In summary, we analyzed the associations between genetic variants in 55 FOXO pathway-related genes and BC risk by using genotyping data from 14 previously published GWAs of 53,107 participants of European descendants in the DRIVE study. We identified three independent BC susceptibility loci in FOXO pathway genes (i.e., \textit{FBXO32} rs10093411 and rs62521280 at 8q24.13, and \textit{FOXO6} rs61229336 at 1p34.2), which may help with the identification of individuals at high risk of developing BC, once these SNPs are further validated by other studies. Our findings offer some new evidence for genetic variants in the FOXO pathway as possible biomarkers that may provide additional insights into molecular biological mechanisms underlying the observed associations with BC risk.

ACKNOWLEDGEMENTS

DRIVE (dbGaP Study Accession: phs001265.v1.p1): The genotyping and phenotype data obtained from the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE), BC case–control samples was supported by U19 CA148065 and X01 HG007491 and by Cancer Research UK (C1287/A16563). Genotyping was performed by the Centre for Inherited Disease Research (CIDR), University of Cambridge, Centre for Cancer Genetic Epidemiology, and the National Cancer Institute. Germine DNA for BC cases and controls were provided by the following studies: the Two Sister Study (2SISTER), Breast Oncology Galicia Network (BREOGAN), Copenhagen General Population Study (CGPS), Cancer Prevention Study 2 (CPS-II), the European Prospective Investigation into Cancer and Nutrition (EPIC), Melbourne Collaborative Cohort Study (MCCS), Multiethnic Cohort (MEC), Nashville Breast Health Study (NBHS), Nurses’ Health Study (NHS), Nurses’ Health Study 2 (NHS-2), Polish Breast Cancer Study (PBCS), Prostate Lung Colorectal and Ovarian Cancer Screening Trial (PLCO), Studies of Epidemiology and Risk Factors in Cancer Heredity (SEARCH), the Sister Study (SISTER), Swedish Mammographic Cohort (SMC), Women of African Ancestry Breast Cancer Study (WAABCS), Women’s Health Initiative (WHI). GTEx: The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHLBI, NIDA, NIMH, and NINDS. The data described in this manuscript were obtained from GTEx Analysis v8p2 (dbGaP Accession phs000424.v8p2). This study was supported by grants from Duke Cancer Institute’s P30 Cancer Center Support Grant (Grant number: NIH CA014236).

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Haifiao Wang, Hongliang Liu, Lingling Zhao and Qingyi Wei mainly performed the data analysis process and wrote the manuscript. Ying Yue and Qingyi Wei supervised the work. Sheng Luo, Tomi Akinyemiju and Shelley Hwang co-supervised the work and edited the manuscript. All authors edited the final version of the manuscript.

ORCID

Qingyi Wei http://orcid.org/0000-0002-3845-9445

REFERENCES

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.