Pan-PI3Ki targets multiple B-ALL microenvironment interactions that fuel systemic and CNS relapse

Sarah M. Ridge, Andrew E. Whiteley, Hisayuki Yao, Trevor T. Price, Maegan L. Brockman, Andrew S. Murray, Brennan G. Simon, Prioty Islam & Dorothy A. Sipkins

To cite this article: Sarah M. Ridge, Andrew E. Whiteley, Hisayuki Yao, Trevor T. Price, Maegan L. Brockman, Andrew S. Murray, Brennan G. Simon, Prioty Islam & Dorothy A. Sipkins (2021): Pan-PI3Ki targets multiple B-ALL microenvironment interactions that fuel systemic and CNS relapse, Leukemia & Lymphoma, DOI: 10.1080/10428194.2021.1929963

To link to this article: https://doi.org/10.1080/10428194.2021.1929963

Published online: 06 Aug 2021.
Pan-PI3Ki targets multiple B-ALL microenvironment interactions that fuel systemic and CNS relapse

Sarah M. Ridgea, Andrew E. Whiteleya, Hisayuki Yaoa,b, Trevor T. Pricea, Maegan L. Brockmana, Andrew S. Murraya, Brennan G. Simona, Prioty Islam a and Dorothy A. Sipkinsa

aDepartment of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA; bDepartment of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

ABSTRACT
The majority of adult patients with acute lymphoblastic leukemia (ALL) suffer relapse, and in patients with central nervous system (CNS) metastasis, prognosis is particularly poor. We recently demonstrated a novel route of ALL CNS metastasis dependent on PI3Kd regulation of the laminin receptor integrin α6. B-ALL cells did not, however, rely on PI3Kd signaling for growth. Here we show that broad targeting of PI3K isoforms can induce growth arrest in B-ALL, reducing systemic disease burden in mice treated with a single agent pan-PI3Ki, copanlisib. Moreover, we show that cellular stress activates PI3K/Akt-dependent survival pathways in B-ALL, exposing their vulnerability to PI3Kd and pan-PI3Ki. The addition of a brief course of copanlisib to chemotherapy delivered the combined benefits of increased survival, decreased systemic disease, and reduced CNS metastasis. These data suggest the promising, multifaceted potential of pan-PI3Ki for B-ALL CNS prophylaxis, systemic disease control, and chemosensitization.

ARTICLE HISTORY
Received 3 May 2021
Accepted 8 May 2021

KEYWORDS
CNS relapse; PI3K inhibition; acute lymphoblastic leukemia; chemosensitization; microenvironment

Introduction
Adult B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive malignancy in which the majority of patients relapse despite high rates of initial remission [1]. ALL is also particularly neurotropic [2]. Despite intensive cytotoxic chemotherapy or craniospinal irradiation administered as central nervous system (CNS) prophylaxis with induction regimens, 5–10% of patients relapse in the CNS [3]. Once relapsed, prognosis is grim and patients die within months [3]. A limited understanding of the mechanisms of CNS relapse has prevented effective, targeted drug development and remains a major area of unmet clinical need [3].

Our lab recently discovered a novel mechanism of B-ALL invasion into the CNS that is regulated by phosphatidylinositol 3-kinase (PI3K), a druggable kinase in the B-cell receptor signaling pathway [4]. Using multiple mouse models, we demonstrated the proof of principle that PI3K inhibition (PI3Ki) decreases B-ALL metastatic spread to the CNS [4]. We discovered that B-ALL cells migrate into the CNS along the outer surface of vessels passing directly between vertebral or calvarial BM, through fenestrations in the cortical bone, and into the adjacent leptomeninges (LM) [4]. This process is dependent on interactions between the vascular basement membrane laminin and α6 integrin, a laminin receptor whose expression by B-ALL blasts we found was downregulated by PI3Kd [4]. B-ALL expression of α6 integrin has also been associated with the persistence of residual disease after treatment, suggesting a potential role in chemoresistance [5–7].

In our prior study of single agent PI3Kd in B-ALL mice, we observed minimal effects of single agent PI3Kd isoform-selective inhibition on systemic disease progression. This finding could reflect a lack of dependency of B-ALL cells on PI3K signaling for in vivo growth. Alternatively, additional PI3K isoforms may play distinct or compensatory roles in cellular processes that promote ALL disease progression in the periphery [8,9]. To our knowledge, detailed analyses of the effects of PI3K inhibition (PI3Ki) on B-ALL in vivo have not, however, been undertaken.

In the current study, we examine the differential effects of α isoform-specific vs. pan-PI3Ki in B-ALL
Our data suggest important potential therapeutic benefits of pan-class I PI3Kis with the FDA approved agent, copanlisib, including decreasing CNS invasion, enhancing systemic responses to chemotherapy and arresting proliferating blasts in quiescent G0. These findings have substantial therapeutic implications for the use of PI3Kis as a targeted therapeutic in B-ALL.

Methods

Flow cytometry
For integrin α6 staining, cells were treated with vehicle or copanlisib for 72 h in RPMI + 0.3% FBS. Flow cytometry analysis was performed as previously described [4].

Adhesion assay
Recombinant human laminin 511 (Biolamina) was plated overnight on 96-well tissue culture plates (10 μg/mL). Cells (25 × 10^3) were plated in 100 μL of media and allowed to adhere for 20–30 min before a 45 min vehicle or copanlisib treatment.

Three-dimensional invasion assay
Prior to the invasion assay, cells were treated with vehicle or copanlisib for 72 h in RPMI + 0.3% FBS. Invasion assays were performed as previously described [4].

Mouse engraftment
Pathogen-free 6- to 8-week old male and female SCID mice were intravenously engrafted with 5 × 10^6 cells. All experimental procedures were approved by the Animal Care and Use Committee of Duke University and performed in accordance with the ethical guidelines.

Drug administration
Copanlisib was formulated in PEG400/H_2O (20/80, v/v) acidified water solution (2% trifluoroacetic acid). For single agent studies copanlisib (14 mg/kg) was intravenously administered twice daily, twice weekly from day 1 post-engraftment. For chemotherapeutic/PI3Ki combination studies Ara-C (Hospira Inc.) was administered by intraperitoneal injection at 500 mg/m^2 every day for 5 days from day 20 post-engraftment. Copanlisib (14 mg/kg) or vehicle was administered twice a day on days 21 and 25. GS-649443 (2 mg/kg) or vehicle was administered twice daily for 7 days from day 20 by oral gavage. In Nalm-6 β-catenin reporter GFP engrafted mice, Ara-C was administered as above on day 20 only and GS-649443 was administered from day 20 twice daily for 3 days by oral gavage. Paired-animal analysis and animal monitoring was performed as previously described [4].

Results

PI3Kδ inhibition sensitizes ALL cells to chemotherapy in vitro
We previously showed that the PI3Kδ inhibitor GS-649443, a tool compound of idelalisib optimized for bioavailability in mice, significantly improves survival in B-ALL xenograft and PDX leukemic mice by blocking integrin α6-laminin mediated CNS metastasis. Despite this striking effect on CNS migration, PI3Kδ had no effect on BM disease burden or ALL apoptosis (Supplemental Figure 1) in xenograft mice, suggesting that ALL cells may not depend on PI3Kδ for survival under normal conditions in a supportive microenvironment [4]. Indeed, we observed that Akt signaling activity downstream of PI3K was low in ALL cell lines cultured in complete media, while pAkt increased in response to serum starvation (Supplemental Figure 2). Based on these findings, we hypothesized that cytotoxic stress induced by cytarabine (Ara-C) chemotherapy would similarly induce PI3K-dependent survival responses in ALL cells, rendering them vulnerable to PI3Ki in vitro and in vivo.

Akt and GSK3β phosphorylation occur downstream of PI3K activation to regulate key anti-apoptotic signaling pathways [10]. We measured pAkt and pGSK3β in multiple ALL cell lines by Western blotting (WB) at 24, 48, and 72 h following a three hour 100 nM Ara-C pulse. We observed a time-dependent increase in both pAkt and pGSK3β (Figure 1(A) and Supplemental Figure 3). A profound increase in pAkt and pGSK3β was seen in Nalm-6 cells at 48 h, while a more modest increase in phosphorylation in RCH-ACV cells was detected at 24 h.

GSK3β plays an important role in initiating anti-apoptotic signaling through the Wnt/β-catenin.
pathway. We therefore treated Nalm-6 β-catenin reporter GFP cells with Ara-C for 3 h, and then analyzed for pAkt expression and GFP signal 24 h later using flow cytometry (Figure 1(B,C)). Consistent with the observed increase in Akt and GSK3β phosphorylation by WB, we found that the Nalm-6 cell line up-regulates β-catenin signaling in response to Ara-C treatment, and that Akt phosphorylation frequently co-occurs with β-catenin activity (Supplemental Figure 4(A)).
We next tested whether PI3Kβ could prevent anti-apoptotic responses to cell stress and sensitize ALL to Ara-C chemotherapy. We treated Nalm-6 β-catenin GFP cells with a three hour Ara-C pulsation, followed by vehicle or GS-649443 treatment. Cells were analyzed at 12, 24, 48, 72 and 96 h by flow cytometry. We found that PI3Kβ decreased both β-catenin signaling activity and pAkt expression in Nalm-6 cells 24- and 48 h post-Ara-C (Figure 1(D) and Supplemental Figure 4). This correlated with a decrease in ALL proliferation and an increase in caspase-3 positive cells at 72 h, suggesting that combination treatment enhances cell kill from chemotherapy through suppression of PI3K-dependent anti-apoptotic pathways. (Figure 1(E,F)).

**PI3Kβ inhibition sensitizes ALL cells to chemotherapy in vivo**

To determine whether these chemosensitizing effects occurred in vivo, SCID mice were engrafted with Nalm-6 cells and treated with a 5-day regimen of Ara-C combined with 7 days of GS-649443 or vehicle beginning 20 days post-engraftment (Figure 2(A)). We found that the combination of Ara-C and GS-649443 significantly increased survival compared to Ara-C and vehicle (Figure 2(B)). We also found that while all Ara-C/vehicle treated mice developed hindlimb paralysis (HLP), a typical symptom of CNS metastasis, only 1/6 of Ara-C/GS-649443 treated mice developed HLP at clinical endpoint (Figure 2(C)).
Figure 3. Effects of PI3Kδ vs. pan-PI3K inhibition on B-ALL cells in vitro. (A) Western blot analysis of PI3Kα, PI3β, PI3Kδ and PI3Kγ expression in B-ALL cell lines (Nalm-6, RCH-ACV, Sup-B15, and REH) and two primary patient B-ALL samples. Image is a representative of 3 biologically independent experiments. (B) Flow cytometry of integrin α6 surface expression in B-ALL cell lines after 72 h treatment with vehicle, copanlisib or GS-649443. Data are mean ± s.e.m.; ANOVA with Tukey test, n = 3 biologically independent experiments.

Multifaceted Role of PI3K Inhibition in ALL

A) Cell Lines

B) In vitro Analysis

C) Primary Cells

D) Invasion Index

E) Invasion Index

F) Primary Cell - B-ALL 1

G) Mean fluorescence intensity (PMClC2)

H) Nalm-6

I) RCH-ACV

J) SUP-B15

K) REH

L) G0 at 96 h (GFP)
Paired analysis of disease burden in mice sacrificed at matched time points revealed that compared to Ara-C alone, the combination of Ara-C and GS-649443 significantly decreased ALL blasts in the BM (Figure 2(D)). Given the minimal effect of single agent GS-649443 on B-ALL BM disease [4], these data suggest that PI3Kδ in combination with Ara-C is chemosensitizing. Moreover, although GS-649443 does not penetrate the blood-brain barrier in healthy or leukemic mice [4], the effect of Ara-C and GS-649443 combined treatment on systemic disease also served to dramatically reduce CNS metastasis. CSF blasts were significantly decreased at paired analysis, and the incidence of HLP in Ara-C/vehicle treated mice was 100% compared to 0% in the Ara-C/GS-649443 treated mice (Figure 2(E,F)).

The Wnt/β-catenin pathway is among the key anti-apoptotic signaling responses regulated by PI3K activity. To show that PI3Kδ blocks Wnt/β-catenin signaling in vivo as well as in vitro, Nalm-6 β-catenin reporter GFP-engrafted SCID mice were treated with a single dose of Ara-C or vehicle 20 days post-engraftment ± 3-days of GS-649443 (Figure 2(G)). Mice were euthanized on day 4 post-treatment and CD10+ ALL cells in the BM and CSF were analyzed by flow cytometry for β-catenin reporter GFP expression (Figure 2(H,I)). We found that β-catenin activity was increased in the BM and CSF of all Ara-C treated mice. Consistent with our in vitro findings, we demonstrated that PI3Kδ significantly downregulated ALL β-catenin responses in the BM. Predictably, PI3Kδ did not change β-catenin activity in CSF blasts, as GS-649443 does not penetrate this site [4].

### PI3Kδ effects on α6 expression and laminin-mediated migration in B-ALL cells is mediated predominantly through the PI3Kδ isoform

Although the PI3K class I isoforms α, β, γ and δ are structurally similar, their unique roles in regulating diverse cell processes are an area of active investigation [11]. We therefore sought to determine whether PI3Kδ is the primary isoform regulating ALL integrin α6 expression and function in CNS invasion, and whether targeting additional isoforms would better control ALL proliferation and survival in the BM. We first assayed numerous B-ALL cell lines as well as primary patient blasts and found that while the δ isoform showed the highest relative expression, α, β and γ isoforms were detectable in all samples (Figure 3(A)).

We treated the B-ALL cell lines with copanlisib or GS-649443 and analyzed α6 integrin cell surface expression levels by flow cytometry (Figure 3(B)). Both copanlisib and GS-649443 treatment decreased B-ALL α6 integrin expression compared to vehicle. In the REH cell line, copanlisib treatment elicited a statistically significant, though small absolute greater reduction in α6 integrin expression compared to GS-649443. In all other B-ALL cell lines, however, no significant difference between pan- vs. delta-PI3Kδ was observed, suggesting that α6 expression is principally regulated through the PI3Kδ isoform (Figure 3(B)).

We next compared the effect of pan- vs. PI3Kδ on functional responses to laminin in vitro. Pan-PI3Kδ with copanlisib significantly decreased B-ALL adhesion to laminin as well as invasion along laminin-containing matrices, though results were similar to those obtained with PI3Kδ. (Figure 3(C–E)). We previously showed that PI3Kδ of ALL cell migration is mediated through reduction in pMLC2, which regulates actinomysin contractility downstream of extracellular matrix engagement [4,12–14]. Consistent with this, we found that pan-PI3Kδ more potently decreased MLC2 phosphorylation in Nalm-6 and primary ALL cells bound to laminin compared to PI3Kδ alone (Figure 3(F,G)).
Figure 4. Pan-PI3Ki augments chemotherapy and steroid-induced B-ALL cell death in vitro. (A and B) Proliferation of Nalm-6 and RCH-ACV cells treated with vehicle or copanlisib after three hour exposure to Ara-C or PBS. Data are mean ± s.e.m.; ANOVA with Tukey test at 72 h, n = 3 biologically independent experiments; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Apoptosis in Nalm-6 cells as detected by Annexin V/PI or Annexin V/7-AAD. Cells were treated with vehicle or copanlisib alone or vehicle or copanlisib after three hour exposure to Ara-C. Data are mean ± s.e.m.; ANOVA with Tukey test, n = 3 biologically independent experiments; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (D) β-catenin reporter GFP positivity detected over time by flow cytometry in Nalm-6 cells treated with vehicle or copanlisib after three hour exposure to Ara-C. Data are mean ± s.e.m.; unpaired two-sided Student’s t-test, n = 3 biologically independent experiments; *p < 0.05, **p < 0.01. (E-G) Proliferation of Nalm-6, RCH-ACV, or Sup-B15 cells treated with vehicle, GS-649443, or copanlisib alone or in combination with
Figure 4. (Continued)
dexamethasone. Data are mean ± s.e.m.; ANOVA with Tukey test at 72 h, n = 3 biologically independent experiments; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (H) Apoptosis in Sup-B15 cells as detected by Annexin V

*Pan-PI3Ki, but not PI3Kδi, potently blocks ALL cell proliferation through induction of G0 cell cycle arrest*

PI3K signaling is known to regulate cell cycle machinery [15,16], yet our prior in vivo study of single agent GS-649443 showed no effect on BM burden in xenograft mice [4]. Furthermore, analysis of BM blasts from vehicle vs. GS-649443 treated mice revealed only modest effects on the proportion of cells in G1 vs. S phase (Supplemental Figure 5). Previous in vitro work has shown that idelalisib can slow B-ALL proliferation, though these studies were performed at micromolar concentrations of drug that are well above its IC50 of 0.7 nM and are unattainable in vivo [17,18]. While single agent PI3Kδi thus appears ineffective to control B-ALL proliferation, we sought to determine whether pan-PI3Ki could impact B-ALL growth at clinically achievable nM concentrations [19]. We found that 100 nM copanlisib substantially arrested B-ALL growth, yet PI3Kδi with 100 nM – 10 μM GS-649443 showed modest or no effects on B-ALL proliferation in vitro (Figure 3(H–K) and Supplemental Figure 6). These data suggest that PI3Kδi alone does not significantly alter ALL cell proliferation, due either to compensatory upregulation of other isoform activity, or because PI3K-mediated growth effects are predominantly mediated through α, β or γ downstream pathways.

We next measured cell cycle and apoptotic indices of cultured cells by flow cytometry. Hoechst and Ki67 staining revealed a significant increase in the proportion of cells in quiescent G0 phase (Figure 3(L)) and a decrease in S and G2/M phases for most B-ALL cell lines treated with copanlisib compared to vehicle (Supplemental Figure 7). Annexin V and PI7-AAD staining did not demonstrate an increase in apoptosis (Supplemental Figure 8), suggesting that the principal cause of decreased proliferation was G0 arrest.

*Pan-PI3Ki augments stress-induced B-ALL cell death in vitro*

In addition to the growth inhibitory and CNS prophylaxis potential for pan-PI3Ki we next sought to confirm that copanlisib could also serve as a potent chemosensitizing agent in vitro and in vivo. In proliferation assays, the combination of Ara-C and copanlisib more effectively inhibited growth of Nalm-6 and RCH-ACV cells compared to Ara-C alone (Figure 4(A,B)). To determine whether copanlisib was acting to block anti-apoptotic responses to chemotherapy, we measured cell death by Annexin V and PI/7-AAD staining. We found that copanlisib treatment following Ara-C pulsation enhanced apoptosis of Nalm-6 cells compared to Ara-C alone (Figure 4(C)). Nalm-6 β-catenin reporter activity also decreased when cells were treated with copanlisib following Ara-C pulsation compared to Ara-C alone, suggesting that pan-PI3Ki can attenuate chemotherapy-induced stress response (Figure 4(D)).

In addition to cytotoxic chemotherapies, glucocorticoids such as dexamethasone are an important component of ALL treatment regimens known to induce apoptotic cell death in lymphoblasts [20]. Though not well understood, some evidence suggests that glucocorticoid resistance is mediated by Akt activation and that PI3K/mTOR inhibition may sensitize ALL cells to steroids [21–24]. To determine if pan-PI3K or PI3Kδ inhibitors could enhance B-ALL steroid-induced death at clinically relevant concentrations, we treated multiple B-ALL lines with dexamethasone ± 100 nM copanlisib or GS-649443. We found that PI3Kδi had minimal effects on steroid-induced apoptosis, while pan-PI3Ki effectively sensitized cells to dexamethasone (Figure 4(E–H)).

Although ALL cell lines are selected for microenvironment-independent growth, most primary ALL cells suffer significant cytotoxic stress ex vivo. We therefore predicted that, even when cultured in optimal conditions, primary B-ALL cells would demonstrate sensitivity to PI3Ki. We observed that primary B-ALL cultured with the pan-PI3Ki copanlisib rapidly underwent apoptosis (Figure 4(I,J) and Supplemental Figure 9). Interestingly, selective PI3Kδi did not induce apoptosis, suggesting that, primary ALL cells in culture, similar to B-ALL cell lines exposed to steroids, depend on non-δ isoform anti-apoptotic PI3K activity.
Pan-PI3Ki decreases CNS invasion, inhibits BM disease progression, and improves response to chemotherapy in leukemic mice

We next tested the effects of copanlisib on disease progression in leukemic mice. In contrast to a half-life of 39.1 h in humans, copanlisib is rapidly metabolized in mice (t1/2 ~ 0.7 h) [25]. We treated RCH-ACV or Nalm-6 engrafted SCID mice twice daily, twice weekly with 14 mg/kg copanlisib, a previously described [26] intermittent dosing regimen (Figure 5(A)). In RCH-ACV engrafted mice, copanlisib treatment significantly improved survival (Figure 5(B)). The difference in survival suggests a benefit compared to our previously published survival data using GS-649443, though this was not statistically significant (data not shown) [4]. We also observed a decreased incidence of HLP at clinical endpoint in the copanlisib treated mice (50% of mice) compared to the vehicle (100% of mice), indicating that copanlisib attenuates CNS metastasis (Figure 5(C)).

To quantify the effect of pan-PI3Ki on systemic and CNS disease burden, we measured lymphoblast involvement in the BM and CSF of copanlisib or vehicle-treated mice at matched timepoints. In contrast to our previously published results showing a minimal effect of single agent PI3Kδ on systemic disease [4], we found that copanlisib significantly decreased disease in the BM of RCH-ACV engrafted mice at matched timepoints (Figure 5(D)). CNS involvement was even more markedly decreased (Figure 5(E)). This was reflected by a 0% incidence of paralysis at paired analysis in the copanlisib treated mice compared to 100% in the vehicle arm (Figure 5(F)). In the Nalm-6 model, there was a trend toward decreased BM disease burden in the copanlisib treatment arm, (Figure 5(G)) in contrast again to prior data showing no effect of PI3Kδ on BM blasts (Supplemental Figure 10) [4]. There was, however, a significant decrease in CNS involvement and correspondingly, no copanlisib treated mice developed HLP (Figure 5(H–I)).

To model the effect of combining pan-PI3Ki with induction chemotherapy, we tested whether a brief pulse of copanlisib in combination with Ara-C could decrease BM MRD compared to chemotherapy alone. We treated Nalm-6 engrafted SCID mice with Ara-C for 5 days beginning 20 days post-engraftment (Figure 6(A)). The mice were treated with 2 doses of copanlisib overlapping with chemotherapy. Paired analysis showed that treatment with Ara-C in combination with pan-PI3Ki significantly decreased BM disease burden and reduced CNS metastasis (Figure 6(B,C)). The incidence of HLP at paired analysis was 0% in the Ara-C/copanlisib treated mice compared to 100% in the Ara-C/vehicle treated mice (Figure 6(D)). Finally, endpoint analysis revealed that a brief pulse of copanlisib in combination with Ara-C significantly prolonged survival (Figure 6(E)).

Primary ALL cells typically proliferate slower in mice than ALL cell lines, suggesting they are less adapted to the host microenvironment. Cellular stress in this setting likely created dependencies on anti-apoptotic signaling pathways, including those downstream of PI3K. We therefore hypothesized that primary B-ALL in PDX mice could be sensitive to a short pulse of PI3Ki, even in the absence of cytotoxic chemotherapy. NSG mice at 30 days post-engraftment with primary B-ALL cells were thus given 2 days of copanlisib 3 days apart and sacrificed on day 60. Quantification of CD10+ blasts demonstrated significantly decreased tumor burden in the BM and spleen one month after this brief exposure to copanlisib (Figure 6(H,I)).

Discussion

Current management of ALL relies on intensive drug regimens that combine multiple lymphotoxic agents including steroids and cytotoxic chemotherapeutics [1,27,28]. Despite high response rates, the majority of adult patients will suffer fatal disease relapse arising from minimal residual disease (MRD) unresponsive to the initial regimen [28–30]. While some of these patients will be successfully treated with salvage regimens, those that experience disease relapse in the CNS are almost uniformly incurable [3,31]. For this reason, new, molecularly targeted approaches to eradicate MRD and prevent CNS metastasis are critical areas of unmet need.

PI3Ki has shown substantial efficacy in indolent B cell malignancies but has yet to occupy a role in ALL treatment [19,25,32]. PI3K signaling is, however, a highly attractive therapeutic target in B-ALL given its important role at the crossroads of microenvironment signals that have the potential to protect MRD and fuel tumor invasiveness. PI3K lies downstream of an array of integrin, cytokine, and chemokine receptors that are critical mediators of stromal and other host tissue signals. These signals are capable of inducing ALL motility, proliferation, and anti-apoptotic survival programs [9,11,15,33], and their disruption may enhance current therapies without introducing overlapping toxicities.
Figure 5. Copanlisib decreases CNS invasion, inhibits BM disease progression, and improves response to chemotherapy in leukemic mice. (A) Schematic of copanlisib treatment of leukemic mice. (B) Kaplan-Meier survival curve of RCH-ACV engrafted SCID mice treated with copanlisib vs. vehicle. Two-sided log rank Mantel-Cox test, vehicle: \( n = 6 \) mice, copanlisib: \( n = 4 \) mice; \( p = 0.0045 \). (C) Incidence of hind-limb paralysis at clinical endpoint in RCH-ACV engrafted mice. (D and E) Disease burden in the BM (percentage of CD19\(^+\) ALL cells) and in the CNS (number of CD19\(^+\) ALL cells) of vehicle- and copanlisib-treated RCH-ACV engrafted mice euthanized at matched time points. Paired two-sided Student’s t-test, \( n = 5 \) mice per treatment group; **\( p < 0.01 \), ***\( p < 0.001 \). (F) Incidence of hind-limb paralysis at clinical endpoint in RCH-ACV engrafted mice at paired analysis. (G and H) Disease burden in the BM (percentage of CD10\(^+\) ALL cells) and in the CNS (number of CD10\(^+\) ALL cells) of vehicle- and copanlisib-treated Nalm-6 engrafted mice euthanized at matched time points. Paired two-sided Student’s t-test, \( n = 4 \) mice per treatment group; *\( p < 0.05 \). (I) Incidence of hind-limb paralysis in Nalm-6 engrafted mice at paired analysis. (J) RCH-ACV ALL cells in subarachnoid space (dashed line) of the spinal cord (SC) at paired analysis. Representative histologic sections of the vertebrae are shown. H&E, hematoxylin and eosin. \( n = 5 \) mice per treatment group.
Figure 6. Copanlisib potentiates ALL to cytotoxic chemotherapy in vivo, resulting in increased survival as well as decreased BM and CNS disease. (A) Schematic of Ara-C/copanlisib treatment of leukemic mice. (B and C) Disease burden in the BM (percentage of CD10⁺ ALL cells) and in the CNS (number of CD10⁺ ALL cells) of Ara-C/vehicle and Ara-C/copanlisib-treated Nalm-6 engrafted mice euthanized at matched time points. Paired two-sided Student’s t-test, n = 6 mice per treatment group; *p < 0.05, **p < 0.01. (D) Nalm-6 ALL cells in subarachnoid space (dashed line) of the spinal cord (SC) at paired analysis following treatment with Ara-C/vehicle and Ara-C/copanlisib. Representative sections of the vertebrae are shown. H&E, hematoxylin and eosin. n = 6 mice per treatment group. (E) Incidence of hind-limb paralysis in Ara-C/vehicle- and Ara-C/copanlisib-treated Nalm-6 engrafted mice at paired analysis. (F) Kaplan-Meier survival curve of Nalm-6 (GFP) engrafted SCID mice treated with Ara-C/vehicle or Ara-C/copanlisib. Two-sided log rank Mantel-Cox test, n = 6 mice per group, ***p < 0.001. (G) Schematic of copanlisib treatment of PDX leukemic mice. (H–I) Disease burden in the BM and spleen (percentage of CD10⁺ ALL cells) of vehicle and copanlisib-treated primary B-ALL engrafted NSG mice at day 60. Paired two-sided Student’s t-test, n = 5 mice per treatment group; **p < 0.01. (J) Model of PI3Ki action in B-ALL: PI3K-dependent ALL cell proliferation in the BM is predominantly mediated by PI3Kα/β/γ isoforms, with pan-PI3K inhibition via copanlisib leading to a G0 cell cycle arrest. PI3Kα and PI3Kα/β/γ signaling activate Akt-dependent pro-survival pathways conferring resistance to chemotherapy or steroids respectfully. Lastly, PI3Kδ signaling leads to the upregulation of integrin α6 and the activation of MLC2-dependent motility, allowing for invasion along laminin + emissary vessels that passage from the calvarial and vertebral BM into the leptomeninges.
While prior *in vitro* studies have shown the potential benefit of PI3Kι in B-ALL[17,18,34–36], this study demonstrates for the first time *in vivo*, in B-ALL mouse models that PI3Kι can serve a multifunctional role counteracting migration, proliferation, and chemotherapy-induced survival responses. We show that both PI3Kι and pan-PI3Kι block Akt-independent motility pathways that lead to CNS invasion, as well as Akt-dependent anti-apoptotic signaling. While PI3Kι appears to play a minor role in cell cycle progression, we found that pan-PI3Kι in contrast slows B-ALL growth by inducing a G0 cell cycle arrest. Compared to our previously published findings in B-ALL mice treated with single agent PI3Kι GS-649444 [4], our current data suggest that pan-PI3Kι with copanlisib produces improved BM responses and a deeper CNS prophylactic benefit. This was observed despite the relatively poor pharmacokinetic profile of copanlisib in mice relative to GS-649443, a PI3Kι inhibitor optimized for murine use. We therefore surmise that the sustained levels of PI3Kι achieved in humans after copanlisib dosing [37] could lead to substantial therapeutic responses in patients. Our findings also suggest that biomarkers of CNS metastasis potential (integrin α6 expression), chemosensitization (Akt/GSK3β phosphorylation), and proliferative response (Ki67) could predict clinical responses and guide the use of PI3Kι in specific patients. We therefore propose that pan-PI3Kι is a promising tool that can be incorporated in current regimens to target B-ALL cells in multiple ways - as a CNS prophylaxis agent, as a maintenance therapeutic to slow the growth of systemic disease, and alongside standard chemotherapy to enhance tumor cell death (Figure 6(J)).

Lastly, an unexpected finding was that a single week of PI3Kι in combination with Ara-C substantially decreased CNS disease progression in mice. Future research on the effect of brief or intermittent versus continuous treatment with PI3Kι on ALL CNS invasion will be helpful in limiting adverse effects and maximizing patient outcomes. These encouraging data also warrant further investigation into the potential of PI3Kι to sensitize ALL cells to other standard of care agents. Ongoing studies to understand differential effects of PI3Kο versus pan-PI3Kι on host immune cell populations, including T regulatory cells, will also guide our use of these agents in the clinic and potential combination with immune modulating therapies. In summary, our data show that pan-PI3Kι may represent a feasible, multidimensional, and synergistic approach to the significant hurdles of B-ALL MRD eradication and CNS prophylaxis.

**Acknowledgements**

We thank Zhiguo Li and Kevin Brennan for consultation on statistical analysis. Figure 6(J) schematic created with BioRender.

**Disclosure statement**

We are reporting that we have received the drug, GS-649443, from Gilead Sciences, Inc.

**Funding**

This work was supported by the Error! Hyperlink reference not valid. and by NIH/NCI R01-CA234580. GS-649443 was provided by Stacey Tannheimer at Gilead Sciences, Inc.

**ORCID**

Andrew E. Whiteley  
http://orcid.org/0000-0002-0165-8395

**Data availability statement**

Please contact the corresponding author for original data and protocols.

**References**


