
Efficient and Generalizable Neural Architecture Search for
Visual Recognition

by

Hsin-Pai Cheng

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Yiran Chen, Advisor

Hai Li

Mary Cummings

Krishnendu Chakrabarty

Vikas Chandra

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the Graduate School of

Duke University

2021

ABSTRACT

Efficient and Generalizable Neural Architecture Search for
Visual Recognition

by

Hsin-Pai Cheng

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Yiran Chen, Advisor

Hai Li

Mary Cummings

Krishnendu Chakrabarty

Vikas Chandra

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the Graduate School of

Duke University

2021

Copyright © 2021 by Hsin-Pai Cheng
All rights reserved

Abstract

Neural Architecture Search (NAS) can achieve accuracy superior to human-designed

neural networks because of the easier automation processes and searching tech-

niques. While automated-design neural architectures can achieve state-of-the-art

performance with less human effort, two main obstacles hinder us from building the

next generation NAS algorithms: (1) searching in large search space is time-costly,

which slows down the model crafting process; (2) designed architectures cannot be

easily generalized to different application and hardware platforms. To accelerate

the searching process, a more accurate description of neural architectures is neces-

sary. However, previous works consider only the neural architecture representation

for each of the sampled architectures. In order to discover the elite architectures, a

correlation between architectures needs to be constructed. To improve generaliza-

tion ability, previous NAS works use existing block motifs and exhaustively search

on known platforms. However, solely relying on existing motifs may not provide

sufficient information for different vision tasks. Our study shows that integrating dif-

ferent scales of fusion into search space is beneficial to vision tasks. This dissertation

demonstrates that our proposed new search space achieves state-of-the-art results. In

addition, we propose network structural pruning to largely compress neural architec-

tures and achieve high accuracy density. Our study shows that we can improve the

searching speed by 500x with 0.4%-3.6% higher accuracy on the ImageNet dataset.

We also demonstrate that our searching method can be generalized to different appli-

cations (e.g., classification, segmentation, and human pose estimation) and different

hardware platforms (e.g., mobile and IoT devices).

iv

Acknowledgements

First and foremost, I want to thank my Ph.D. advisor, Professor Yiran Chen. Profes-

sor Chen is always supportive and gives constructive feedback. I first joined Professor

Chen’s group as a second-year master’s student. He granted me the precious oppor-

tunity to work with his students and let me try my ideas on IBM TrueNorth. He

allowed me to explore my passions, including neural network pruning, quantization,

privacy, security, efficiency, AutoML and architecture search. During these five years,

not only did he teach me how to conduct research, but also how to collaborate and

communicate with peers and industry colleagues. In addition, he supported me in

gaining industry experience at Qualcomm AI Research and Facebook Reality Labs.

I give my sincere thanks to my preliminary exam and final defense committee

members–Hai Li, Mary Cummings, Krishnendu Chakrabarty, and Vikas Chandra.

They reminded me of what I had neglected in my presentation and writing, and

provided me with practical solutions during my dissertation preparation.

I very much appreciate the abundant support from Professor Feng Yan at the

University of Nevada, Reno. Although we have never met in person, he guided

me through the challenges of paper-writing and internship/job-hunting. We built a

strong connection while working together and will continue to collaborate.

I want to especially thank our NAS team at Duke University–Tunhou Zhang,

Shiyu Li, Arjun Sridhar, and Bhavna Gopel. I am very much inspired by their

brilliant ideas and technical skills. Without their help and support, I would not have

been able to achieve my current publications.

I want to thank the talented researchers and managers at Qualcomm AI Research,

including Yash Bhalgat, Byung Hoon Ahn, Jinwon Lee, Parham Noorzad, Chris Lott,

and Jilei Hou. I appreciate that they have granted me the opportunity to work with

v

them and learn from them.

I want to thank my collaborator, mentor, and manager at Facebook–Bowen

Cheng, Meng Li, and Vikas Chandra, respectively. I had a wonderful experience

working with them and I learned a lot of research, presentation and coding skills

from them.

Finally, I would like to thank my parents, my brother, my aunt and my cousins.

I greatly appreciate the encouragement I have received while being alone far from

home pursuing my graduate degrees.

vi

Contents

Abstract iv

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Problem Definition . 1

1.2 Contribution and Dissertation Outline 2

1.2.1 Efficient Neural Architecture Search 2

1.2.2 Generalizable Neural Architecture Search 3

1.2.3 Dissertation Outline . 4

2 Efficient Neural Architecture Search 5

2.1 Preliminary . 5

2.2 Related Work . 7

2.3 Neural Architecture Search via Graph Embedding Method 8

2.3.1 Kernel-guided Encoder Training 9

2.3.2 Estimator Building . 12

2.3.3 Bootstrap Optimization . 15

2.4 Experimental Evaluation . 16

2.4.1 NASGEM Setup . 17

2.4.2 Efficient Search Progress of NASGEM 17

2.4.3 Learning Dynamics of NASGEM 20

vii

2.4.4 Classification on ImageNet . 20

2.4.5 Object Detection on COCO 22

2.4.6 Evaluation on NASBench-101 22

2.4.7 GEMNet cell found by NASGEM 24

2.5 Ablation Studies . 26

2.5.1 Ablation Study with Random Wiring 29

2.5.2 Efficiency Score Surface with Regard to Search Progress . . . 29

2.5.3 Best Practices Checklist for the Scientific Research on NAS . . 32

2.6 Summary . 33

3 Generalizable Search Space Design 34

3.1 Preliminary . 34

3.2 Related Work . 38

3.3 Search Space Design . 40

3.3.1 Search Space Exploration . 40

3.3.2 Multi-Scale Aggregation Search Space 41

3.4 Architecture Search . 43

3.4.1 Training One-Shot SuperScaleNet 44

3.4.2 Multi-Scale Architecture Topology Evolution 46

3.5 Experiments . 49

3.5.1 Semantic Segmentation . 49

3.5.2 Human Pose Estimation . 52

3.5.3 Object Detection . 54

3.5.4 Found architectures. 56

3.6 Ablation Study . 56

viii

3.6.1 Impact of Distillation . 57

3.6.2 Elite Architecture Pattern Analysis 59

3.6.3 Details of Search Space Exploration 61

3.6.4 Details of Found Architecture 61

3.6.5 Details of Training Teacher Model on ImageNet 62

3.6.6 Details of Training SuperScaleNet on Semantic Segmentation . 62

3.6.7 Details of Training SuperScaleNet on Top-Down Human Pose
Estimation . 63

3.6.8 NAS Reproducibility Checklist 64

3.7 Summary . 66

4 Generalizable Hardware Adaptation 68

4.1 Preliminary . 68

4.2 Related Work . 71

4.3 Methodology . 73

4.3.1 Graphical Representation of Architecture 74

4.3.2 Architecture Search using GRAM 74

4.3.3 Structure-Level Pruning for Compact Model 77

4.4 Experiments . 78

4.4.1 Experiment Setup . 78

4.4.2 Performance Analysis . 79

4.4.3 Latency Analysis . 85

4.4.4 Structural Adaptability to Different Tasks 86

4.5 Summary . 87

5 Conclusion and Future Works 89

ix

Bibliography 90

Biography 108

x

List of Figures

2.1 The correlation between graph similarity and performance difference. 9

2.2 Workflow of NASGEM . 10

2.3 Illustration of embedding space. 11

2.4 Efficiency score surface of efficiency score predictor based on DNN
performance. 16

2.5 Search progress of NASGEM. 18

2.6 Efficiency score predictor’s performance on NASBench-101 with and
without graph kernel embedding. 25

2.7 GEMNet cell found by NASGEM. 27

2.8 Kernel-guided encoder training under different number of nodes and
embedding dimension. 28

2.9 The progress of efficiency score surface of efficiency score predictor
without graph kernel guided embedding. 30

2.10 The progress of efficiency score surface of efficiency score predictor
with graph kernel guided embedding. 31

3.1 Search space comparison. 35

3.2 The trade-off between computation cost (GFLOPs) and model perfor-
mance. 36

3.3 Search space exploration. 41

3.4 Search space overview of ScaleNAS. 42

3.5 Workflow of ScaleNAS. 42

3.6 The probability density function of neural architecture sampling. . . . 45

xi

3.7 Architecture demonstration for ScaleNet-S1 and ScaleNet-P1. 56

3.8 Ablation study of grouped sampling techniques. 57

3.9 Ablation study of topology evolution. 58

3.10 The network pattern of elite sub-networks. We show the relationship
between number of blocks and fusions for the elite sub-networks. . . . 60

3.11 Multi-Scale search space exploration. 67

3.12 The full model of ScaleNet-S1. 67

3.13 The full model of ScaleNet-P1. 67

4.1 ImageNet-1K top-1 accuracy density vs Model MACs. 69

4.2 Overview diagram of the SwiftNet search process 72

4.3 A representative architecture discovered by GRAM. 79

4.4 ImageNet-1K top-1 accuracy density comparison between SwiftNet
and state-of-the-art NAS approaches. Accuracy density shows how
well a model use computational resource. SwiftNet achieves 2.15�
accuracy density compared with the MobileNets. 83

4.5 Model scale vs Structure pruning level. 84

4.6 Trade-off between latency and accuracy on ImageNet-1K Classification
Task. 85

xii

List of Tables

2.1 Performance comparison of GEMNet and other random priors on full
CIFAR-10 dataset. 19

2.2 mageNet results with different computation budget. 21

2.3 Results on MS COCO dataset. Parameters and MACs are measured
on the whole detector with input size 800� 1333. 23

2.4 Statistical test of prediction results. 25

2.5 The Kendall’s Tau of the predicted result with different embedding
methods. 28

2.6 The Pearson correlation coefficient of the predicted result with different
embedding methods. 29

3.1 Semantic segmentation results on Cityscapes val. 47

3.2 Top-down human pose estimation results. 50

3.3 Bottom-up human pose estimation results. 51

3.4 Object detection results on COCOminival in Faster R-CNN [RHGS15a]
and Mask R-CNN [HGDG17]. 55

3.5 Ablation study of distillation. 59

4.1 Performance and accuracy density of different versions of SwiftNet. . 80

4.2 Compact model comparison between SwiftNet and baselines on ImageNet-
1K. 81

4.3 Performance, MACs, and Model Size of different versions of SwiftNet
trained on ImageNet-1K. 82

4.4 Adaptability of meta-graph to different tasks. 86

xiii

Chapter 1

Introduction

Deep Neural Networks (DNNs) have become the mainstream machine learning approach for

visual recognition. The rapid development of DNN designs has led to remarkable break-

throughs, including, but not limited to, classification, object detection, human pose esti-

mation, and semantic segmentation. To achieve high accuracy, the general trend in DNN

design has been to make deeper, wider, and more complicated structures. Such design com-

plexity makes the manual design of DNN very challenging, especially when an expert-level

of background knowledge is needed.

Neural Architecture Search (NAS) has recently been proposed to automate the design

of DNNs. The main goal of NAS is to automatically learn a neural network structure that

can achieve the best performance. There are many benefits to shifting manually-designed

neural architectures to NAS. For example, unavoidable human biases and human labor can

be largely reduced. More importantly, automatically-designed neural architectures usually

outperform manually-designed architectures and sometimes achieve new state-of-the-art re-

sults. While existing NAS methods have built up a well-defined problem, two main obstacles

prevent us from achieving the next generation of neural architecture search–searching speed

and adaptability.

1.1 Problem Definition

Obstacle of Searching Speed The goal of searching is to find the candidate architec-

tures with a given search space. To formulate an effective neural architecture representation,

existing works use autoencoders to capture graph topology. However, these methods over-

look the correlation among the embedded architectures, which causes an inaccurate neural

architecture description. This inaccurate description results in a slow searching time and

1

non-optimal solutions.

Obstacle of Adaptability Existing NAS approaches have specific given search space

and cannot be easily generalized to different application and hardware platforms. Take

search space as an example–the design of search space decides the overall outcome of final

neural architectures. Previous search space is based mainly on cell-based search space that

has strong constraints to explore unseen cells. This cell-based search space causes most

of the found architectures to be intrinsically similar. Also, previous search space cannot

explore complicated wiring structures with more diverse scales of representation. Without

comprehensive multi-scale representation, a neural network cannot achieve high prediction

accuracy.

1.2 Contribution and Dissertation Outline

To address the obstacles outlined above, this dissertation focuses on each of the topics and

proposes compelling solutions, as outlined below.

1.2.1 Efficient Neural Architecture Search

Earlier NAS works adopt mainly reinforcement learning [ZVSL18], evolutionary algorithm [RAHL19a],

Bayesian optimization [KNS+18], and differentiable [LSY19, LTQ+18, LZS+19, CXWT19]

methods for searching. However, these methods usually suffer from poor search scalability.

Fast search methods (e.g., differentiable-based methods [LSY19, LTQ+18]) usually result

in sub-optimal solutions, while reward function based search methods (e.g., RL [TCP+19])

obtain high quality solutions at the cost of high computing hours. There is no effective

way to trade-off search cost and architecture quality using these NAS methods. Previous

methods map architectures into a latent space and estimate the highest performing architec-

tures. However, existing methods neglect the graph distance when mapping architectures

to the latent space. To address this limitation, this dissertation proposes to incorporate

2

graph kernel information into the searching process. Such a method effectively constructs

a graphically meaningful latent space and accelerates the searching process.

1.2.2 Generalizable Neural Architecture Search

The obstacle of neural architecture adaptability involves application adaptability and de-

ployment adaptability. We propose Generalizable Search space and Generalizable Hardware

Adaptation to address these issues respectively.

Generalizable Search Space. Visual recognition applications can be generally di-

vided into two directions: 1) high-resolution for dense predictions and 2) low-resolution for

classification. However, both of these applications suffer from scale variance. Take seman-

tic segmentation as an example–the variance of object size induces difficulty for pixel-level

dense prediction, and thus scale-aware representation is critical. In human pose estimation,

localizing human anatomical keypoints is challenging when there is a high scale variance in

the scene, such as when people have different sizes, the large difference in joint distance. To

address this obstacle, this dissertation proposes a new multi-scale search space. Specifically,

we introduce two techniques–grouped sampling and multi-scale topology evolution–to help

network training and architecture searching, respectively.

Generalizable Hardware Adaptation. With the rise of smart devices, performing

Deep Neural Network (DNN) tasks efficiently in different systems has become increasingly

important. However, directly deploying DNN models onto mobile or IoT devices is not

feasible [CWS+19] due to the extremely limited computation power, on-chip memory, and

flash. For example, a recent study shows that the computational cost of a neural network

to be deployed in IoT devices should be less than 60M multiple-adds (MACs), which is

difficult to achieve through existing DNN models [CWS+19]. To overcome the limitations

of existing NAS approaches, we propose structural pruning. By adopting structural wiring

architectures, we show that more compact models can be designed and deployed to con-

strained hardware platforms. The experimental results on IoT applications demonstrate

3

that our methods outperform MobileNetV2 and MnasNet by 3.0% in accuracy, with 20%

less peak memory consumption.

1.2.3 Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter 2 describes the current problem of searching efficiency. We first study the

embedding scheme of neural architectures. We further analyze the correlation between

architecture similarity and its corresponding performance. Finally, we introduce a graph-

based encoding scheme that incorporates the graph topology information to enhance the

representation of deep neural networks. The content of this chapter is based primarily on

Cheng et al. [CZL+20].

Chapter 3 explains how to provide a general search space for different vision tasks.

With such a general search space, we tackle the inevitable unstable training problem. Our

solution can be adapted to multiple vision tasks and can achieve new state-of-the-art results.

The content of this chapter is based primarily on Cheng et al. [CLL+20a].

Chapter 4 demonstrates how to consider hardware constraints in the searching process.

We study the complicated wiring structure and pruning techniques. Eventually, we show a

condensed neural architecture that can be applied to mobile phones and IoT devices. The

content of this chapter is based primarily on Cheng et al. [CZY+19a, CZY+19b].

Chapter 5 summarizes the dissertation and discusses the next generation of NAS.

4

Chapter 2

Efficient Neural Architecture Search

Neural Architecture Search (NAS) automates and prospers the design of neural networks.

Estimator-based NAS has been proposed recently to model the relationship between archi-

tectures and their performance to enable scalable and flexible search. However, existing

estimator-based methods encode the architecture into a latent space without considering

graph similarity. Ignoring graph similarity in node-based search space may induce a large

inconsistency between similar graphs and their distance in the continuous encoding space,

leading to inaccurate encoding representation and/or reduced representation capacity that

can yield sub-optimal search results. To preserve graph correlation information in encoding,

we propose NASGEM which stands for Neural Architecture Search via Graph Embedding

Method. NASGEM is driven by a novel graph embedding method equipped with similarity

measures to capture the graph topology information. By precisely estimating the graph dis-

tance and using an auxiliary Weisfeiler-Lehman kernel to guide the encoding, NASGEM can

utilize additional structural information to get more accurate graph representation to im-

prove the search efficiency. GEMNet, a set of networks discovered by NASGEM, consistently

outperforms networks crafted by existing search methods in classification tasks, i.e., with

0.4%-3.6% higher accuracy while having 11%-21% fewer Multiply-Accumulates. We further

transfer GEMNet for COCO object detection. In both one-stage and two-stage detectors,

our GEMNet surpasses its manually-crafted and automatically-searched counterparts.

2.1 Preliminary

Obtaining high-quality solutions comes with large computation hours. To address this is-

sue, estimator-based methods [BGRN17, LXD+20] are proposed to enable scalable and

flexible architecture search. Estimator-based NAS formulates a representation of architec-

5

ture by mapping architectures into a latent space. Such representation enables modeling

the relationship between architecture and accuracy using an estimator, such as a supervised

predictor. The estimator-based approach is scalable as the trade-off between search cost

and quality can be controlled by budgeting the number of samples for modeling the search

space. Estimator also allows adding additional search objectives with no additional search

cost. To formulate an effective representation, recent works use graph convolutional net-

works (GCN) and other graph encoding schemes [LGX20, NZZ+20] to capture the graph

topology, which is important for node-based NAS.

However, existing estimator-based methods [LGX20, NZZ+20, WLL+19] overlook the

graph distance when mapping architectures to a latent space. This results in an inaccurate

and/or reduced representation capacity of the projected latent space. When the graph

distance in the latent space cannot appropriately reflect the graph distance in the discrete

space, the found cell may not be optimal.

To address the above problem, we propose NASGEM (Neural Architecture Search via

Graph Embedding Method) to incorporate graph kernel equipped with a similarity measure

into the estimator-based search process. NASGEM delicately encodes graphs into a latent

space and enables to search cells with high representation capacity. The main contributions

of our work can be summarized as follows: 1) NASGEM constructs a graphically meaningful

latent space to improve the search efficiency of estimator-based method. 2) NASGEM

employs an efficiency score predictor to model the relationship between cell structures and

their performances. With the pretrained graph embedding, our predictor can accurately

estimate the model performance based on the representation of cell structures in a graph

vector. 3) The exploration of optimal cell structures is further improved by bootstrap

optimization, which guarantees the feasibility of graph vectors in the latent embedding

space.

Our evaluation demonstrates that GEMNet outperforms models obtained by other

estimator-based and node-based NAS methods on multiple vision tasks with 13%-62% pa-

rameter reduction and 11%- 21% Multiply-Accumulates (MAC) reduction. Evaluation using

6

NASBench-101 further verifies the effectiveness of our method.

2.2 Related Work

Graph Embedding. Graph embedding [GF18, GL16] projects graph structure into a

continuous latent space. Traditional vertex graph embedding maps each node to a low-

dimensional feature vector while preserving the connection relationship between vertices.

Factorization-based methods [RS00], random-walk based methods [PARS14], and deep-

learning based methods [WCZ16] are popular approaches used in traditional vertex graph

embedding. However, it is challenging to apply the existing graph embedding methods to

deep neural networks (DNNs) for the following two reasons: (1) similarities among cell struc-

tures of DNNs cannot be explicitly derived from traditional graph embeddings; (2) sophisti-

cated deep-learning based methods like DNGR [CLX16] and GCN [KW16, DBV16, LGX20]

require complex mechanisms when training on structural data. NASGEM addresses these

issues by computing the cosine similarity of two embedded graph vectors. It also facilitates

the training process during the formulation of graph embedding by employing an encoding

structure.

Estimator-based NAS. Estimator-based NAS [WLL+19, NZZ+20, LXD+20] is mainly

adopted to model the entire search space by leveraging the information of observed archi-

tectures. Estimator-based NAS is able to explore architectures within unobserved search

space, which is otherwise neglected by other NAS methods. Existing estimator-based NAS

works use widely adopted embedding methods such as graph convolution networks (GCN)

and autoencoders [WLL+19, LGX20, LTQ+18] without spending delicate efforts to impro-

vise neural architecture representations. Specifically, these works do not consider graph

distance and similarity measures while utilizing topological information in the search space.

While applied to a node-based search space, these methods usually suffer from large iso-

morphic graph variance in embedding space and lead to the exploration of sub-optimal

blocks. NASGEM uses a kernel-guided graph encoder to jointly learn graph topology and

7

graph similarity while exploring architectures in the node-based search space. As a result,

NASGEM enables a more precise prediction of the neural architecture performance and

exploration of higher-quality building blocks.

2.3 Neural Architecture Search via Graph Embed-

ding Method

Our key intuition is that similar graphs should yield similar neural representations. For in-

stance, given two arbitrary graphs, the graph distance between these graphs should match

their difference in the representation spaces. However, the vanilla autoencoder [PSDG14]

is used by most estimator-based NAS methods [LTQ+18, ZJC+19] and overlook such topo-

logical information. As shown in Fig. 2.1, the aforementioned autoencoder fails to exploit

the negative correlation (orange triangle) between performance score difference and pairwise

graph similarity. The incorrect correlation is due to the arbitrary representation learned by

the autoencoder, therefore we envision a kernel-guided mechanism to formulate an embed-

ding that can preserve topological information in the learned neural representation. This

motivates us to develop NASGEM, a node-based neural architecture search method com-

posed of a kernel-guided encoder to learn an effective embedding, an estimator built upon

the embedding to utilize topological information, and a bootstrap optimization approach to

finalize the design of high-performing neural architectures.

Fig. 2.2 depicts the 3-step workflow of NASGEM. In the first step, we construct a kernel-

guided encoder to derive graph vectors from candidate graphs. The encoder is trained to

jointly minimize reconstruction loss and pairwise graph similarity loss, see Figure 2.2(a). In

the second step, we utilize the pretrained graph encoder to model the relationship between

graph vectors and their corresponding performance. An efficiency score predictor is intro-

duced as an estimator during the exploration process, see Figure 2.2(b). Finally, we obtain

the optimal cell structure by applying bootstrap optimization in a large sample space. The

cell structure with the highest score determined by the efficiency score predictor is adopted

8

Figure 2.1: Each dot represents the performance score distance and the cosine sim-

ilarity of vectored representation. With graph embedding (blue circle dots), similar

graph pairs tends to have small performance score distance.

as the optimal building block, see Fig. 2.2(c).

2.3.1 Kernel-guided Encoder Training

In step (a) of NASGEM workflow, we train kernel-guided encoder, E : Rn�n �! Rd, to

vectorize the adjacency matrix of a graph to an inner product space that can represent the

topological graph structure, node information (DNN operation), neighboring connections

(distribution of tensors), and the pairwise graph similarity.

To measure the similarity of graphs in discrete topological space, there are various

approaches in graph theory, such as WL kernel [SSL+11]. For continuous graph embedding

space, cosine similarity is widely used to measure the similarity of graph vectors in [�1; 1].

The encoded vectors aim at preserving graph similarity measured by cosine similarity in

the continuous space, see Fig. 2.3. Therefore, we train the encoder with the objective of

minimizing the difference between WL kernel value in the discrete graph space and the

9

Figure 2.2 : Work�ow of NASGEM. (a) Encoder Training: the encoder learns to map

graphs into a continuous embedding space by jointly minimizing the reconstruction

loss and graph similarity loss. (b) Estimator Building: we(b1) randomly sample

graphs from the search space; then(b2) build these graphs into neural networks

and (b3) measure their e�ciency scores;(b4) we also embed each sub-graph into a

continuous vector with the trained kernel-guided encoder; �nally,(b5) we train the

e�ciency score predictor with the embedded vectors and the corresponding e�ciency

score. (c) Bootstrap Optimization: we(c1) sample a large amount of graphs from

the search space,(c2) embed then into vectors with the kernel-guided encoder and

(c3) obtain the predicted e�ciency score;(c4) we select the graph with the highest

predicted score as the candidate.

10

Figure 2.3 : Our goal is to construct an embedding space such that the distance of

graphs in the embedding space re�ects its graph similarity. Graphs with more graph

similarity (e.g., G3 and G4) have closer distance (Sg) in the embedding space.

cosine similarity value in the continuous space.

Weisfeiler-Lehman (WL) Kernel. To estimate graph similarity, a common method is

to learn a positive de�nite kernel, k : X �X ! R, whereX represents the adjacency matrix

set. Here we adopt Weisfeiler-Lehman (WL) kernel [SSL+ 11] as a graph similarity measure

of two arbitrary input graphs G i ; G j as follows:

Sg(G i ; G j) = k(h)
W L (A i ; A j); (2.1)

where A i ; A j are the adjacency matrices for graphG i , G j . h denotes the iteration times

of computing WL kernel. For graphs with N nodes, the WL kernel can be computed with

h iterations in O(h � N). Compared with other graph similarity metrics, WL kernel is able

to measure large and complex graphs with relatively low computational complexity. The

procedure and code of measuring the similarity between two input graphs is provided in the

supplementary material.

Similarity measure of graph vectors. We adopt cosine similarity to measure the sim-

ilarity of the vectorized graph representations (i.e., graph vectors). The cosine similarity

measure on the embedding space is de�ned as:

Se(gi ; gj) =
gi � gj

jjgi jj jj gj jj
; (2.2)

11

where gi and gj are vectorized representation of graphG i and G j . The direction of the

vector re�ects the proximities of the original graphs. Compared with the standard Euclidean

distance in Rn , cosine similarity is scale-invariant. In addition, since the range of cosine

distance is bounded, it is comparable with the similarity value given by WL kernel. Thus

we can supervise the training of the embedding function with the di�erence between the

cosine similarity value and the WL kernel value.

Encoder training objective. As graph similarities are always measured pairwise, the

encoder is trained and evaluated on a large number of graph pairs (G i , G j). To formulate a

mapping to represent topological graph structure in a continuous space, the cosine similarity

of the encoded graph vectors shall represent the similarity of the corresponding original

graph in the original discrete topological space. To satisfy the above training objectives, we

de�ne the similarity loss with respect to a pair of input graph: (G i , G j) as:

L s(G i ; G j ; E) = [Se(E(A i); E(A j)) � Sg(G i ; G j)]2: (2.3)

Besides similarity loss, we also consider reconstruction loss,L r (G i ; D (E(G i))) , for each

graph. Here D is a decoder that maps the encoded graph to the same dimension asG i

Therefore, our �nal loss function of encoder training is as follow:

E � = min
E

X

i;j

fL s(G i ; G j ; E)

+ L r (G i ; D (E(G i))) + L r (G j ; D (E(G j))) g:

(2.4)

Following common practice in autoencoders [HZ94], we adopt fully-connected feedfor-

ward networks for both encoder and decoder. The encoder is trained independently before

the searching procedure. We randomly generate a number of graph structure pairs with the

same numbers of nodes and apply WL kernel to provide ground truth labels. Details and

code implementation can be found in supplementary material.

2.3.2 Estimator Building

Performance estimation of graph vectors. Like most of the previous works [LSY19,

PGZ+ 18a], we map DAGs to cell structures, which are used as building blocks of DNNs.

12

Each node in the DAG stands for a valid DNN operation (such as depth-wise separable

convolution 3� 3), and each edge represents the �ow of tensors from one node to another.

When mapping cell structures to DNN architectures, nodes with no input connections (i.e.,

zero in-degree) are dropped while nodes with in-degree larger than one is inserted a con-

catenate operation. The output of building blocks can be constructed from the leaf nodes

with zero out-degree. The concatenation of these leaf nodes along the last dimension gives

the output feature maps.

To evaluate the performance of DNN architectures formed by the corresponding cell

structures of graph vectors, we use e�ciency score instead of accuracy as our search metric

so that both performance and e�ciency are taken into considerations. The e�ciency score

for candidate graph G is formulated as:

S(G) = ACC [N (G)] � � log(MAC [N (G)]) ; (2.5)

whereN (G) is the DNN constructed with the cell represented byG. ACC is the validation

accuracy on proxy dataset. MAC is the number of Multiply-Add operations of N (G)

measured in Millions. � is a penalty coe�cient. We use MAC as the penalty term since

it can be precisely measured across search iterations. Most compact models [HZC+ 17,

SHZ+ 18, TCP+ 19] have hundred millions of MACs while large models [SLJ+ 15] can have

billions of MACs. This penalty function can urge the search iteration towards improving

the performance of small models or de�ating the complexity of large models, and thus strike

a balance between complexity and performance.

Train E�ciency Score Predictor. The e�ciency score predictor P : Rd �! R maps the

d-dimensional graph vector to a real-value that indicates the performance of architectures

built upon this graph vector. The predictor is a fully connected neural network with acti-

vation function ReLU. We maintain a set f (g; y)g, where g is a graph vector andy is its

e�ciency score measured on proxy dataset. In each iteration, we add current selected graph

vector/score pair into the set and train the predictor P with this enlarged set. The predictor

becomes more accurate by using the e�ciency score of new samples for �ne-tuning. More

importantly, the predictor in NASGEM is built on top a smoother latent space, which is

13

constructed through the graph embedding of unrestricted DAGs. Such accurate prediction

allows to explore a wider search space with extremely small search cost (0.4 GPU days).

Predictor training algorithm and code implementation can be found in Supplementary Ma-

terial.

Fig. 2.1 shows the feasibility of the proposed predictor. We can see the cosine similar-

ity of the output vectors of graph encoder is inversely proportional to their performance

distance. This indicates that after training, kernel-guided encoder can learn to encode

similarity information between two graphs into the intersection angle of their vectorized

representations. In other words, graph embedding can improve the accuracy of predictor

by enhancing robustness under isomorphic graphs.

We also show that for isomorphic or similar graphs, our predictor gives close performance

score. For a fully connect neural network, its Lipschitz constant always exists [JD20, VS18].

Thus, we assume the Lipschitz constant of predictorP after training is K , which means

8x1; x2 2 Rd,

jP(x1) � P(x2)j � K kx1 � x2k (2.6)

wherek � k representsL 2 norm. Let the input of predictor be a random vector X � � 2 Rd.

X 0 and X are independently drawn from probability measure� . We have

E� � �

h�
�P(X) � P

�
X 0� �

�2
i

(2.7)

= E� � �
�
P2(X) + P2�

X 0� � 2P(X)P
�
X 0�� (2.8)

= 2E
�
P2(X)

�
� 2(E[P(X)])2 (2.9)

= 2E
h
(P(X) � E[P(X)])2

i
: (2.10)

Based on (2.6),

E� � �

h�
�P(X) � P

�
X 0� �

�2
i

� K 2E� � �

h
 X � X 0

 2

i
(2.11)

= 2K 2E
h
(X � E[X])> (X � E[X])

i
: (2.12)

Based on (2.7)-(2.10) and (2.11)-(2.12),

E
h
(P(X) � E[P(X)])2

i
� K 2E

h
kX � E[X]k2

i
: (2.13)

14

Equation (2.13) shows the variance of the output (performance score) of predictor is up-

per bounded by its Lipschitz constant and the variance of input vectors. After training,

the predictor is determined with a �xed Lipschitz constant K . Encoder with WL kernel

embedding decreases the variance of input for isomorphic or similar graphs. Therefore, it

enhances the robustness of predictor under isomorphic or similar graphs.

2.3.3 Bootstrap Optimization

After the predictor is trained using a large number of neural architectures and their corre-

sponding e�ciency scores, our goal of �nding the optimal cell structure in the topological

graph space is equivalent to �nding the graph vector that has the highest score according

to the e�ciency score predictor, formulated as:

g� = arg max
g

P(g); (2.14)

where g = E � (A) is the embedded graph vector after passing adjacency matrixA into

the pretrained graph encoder, andP(g) : Rd �! R is the e�ciency score predictor that

estimates the e�ciency score of a given cellA.

NASGEM explores a continuous immense search space consisting of hyper-complex fam-

ilies of cell structures. For e�cient exploration, we introduce an exploration method based

on two empirical beliefs: (1) Optimal cell structures within the search space is not unique

as various architectures of the similar isomorphism can yield equally competitive results.

(2) Finding the optimal graph vector in the continuous search space and then decoding may

not discover a valid architecture, as the mapping from graph vectors to discrete topological

cell structures may not be injective.

For simplicity, we useBootstrap Optimization to address the above issues by sampling the

cell structures with replacement among a large sample spaceS and picking up the best one

as our post-searching approximation. With the pretrained graph encoderE, we randomly

sample cell structureA 2 S from the sample space and approximate the best candidate cell

15

