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Surface-electrode point Paul trap
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We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a
circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap
design is compatible with microfabrication and offers a simple method by which the height of the trapped ions
above the surface may be changed in situ. We demonstrate trapping of single 88Sr+ ions over an ion height range
of 200–1000 µm for several hours under Doppler laser cooling and use these to characterize the trap, finding
good agreement with our model.
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I. INTRODUCTION

Radiofrequency (rf) traps have been applied extensively in a
large variety of scientific studies over the past 6 decades. Origi-
nating from mass spectrometry [1], they have then been applied
in fields such as metrology [2], quantum information science
[3,4], and cold molecular physics [5,6], to mention but a few.

Traditionally, such devices have been rather bulky, three-
dimensional structures that required precise machining and
careful assembly. Recently, however, the four-rod linear
Paul trap [see Fig. 1(a)] has been transformed into a two-
dimensional structure, with all electrodes in a single plane
above which ions can be trapped [7]. This new class of
so-called surface traps offer a tremendous advantage over their
predecessors in that electrodes can be defined lithographically
with extremely high precision and that construction can lever-
age the techniques of microfabrication, with the possibility of
incorporating the technology of Complementary metal-oxide
semiconductor (CMOS) for integrated control hardware [8,9].
These aspects are particularly attractive to applications in
quantum information processing where limitations currently,
by a large degree, pertain to the scalability of devices for
trapping as well as certain elements of infrastructure such as
optics, laser light delivery, and control electronics.

In this article we study a type of rf surface trap with a high
degree of symmetry in its electrode geometry. The generic
geometry of this trap, which we shall refer to as the point Paul
trap, is shown in Fig. 1(b) and may consist of any number
of concentric electrodes of arbitrary widths to which different
voltages can be applied. This design originated in a study of
surface electrode traps [10,11] but was subsequently strongly
inspired by work on planar Penning traps [12], where a similar
geometry was used to create a static electric quadrupole field
that, when combined with a strong homogeneous magnetic
field, gave rise to a confining potential above the surface of the
electrodes. The point Paul trap also bears close resemblance
to the rf ring and the rf hole traps [13]; however, it differs
in that the ion is trapped above the surface of the electrodes
as opposed to in between, which makes this geometry better
suited for microfabrication.
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A consequence of the azimuthal symmetry of the electrodes
is that the rf field exhibits a nodal point rather that a nodal line
as in the linear Paul trap and that the confining fields originate
exclusively from the rf potential, rendering the addition of dc
potentials nonessential for anything but the compensation of
stray charges on the trap. This makes the point Paul trap well
suited for confinement of single ions, which may then reside at
the rf nodal point where the amplitude of the rapidly oscillating
rf field vanishes.

The ability to fabricate these traps in a scalable fashion
makes them attractive for realizing large arrays of single
ions in independent traps that may be utilized for a quantum
processor, provided the individual ions can be interconnected,
e.g., through optical fibers [14–16]. On this aspect, the axial
symmetry of the trap lends itself well to integration of such
fibers and potentially other optical elements that also possess
axial symmetry. The fiber, for instance, may be introduced
through the electrodes directly beneath the ions with minimal
perturbation of the trapping fields.

Another possible application of this trap is in the field of
quantum simulation. While classical computers are unable to
efficiently simulate coupled spin systems, such simulations
may be implemented using a quantum mechanical system of
effective spins, such as a two-dimensional lattice of interacting
ions. The resulting potential of the point Paul trap provides
ion crystals with exactly the requisite two-dimensional planar
structure. As such, the system could be used to simulate,
e.g., a frustrated spin system [17,18], as was demonstrated
recently [19].

We also find that our trap design is ideally suited for
realizing a scheme by which the height of a single trapped
ion above the trap surface is varied in situ. This capability
may prove extremely useful in the search for the origin of
anomalous heating in ion traps: a problem currently impeding
the advancement of quantum computation with trapped ions
[20,21]. It also provides a general technique by which oven
contamination of the trap can be minimized by loading further
away from the trap surface and subsequently bringing the ion
to the desired trap height.

This article is organized as follows: in Sec. II we present
a model for the planar point Paul trap, derive analytic
expressions for the relevant trapping parameters, present full
numerical results of trap optimization, and consider a scheme
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FIG. 1. Comparison of the traditional four-rod linear Paul trap
(a) to the point Paul trap (b). The latter achieves quadrupole ion
confinement through rf on a single, ring-shaped electrode. Dashed
lines suggest how cylindrical elements, such as optical fibers, may be
introduced to the point Paul geometry.

for the variation of the ion height above the trap surface. In
Sec. III we describe our experimental setup used for the veri-
fication of the model; and in Sec. IV we present experimental
results for trapping of single and few ions in a printed circuit
board (PCB) implementation of the point Paul trap.

II. POINT PAUL TRAP MODEL

We proceed with a general treatment applicable to an
arbitrary number of circular electrodes and then focus on a
particular geometry that we will study experimentally later in
Secs. III and IV. Further theoretical discussion can be found
in Refs. [22,23]. At the end of this section we also describe a
scheme for variation of the ion height above the trap surface.

A. Potential from annular planar electrodes

We begin with the general solution to the Laplace equation
in charge-free space and express this in cylindrical coordinates
for z � 0, yielding [24]

�(z,ρ,φ) =
∞∑

m=0

∫ ∞

0
Jm(kρ)e−kz

× [Am(k) cos (mφ) + Bm(k) sin (mφ)] dk, (1)

where Jm(kρ) are the usual Bessel functions and Am(k) and
Bm(k) are coefficients to be determined based on the boundary
conditions of the problem. Based on the azimuthal symmetry
of Fig. 2, Eq. (1) further simplifies to [24]

�(z,ρ) =
∫ ∞

0
J0(kρ)e−kzA0(k) dk. (2)

In turn, A0 can be expressed as A0(k) = ∑n
i Ai(k), where

Ai(k) = k

∫ βi

αi

ρJ0(kρ)Vi(ρ) dρ. (3)

All information about the electrode geometry is now included
in the A0 coefficient, which we have in turn written as a sum
of n subcoefficients, each accounting for the effect of a single
annular electrode i with inner radius αi , outer radius βi and
a voltage Vi , which we shall assume is constant across the
electrode. The integral of Eq. (3) can be evaluated using the
identity for the Bessel functions

∫ u

0 vJ0(v)dv = uJ1(u) to give

Ai(k) = Vi[βiJ1(kβi) − αiJ1(kαi)]. (4)

This completes the general treatment of the problem: The
electric potential above a surface at z = 0 with n concentric

V1V2V3 ... Vn

z

ρφ

z

x

y

FIG. 2. The generic layout of the point Paul trap, which consists
of concentric annular electrodes with arbitrary widths, illustrated in
a cylindrical coordinate system.

circular electrodes, each with independent voltages Vi and
inner and outer radii of αi and βi , respectively, is given by
Eq. (2) with A0(k) = ∑n

i Ai(k), where the Ai coefficients are
given by Eq. (4).

B. The three-electrode point Paul trap

While static potentials alone may provide confinement
in one or two dimensions, Earnshaw’s theorem dictates that
this is accompanied by a defocusing effect in the orthogonal
dimensions. In the work of Ref. [12], three-dimensional
confinement was achieved via the addition of a static magnetic
field to realize a planar Penning trap. Here, we use a time-
varying rf field to achieve charge confinement as a planar Paul
trap. Namely, we consider the simple geometry of only three
electrodes defined by the following boundary conditions:

�(z = 0,ρ) =

⎧⎪⎨
⎪⎩

0 for 0 < ρ < a,

Vrf cos (�rf t) for a � ρ � b,

0 for b < ρ < ∞,

(5)

where Vrf is the amplitude of the applied voltage and �rf is the
frequency. The resulting potential then reads

�(z,ρ,t) = Vrf cos (�rf t)κ(z,ρ), (6)

where

κ(z,ρ) =
∫ ∞

0
[bJ1(kb) − aJ1(ka)]e−kzJ0(kρ) dk. (7)

In general, Eq. (7) has to be solved numerically. However,
for the case of ρ = 0 the problem simplifies significantly and
an analytic solution can be obtained. From the symmetry of
the problem we can infer that if a nontrivial field zero ( �E = 0)
exists for z > 0, it will be located on the axis defined by ρ = 0
and hence this scenario is worthy of attention.

The on-axis potential is easily integrated to yield:

κ(z,0) = 1√
1 + (

a
z

)2
− 1√

1 + (
b
z

)2
. (8)

Asserting that this potential provides for an electric field null
at z = z0 > 0, we expand �(z,t) around this point and use
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the resulting expansion to find the equation of motion for a
particle of mass M and charge Q along the z axis:

z̈(t) = − Q

M

∂�(z,t)

∂z

� −QVrf

M
cos (�rf t)[f (a,b)(z − z0) + O(z − z0)2]. (9)

Provided |z − z0| � z0, which is a reasonable assumption for a
trapped ion, terms of second and higher order can be neglected,
and the equation of motion takes the form of the well-known
Mathieu equation. With proper rescaling of variables, Eq. (9)
can be cast into the standard Mathieu form [25]:

¨̃z(τ ) + 2q cos (2τ )z̃(τ ) = 0, (10)

where we have substituted z̃ = z − z0 and τ = �rf t/2, and the
Mathieu q parameter has been defined as

q = 2QVrf

M�2
rf

f (a,b). (11)

Here, everything related to the trap geometry is collected into
a single function f (a,b) of unit [length]−2 given by

f (a,b) =
√√√√ 9

(
b

2
3 − a

2
3
)2(

b
2
3 + a

2
3
)6

b
4
3 a

4
3
(
b

4
3 + b

2
3 a

2
3 + a

4
3
)5

. (12)

Note that in this treatment a denotes the inner radius of the rf
electrode and not the Mathieu a parameter, commonly used in
the literature on Paul traps. The Mathieu a parameter, which
corresponds to the inclusion of a dc potential in the equation
of motion [Eq. (9)], is rendered superfluous in the point Paul
trap as full three-dimensional confinement is achieved in this
geometry by the rf field alone.

When the trap is operated such that |q| � 1, the equation
of motion can be readily solved to yield

z̃(t) = σ0

[
1 − q

2
cos (�rf t)

]
cos (ωzt). (13)

This is the usual result, familiar also from the four-rod linear
Paul trap, where the motion is composed of two distinct types
of motion: a slow, so-called secular, motion with an amplitude
σ0 at a frequency

ωz = q

2
√

2
�rf = QVrf√

2M�rf

f (a,b) (14)

and a superimposed, fast micromotion, with a lower amplitude
of 1

2qσ0 and at sideband frequencies of the rf drive �rf .
Neglecting the micromotion—a reasonable approximation for
|q| � 1—we can define an approximate harmonic potential
that describes the ion motion near the quadrupole zero by the
following

�(z) = 1

2
Mω2

z (z − z0)2 = Q2V 2
rf

4M�2
rf

f 2(a,b)(z − z0)2, (15)

thereby showing the charge-confining capabilities of the
three-electrode point Paul trap, provided that f 2 > 0.

C. Trap optimization and results

While the harmonic potential of Eq. (15) provides an
intuitive connection to the physical, time-averaged motion
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FIG. 3. The harmonic potential approximation [Eq. (15); dashed
line] for the point Paul trap is shown on top of the pseudopotential
[Eq. (16); solid line]. The latter identifies the trap turn-around point
zmax in addition to the trap location z0. Trap geometry (a,b) is chosen
as in Table I.

of the trapped ion in the vicinity of the rf node, it does
not reveal any information about the dynamics where the
inequality |z − z0| � z0 is not satisfied. For instance, in a
real device there is necessarily a finite trapping volume and
trap depth. These quantities originate from the shape of the
potential significantly beyond the harmonic region. In the limit
q � 1, the effective potential energy beyond the harmonic
regime—commonly referred to as the pseudopotential—may
be expressed directly through the gradient of the electric
potential, here written in terms of κ , as [26,27]

�(z,ρ) = Q2V 2
rf

4M�2
rf

|∇κ(z,ρ)|2. (16)

The solid line in Fig. 3 shows the pseudopotential for
the planar point Paul trap. Superimposed is the harmonic
approximation (dashed line). Inserting the expression for κ

from Eq. (7) into the expression for the pseudopotential
[Eq. (16)] yields two physically meaningful extrema,

z0 =
√

b4/3a4/3

b2/3 + a2/3
(17)

and

zmax =
√

b6/5 − a6/5

a−4/5 − b−4/5
. (18)

Here, z0 is the coordinate of the pseudopotential minimum, and
zmax denotes the turning-point of the confining pseudopoten-
tial. The difference zmax − z0 can be taken as a linear measure
of the effective trap volume. Furthermore, the corresponding
trap depth can now be defined as D = �(zmax) − �(z0). Using
Eqs. (17) and (18), one finds that the trap depth is positive for
all values of b > a > 0 and is equivalent to:

D = Q2V 2
rf

4M�2
rf

[
a2

(
a2 + z2

max

)− 3
2 − b2

(
b2 + z2

max

)− 3
2

]2
. (19)
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TABLE I. Results of numerical optimization of the trap depth for
a fixed trap height z0. The choice of units allows for direct comparison
with the three-dimensional linear Paul trap.

a(z0) b(z0) zmax(z0) q(q4rod) D(D4rod)

0.651679 3.57668 1.957965 0.471565 0.019703

The trap depth is a reasonable quantity to be optimized
in the design of the point Paul trap. However, unconstrained
optimization of Eq. (19) over (a,b) will influence not only the
trap depth but also the trap height z0 above the surface through
Eq. (17). Often in experiments, the trap height is a parameter
of importance and so a more reasonable strategy is to optimize
the trap depth for a fixed value of z0. This can in principle
be done analytically; however, the results are more useful in
their numerical form. Table I summarizes the results of this
optimization. For the purpose of comparison with the four-rod
linear Paul trap we have defined

q4rod ≡ 2QVrf

M�2
rfz

2
0

and D4rod ≡ Q2V 2
rf

4M�2
rfz

2
0

, (20)

which corresponds to the q parameter and the trap depth,
respectively, for the three-dimensional four-rod Paul trap with
an ion-electrode distance of z0.

From the optimization results of Table I, it is seen that
the q parameter of the point Paul trap is roughly a factor 1

2
of the four-rod linear Paul trap while the trap depth is about a
factor 1

50 . By comparison, the surface electrode linear Paul trap
design that has recently attracted much attention in the context
of quantum computing [28,29] has a q parameter and a trap
depth that are approximately a factor 1

2
√

3
and 1

72 , respectively,
of the four-rod linear Paul trap [7].

D. 3D potential of the point Paul trap

To extract information about the three-dimensional shape of
the pseudopotential, we insert the full expression of Eq. (7) into
Eq. (16) and integrate numerically at discrete values of ρ and
z. This yields a contour plot as shown in Fig. 4, where the trap
dimensions are chosen according to Table I for a trap height
of z0 = 1 mm. It is seen that the confinement is tighter along
the axial direction of the trap than along the radial direction.
Also shown (see inset) is the isosurface corresponding to the
edge of the trap.

A unique feature of this trap design is that confinement is
achieved in three dimensions using only an rf field as opposed
to the linear trap designs that also require static dc-potentials
along the axis defined by the nodal line of the rf quadrupole
field. One consequence of this is that, similar to the four-rod
linear Paul trap but in contrast to the linear surface electrode
Paul trap, the point Paul trap is naturally compensated and
dc potentials are in principle not required for stable trapping.

Another implication of achieving three-dimensional con-
finement with a single rf field is that the ratio of the axial and
radial secular frequencies is fixed by the geometry of the trap.
From quadratic fits to the central harmonic region of Fig. 4,
the ratio of the radial to the axial trap frequency is found to be
ωρ

ωz
� 0.50.
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FIG. 4. (Color online) A contour plot for the pseudopotential
[Eq. (16)] of a z0 = 1 mm trap, using the optimal geometry of Table I.
The inset shows the trap isosurface in relation to outlines of the rf
ring electrode (units in z0).

E. Scheme for variation of the nodal point of the rf field

We mentioned previously that the ion height above the
trap surface is often a parameter of interest and designs
are generally optimized with some focus on this parameter.
Controlling the ion position in situ is a desirable capability
for a variety of experimental applications. To mention a
few examples, in experiments incorporating optical cavities,
careful alignment of the cavity with respect to the ion is
necessary to achieve the highest possible coupling between
the ion and the cavity mode [30–33]; and in the study
on anomalous heating in ion traps the ion height is a key
parameter, with the scaling of the heating rate currently
believed to follow a z−4

0 trend [20]. The ion position may
be adjusted via the addition of dc potentials; however, unless
the rf quadrupole potential is adjusted accordingly, the ion
location will not coincide with the zero of the rf field and
as a result its motion will be driven by the rapidly changing
rf fields, resulting in broadening of the atomic transitions [34].
It is possible to align the trap relative to external objects
such as mirrors by physically moving the trap [30,32,33];
however, recently a method for translating the node of the rf
quadrupole field has been developed and used both in four-rod
Paul traps [35] and in planar surface traps [36,37] to shift the
ions without introducing excess micromotion.

The basic principle of this method is to apply different
amplitudes of rf potential on individual electrodes, thus
causing a shift of the rf field node relative to those electrodes.
Implementation of this technique is particularly simple in
our geometry where it is achieved by adding an rf field
to the central, previously grounded, electrode. The resulting
boundary conditions for the electric potential then becomes

�(ρ,0) =
⎧⎨
⎩

εVrf cos (�rf t + θ ) for 0 < ρ < a,
Vrf cos (�rf t) for a � ρ � b,
0 for b < ρ < ∞,

(21)

where ε and θ accounts for the amplitude and phase difference
between the inner and the outer rf electrodes.
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Before proceeding to find a solution to the potential in this
configuration, it is useful analyze the scenario in qualitative
terms to gain some intuition about the influence of this second
rf potential:

Along the z axis, the rf field from the outer ring electrode
reverses its sign around the quadrupole zero point z0, while the
field from the inner rf electrode is always in the same direction
on the z axis, pointing away from the trap surface. If the two
electrodes are driven in-phase, their fields will be of opposite
sign for z < z0 and the same sign for z > z0. In that case the
effect of the second rf field is to decrease the magnitude of
the field below the original trap location and increase it above,
thus bringing the rf node closer to the electrodes. Similarly, if
the two rf electrodes are driven out of phase the trapping point
will move away from the electrode surface.

To develop a quantitative model, we again solve the
potential for the boundary conditions of Eq. (21) but for the
case of either in-phase (θ = 0) or out-of-phase (θ = π ) drives.
The scenario where the two electrodes are related by some
other relative phase should be avoided, as it will result in
excess micromotion, analogously to the case of the four-rod
linear Paul trap [34]. Absorbing the phase into the sign of ε,
the spatial part of the resulting potential reads

κ(z,ρ) =
∫ ∞

0
dke−kzJ0(kρ)[bJ1(kb) − (1 − ε)aJ1(ka)].

(22)

We again focus on the case of ρ = 0 to find an analytic
expression for κ(z,0):

κ(z,0) = 1√
1 + (

a
z

)2
− 1√

1 + (
b
z

)2
+ ε

⎛
⎝1 − 1√

1 + (
a
z

)2

⎞
⎠ ,

(23)

where ε > 0 and ε < 0 correspond to the in-phase and out-of-
phase drives, respectively.

Inserting the expression for κ(z) into Eq. (16) and using the
geometry of Table I we may plot the pseudopotential for vari-
ous values of ε. Figure 5 shows such example plots for various
values of ε. It is seen that, in accordance with the qualitative
model, the in-phase drive (ε > 0) lowers the trap height z0,
while the out-of-phase drive (ε < 0) increases the height.

The new trap location and turning point can be found
analytically as in Sec. II C, yielding:

z′
0(ε) =

√
b2a4/3(1 − ε)2/3 − a2b4/3

b4/3 − a4/3(1 − ε)2/3
(24)

and

z′
max(ε) =

√
b2a4/5(1 − ε)2/5 − a2b4/5

b4/5 − a4/5(1 − ε)2/5
. (25)

We also find an expression for the q parameter, which is derived
analogously to Eq. (11) using (23):

q ′(ε) = 2QVrf

M�2
rf

[
3a2z′

0(1 − ε)(
a2 + z′2

0

)5/2
− 3b2z′

0(
b2 + z′2

0

)5/2

]
. (26)

In addition to the ion height variation, the presence of a
second rf modifies the overall shape of the pseudopotential
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FIG. 5. Variation in the on-axis pseudopotential � with the
addition of secondary rf at various values of ε. The trap dimensions
a and b are as in Table I.

and hence also the effective trap depth, as evidenced in Fig. 5.
Namely, the out-of-phase regime is limited by a diminishing
barrier on the side further away from the trap, and the in-phase
drive causes a lowering of depth on the side toward the plane.
For an optimal z0 = 1 mm trap for 88Sr+, Fig. 6 summarizes
the variation in ion height z′

0, the Mathieu q ′ parameter, and
overall trap depth D′ as a function of ε under typical operating
parameters. In particular, note the cusp in trap depth at ε ≈ 0.7,
due to the rapidly diminishing trap barrier on the side toward
the trap. Conservatively, a range of 0 < ε < 0.7 leads to a
dynamic range of about 0.6z0 = 600 µm that is achievable
without suffering any decrease in trap depth from the single-rf
configuration. Of course, a reduction in the trap depth due to
this technique may be compensated by varying the magnitude
of the rf voltage and the rf frequency.

Compared with previous work on shifting the rf nodal line
of a four-rod linear Paul trap [35], this range is a significant
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FIG. 6. (Color online) The variation in trap height (solid blue
line), Mathieu q parameter (dashed blue line), and the effective trap
depth (dotted red line) as a function of the amplitude of the secondary
rf. These parameters are computed for an optimal z0 = 1 mm (under
single rf) 88Sr+ trap, with Vrf = 300 V and �rf = 2π × 8 MHz.
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increase. The underlying reason is that the geometry of the
point Paul trap is more favorable for such a scheme in that
a shift in the ion height does not change the symmetry of
the trap axis with respect to the electrodes, in contrast to the
implementation in the four-rod linear Paul trap [35] but similar
to recent work on a related surface electrode ion trap [37].

The ability of the point Paul trap to vary the ion height
without incurring micromotion would be of tremendous value
in the search for the origin of anomalous heating in ion
traps [20,21]. Previous work on this problem have either used
a technically challenging setup in which the trap electrodes
were moved in situ [20] or has relied on systematic testing of
traps of identical geometry but different scales, making this
method prone to random errors associated with the fabrication
of the individual traps [21].

Anomalous heating is believed to originate from fluctuating
patch potentials on the electrodes. The model describing this
effect predicts a scaling of the heating rate of 1/z4

0; however,
only one experiment has thus far been able to conduct a
systematic study to confirm this in a single trap geometry
[20]. As the suggested scheme for the point Paul trap in
principle allows for in situ variation of the ion height by
almost an order of magnitude (with modest adjustments in
drive rf), it provides for an extremely sensitive test of the
patch potential model without complications associated with
physically moving the trap electrodes and without the errors
and difficulty in obtaining good statistics associated with the
use of individual traps for each value of z0.

III. EXPERIMENTAL SETUP

To validate the model presented in the previous section
we have tested a planar point Paul trap with an electrode
geometry similar to that of Sec. II B and characterized its
trapping of 88Sr+ ions. The trap itself is based on a printed
circuit board (PCB) with copper electrodes on a low-rf-loss
substrate (Rogers 4350B, fabricated by Hughes circuits) [38].
Figure 7 shows a picture of this trap mounted in a ceramic
pin grid array (CPGA) chip carrier. The radius of the inner
ground electrode is a1 = 550 µm, the inner radius of the rf ring

12 mm

FIG. 7. (Color online) Image of the PCB trap mounted on the
CPGA and installed on the 8K base plate of the closed-cycle cryostat.
Capacitors are connected to the DC electrodes in order to minimize
rf pickup.

electrode is a2 = 650 µm, and its outer radius is b = 3.24 mm.
Due to the 100-µm gap between the electrodes, the ratio a1,2

b

deviates by about 10% from the optimum geometry of Table I
and produces in an ion height of z0 = 960 µm using a2.

In this particular realization of the model system of Fig. 2,
the outer ground has been segmented into four electrodes
and their independent potentials can each be adjusted to
compensate for stray electric fields in the vicinity of the trap.
Boundary element analysis of the exact electrode configuration
predicts an ion height of 940 µm, in agreement with our
analytical model. This analysis also finds the ratio of radial
to axial secular frequencies to be ωρ

ωz
� 0.50, again in good

agreement with the analytic result.
The trap is mounted on the 8K baseplate of a close-cycle

cryostat described in Ref. [39]. Ions are loaded via resonant
photoionization of an atomic beam from an effusive oven that
is heated resistively to a few hundred degrees Celcius during
loading. Once ionized, the ions are Doppler-cooled using light
at 422 and 1092 nm. The relevant level scheme is shown in the
inset of Fig. 8 along with the lifetimes of the excited states.
Typically, 20 µW of 422-nm light focused to a 50-µm waist
at the location of the ion is used for the 5 2S1/2 ↔ 5 2P1/2

transition, while about 20 µW of 1092 nm focused to a
150-µm waist repumps the ion on the 4 2D3/2 ↔ 5 2P1/2

transition. Dark states of the D3/2 manifold are destabilized
by polarization modulation of the 1092-nm light at 10 MHz
as described in Ref. [40]. Fluorescence from the ions is
collected with a numerical aperture �0.5 lens mounted inside
the vacuum chamber and imaged onto a CCD camera (Andor
Luca R) and a photomultiplier tube (PMT) (Hamamatsu,
H7360-02), the latter achieving an overall detection efficiency
(including losses on optics in the imaging system) of 0.6%.
We ensure that the ions are located at the nodal point of the
rf field by minimizing the micromotion amplitude using the
correlation measurement technique as described in Ref. [34].

Radial and axial secular frequencies can be measured by
applying a small sinusoidal voltage to a DC electrode, thus
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FIG. 8. Telegraph log shows the discrete loss of five ions from the
PCB trap, as measured by scattered 422-nm light from the 5 2S1/2 ↔
5 2P1/2 transition (see inset).
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exciting motion along the corresponding direction [41]. At
the resonant frequency of the trap, the strong increase in the
amplitude of this driven motion is detected as a sudden change
in the fluorescence from the ion and can also be corroborated
by increased motion along an axis by the imaging system.
Depending on the trap depth, amplitude of the perturbative
signal, and the sweep rate, this allows a measurement of the
secular frequencies with a typical accuracy of about ±5 kHz.

Finally, the shift in ion height with the addition of a
second rf drive is determined by the translation of the
Doppler cooling beam necessary in order to maximize ion
fluorescence. The spatial position of the beam is calibrated
by a digital translation stage with submicron resolution.
However, the accuracy of this method is ultimately limited by
the finite waist of the laser beams.

IV. RESULTS

The purpose of this section is to validate the model pre-
sented in Sec. II. Figure 8 shows a time log of the fluorescence
signal detected with the PMT as five ions are loaded and then
lost from the trap. This rapid ion loss was observed prior
to compensation of the stray dc fields and optimization of
Doppler cooling. The discrete steps in photon counts provides
a calibration of the scale to distinguish a single ion from two
or more. Once compensation is optimized, we find that the
trapping is stable for several hours when Doppler cooling is
applied, limited only by the long-term stability of our lasers.

In addition to the discrete PMT logs, we have been able to
resolve individual ions in 2D crystals involving up to nine ions,
which is summarized in Fig. 9. As noted in the introduction,

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

FIG. 9. Summary of the ion crystals that were observed with the
PCB trap. The crystals in panels (c) and (e) were observed at an ion
height of 940 µm (Vrf = 360 V, 10-s exposure) where the panel’s
field of view is 70 × 70 µm. The remaining crystals were observed at
a height of about 600 µm (Vrf = 275 V, ε � 0.52, 500-ms exposure)
where each panel corresponds to approximately 40 × 40 µm.
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FIG. 10. Measurements of axial (square markers) and radial
(diamond markers) secular frequencies of the point Paul trap. Data
were taken at z0 = 940 µm under the single-rf drive at �rf =
2π × 8.07 MHz. Also shown are theoretically expected secular
frequencies (not fits) according to Eq. (14). (Inset) Measured axial
(squares) and radial (diamonds) trap frequencies and their linear fits
at an ion height of 600 µm (same units as main figure).

such lattices could be used for quantum simulations of,
for instance, frustrated spin systems [18,19]. The effect of
micromotion in planar crystals on quantum simulations has
been considered in Ref. [42].

The pseudopotential model for the point Paul trap is
evaluated by measuring the secular frequencies of the trap for
various applied rf voltages Vrf at a constant rf drive frequency
of �rf = 2π × 8.07 MHz. The results are shown in Fig. 10
for a single ion held at 940 µm (using the numerical result)
under the single-rf scheme. Solid lines are the theoretically
expected trap frequencies (not fits) according to the model of
Sec. II, where the rf voltage has been calibrated independently
by characterizing the driving helical resonator. Fits through
the measured data yields a ratio of the radial to axial secular
frequencies of ωρ

ωz
= 0.51 ± 0.01, in excellent agreement with

the numerically predicted ωρ

ωz
= 0.50.

To establish the validity of the ion height variation model,
we have explored the in-phase (ε > 0) parameter space. The
implementation of a second in-phase drive was achieved by
connecting a trim capacitor between the ring and center
electrodes, which then formed a capacitive divider for the
center electrode in combination with the intrinsic capacitance
from the PCB. Figure 11 shows the results. Experimentally,
we found that stable trapping was extremely straightforward
to achieve, and single ions and crystals were trapped as close
as 200 µm from the surface of the trap. Further approach was
prevented by scattering the incident laser beams from the trap
surface, which interfered with ion detection.

In addition, we were also able to measure secular fre-
quencies when the ion was offset to a height of 600 µm,
as shown in the inset of Fig. 10. The comparable linearity in
secular frequencies between the single- and dual-rf cases—
as well as the well-resolved ions of Fig. 9 at an offset
height—suggests that the addition of a secondary rf has not
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FIG. 11. Variation in ion height with the addition of the second
rf on the innermost electrode. Solid curve shows the results of the
numerical boundary element analysis, while the dashed curve shows
the height as predicted by Eq. (25).

added significant micromotion. The measured ratio of radial
to axial secular frequencies was ωρ

ωz
= 0.38 ± 0.01, which

deviates significantly from the expected 0.50 (according to
the model, the ratio remains unaffected by the addition of
the second rf). Possible sources for deviation from the ideal
model include the dc potentials, which were added to ensure
a well-compensated trap but which could have shifted secular
frequencies. In particular, as the ion is brought closer to
the trap surface, it is more susceptible to the effects of dc
potentials. Such fields may also break the degeneracy of the

radial modes. We have, in fact, observed such separate radial
modes, although in the case of the data in Fig. 10, they were
only separated by about 20 kHz, and thus average radial values
are presented in that figure. We have numerically confirmed
that the trap’s dc potentials yield simultaneously a splitting of
20 kHz in the radial modes and a modified secular frequency
ratio of 0.40.

V. CONCLUSIONS

We have presented an analytic model of a circularly
symmetric rf surface trap and its experimental validation.
This particular geometry offers several advantages for further
investigations in quantum information processing. First, the
shape of the resulting potential leads to confinement of 2D ion
crystals, which may be used as a platform for quantum sim-
ulation of interacting spins. Second, because the confinement
is achieved through the ring electrode alone, the trap permits
a straightforward scheme for variation of ion height in situ. In
this work, we have demonstrated almost an ion height variation
over 200–1000 µm, which may then, for instance, be used for
a stringent test of the supposed z−4

0 scaling in anomalous ion
heating. Finally, the axial symmetry of the trap lends itself
to natural integration with optical fibers. Such a device, in
turn, could serve as nodes in a quantum network or provide an
interface medium between ions and cold neutral atoms.
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