

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’09 March 7–11, 2009, Washington, DC, USA.
Copyright © 2009 ACM 978-1-60558-406-5/09/03…$5.00.

Architectural Implications of Nanoscale Integrated

Sensing and Computing

Constantin Pistol Wutichai Chongchitmate Christopher DwyerŦ Alvin R. Lebeck

Department of Computer Science

 ŦDepartment of Electrical and Computer Engineering

Duke University

Durham, NC 27708

costi@cs.duke.edu, wutichai.chongchitmate@duke.edu, dwyer@ece.duke.edu, alvy@cs.duke.edu

Abstract

This paper explores the architectural implications of inte-

grating computation and molecular probes to form nanos-

cale sensor processors (nSP). We show how nSPs may

enable new computing domains and automate tasks that

currently require expert scientific training and costly

equipment. This new application domain severely con-

strains nSP size, which significantly impacts the architec-

tural design space. In this context, we explore nSP

architectures and present an nSP design that includes a sim-

ple accumulator-based ISA, sensors, limited memory and

communication transceivers. To reduce the application

memory footprint, we introduce the concept of instruction-

fused sensing. We use simulation and analytical models to

evaluate nSP designs executing a representative set of target

applications. Furthermore, we propose a candidate nSP

technology based on optical Resonance Energy Transfer

(RET) logic that enables the small size required by the ap-

plication domain; our smallest design is about the size of

the largest known virus. We also show laboratory results

that demonstrate initial steps towards a prototype.

Categories and Subject Descriptors C.1.0 [Computer

System Organization]: Processor Architectures – General

General Terms Design, Performance

1. Introduction

Understanding molecular scale phenomena is a critical

component of many scientific disciplines. The ability to

retrieve nanoscale information from within macroscale sys-

tems is particularly useful in biological fields where the

diversity of molecular components and interaction dynam-

ics within a cell make it difficult to monitor and quantify

the underlying processes. Current methods rely on custom

designed molecules—called molecular probes—that alter

their observable properties to acquire real-time information

about nanoscale phenomena.

Molecular probes are important members in the biologi-

cal scientist’s tool box, however they generally function as

standalone sensors. Furthermore, their use requires costly

equipment, highly specialized training and often the expe-

riments span several days [23]. These limitations prevent

the application of molecular probes in monitoring complex

biological processes with low cost. For example, at home

early disease detection could be achieved with a low-cost

device capable of monitoring important markers of bioac-

tivity and cellular health, such as concentrations of specific

proteins or small messenger RNA (mRNA) molecules [6].

The challenge is to develop techniques that provide low

cost, efficient monitoring of complex molecular scale bio-

logical processes.

Computing is often used to monitor complex processes

or automate tasks that require expert training. However,

biological scale computing represents a new domain for

computing with very different constraints from traditional

computing systems. For example, this new computing do-

main requires the ability to diffuse through a volume of

small molecules, computing in and sampling the same local

environment as a molecular probe (e.g., the homogenized

contents of a cell). This size requirement excludes current

CMOS solutions since large (several microns) silicon chips

do not diffuse freely. Although a CMOS processing core

connected to bio-sensors [24] could read and process chem-

ical information, it would not be able to automate molecular

probe applications because of its large aggregate size. For-

tunately, recent advances in nanotechnology may provide

the appropriate capabilities for molecular scale biologically

compatible computing.

This paper presents the concept of a nanoscale sensor

processor (nSP), which addresses the above challenges

through the integration of molecular probe sensors and mo-

lecular scale digital logic. An nSP is a nanoscale sized sys-

tem that can sense, process, store and communicate

molecular information. A generic nSP has several compo-

nents: sensor array for environment monitoring, simple pro-

cessor core, small memory for state and programs and a

communication device for information transfer to the ma-

croscale. Each element of the sensing array is a molecular

probe designed to detect the presence of a specific target

molecule—called an analyte—through chemical bonding.

The size restriction for molecular probe applications re-

quires a computational substrate that can cost-effectively

support meaningfully complex circuits with nanometer fea-

ture sizes and provide sensing ability. There are many ex-

amples of nanotechnology (e.g., carbon nanotubes[2, 27],

silicon nanorods[12], DNA/enzymatic reactions[3]) that

provide both a logic system and sensing capability. In this

paper we focus on one specific technology—called Reson-

ance Energy Transfer logic—as the basis for our nSP de-

sign, see Section 2. However, we note that much of our

analysis and architectural design is independent of the spe-

cific technology.

The architectural design space of an nSP is strongly in-

fluenced by the limited size and by the target application

characteristics. Section 3 presents several applications that

vary in complexity and discusses the characteristics that

influence nSP architecture design. These characteristics

include: 1) long time scales, 2) accumulating values, 3)

waiting for an event, and 4) processing groups of individual

sensor values as an aggregate.

Section 4 presents our nSP architecture, a simple accu-

mulator data path with variable length instructions (either 4

bits or 12 bits). We present two different designs that im-

plement the same base ISA, but differ in operand width and

the amount of memory provided. The Standard design pro-

vides 256 4-bit memory locations while the Tiny implemen-

tation provides only 16 4-bit memory locations. We also

introduce the concept of instruction-fused sensing that ex-

ploits unified compute/sensing technologies to enable direct

environmental modification of instruction bits, and thus

reduce overall code size.

We evaluate our nSP designs in Section 5 using simple

models and a custom simulator. Our results show that the

Standard design occupies approximately 2.5µm x 2.5µm

while the Tiny implementation requires approximately

800nm x 800nm, comparable to the largest known virus.

We demonstrate that our target applications can fit within

the restricted memory space of the Standard nSP, and that

four of our five applications can be implemented in the 8

Bytes of memory on a Tiny nSP. We also explore the de-

sign tradeoffs in our nSP instruction set and use simulation

to demonstrate the execution of applications in a time vary-

ing chemical environment.

Related work is discussed in Section 6 and we conclude

in Section 7.

2. Enabling Technology

The integration of computation and sensing in a nanoscale

package imposes challenging requirements on the underly-

ing technology and manufacturing of nSPs. To date there is

no clear winner in the field of nanotechnology for compu-

ting or sensing. Carbon nanotube and ring-gated nanorod

FETs are hopeful candidates, but obtaining control over the

precise device length and precise placement for arbitrary

patterns remain open challenges.

We propose using a new nanoscale technology for nSPs

based on single-molecule optical devices called chromo-

phores [5, 19]. In isolation, a given chromophore absorbs

photons of a specific wavelength and emits photons at a

different, lower energy, wavelength. However, when appro-

priate chromophores are placed a few nanometers apart the

energy of an absorbed photon can be transferred to a neigh-

boring chromophore through a process called Resonance

Energy Transfer (RET). This process is frequently used for

molecular scale sensing (e.g., molecular beacons or molecu-

lar rulers) [14]. RET also provides a theoretical foundation,

that we are exploring, for the creation of pass gates (both

inverting and non-inverting) using four chromophores per

gate. These gates form a complete Boolean logic set we call

RET-logic.

A key requirement for RET-logic is to place unique

chromophores within a few nanometers of each other. Un-

fortunately, creating such devices using conventional top-

down fabrication techniques is costly and increasingly

complex. Creating sophisticated circuits by placing individ-

ual atoms requires more energy and time than exploiting

chemical self-assembly techniques. Furthermore, self-

assembly enables fabrication through composition and hie-

rarchies. Different types of molecules can be fabricated

independently using the most cost-effective method for

each type of molecule. Larger motifs can then be created

through the composition of heterogeneous molecules.

RET-logic uses DNA-based self-assembly as the fabrica-

tion method to place chromophores within specified dis-

tances. The specific DNA nanostructures we use are grids

where we can place two pass gates and one wire crossover

per grid vertex. The grids can be hierarchically assembled

to create large arrays of pass gates—the nanoscale equiva-

lent to a sea-of-gates.

The next section describes some of the characteristics

and tradeoffs of RET-logic computational elements inte-

grated on self-assembled DNA substrates, followed by an

overview of current experimental progress towards an nSP

prototype.

2.1 RET-logic Circuits

We designed several RET-logic circuits and performed

manual layout on DNA grids. The layouts in Figure 1 show

implementations of common RET-logic circuit components

(decoder, memory, and 1-bit full adder cells) on a 20nm-

pitch DNA substrate. We use inverting and non-inverting

pass gates; wires are annotated with the frequency of their

specific optical signal (a>b>c>d>g).

Each RET gate has an operational energy cost: the out-

put signal is at a longer wavelength than the input. Signal

restoration from long wavelengths (low energy) to short

wavelengths (high energy) requires additional energy. The

pass gates can provide this functionality if the input to the

pass gate is generated from an external far-field optical

source, called an optical pump (conceptually analogous to

Vdd), and the gate is controlled by the signal to either in-

vert or pass. These restoring gates are shown in a darker

shade in Figure 1. Since “Vdd” is a far field signal it does

not need to be routed. This lack of routing overhead applies

to all global inputs (like the clock signal) and is a signifi-

cant advantage of RET-logic in area-constrained designs.

From first-principles analysis we expect the switching time

for a FO1 pass-gate to be approximately 2ns with a thermal-

ly dissipated power of less than 0.4nW. Communication

with external receivers can be implemented using open-

ended wires with dedicated emission wavelengths.

The memory cell in Figure 1 is a volatile SRAM design.

Non-volatile memory could similarly be implemented using

a special class of chromophores that have two switchable,

stable molecular states [10]. The drawback of using non-

volatile photo-switches is that the write time is much slower

than that of an SRAM cell (ms vs. ns). We leave exploring

non-volatile memory in nSPs as future work.

2.2 RET-based Sensing

RET sensors are devices that transduce a molecular recog-

nition event, such as the binding of a target analyte, into a

modulation of their optical RET properties. A wide range of

biological RET sensors are currently available [14]. The

fundamental property that these sensors employ is the de-

pendence of RET on chromophore separation. RET only

occurs when chromophores are sufficiently close (a few

nm), and decreases as the distance increases. For sufficient-

ly separated chromophores, RET will not occur. Sensors

can be designed to enhance RET or prevent RET when a

molecular recognition event occurs. Since RET sensors use

the same inter-chromophore energy transfer as RET-logic

they can interface directly with RET-logic circuits.

2.3 Preliminary Experimental Results

This section presents initial results toward fabricating an

nSP using RET-logic. The purpose of this experiment is to

demonstrate three main points: 1) that with the DNA grid

we can place chromophores sufficiently close to achieve

RET interaction, 2) demonstrate simple wired-OR RET

logic, and 3) show that the DNA grid can bind analytes (in

this case proteins) using antibodies placed at precise loca-

tions on the grid surface.

The cruciform motif we use to build the DNA grid is

shown in Figure 2a. The motif is composed from three

smaller motifs: a core, four shells, and four arms. Figure 2

also shows AFM images of (b) a 60x60nm hierarchically

assembled grid, (c) the same grid with a protein pattern and

(d) a 140x140nm grid each assembled in our laboratory

using existing methods [18].

Using chemistry similar to that used to attach proteins it

is possible to attach chromophores to specific sites on the

DNA grid. The available sites on each grid occur at the

intersection between motifs and at the center of the cruci-

form motif. The spacing between sites at the motif intersec-

tions is ~1.3nm and ~20nm between motif centers. The

wired-OR gate is assembled using three chromophores, two

for the input signals (Oregon Green and Alexa Fluor 535)

and one for the output signal (Rhodamine Red) attached to

the grid as shown in Figure 3. The two inputs are excited by

wavelengths of light at 488nm and 518nm for Oregon

Green and Alexa Fluor 535, respectively. The input chro-

mophores undergo RET with the Rhodamine Red output

chromophore, which has an emission peak at 590nm.

We experimentally assemble DNA substrates with the at-

tached OR-gates as described above. A fluorometer meas-

ures the output of the assembly in the 300-800nm range

under various input conditions. Input excitation is generated

by a custom dual-beam excitation source. We estimate that

a

c

d

a

d

b

b

g

g a

b

b

a

AB

C_OUT
C_INc

ac C_IN

S

C_OUT

a

c

d

a

d

b

b

g

g a

b

b

a

AB

C_OUT
C_INc

ac C_IN

S

C_OUT

a

c

b

b

c

g

S0 E

O0

b

O3

O1

O2
a

g

d

c

c

S1

b
a

a

c

b

b

c

g

S0 E

O0

b

O3

O1

O2
a

g

d

c

c

S1

b
a

c b

a

g

g a

c

d

b

R_S

 D

W_S

c

a) SRAM Mem. Cell b) 2 to 4 Decoder c) 1-bit Full Adder
 60nmx40nm 60nmx40nm 40nmx40nm

Figure 1. RET logic circuit layouts on DNA substrate.
Grid spacing is 20nm.

Shell

Arm

Core

Shell
Arm

Core

 (a) (b) (c) (d)

Figure 2. (a) Schematic of a Cruciform Motif and Atomic
Force Microscopy Images of (b) 60x60nm DNA Grid , (c)
Grid with Bound Proteins and (d) 140x140nm Grid.

Figure 3. Observed RET Output (in Optical Fluores-
cence Counts) from the OR-gate with 488nm (IN 1)
and 518nm (IN 2) excitation.

Input 1
(488nm)

Input2
(518nm)

RET Output
(590nm)

OFF OFF 0

ON OFF 39

OFF ON 31

ON ON 70

the sample contains ~1012 gates. The experimental results

using inputs of 488nm (IN 1), 518nm (IN 2) and simultane-

ous 488nm/518nm (IN 1 + IN 2) are shown in the table in

Figure 3. We isolate the specific contribution of the output

(RR) chromophore due to RET from the background fluo-

rescence by subtracting the normalized readout of a base-

line grid assembly with the same chromophores placed at

distances much greater than their respective near-field inte-

raction radii (thereby preventing RET).

These results demonstrate the capability to place three

chromophores sufficiently close to transfer excited-state

energy from two distinct inputs to the same output, charac-

teristic of an OR-gate. As part of our future work we are

exploring the fabrication of inverting and non-inverting

pass gates.

The technology presented in this section forms the foun-

dation for biologically compatible computing and sensing,

and we believe it will be possible in the future to fabricate

nSPs. Understanding the technology is only part of archi-

tecting a system. We must also gain an understanding of the

application requirements. The next section discusses several

potential applications.

3. nSP Applications

One of the critical design requirements for an nSP is that

it be small enough to diffuse through small volumes. A typ-

ical red blood cell width is approximately 6-8µm and we

envision applications that require operation within a cell.

The RET-logic nanotechnology described above only pro-

vides the potential to create appropriately sized nSPs. To

meet the severe size constraints, even RET-logic systems

must be carefully architected. To achieve this we need to

understand the computational requirements of the biological

applications.

To illustrate the diverse application space we selected

several target applications that we believe are representative

of an nSP’s potential. These applications are: 1) early dis-

ease detection, 2) custom multi-analyte molecular probes,

3) molecular kinetics analysis, 4) monitoring complex bio-

logical scale processes, and 5) imaging below the diffrac-

tion limit. We discuss each application in more detail

below.

 Our goal is to understand the applications’ requirements

such that we can architect an appropriate nSP system. To

achieve this we consider two aspects of each application: 1)

the algorithm to perform and 2) timing constraints. The

algorithm specifies, at a high level, the computation to per-

form and is used to determine which primitive operations to

support. The timing constraint sets bounds, both upper and

lower, on the latency of a primitive operation or an entire

computation.

For many biological applications the expected timescales

are in the range of seconds to minutes [9]. These times are

generally determined by either chemical reaction rates or

molecular interaction rates. For example, sensors can be

either reversible or irreversible. For irreversible sensors,

once the analyte binds to the sensor it is bound forever. In

contrast, for reversible sensors the analyte will eventually

detach from the sensor. Timescales for irreversible sensors

are determined by the binding rate of the analyte. A revers-

ible sensor’s time dependent behavior can be characterized

by two parameters: 1) a period, and 2) a dwell time. The

period is defined as the time between two distinct binding

events, and the dwell time is the time an analyte stays

bound to the sensor after the binding event. The period and

dwell time of a sensor often represent average values for a

probabilistic distribution of times.

A) Pathogen Counting B) Multi-Analyte Probe C) Finite Impulse Filter
while (true) {
 sample = read_sensor(P)
 if (sample != last_sample) {
 count += sample
 last_sample = sample }
 if (send_data = true) {
 output(count)
 count=0}}

wait until (read_sensor(A) = true)
wait until (read_sensor(B) = true

and
 read_sensor(C) = true)
wait until (read_sensor(D) = true

and
 read_sensor(A) = false)
output(true)

while (true) {
 sample = 0
 for k = 1 to M {
 sample += read_sensor()}
 d[last] = sample
 y = 0
 for k = 1 to N {
 y += c[k]*d[(last+k)%N]}
 last = (last+1)%N
 output(y) }

D) Kinetic Analysis E) Imaging

Table 1. Pseudocode for nSP tar-
get applications.

while (true) {
 sample = 0
 for k = 1 to M {
 sample += read_sensor()}
 output (sample) }

while (true) {
 if (send_data = true)
 for i = 1 to N {
 output(sensor_read(i))}}

We present pseudocode for each of the applications with

the goal of demonstrating that an nSP can provide capabili-

ties beyond a single sensor. This pseudocode assumes the

ability to read a specified sensor (i.e., read_sensor(name))

that targets a particular analyte and returns a Boolean value,

True when the analyte is bound to the sensor, False other-

wise. We also assume the ability to output an integer value.

Early disease detection. Integrating multiple pathogen sen-

sors on an nSP can address the early detection problem

through in vivo or in vitro biological monitoring over ex-

tended time windows. A program can count the number and

type of binding (or detection) events over this window. At

periodic intervals the nSP is queried for their event counts

and the information is aggregated and compared against

normal thresholds. The algorithm shown in Table 1A is an

algorithm for counting pathogen binding events. An anti-

hemagglutinin based sensor that detects the influenza A

typical virus has a dwell time of 1-1.5 seconds and an ex-

pected period of minutes [15] at dilute concentration.

Custom Multi-Analyte Molecular Probes. Integrating sev-

eral molecular probes on an nSP presents the possibility of

detecting complex sequences and combinations of envi-

ronment conditions. Table 1B shows an example program

that outputs True when a specific combination and order of

analytes is detected. The timescale is defined by the rates of

monitored reactions and varies from minutes to ns depend-

ing on their biological or non-biological nature.

Kinetic Analysis. The quantitative evaluation of specific,

reversible molecule binding is universally important in bi-

ology. Proteins interact with nucleic acids in gene expres-

sion, enzymes with substrates and inhibitors in metabolic

processes, antigens with antibodies in the immune system.

The binding interaction of two molecules at equilibrium is

characterized by binding and dissociation constants. Clas-

sical methods for measuring binding constants with biosen-

sors work at the macroscale and can involve many time

consuming repetitive steps [20]. nSPs can derive sensor-

analyte binding kinetics information in localized nanoscale

environments in real-time by sweeping the nSP clock cycle

time. The clock frequency is adjusted until the period and

the dwell time of the analyte are captured in a sensor inte-

gration window. The algorithm integrates the instant sensor

value for a fixed number of iterations and outputs the result

(Table 1D). The range of available nSP clock frequencies

determines the range of binding rate constants that can be

analyzed. Classic macroscale methods, e.g., quantitative

affinity chromatography, can measure binding constants

ranging from 102–109 mol/L.

Monitoring Complex Processes. The ability of nSP chips

to store and process nanoscale data across potentially large

reaction time windows could be used, for example, to com-

pute the average binding rate of a set of proteins or mRNA

molecules. The challenge is to perform this averaging at the

nanoscale over a large set of possible proteins (e.g., approx-

imately 4x105 unique proteins can be found in any individ-

ual human cell). A distributed set of nSPs, each designed to

detect a subset of the proteins, could employ diffusion to

sample and average protein concentrations over a large ob-

servation window to track protein expression.

In this type of complex process we expect nSPs to

process long series of sensor data using accumulation,

weighted averages, histograms or filters. Table 1C shows

the algorithm for a Finite Impulse Response (FIR) filter. In

the case of mRNA and proteins involved in gene activity

the kinetics are on a timescale of seconds to minutes [9],

although some processes, e.g., conformational changes of

signaling proteins, are at the ms scale [25].

Functional Imaging below the Diffraction Limit. The sen-

sor array of an nSP also provides implicit spatial informa-

tion because of the precise, pre-determined location of each

sensor. An interesting potential application of this fact is the

imaging of features smaller than the diffraction limit, the

fundamental resolution limit of optical microscopes. Mul-

tiple nSPs tiled on the surface of interest can serially trans-

mit the 2D “image” of their sensing arrays and optical

microscopy equipment can then combine the absolute nSP

orientation data in the optical image (a feature that is above

the diffraction limit) with the received nSP-relative infor-

mation to create a composite image of all sensors across all

nSPs. The same approach could potentially be used to im-

plement high density nanoscale gene chips. The algorithm

is shown in Table 1E, each nSP simply outputs the current

values for its entire sensor array.

Other applications may be developed if nSPs become

available, such as experiment-on-a-chip or nanoscale sensor

networks. We leave further exploration of additional appli-

cations as future work, and instead focus on designing a

single nSP based on our five representative applications.

Through inspection of the above applications we can ex-

tract several important characteristics that influence archi-

tectural designs, these include: 1) long time scales, 2)

accumulating values, 3) waiting for an event, and 4)

processing groups of individual sensor values as an aggre-

gate. The following section discusses how these characteris-

tics guide our architectural design.

4. An nSP Architecture

In this section we present our design for an nSP. We arrive

at this design by combining the various application charac-

teristics with the overarching requirement that an nSP must

be small enough to diffuse through small volumes. We be-

gin this section by discussing how these requirements quali-

tatively influence nSP architecture. This is followed by a

detailed presentation of our nSP architecture. Our goal is to

demonstrate that an nSP can be designed to meet the re-

quirements of this new computing domain. We leave opti-

mizing the architecture as future work.

4.1 Qualitative Architectural Implications

The nSP architecture is influenced by each of the applica-

tion characteristics either individually or when combined

with other characteristics. We discuss each of the characte-

ristics and its qualitative influence on architecture. First, the

long time scales (seconds to minutes) of biological applica-

tions implies that we do not need a high performance pro-

cessor core (e.g., no superscalar, out-of-order, deep

pipeline). Instead the architect can trade area for time using

a very simple processor core with complex operations syn-

thesized in software (e.g., multiply and divide).

The second characteristic is that many of the applica-

tions accumulate values over time either by counting

events, averaging, or integrating values that are monotoni-

cally increasing. This has several implications for the archi-

tecture. First, the computations can generally be performed

using fixed point arithmetic, avoiding the need for floating

point hardware. Second, the accumulated value may require

a larger range than the input value, thus leading to datapath

components wider than the memory/sensor width. Third,

accumulation is common enough that architectural support

is justified to help reduce code size.

The next application characteristic, waiting for an event,

is similar to accumulating a value in that on conventional

architectures it is implemented by reading a sensor value

within a loop and either incrementing a counter (accumulat-

ing) or checking if the sensor value has changed (wait for

event). Like accumulation, waiting for an event is suffi-

ciently common across the applications that the architecture

should provide support to reduce code size.

Finally, processing individual sensors as a group implies

that it may not be necessary for the architecture to support

access to individual sensor values. Instead it may be benefi-

cial to provide support for processing multiple sensor val-

ues as a single entity.

4.2 nSP Overview

We investigated 8-bit architectures for ultra-small control-

lers, e.g., the ST Microelectronics ST6 [21] and the Frees-

cale RSO8 [8], designed to be efficient and cost effective

with small memory sizes. These architectures, although

simple compared to mainstream designs, proved too com-

plex for the extreme area constraints of nSPs. We instead

elected to create an architecture streamlined for the ex-

pected applications and hardware limitations of nSPs.

Our nSP architecture is a simple accumulator-based pro-

cessor with a small amount of addressable memory/sensors.

Using a single-accumulator reduces the processor core

complexity and enables short 4-bit opcodes to support the

common recurring operations in nSP applications. Our

standard nSP design can address up to 256 4-bit words in a

unified instruction/data/sensor memory space. Instructions

are variable-length (4bit or 12bit) to decrease the memory

footprint of application code. A special variant of our archi-

tecture, called Tiny, is designed for the smallest nSPs with a

total memory space of only 8 bytes (16x4-bit).

4.3 Integrated Sensing

The sensor-centric nature of nSP applications means that

the interface between processing and sensing plays an im-

portant role in the system design. There are a variety of

ways that an nSP can support sensing. For instance, sensors

could be memory mapped. In this scenario, predetermined

memory addresses are set aside for access to sensed values

via load instructions. The method we explore in this paper

exploits the biological compatibility of the entire system

when using technologies like RET-logic. Since RET is the

method used for sensing and for computing, we can directly

integrate the sensing mechanisms into the system design.

Although there may be many ways to exploit an inte-

grated design methodology, in this paper we examine me-

thods for sensing to directly modify memory locations.

Specifically, certain SRAM cells can be augmented with

appropriate sensing mechanisms that force the memory lo-

cation to the value “1” (or “0” as needed). A technological

requirement is that the active area of the sensor must fit

within the confines of an SRAM cell. These environmental-

ly modified memory locations could be designed to provide

a set of memory-mapped sensors. However, this does not

exploit the full potential of a unified sensing and logic tech-

nology such as RET. Instead we can interleave sensor-

augmented SRAM cells with standard SRAM cells, includ-

ing those used for instruction opcode bits. For example, a

JMP opcode could be modified into a NOP opcode by a

sensor binding event. Similarly, instruction operands could

be modified by the sensing mechanism to change an arith-

metic operand or a branch target. We call this technique

instruction-fused sensing (IFS).

IFS provides a unique opportunity for hardware/software

co-design to improve code density. With only 8 to 128

bytes of memory available, judicious use of instructions is

paramount to providing sufficient computational abilities.

The simple task of querying a sensor to determine if a spe-

cific protein is present can require several bytes of instruc-

tion memory to load a value and compare it for branching.

Instead, a single branch instruction could be used that

changes to a nop (and escape) when the protein binds.

Using IFS can dramatically improve code density where

it is applicable. There is, however, a trade-off: the instruc-

tion becomes statically bound to the sensor. This can pre-

vent code reuse via procedures or looping. We note that

code reuse is valuable when the increase in code-size due to

procedure overhead is compensated by the removal of sig-

nificant inline code. In the limited memory and program

space of an nSP this break-even can be difficult to reach.

We evaluate this trade-off in more detail in Section 5.

4.4 The nSP ISA

Table 2 shows our nSP ISA which supports several com-

mon memory, arithmetic, and control transfer instructions.

Each of the instructions in the ISA is included because it

directly supports common operations in one or more appli-

cations. Note that the ISA lacks several instructions one

often considers standard, e.g., subtract, multiply, and di-

vide. These operations can all be synthesized with the pro-

vided instructions if needed. For brevity, when details are

necessary we discuss only the Standard nSP ISA.

Several of our nSP instructions are designed to reduce

application code size. The INCI instruction, which incre-

ments an 8-bit value using implicit addressing (PC relative),

is useful for accumulating single-bit sensor values and for

control loops, which are recurring operations in the nSP

applications. Several instructions also exploit IFS to reduce

code size. In particular, JMP, BNZ, INC and INCI all have

the option of using IFS. When declared sensitive to an ana-

lyte (A), these instructions turn into NOPs when that ana-

lyte binds to the appropriate memory location. To facilitate

this mechanism we encode a single-bit difference between

the opcode of these instructions and the NOP opcode.

When a sensor is fused to this bit location the opcode value

depends on the value of the sensor, as determined by the

presence or absence of an analyte. This requires careful

hardware/software co-design to ensure proper alignment of

code and sensors in the memory space.

We denote the analyte-dependence of an instruction by

placing the analyte name in parenthesis after the instruction.

Depending on the encoding of the binding event, the in-

struction can be NOP-ed by either the presence or the ab-

sence of the analyte. We use C-style (!) to indicate the

instruction is executed when the analyte is not sensed and

the analyte identifier alone when the instruction is executed

only in the presence of the analyte. For example, INC (!A)

means the accumulator is incremented only if the analyte A

is not present, else it is a NOP and has no effect.

Instruction operands, either immediate values or ad-

dresses, are 8-bit length, the same as the data granularity of

Instruction Op-

code

Standard RTL Tiny RTL Description

LD addr 0000 ACC[0..7] = M8[addr]; PC += 3 ACC[0..3] = M4[addr]; PC += 2 Load from memory

ST addr 0001 M8[addr] = ACC[0..7]; PC += 3 M8[addr] = ACC[0..4]; PC += 2 Store to memory

ADD addr 0010 ACC[0..15] += M8[addr]; PC += 3 ACC[0..7] += M4[addr]; PC += 2 Add unsigned from memory

ADDI imm 1100 ACC[0..15] += M8[PC+1]; PC += 3 ACC[0..7] += M4[PC+1]; PC += 2 Add unsigned immediate value

SHL 0100 ACC[0..15] = ACC[1..15] | 0; PC += 1 ACC[0..7] = ACC[1..7] | 0; PC += 1 Shift 1 position left

SHR 0101 ACC[0..15] = 0 | ACC[0..14] ; PC += 1 ACC[0..7] = 0 | ACC[0..6] ; PC += 1 Shift 1 position right

NOT 0110 ACC[0..7] = ! ACC[0..7]; PC += 1 ACC[0..4] = ! ACC[0..4]; PC += 1 Bitwise NOT

AND imm 1010 ACC[0..7] += M8[PC+1]; PC += 3 ACC[0..4] += M4[PC+1]; PC += 2 Bitwise AND

CLR 0011 ACC[0..15] = 0; PC += 1 ACC[0..7] = 0; PC += 1 Clear ACC

JMP addr (A) 1110 PC = M8[PC+1] PC = M4[PC+1] Jump to address

BNZ addr (A) 1101 If ACC[0..7] != 0
 PC = M8[PC+1]
Else PC += 3

If ACC[0..4] != 0
 PC = M4[PC+1]
Else PC += 2

Jump to addr if ! ACC

INC (A) 1011 ACC[0..15] += 1; PC+=1 ACC[0..7] += 1; PC+=1 Increment ACC

INCI imm (A) 0111 ACC[0..7] =M8[PC+1];
ACC[0..15]+=1;
M8[PC+1]=ACC; PC+=3

ACC[0..3] = M4 [PC+1];
ACC[0..7]+=1;
M4 [PC+1]=ACC;
PC+=2

Increment memory value, store
in memory and ACC

NOP 1111 PC += 3 PC += 2 No operation

OUT addr 1000 COMM = M8[PC]; PC += 3 COMM = M4[PC]; PC += 2 Output ACC

OUTCLR addr 1001 COMM = M8[PC]; PC +=3 COMM = M4[PC]; PC +=2 Output & clear memory

Table 2. Our nSP ISA: M8 = 8 bits starting at specified location, M4 = 4 bits. Standard has 16-bit Accumulator, 8-bit PC,

and 255 4-bit memory locations. Tiny has 8-bit Accumulator, 4-bit PC, and 16 4-bit memory locations.

loads and stores. This allows for easy address manipulation,

but most importantly it increases the numerical range for

operations performed on sensor data. One of the common

patterns we see in the nSP target applications is that indi-

vidual sensor data is accumulated in time before being fur-

ther processed, with the option of longer accumulation

times being more desirable. Native support for 8-bit arith-

metic increases the accumulation time interval from 16 to

256 cycles while avoiding the severe code size penalty that

would result from emulation with 4-bit instructions. The

accumulator is 16-bit for extended dynamic range in appli-

cations like FIR filters where double word samples are av-

eraged or multiplied through shift-and-add. The high 8 bits

of the accumulator can be accessed through explicit shifts

into the low 8 bits.

Defining only 8-bit wide memory operations could prove

restrictive given the single-bit granularity of sensors. In-

deed, accessing an individual sensor value through a wide

load can require additional bit masking and shifting. We

argue, however, that in cases where single bit sensor values

are necessary it is generally more efficient to use the com-

pact instruction-fused sensing mechanism. An analysis of

the target application algorithms shows three distinct cases

in which sensors are individually queried for their value:

1) branch outcome depends on an individual sensor value,

2) arithmetic result depends on an individual sensor value,

3) output of sensor values. The first two can be addressed

with IFS and the latter can bundle values for output and

separate values at a remote receiver.

4.5 Discussion

The above nSP architecture is designed to meet the re-

quirements of the new computing domain of biological

scale computing. The architecture is generic and can be

implemented in several different nanotechnologies that pro-

vide both sensing and digital logic. Size is a crucial con-

straint for an nSP architecture, as any device must be

capable of diffusing through small volumes. The architec-

ture presented in this section provides a set of novel me-

chanisms (e.g., instruction-fused sensing) that enable

compact implementations of important biological applica-

tions. The following section analyzes the ability of the pro-

posed architecture to satisfy the requirements of the target

applications.

5. Evaluation

In this section we evaluate our nSP architectures. We begin

with an analysis of the nSP size, followed by a discussion of

the applications implemented using the nSP ISA and the

memory resources required for execution. We then explore

the impact of instruction-fused sensing on program size and

conclude with simulation of applications monitoring time

varying environmental conditions.

5.1 Node Size

As previously noted, the size of an nSP is an important fac-

tor for biological applications. Here we use the RET-logic

layouts and characteristics described in Section 2.1 to esti-

mate the area of nSP implementations. Our preliminary

layout indicates that the Standard nSP implementation with

128 bytes of memory requires 2.5 x 2.5µm and a Tiny nSP

implementation with 8 bytes of memory requires

800x800nm. With a surface area comparable to the largest

known virus [22], the Tiny nSP could diffuse in the same

environments as the virus (e.g., a cell).

5.2 Program Size

We implemented the target applications for both the Stan-

dard and Tiny nSP architectures. The memory requirement

for the Standard implementation (code and data) ranges

between 9 and 11.5 Bytes with the exception of the moving

average filter which uses 59 Bytes. The Tiny implementa-

tions all fit within the limited 8 Byte memory space. For

most of the applications, the memory footprint is dependent

on the number of monitored sensors; more sensors requires

more memory space. For brevity, we present the Standard

nSP code for only two applications, pathogen counting and

a multi-analyte probe.

The nSP program in Figure 4 implements the pathogen

counting algorithm, which monitors a single, reversible,

pathogen sensor and outputs the number of 1-to-0 transi-

tions observed since the previous report. An 8-bit counter is

used to accumulate up to 255 events between output re-

ports. The total memory footprint is 11 Bytes and a saturat-

ing counter version (omitted for brevity) uses 14.5 Bytes.

This compact code is achieved by using IFS for event de-

tection (i.e., 1) a pathogen is present and 2) the result

should be transmitted). The INCI instruction also provides

compact accumulation of the counter.

0 JMP (!A) 0 // if not A jump to self
3 JMP (!B) 3 // if not B jump to self
6 JMP (!C) 3 // if not C jump to previous
9 JMP (!D) 9 // if not D jump to self
12 JMP (E) 9 // if not E jump to done
15 OUT 1 // output non-zero value

Figure 5. Multi-analyte probe implementation.

0 JMP (!send) 6 // if not sending, count
3 OUTCLR 13 // send data and clear
 // counter
6 JMP (!A) 18 // if no analyte is bound

 // go to 18
9 BNZ 0 // analyte is bound,
 // if acc is 0 go to next cycle
12 INCI // increment count, update acc
15 JMP 0 // jump to next cycle
18 CLR // clear acc (make last
 // event “not bound”)
19 JMP 0 // jump to next cycle

Figure 4. 8-bit event counter (Pathogen Counting).

The role of a multi-analyte probe is to detect specific se-

quences of analytes and their time order, in this example

(A) then (B and C) then (D and not E). We use IFS to map

the analyte ordering on top of executed control logic

(Figure 5) and guarantee that the program control path,

which is dynamically changed by the analytes, reaches its

output phase only when it interacts with the target sequence

of analyte events. A single IFS instruction (JMP) is suffi-

cient to sense and process each analyte in the intended

evaluation sequence. The total memory footprint for the

Standard nSP implementation is 8.5 Bytes.

The remaining applications all require less than the 128

Bytes available on the Standard nSP. Our FIR implementa-

tion, that uses a moving average, is the largest, most com-

plex application and it requires just below 60 Bytes. Kinetic

analysis and Imaging each require around 10 Bytes.

Table 3 shows the Tiny nSP implementations for four

applications. FIR is too complex to fit within the 8 Byte

limitation. The main cost of using Tiny nSPs is that dynam-

ic range for counting and accumulation is reduced from 8

bits to 4 bits and the total number of sensors that can be

monitored is much more limited. The fundamental advan-

tage of the Tiny nSP is their diminutive size: they can dif-

fuse through and sample molecular environments that are

inaccessible to the larger Standard nSP.

5.3 Impact of Instruction-Fused Sensing

A single IFS instruction can replace several non-IFS opera-

tions and significantly reduce the memory requirement for

applications. Figure 6 shows the IFS and non-IFS imple-

mentations of the sample multi-analyte probe application

for the Standard nSP. The non-IFS code allocates memory

locations for sensors and reads the sensor value with expli-

cit load operations, leading to memory footprint of 21 Bytes

versus the 9 Bytes of the IFS version.

Figure 7 shows the total memory required by IFS rela-

tive to non-IFS (load/store) implementations of our applica-

tions for the Standard nSP. IFS reduces the footprint

between 58%, in the case of the multi-sensor analyte probe,

and 5%, for the single-sensor, processing intensive FIR.

A tradeoff in using IFS is that instructions become stati-

cally bound to sensors, preventing conventional code size

reducing techniques, like procedures or loops. Figure 8

explores this tradeoff. For each application we show on the

y axis the number of sensors that can be processed by IFS

and LD/ST implementations as we increase the maximum

memory available on a Standard nSP. For both implementa-

tions we unroll loops when unrolling allows an increase in

the number of sensors for the given memory size.

Within the range of our Standard nSP addressable mem-

ory, 128 Bytes, IFS is generally more efficient than LD/ST,

i.e., more sensors

can be processed

for a given memo-

ry size. An excep-

tion is the

pathogen counter

application where

the traditional

LD/ST implemen-

tation is more ef-

ficient when

available memory

is more than 64

Bytes and we wish

to count more than

5 pathogens. With

more memory, loop overhead can be amortized over more

sensors. The same characteristic can be seen for the kinetic

analysis application; however, in this case the break-even

point where LD/ST becomes more memory efficient than

IFS is beyond the maximum addressable memory range of

our nSPs.

Figure 7. Impact of using IFS on the memory require-
ment of target nSP applications.

IFS vs LD/ST

0

10

20

30

40

50

60

70

80

90

100

Counter Multi-A Kinetic FIR mw Avg Image

Application

R
e
la

ti
v
e
 m

e
m

o
ry

 f
o
o
tp

ri
n

t
(%

)

IFS

LD/ST

0 LD 37

3 NOT

4 BNZ 0

7 LD 38

10 NOT

11 BNZ 7

14 LD 39

17 NOT

18 BNZ 7

21 LD 40

24 NOT

25 BNZ 21

28 LD 41

31 BNZ 21

34 OUT 3

37 sensorA

38 sensorB

39 sensorC

40 sensorD

41 sensorE

0 JMP (!A) 0

3 JMP (!B) 3

6 JMP (!C) 3

9 JMP (!D) 9

12 JMP (E) 9

15 OUT 3

Figure 6. Code
size impact of
IFS on the mul-
ti-analyte probe.

Up: IFS (9 bytes)

Right: LD/ST

 (21 bytes)

Counter Multi-Analyte

0 JMP (!send) 4
2 OUTCLR 9
4 JMP (!A) 12
6 BNZ 0
8 INCI
10 JMP 0
12 CLR
13 JMP 0

0 INCI (!A)
2 INCI (!B)
4 INCI (!C)
6 INCI count
8 BNZ 0
10 OUTCLR 1
12 OUTCLR 3
14 OUTCLR 5

Imaging Kinetic Analysis

0 INCI count
2 OUT 1
3 JMP 0
5-15 SENSORS

0 JMP (!A) 0
2 JMP (!B) 2
4 JMP (!C) 2
6 JMP (!D) 6
8 JMP (E) 6
10 OUT 2

Table 3. Tiny nSP Programs (8 Byte Memory Space).

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

Time (s)

n
S

P
 O

u
tp

u
t
(V

ir
u
s
 C

o
u
n

t)

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000

Time (s)

V
ir

u
s
 C

o
n
c
e
n

tr
a

ti
o
n
 (

[V
ir

u
s
]/
u
L

)

Figure 9. Influenza-A virus counting simula-
tion. The nSP node output (bottom) follows
the virus presence (top).

5.4 Application Simulation Results

We verify the expected output of nSP applications using a

simple cycle-level nSP functional simulator augmented with

chemical environment and sensor-analyte interaction simu-

lation. Memory access (for a 4-bit word, including sensor

read) and arithmetic operations are performed in a single

cycle. The total number cycles per instruction varies be-

tween 2 and 6 depending on instruction length and number

of memory accesses.

The environment simulation models time-varying con-

centrations of analytes and the corresponding binding and

dissociation events for each nSP sensor. The binding event

probability is modulated by binding and dissociative rate

constants which are explicitly specified for all distinct sen-

sor-analyte pairs.

For each application we initialize the nSP with the ap-

propriate program, simulate a chemical environment cha-

racteristic for that application and follow the program

output in time. The following details the results.

Pathogen Counting. We simulate an influenza virus en-

vironment using published pathogen period and dwell time

for anti-hemagglutinin based sensors [15]. Figure 9 (bottom

graph) shows the output of a Standard nSP running the pa-

thogen counting code from Figure 4 in the presence of a

time-varying pathogen concentration (top). The nSP clock

cycle time is 100Hz, and the output is requested, via an

external optical send signal, every 1000 seconds.

IFS vs LD/ST - Process Monitoring and Kinetic Analysis

1

11

21

31

41

51

61

71

81

0 16 32 48 64 80 96 112 128

Max Node Memory (bytes)

N
u

m
b

e
r

o
f

S
e

n
s
o

rs
 M

o
n

it
o

re
d IFS

LD/ST

Figure 8. Comparison of IFS and LD/ST implementations of applications. The available nSP node memory
(X axis) and the number of sensors to be processed (Y axis) influence the relative benefit of using IFS.

IFS vs LD/ST - Multi-Analyte Probe

1

11

21

31

41

51

61

71

81

91

0 16 32 48 64 80 96 112 128

Max Node Memory (bytes)

N
u

m
b

e
r

o
f

A
n

a
ly

te
s

 M
o

n
it
o

re
d IFS

LD/ST

IFS vs LD/ST - Molecular Event Counting

1

6

11

16

21

26

31

36

0 16 32 48 64 80 96 112 128

Max Node Memory (bytes)

S
e

n
s

o
r

C
o

u
n

te
rs

IFS

LD/ST

IFS vs LD/ST - Imaging

1

101

201

301

401

501

601

701

801

901

1001

0 16 32 48 64 80 96 112 128

Max Node Memory (bytes)

N
u

m
b

e
r

o
f

S
e
n

s
o

r
P

ix
e
ls

M
o

n
it
o

re
d

IFS

LD/ST

When requested, the program outputs the number of ob-

served pathogen binding events since the last transmission.

As expected, the value of the output is correlated with the

pathogen concentration and shows variations due to sto-

chastic (single-molecule) sensor binding. Observing this

trend could be used to diagnose an infection.

The minimum nSP clock cycle time is determined by the

timescale of the analyte-sensor interaction. If the program

samples sensors too slowly, then binding events could be

missed. In this experiment the critical sampling threshold is

less than 1 second (the average dwell time for this patho-

gen-sensor combination). Thefore, the nsP clock rate must

be fast enough to ensure the program samples the sensors

frequently enough. Figure 11 shows the output of the virus

counting application running at various nSP clock rates

(averaged over ten queries taken 1000 seconds apart). The

virus concentration and the window of time over which the

nSP counts binding events are held constant. Given our

multicycle nSP, the clock frequency must be 100 Hz or

greater to avoid a misdiagnosis. At lower clock rates patho-

gen binding events are missed as reflected by the decreas-

ing counter value.

Multi-Analyte Probe. We model 5 generic analytes (A-

E) and execute the molecular probe application code from

Figure 5, which detects the (A) then (B and C) then (D and

not E) sequence of events. Figure 10 shows the input con-

centration of each analyte and the program output (OUT)

over time.

The result emphasizes the local, single-molecule sensing

characteristics of the probe. Even though there is still some

concentration of analyte E present in the system, the pro-

gram asserts its detection output (just before the 8s mark).

The reason is the stochastic nature of the output decision,

based on instantaneous nSP-local values of sensors which

will probabilistically encounter time intervals with no

bound analyte, even if globally the analyte is still present.

This could be eliminated by observing analytes over a long-

er window of time to determine their presence or absence.

6. Related Work

The most closely related work to ours falls within the gen-

eral realm of amorphous computing [1], which is predicated

on the existence of large numbers of inexpensive devices

with limited computational ability, limited memory capaci-

ty, and limited communication range. The set of potential

applications for amorphous computing is vast, ranging from

smart paint to in vivo computation for biological applica-

tions. Our work also has similarities to early microproces-

sor designs [7] and the broad area of sensor networks [11,

13] and ultra-low power sensor processors [26]; however,

our small scale creates significantly different resource con-

straints. Other work explores novel molecular logic, but

currently only presents individual gate functionality [3].

Other closely related work includes the Decoupled Array

Multiprocessor (DAMP) [4], the Nano-scale Active Net-

work Architecture (NANA) [16] and the Self-Organizing

SIMD Architecture (SOSA) [17] which all use DNA-based

self-assembly of nano-electronic devices. Our work also

uses DNA self-assembly but focuses on novel single mole-

cule optical devices, thus achieves higher density and pro-

vides an efficient method for macro-scale interfacing (pitch

matching in electronics).

7. Conclusion

Two driving forces on computer architecture are applica-

tion requirements and technology change. The combination

of important problems in the life sciences and advances in

material science are exposing a new computational domain:

biological scale integrated sensing and processing. The

ability to utilize programmable devices at biological scales

may enable life scientists to perform hypothesis testing pre-

0

5

10

15

20

25

30

35

40

45

1000Hz 100Hz 10Hz 1Hz 0.1Hz

nSP Clock Frequency

V
ir

u
s

e
s

 D
e

te
c

te
d

 (
C

o
u

n
te

d
)

Figure 11. The pathogen binding kinetics determine the
minimum nSP clockrate before counting becomes inac-
curate due to missed events.

0

50

100

150

0 2 4 6 8 10

A

0

50

100

150

0 2 4 6 8 10

B

0

50

100

150

0 2 4 6 8 10

C

0

50

100

150

0 2 4 6 8 10

D

0

50

100

150

0 2 4 6 8 10

E 0

1

2

0 2 4 6 8 10

Time (s)

OUT

Figure 10. Multi-analyte probe simulation: the node output (OUT) depends on the sequence of analytes (A,B,C,D,E).

viously thought impossible. This domain presents new chal-

lenges to computer architects due to the extreme size con-

straints: a device must be capable of diffusing through small

volumes while still meeting application requirements.

This paper introduces an architecture for nanoscale sens-

ing and processing. We analyze the application characteris-

tics (e.g., long time scales and common operations) to

design a multicycle accumulator-based architecture. A nov-

el aspect of this architecture is the use of instruction-fused

sensing that exploits the unified use of nanoscale devices

for both sensing and logic design to allow sensors to direct-

ly modify logic values (i.e., instruction opcode bits). We

implement several representative applications that execute

on our proposed architecture and demonstrate capabilities

(e.g., sensing based on complex logic) beyond those

achievable with current simple biological sensors. The work

presented in this paper represents our first steps toward

developing biological scale computing systems.

Acknowledgments

This work is supported in part by the National Science

Foundation (CCF-0829911, CCF-0702434), Agilent, IBM.

References

[1] H. Abelson, et al., "Amorphous Computing," Communi-

cations of the ACM, vol. 43 (5), pp. 74-82, 2000.
[2] A. Bachtold, et al., "Logic Circuits with Carbon Nano-

tube Transistors," Science, vol. 294, pp. 1317-1320,
2001.

[3] A. P. de Silva and N. D. McClenaghan, "Molecular-
Scale Logic Gates," Chemistry - A European Journal,
vol. 10 (3), pp. 574-586, 2004.

[4] C. Dwyer, et al., "DNA Self-assembled Parallel Comput-
er Architectures," Nanotechnology, vol. 15, pp. 1688-
1694, 2004.

[5] C. Dwyer, et al., "Energy Transfer Logic on DNA Nano-
structures: Enabling Molecular-Scale Amorphous Com-
puting," in Proceedings of the 4th Workshop on Non-

Silicon Computing (NSC4), pp. 33-40, 2007.
[6] D. Endy, "Foundations for Engineering Biology," Na-

ture, vol. 438 (7067), pp. 449-453, 2005.
[7] F. Faggin and M. E. Hoff, "Standard parts and custom

design merge in four-chip processor kit," Electronics, pp.
112-116, 1972.

[8] S. Freescale, "MC9RS08KA2, MC9RS08KA2 Data-
sheet," 2007.

[9] I. Golding, et al., "Real-Time Kinetics of Gene Activity
in Individual Bacteria," Cell, vol. 123 (6), pp. 1025-
1036, 2005.

[10] M. Heilemann, et al., "Carbocyanine Dyes As Efficient
Reversible Single-molecule Optical Switch," Journal of

the American Chemical Society, vol. 127 (11), pp. 3801--
3806, 2005.

[11] J. Hill, et al., "System Architecture Directions for Net-
worked Sensors," in Proceedings of the Ninth Interna-

tional Conference on Architectural Support for

Programming Languages and Operating Systems, pp.
93--104, 2000.

[12] Y. Huang, et al., "Logic Gates and Computation from
Assembled Nanowire Building Blocks," Science, vol.
294, pp. 1313-1317, 2001.

[13] P. Juang, et al., "Energy-efficient Computing for Wild-
life Tracking: Design Tradeoffs and Early Experiences
with Zebranet," in Proceedings of the 10th International

Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 96--107, 2002.
[14] J. R. Lakowicz, Principles of Fluorescence Spectrosco-

py. New York: Kluwer Academic / Plenum Publishers,
1999.

[15] F. Patolsky, et al., "Electrical Detection of Single Virus-
es," Proceedings of the National Academy of Sciences,
vol. 101 (39), pp. 14017--14022, 2004.

[16] J. P. Patwardhan, et al., "NANA: a Nano-scale Active
Network Architecture," J. Emerg. Technol. Comput.

Syst., vol. 2 (1), pp. 1-30, 2006.
[17] J. P. Patwardhan, et al., "A Defect Tolerant Self-

organizing Nanoscale SIMD Architecture," in Proceed-

ings of the 12th International Conference on Architec-

tural Support for Programming Languages and

Operating Systems, pp. 241-251, 2006.
[18] C. Pistol and C. Dwyer, "Scalable, low-cost, hierarchical

assembly of programmable DNA nanostructures," Nano-

technology, vol. 18, pp. 125305-9, 2007.
[19] C. Pistol, et al., "Nanoscale Optical Computing using

Resonance Energy Transfer Logic," IEEE Micro, vol 28
(6) Nov-Dec, 2008.

[20] R. L. Rich and D. G. Myszka, "Survey of the year 2001
commercial optical biosensor literature," Journal of Mo-

lecular Recognition, vol. 15 (6), pp. 352-376, 2002.
[21] Stmicroelectronics, "ST6200C/ST6201C/ST6203C Data-

sheet," 2007.
[22] M. Suzan-Monti, et al., "Genomic and evolutionary as-

pects of Mimivirus," Virus Research, vol. 1 (117), pp.
145-155, 2006.

[23] C. M. Tsai and C. E. Frasch, "A sensitive silver stain for
detecting lipopolysaccharides in polyacrylamide gels,"
Anal Biochem, vol. 119 (1), pp. 115-119, 1982.

[24] T. Vo-Dinh, et al., "DNA Biochip Using a Phototransis-
tor Integrated Circuit," Analytical Chemistry, vol. 71 (2),
pp. 358--363, 1999.

[25] A. J. Wand, "Dynamic activation of protein function: A
view emerging from NMR spectroscopy," Nature Struc-

tural Biology, vol. 8 (11), pp. 926-931, 2001.
[26] B. Zhai, et al., "A 2.60pj/inst Subthreshold Sensor Pro-

cessor for Optimal Energy Efficiency," VLSI Circuits,

2006. Digest of Technical Papers. 2006 Symposium on,
pp. 154--155, 2006.

[27] T. Zhang, et al., "Recent Progress in Carbon Nanotube-
based Gas Sensors," Nanotechnology, vol. 19 (33), 2008.

