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Abstract  

This paper explores the architectural implications of inte-

grating computation and molecular probes to form nanos-

cale sensor processors (nSP).  We show how nSPs may 

enable new computing domains and automate tasks that 

currently require expert scientific training and costly 

equipment. This new application domain severely con-

strains nSP size, which significantly impacts the architec-

tural design space. In this context, we explore nSP 

architectures and present an nSP design that includes a sim-

ple accumulator-based ISA, sensors, limited memory and 

communication transceivers. To reduce the application 

memory footprint, we introduce the concept of instruction-

fused sensing. We use simulation and analytical models to 

evaluate nSP designs executing a representative set of target 

applications. Furthermore, we propose a candidate nSP 

technology based on optical Resonance Energy Transfer 

(RET) logic that enables the small size required by the ap-

plication domain; our smallest design is about the size of 

the largest known virus. We also show laboratory results 

that demonstrate initial steps towards a prototype. 

Categories and Subject Descriptors C.1.0 [Computer 

System Organization]: Processor Architectures – General 

General Terms  Design, Performance 

1. Introduction 

Understanding molecular scale phenomena is a critical 

component of many scientific disciplines. The   ability to 

retrieve nanoscale information from within macroscale sys-

tems is particularly useful in biological fields where the 

diversity of molecular components and interaction dynam-

ics within a cell make it difficult to monitor and quantify 

the underlying processes. Current methods rely on custom 

designed molecules—called molecular probes—that alter 

their observable properties to acquire real-time information 

about nanoscale phenomena.  

Molecular probes are important members in the biologi-

cal scientist’s tool box, however they generally function as 

standalone sensors. Furthermore, their use requires costly 

equipment, highly specialized training and often the expe-

riments span several days [23]. These limitations prevent 

the application of molecular probes in monitoring complex 

biological processes with low cost. For example, at home 

early disease detection could be achieved with a low-cost 

device capable of monitoring important markers of bioac-

tivity and cellular health, such as concentrations of specific 

proteins or small messenger RNA (mRNA) molecules [6]. 

The challenge is to develop techniques that provide low 

cost, efficient monitoring of complex molecular scale bio-

logical processes.  

Computing is often used to monitor complex processes 

or automate tasks that require expert training. However, 

biological scale computing represents a new domain for 

computing with very different constraints from traditional 

computing systems. For example, this new computing do-

main requires the ability to diffuse through a volume of 

small molecules, computing in and sampling the same local 

environment as a molecular probe (e.g., the homogenized 

contents of a cell). This size requirement excludes current 

CMOS solutions since large (several microns) silicon chips 

do not diffuse freely. Although a CMOS processing core 

connected to bio-sensors [24] could read and process chem-

ical information, it would not be able to automate molecular 

probe applications because of its large aggregate size. For-

tunately, recent advances in nanotechnology may provide 

the appropriate capabilities for molecular scale biologically 

compatible computing. 



This paper presents the concept of a nanoscale sensor 

processor (nSP), which addresses the above challenges 

through the integration of molecular probe sensors and mo-

lecular scale digital logic. An nSP is a nanoscale sized sys-

tem that can sense, process, store and communicate 

molecular information. A generic nSP has several compo-

nents: sensor array for environment monitoring, simple pro-

cessor core, small memory for state and programs and a 

communication device for information transfer to the ma-

croscale. Each element of the sensing array is a molecular 

probe designed to detect the presence of a specific target 

molecule—called an analyte—through chemical bonding. 

The size restriction for molecular probe applications re-

quires a computational substrate that can cost-effectively 

support meaningfully complex circuits with nanometer fea-

ture sizes and provide sensing ability. There are many ex-

amples of nanotechnology (e.g., carbon nanotubes[2, 27], 

silicon nanorods[12], DNA/enzymatic reactions[3]) that 

provide both a logic system and sensing capability. In this 

paper we focus on one specific technology—called Reson-

ance Energy Transfer logic—as the basis for our nSP de-

sign, see Section 2. However, we note that much of our 

analysis and architectural design is independent of the spe-

cific technology. 

The architectural design space of an nSP is strongly in-

fluenced by the limited size and by the target application 

characteristics. Section 3 presents several applications that 

vary in complexity and discusses the characteristics that 

influence nSP architecture design. These characteristics 

include: 1) long time scales, 2) accumulating values, 3) 

waiting for an event, and 4) processing groups of individual 

sensor values as an aggregate. 

Section 4 presents our nSP architecture, a simple accu-

mulator data path with variable length instructions (either 4 

bits or 12 bits). We present two different designs that im-

plement the same base ISA, but differ in operand width and 

the amount of memory provided. The Standard design pro-

vides 256 4-bit memory locations while the Tiny implemen-

tation provides only 16 4-bit memory locations. We also 

introduce the concept of instruction-fused sensing that ex-

ploits unified compute/sensing technologies to enable direct 

environmental modification of instruction bits, and thus 

reduce overall code size. 

We evaluate our nSP designs in Section 5 using simple 

models and a custom simulator. Our results show that the 

Standard design occupies approximately 2.5µm x 2.5µm 

while the Tiny implementation requires approximately 

800nm x 800nm, comparable to the largest known virus. 

We demonstrate that our target applications can fit within 

the restricted memory space of the Standard nSP, and that 

four of our five applications can be implemented in the 8 

Bytes of memory on a Tiny nSP. We also explore the de-

sign tradeoffs in our nSP instruction set and use simulation 

to demonstrate the execution of applications in a time vary-

ing chemical environment. 

Related work is discussed in Section 6 and we conclude 

in Section 7. 

2. Enabling Technology 

The integration of computation and sensing in a nanoscale 

package imposes challenging requirements on the underly-

ing technology and manufacturing of nSPs. To date there is 

no clear winner in the field of nanotechnology for compu-

ting or sensing. Carbon nanotube and ring-gated nanorod 

FETs are hopeful candidates, but obtaining control over the 

precise device length and precise placement for arbitrary 

patterns remain open challenges. 

We propose using a new nanoscale technology for nSPs 

based on single-molecule optical devices called chromo-

phores [5, 19]. In isolation, a given chromophore absorbs 

photons of a specific wavelength and emits photons at a 

different, lower energy, wavelength. However, when appro-

priate chromophores are placed a few nanometers apart the 

energy of an absorbed photon can be transferred to a neigh-

boring chromophore through a process called Resonance 

Energy Transfer (RET). This process is frequently used for 

molecular scale sensing (e.g., molecular beacons or molecu-

lar rulers) [14]. RET also provides a theoretical foundation, 

that we are exploring, for the creation of pass gates (both 

inverting and non-inverting) using four chromophores per 

gate. These gates form a complete Boolean logic set we call 

RET-logic. 

A key requirement for RET-logic is to place unique 

chromophores within a few nanometers of each other.  Un-

fortunately, creating such devices using conventional top-

down fabrication techniques is costly and increasingly 

complex. Creating sophisticated circuits by placing individ-

ual atoms requires more energy and time than exploiting 

chemical self-assembly techniques. Furthermore, self-

assembly enables fabrication through composition and hie-

rarchies. Different types of molecules can be fabricated 

independently using the most cost-effective method for 

each type of molecule. Larger motifs can then be created 

through the composition of heterogeneous molecules.  

RET-logic uses DNA-based self-assembly as the fabrica-

tion method to place chromophores within specified dis-

tances. The specific DNA nanostructures we use are grids 

where we can place two pass gates and one wire crossover 

per grid vertex. The grids can be hierarchically assembled 

to create large arrays of pass gates—the nanoscale equiva-

lent to a sea-of-gates. 

The next section describes some of the characteristics 

and tradeoffs of RET-logic computational elements inte-

grated on self-assembled DNA substrates, followed by an 

overview of current experimental progress towards an nSP 

prototype. 



2.1 RET-logic Circuits 

We designed several RET-logic circuits and performed 

manual layout on DNA grids. The layouts in Figure 1 show 

implementations of common RET-logic circuit components 

(decoder, memory, and 1-bit full adder cells) on a 20nm-

pitch DNA substrate. We use inverting and non-inverting 

pass gates; wires are annotated with the frequency of their 

specific optical signal (a>b>c>d>g). 

Each RET gate has an operational energy cost: the out-

put signal is at a longer wavelength than the input. Signal 

restoration from long wavelengths (low energy) to short 

wavelengths (high energy) requires additional energy. The 

pass gates can provide this functionality if the input to the 

pass gate is generated from an external far-field optical 

source, called an optical pump (conceptually analogous to 

Vdd), and the gate is controlled by the signal to either in-

vert or pass. These restoring gates are shown in a darker 

shade in Figure 1. Since “Vdd” is a far field signal it does 

not need to be routed. This lack of routing overhead applies 

to all global inputs (like the clock signal) and is a signifi-

cant advantage of RET-logic in area-constrained designs. 

From first-principles analysis we expect the switching time 

for a FO1 pass-gate to be approximately 2ns with a thermal-

ly dissipated power of less than 0.4nW. Communication 

with external receivers can be implemented using open-

ended wires with dedicated emission wavelengths.  

The memory cell in Figure 1 is a volatile SRAM design. 

Non-volatile memory could similarly be implemented using 

a special class of chromophores that have two switchable, 

stable molecular states [10]. The drawback of using non-

volatile photo-switches is that the write time is much slower 

than that of an SRAM cell (ms vs. ns). We leave exploring 

non-volatile memory in nSPs as future work. 

2.2 RET-based Sensing 

RET sensors are devices that transduce a molecular recog-

nition event, such as the binding of a target analyte, into a 

modulation of their optical RET properties. A wide range of 

biological RET sensors are currently available [14]. The 

fundamental property that these sensors employ is the de-

pendence of RET on chromophore separation. RET only 

occurs when chromophores are sufficiently close (a few 

nm), and decreases as the distance increases. For sufficient-

ly separated chromophores, RET will not occur. Sensors 

can be designed to enhance RET or prevent RET when a 

molecular recognition event occurs. Since RET sensors use 

the same inter-chromophore energy transfer as RET-logic 

they can interface directly with RET-logic circuits. 

2.3 Preliminary Experimental Results 

This section presents initial results toward fabricating an 

nSP using RET-logic. The purpose of this experiment is to 

demonstrate three main points: 1) that with the DNA grid 

we can place chromophores sufficiently close to achieve 

RET interaction, 2) demonstrate simple wired-OR RET 

logic, and 3) show that the DNA grid can bind analytes (in 

this case proteins) using antibodies placed at precise loca-

tions on the grid surface.  

The cruciform motif we use to build the DNA grid is 

shown in Figure 2a. The motif is composed from three 

smaller motifs: a core, four shells, and four arms. Figure 2 

also shows AFM images of (b) a 60x60nm hierarchically 

assembled grid, (c) the same grid with a protein pattern and 

(d) a 140x140nm grid each assembled in our laboratory 

using existing methods [18].  

Using chemistry similar to that used to attach proteins it 

is possible to attach chromophores to specific sites on the 

DNA grid. The available sites on each grid occur at the 

intersection between motifs and at the center of the cruci-

form motif. The spacing between sites at the motif intersec-

tions is ~1.3nm and ~20nm between motif centers. The 

wired-OR gate is assembled using three chromophores, two 

for the input signals (Oregon Green and Alexa Fluor 535) 

and one for the output signal (Rhodamine Red) attached to 

the grid as shown in Figure 3. The two inputs are excited by 

wavelengths of light at 488nm and 518nm for Oregon 

Green and Alexa Fluor 535, respectively. The input chro-

mophores undergo RET with the Rhodamine Red output 

chromophore, which has an emission peak at 590nm. 

We experimentally assemble DNA substrates with the at-

tached OR-gates as described above. A fluorometer meas-

ures the output of the assembly in the 300-800nm range 

under various input conditions. Input excitation is generated 

by a custom dual-beam excitation source. We estimate that 
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Figure 1. RET logic circuit layouts on DNA substrate. 
Grid spacing is 20nm. 
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Figure 2. (a) Schematic of a Cruciform Motif and Atomic 
Force Microscopy Images of  (b) 60x60nm DNA Grid , (c) 
Grid with Bound Proteins  and (d) 140x140nm Grid. 



Figure 3.  Observed RET Output (in Optical Fluores-
cence Counts) from the OR-gate with 488nm (IN 1) 
and 518nm (IN 2) excitation. 

Input 1 
(488nm) 

Input2 
(518nm) 

RET Output 
(590nm) 

OFF OFF 0 

ON OFF 39 

OFF ON 31 

ON ON 70 

 

the sample contains ~1012 gates. The experimental results 

using inputs of 488nm (IN 1), 518nm (IN 2) and simultane-

ous 488nm/518nm (IN 1 + IN 2) are shown in the table in 

Figure 3. We isolate the specific contribution of the output 

(RR) chromophore due to RET from the background fluo-

rescence by subtracting the normalized readout of a base-

line grid assembly with the same chromophores placed at 

distances much greater than their respective near-field inte-

raction radii (thereby preventing RET).  

These results demonstrate the capability to place three 

chromophores sufficiently close to transfer excited-state 

energy from two distinct inputs to the same output, charac-

teristic of an OR-gate. As part of our future work we are 

exploring the fabrication of inverting and non-inverting 

pass gates.  

The technology presented in this section forms the foun-

dation for biologically compatible computing and sensing, 

and we believe it will be possible in the future to fabricate 

nSPs.  Understanding the technology is only part of archi-

tecting a system. We must also gain an understanding of the 

application requirements. The next section discusses several 

potential applications. 

3. nSP Applications 

One of the critical design requirements for an nSP is that 

it be small enough to diffuse through small volumes. A typ-

ical red blood cell width is approximately 6-8µm and we 

envision applications that require operation within a cell. 

The RET-logic nanotechnology described above only pro-

vides the potential to create appropriately sized nSPs. To 

meet the severe size constraints, even RET-logic systems 

must be carefully architected. To achieve this we need to 

understand the computational requirements of the biological 

applications. 

To illustrate the diverse application space we selected 

several target applications that we believe are representative 

of an nSP’s potential. These applications are: 1) early dis-

ease detection, 2) custom multi-analyte molecular probes, 

3) molecular kinetics analysis, 4) monitoring complex bio-

logical scale processes, and 5) imaging below the diffrac-

tion limit. We discuss each application in more detail 

below. 

 Our goal is to understand the applications’ requirements 

such that we can architect an appropriate nSP system. To 

achieve this we consider two aspects of each application: 1) 

the algorithm to perform and 2) timing constraints. The 

algorithm specifies, at a high level, the computation to per-

form and is used to determine which primitive operations to 

support. The timing constraint sets bounds, both upper and 

lower, on the latency of a primitive operation or an entire 

computation.  

For many biological applications the expected timescales 

are in the range of seconds to minutes [9]. These times are 

generally determined by either chemical reaction rates or 

molecular interaction rates. For example, sensors can be 

either reversible or irreversible. For irreversible sensors, 

once the analyte binds to the sensor it is bound forever. In 

contrast, for reversible sensors the analyte will eventually 

detach from the sensor. Timescales for irreversible sensors 

are determined by the binding rate of the analyte. A revers-

ible sensor’s time dependent behavior can be characterized 

by two parameters: 1) a period, and 2) a dwell time. The 

period is defined as the time between two distinct binding 

events, and the dwell time is the time an analyte stays 

bound to the sensor after the binding event. The period and 

dwell time of a sensor often represent average values for a 

probabilistic distribution of times. 

A ) Pathogen Counting B ) Multi-Analyte Probe C) Finite Impulse Filter 
while (true) { 
  sample = read_sensor(P) 
  if (sample != last_sample) { 
    count += sample 
    last_sample = sample } 
  if (send_data = true) { 
    output(count) 
    count=0}} 

wait until (read_sensor(A) = true) 
wait until (read_sensor(B) = true  

and  
   read_sensor(C) = true)   
wait until (read_sensor(D) = true  

and  
   read_sensor(A) = false) 
output(true) 
 

while (true) { 
  sample = 0 
  for k = 1 to M { 
    sample += read_sensor()}  
  d[last] = sample 
  y = 0 
  for k = 1 to N { 
    y += c[k]*d[(last+k)%N]} 
  last = (last+1)%N  
  output(y) } 

D)  Kinetic Analysis E) Imaging  

Table 1.  Pseudocode for nSP tar-
get applications. 

while (true) { 
 sample = 0 
 for k = 1 to M { 
  sample += read_sensor()} 
 output (sample) } 

while (true) { 
 if (send_data = true)  
  for i = 1 to N { 
   output(sensor_read(i))}} 
 

 



We present pseudocode for each of the applications with 

the goal of demonstrating that an nSP can provide capabili-

ties beyond a single sensor. This pseudocode assumes the 

ability to read a specified sensor (i.e., read_sensor(name)) 

that targets a particular analyte and returns a Boolean value, 

True when the analyte is bound to the sensor, False other-

wise. We also assume the ability to output an integer value. 

Early disease detection. Integrating multiple pathogen sen-

sors on an nSP can address the early detection problem 

through in vivo or in vitro biological monitoring over ex-

tended time windows. A program can count the number and 

type of binding (or detection) events over this window. At 

periodic intervals the nSP is queried for their event counts 

and the information is aggregated and compared against 

normal thresholds. The algorithm shown in Table 1A is an 

algorithm for counting pathogen binding events. An anti-

hemagglutinin based sensor that detects the influenza A 

typical virus has a dwell time of 1-1.5 seconds and an ex-

pected period of minutes [15] at dilute concentration.  

Custom Multi-Analyte Molecular Probes. Integrating sev-

eral molecular probes on an nSP presents the possibility of 

detecting complex sequences and combinations of envi-

ronment conditions.  Table 1B shows an example program 

that outputs True when a specific combination and order of 

analytes is detected. The timescale is defined by the rates of 

monitored reactions and varies from minutes to ns depend-

ing on their biological or non-biological nature.  

Kinetic Analysis. The quantitative evaluation of specific, 

reversible molecule binding is universally important in bi-

ology. Proteins interact with nucleic acids in gene expres-

sion, enzymes with substrates and inhibitors in metabolic 

processes, antigens with antibodies in the immune system. 

The binding interaction of two molecules at equilibrium is 

characterized by binding and dissociation constants. Clas-

sical methods for measuring binding constants with biosen-

sors work at the macroscale and can involve many time 

consuming repetitive steps [20]. nSPs can derive sensor-

analyte binding kinetics information in localized nanoscale 

environments in real-time by sweeping the nSP clock cycle 

time. The clock frequency is adjusted until the period and 

the dwell time of the analyte are captured in a sensor inte-

gration window. The algorithm integrates the instant sensor 

value for a fixed number of iterations and outputs the result 

(Table 1D). The range of available nSP clock frequencies 

determines the range of binding rate constants that can be 

analyzed. Classic macroscale methods, e.g., quantitative 

affinity chromatography, can measure binding constants 

ranging from 102–109 mol/L. 

Monitoring Complex Processes. The ability of nSP chips 

to store and process nanoscale data across potentially large 

reaction time windows could be used, for example, to com-

pute the average binding rate of a set of proteins or mRNA 

molecules. The challenge is to perform this averaging at the 

nanoscale over a large set of possible proteins (e.g., approx-

imately 4x105 unique proteins can be found in any individ-

ual human cell). A distributed set of nSPs, each designed to 

detect a subset of the proteins, could employ diffusion to 

sample and average protein concentrations over a large ob-

servation window to track protein expression. 

In this type of complex process we expect nSPs to 

process long series of sensor data using accumulation, 

weighted averages, histograms or filters. Table 1C shows 

the algorithm for a Finite Impulse Response (FIR) filter. In 

the case of mRNA and proteins involved in gene activity 

the kinetics are on a timescale of seconds to minutes [9], 

although some processes, e.g., conformational changes of 

signaling proteins, are at the ms scale [25]. 

Functional Imaging below the Diffraction Limit. The sen-

sor array of an nSP also provides implicit spatial informa-

tion because of the precise, pre-determined location of each 

sensor. An interesting potential application of this fact is the 

imaging of features smaller than the diffraction limit, the 

fundamental resolution limit of optical microscopes. Mul-

tiple nSPs tiled on the surface of interest can serially trans-

mit the 2D “image” of their sensing arrays and optical 

microscopy equipment can then combine the absolute nSP 

orientation data in the optical image (a feature that is above 

the diffraction limit) with the received nSP-relative infor-

mation to create a composite image of all sensors across all 

nSPs. The same approach could potentially be used to im-

plement high density nanoscale gene chips. The algorithm 

is shown in Table 1E, each nSP simply outputs the current 

values for its entire sensor array. 

Other applications may be developed if nSPs become 

available, such as experiment-on-a-chip or nanoscale sensor 

networks. We leave further exploration of additional appli-

cations as future work, and instead focus on designing a 

single nSP based on our five representative applications. 

Through inspection of the above applications we can ex-

tract several important characteristics that influence archi-

tectural designs, these include: 1) long time scales, 2) 

accumulating values, 3) waiting for an event, and 4) 

processing groups of individual sensor values as an aggre-

gate. The following section discusses how these characteris-

tics guide our architectural design. 

4. An nSP Architecture 

In this section we present our design for an nSP. We arrive 

at this design by combining the various application charac-

teristics with the overarching requirement that an nSP must 

be small enough to diffuse through small volumes. We be-

gin this section by discussing how these requirements quali-

tatively influence nSP architecture. This is followed by a 

detailed presentation of our nSP architecture. Our goal is to 



demonstrate that an nSP can be designed to meet the re-

quirements of this new computing domain. We leave opti-

mizing the architecture as future work. 

4.1 Qualitative Architectural Implications 

The nSP architecture is influenced by each of the applica-

tion characteristics either individually or when combined 

with other characteristics. We discuss each of the characte-

ristics and its qualitative influence on architecture. First, the 

long time scales (seconds to minutes) of biological applica-

tions implies that we do not need a high performance pro-

cessor core (e.g., no superscalar, out-of-order, deep 

pipeline). Instead the architect can trade area for time using 

a very simple processor core with complex operations syn-

thesized in software (e.g., multiply and divide). 

The second characteristic is that many of the applica-

tions accumulate values over time either by counting 

events, averaging, or integrating values that are monotoni-

cally increasing. This has several implications for the archi-

tecture. First, the computations can generally be performed 

using fixed point arithmetic, avoiding the need for floating 

point hardware. Second, the accumulated value may require 

a larger range than the input value, thus leading to datapath 

components wider than the memory/sensor width. Third, 

accumulation is common enough that architectural support 

is justified to help reduce code size.  

The next application characteristic, waiting for an event, 

is similar to accumulating a value in that on conventional 

architectures it is implemented by reading a sensor value 

within a loop and either incrementing a counter (accumulat-

ing) or checking if the sensor value has changed (wait for 

event). Like accumulation, waiting for an event is suffi-

ciently common across the applications that the architecture 

should provide support to reduce code size. 

Finally, processing individual sensors as a group implies 

that it may not be necessary for the architecture to support 

access to individual sensor values. Instead it may be benefi-

cial to provide support for processing multiple sensor val-

ues as a single entity. 

4.2 nSP Overview 

We investigated 8-bit architectures for ultra-small control-

lers, e.g., the ST Microelectronics ST6 [21] and the Frees-

cale RSO8 [8], designed to be efficient and cost effective 

with small memory sizes. These architectures, although 

simple compared to mainstream designs, proved too com-

plex for the extreme area constraints of nSPs. We instead 

elected to create an architecture streamlined for the ex-

pected applications and hardware limitations of nSPs.  

Our nSP architecture is a simple accumulator-based pro-

cessor with a small amount of addressable memory/sensors. 

Using a single-accumulator reduces the processor core 

complexity and enables short 4-bit opcodes to support the 

common recurring operations in nSP applications. Our 

standard nSP design can address up to 256 4-bit words in a 

unified instruction/data/sensor memory space. Instructions 

are variable-length (4bit or 12bit) to decrease the memory 

footprint of application code. A special variant of our archi-

tecture, called Tiny, is designed for the smallest nSPs with a 

total memory space of only 8 bytes (16x4-bit). 

4.3 Integrated Sensing 

The sensor-centric nature of nSP applications means that 

the interface between processing and sensing plays an im-

portant role in the system design. There are a variety of 

ways that an nSP can support sensing. For instance, sensors 

could be memory mapped. In this scenario, predetermined 

memory addresses are set aside for access to sensed values 

via load instructions. The method we explore in this paper 

exploits the biological compatibility of the entire system 

when using technologies like RET-logic. Since RET is the 

method used for sensing and for computing, we can directly 

integrate the sensing mechanisms into the system design. 

Although there may be many ways to exploit an inte-

grated design methodology, in this paper we examine me-

thods for sensing to directly modify memory locations. 

Specifically, certain SRAM cells can be augmented with 

appropriate sensing mechanisms that force the memory lo-

cation to the value “1” (or “0” as needed). A technological 

requirement is that the active area of the sensor must fit 

within the confines of an SRAM cell. These environmental-

ly modified memory locations could be designed to provide 

a set of memory-mapped sensors. However, this does not 

exploit the full potential of a unified sensing and logic tech-

nology such as RET. Instead we can interleave sensor-

augmented SRAM cells with standard SRAM cells, includ-

ing those used for instruction opcode bits. For example, a 

JMP opcode could be modified into a NOP opcode by a 

sensor binding event. Similarly, instruction operands could 

be modified by the sensing mechanism to change an arith-

metic operand or a branch target. We call this technique 

instruction-fused sensing (IFS). 

IFS provides a unique opportunity for hardware/software 

co-design to improve code density. With only 8 to 128 

bytes of memory available, judicious use of instructions is 

paramount to providing sufficient computational abilities. 

The simple task of querying a sensor to determine if a spe-

cific protein is present can require several bytes of instruc-

tion memory to load a value and compare it for branching. 

Instead, a single branch instruction could be used that 

changes to a nop (and escape) when the protein binds. 

Using IFS can dramatically improve code density where 

it is applicable. There is, however, a trade-off: the instruc-

tion becomes statically bound to the sensor. This can pre-

vent code reuse via procedures or looping. We note that 

code reuse is valuable when the increase in code-size due to 

procedure overhead is compensated by the removal of sig-

nificant inline code. In the limited memory and program 



space of an nSP this break-even can be difficult to reach. 

We evaluate this trade-off in more detail in Section 5. 

4.4 The nSP ISA 

Table 2 shows our nSP ISA which supports several com-

mon memory, arithmetic, and control transfer instructions. 

Each of the instructions in the ISA is included because it 

directly supports common operations in one or more appli-

cations. Note that the ISA lacks several instructions one 

often considers standard, e.g., subtract, multiply, and di-

vide. These operations can all be synthesized with the pro-

vided instructions if needed. For brevity, when details are 

necessary we discuss only the Standard nSP ISA. 

Several of our nSP instructions are designed to reduce 

application code size. The INCI instruction, which incre-

ments an 8-bit value using implicit addressing (PC relative), 

is useful for accumulating single-bit sensor values and for 

control loops, which are recurring operations in the nSP 

applications. Several instructions also exploit IFS to reduce 

code size. In particular, JMP, BNZ, INC and INCI all have 

the option of using IFS. When declared sensitive to an ana-

lyte (A), these instructions turn into NOPs when that ana-

lyte binds to the appropriate memory location. To facilitate 

this mechanism we encode a single-bit difference between 

the opcode of these instructions and the NOP opcode. 

When a sensor is fused to this bit location the opcode value 

depends on the value of the sensor, as determined by the 

presence or absence of an analyte. This requires careful 

hardware/software co-design to ensure proper alignment of 

code and sensors in the memory space. 

We denote the analyte-dependence of an instruction by 

placing the analyte name in parenthesis after the instruction. 

Depending on the encoding of the binding event, the in-

struction can be NOP-ed by either the presence or the ab-

sence of the analyte. We use C-style (!) to indicate the 

instruction is executed when the analyte is not sensed and 

the analyte identifier alone when the instruction is executed 

only in the presence of the analyte. For example, INC (!A) 

means the accumulator is incremented only if the analyte A 

is not present, else it is a NOP and has no effect. 

Instruction operands, either immediate values or ad-

dresses, are 8-bit length, the same as the data granularity of 

Instruction Op-

code 

Standard RTL Tiny RTL Description 

LD addr 0000 ACC[0..7] = M8[addr]; PC += 3 ACC[0..3] = M4[addr]; PC += 2 Load from memory 

ST addr 0001 M8[addr] = ACC[0..7]; PC += 3 M8[addr] = ACC[0..4]; PC += 2 Store to memory 

ADD addr 0010 ACC[0..15]  += M8[addr]; PC += 3 ACC[0..7]  += M4[addr]; PC += 2 Add unsigned from memory  

ADDI imm 1100 ACC[0..15] += M8[PC+1]; PC += 3 ACC[0..7] += M4[PC+1]; PC += 2 Add unsigned immediate value 

SHL 0100 ACC[0..15] = ACC[1..15] | 0; PC  += 1 ACC[0..7] = ACC[1..7] | 0; PC  += 1 Shift 1 position  left 

SHR 0101 ACC[0..15] = 0 | ACC[0..14] ; PC += 1 ACC[0..7] = 0 | ACC[0..6] ; PC += 1 Shift 1 position  right 

NOT 0110 ACC[0..7] = ! ACC[0..7]; PC += 1 ACC[0..4] = ! ACC[0..4]; PC += 1 Bitwise NOT  

AND imm 1010 ACC[0..7] += M8[PC+1]; PC += 3 ACC[0..4] += M4[PC+1]; PC += 2 Bitwise AND  

CLR 0011 ACC[0..15] = 0; PC += 1 ACC[0..7] = 0; PC += 1 Clear ACC 

JMP addr (A) 1110 PC  = M8[PC+1] PC  = M4[PC+1] Jump to address 

BNZ addr (A) 1101 If ACC[0..7] != 0  
   PC = M8[PC+1] 
Else   PC += 3 

If ACC[0..4] != 0 
    PC = M4[PC+1] 
Else   PC += 2 

Jump to addr if ! ACC  

INC (A) 1011 ACC[0..15] += 1; PC+=1 ACC[0..7] += 1; PC+=1 Increment ACC 

INCI imm (A) 0111 ACC[0..7] =M8[PC+1]; 
ACC[0..15]+=1; 
M8[PC+1]=ACC; PC+=3 

ACC[0..3] = M4 [PC+1]; 
ACC[0..7]+=1; 
M4 [PC+1]=ACC; 
PC+=2 

Increment memory value, store 
in memory and ACC 

NOP 1111 PC += 3 PC += 2 No operation 

OUT addr 1000 COMM = M8[PC]; PC += 3 COMM = M4[PC]; PC += 2 Output ACC   

OUTCLR addr 1001 COMM = M8[PC]; PC +=3 COMM = M4[PC]; PC +=2 Output & clear memory 

 

Table 2. Our nSP ISA: M8 = 8 bits starting at specified location, M4 = 4 bits. Standard has 16-bit Accumulator, 8-bit PC, 

and 255 4-bit memory locations. Tiny has 8-bit Accumulator, 4-bit PC, and 16 4-bit memory locations.  



loads and stores. This allows for easy address manipulation, 

but most importantly it increases the numerical range for 

operations performed on sensor data. One of the common 

patterns we see in the nSP target applications is that indi-

vidual sensor data is accumulated in time before being fur-

ther processed, with the option of longer accumulation 

times being more desirable. Native support for 8-bit arith-

metic increases the accumulation time interval from 16 to 

256 cycles while avoiding the severe code size penalty that 

would result from emulation with 4-bit instructions. The 

accumulator is 16-bit for extended dynamic range in appli-

cations like FIR filters where double word samples are av-

eraged or multiplied through shift-and-add. The high 8 bits 

of the accumulator can be accessed through explicit shifts 

into the low 8 bits.  

Defining only 8-bit wide memory operations could prove 

restrictive given the single-bit granularity of sensors. In-

deed, accessing an individual sensor value through a wide 

load can require additional bit masking and shifting. We 

argue, however, that in cases where single bit sensor values 

are necessary it is generally more efficient to use the com-

pact instruction-fused sensing mechanism. An analysis of 

the target application algorithms shows three distinct cases 

in which sensors are individually queried for their value:   

1) branch outcome depends on an individual sensor value, 

2) arithmetic result depends on an individual sensor value, 

3) output of sensor values. The first two can be addressed 

with IFS and the latter can bundle values for output and 

separate values at a remote receiver. 

4.5 Discussion 

The above nSP architecture is designed to meet the re-

quirements of the new computing domain of biological 

scale computing. The architecture is generic and can be 

implemented in several different nanotechnologies that pro-

vide both sensing and digital logic. Size is a crucial con-

straint for an nSP architecture, as any device must be 

capable of diffusing through small volumes. The architec-

ture presented in this section provides a set of novel me-

chanisms (e.g., instruction-fused sensing) that enable 

compact implementations of important biological applica-

tions. The following section analyzes the ability of the pro-

posed architecture to satisfy the requirements of the target 

applications. 

5. Evaluation 

In this section we evaluate our nSP architectures. We begin 

with an analysis of the nSP size, followed by a discussion of 

the applications implemented using the nSP ISA and the 

memory resources required for execution. We then explore 

the impact of instruction-fused sensing on program size and 

conclude with simulation of applications monitoring time 

varying environmental conditions. 

5.1 Node Size 

As previously noted, the size of an nSP is an important fac-

tor for biological applications. Here we use the RET-logic 

layouts and characteristics described in Section 2.1 to esti-

mate the area of nSP implementations. Our preliminary 

layout indicates that the Standard nSP implementation with 

128 bytes of memory requires 2.5 x 2.5µm and a Tiny nSP 

implementation with 8 bytes of memory requires 

800x800nm. With a surface area comparable to the largest 

known virus [22], the Tiny nSP could diffuse in the same 

environments as the virus (e.g., a cell). 

5.2 Program Size 

We implemented the target applications for both the Stan-

dard and Tiny nSP architectures. The memory requirement 

for the Standard implementation (code and data) ranges 

between 9 and 11.5 Bytes with the exception of the moving 

average filter which uses 59 Bytes. The Tiny implementa-

tions all fit within the limited 8 Byte memory space. For 

most of the applications, the memory footprint is dependent 

on the number of monitored sensors; more sensors requires 

more memory space. For brevity, we present the Standard 

nSP code for only two applications, pathogen counting and 

a multi-analyte probe. 

The nSP program in Figure 4 implements the pathogen 

counting algorithm, which monitors a single, reversible, 

pathogen sensor and outputs the number of 1-to-0 transi-

tions observed since the previous report. An 8-bit counter is 

used to accumulate up to 255 events between output re-

ports. The total memory footprint is 11 Bytes and a saturat-

ing counter version (omitted for brevity) uses 14.5 Bytes. 

This compact code is achieved by using IFS for event de-

tection (i.e., 1) a pathogen is present and 2) the result 

should be transmitted). The INCI instruction also provides 

compact accumulation of the counter. 

0  JMP (!A) 0 // if not A jump to self 
3  JMP (!B) 3 // if not B jump to self 
6  JMP (!C) 3 // if not C jump to previous 
9  JMP (!D) 9 // if not D jump to self 
12 JMP (E)  9 // if not E jump to done 
15 OUT 1 // output non-zero value 

Figure 5. Multi-analyte probe implementation. 

0  JMP (!send) 6  // if not sending, count 
3  OUTCLR 13      // send data and clear  
                  // counter 
6  JMP (!A) 18    // if no analyte is bound 

   // go to 18 
9  BNZ 0          // analyte is bound, 
               // if acc is 0 go to next cycle 
12 INCI        // increment count, update acc  
15 JMP 0       // jump to next cycle 
18 CLR         // clear acc (make last  
               // event “not bound”) 
19 JMP 0       // jump to next cycle 

Figure 4. 8-bit event counter (Pathogen Counting). 



The role of a multi-analyte probe is to detect specific se-

quences of analytes and their time order, in this example 

(A) then (B and C) then (D and not E). We use IFS to map 

the analyte ordering on top of executed control logic 

(Figure 5) and guarantee that the program control path, 

which is dynamically changed by the analytes, reaches its 

output phase only when it interacts with the target sequence 

of analyte events. A single IFS instruction (JMP) is suffi-

cient to sense and process each analyte in the intended 

evaluation sequence. The total memory footprint for the 

Standard nSP implementation is 8.5 Bytes. 

The remaining applications all require less than the 128 

Bytes available on the Standard nSP. Our FIR implementa-

tion, that uses a moving average, is the largest, most com-

plex application and it requires just below 60 Bytes. Kinetic 

analysis and Imaging each require around 10 Bytes. 

Table 3 shows the Tiny nSP implementations for four 

applications. FIR is too complex to fit within the 8 Byte 

limitation. The main cost of using Tiny nSPs is that dynam-

ic range for counting and accumulation is reduced from 8 

bits to 4 bits and the total number of sensors that can be 

monitored is much more limited. The fundamental advan-

tage of the Tiny nSP is their diminutive size: they can dif-

fuse through and sample molecular environments that are 

inaccessible to the larger Standard nSP. 

5.3 Impact of Instruction-Fused Sensing 

A single IFS instruction can replace several non-IFS opera-

tions and significantly reduce the memory requirement for 

applications. Figure 6 shows the IFS and non-IFS imple-

mentations of the sample multi-analyte probe application 

for the Standard nSP. The non-IFS code allocates memory 

locations for sensors and reads the sensor value with expli-

cit load operations, leading to memory footprint of 21 Bytes 

versus the 9 Bytes of the IFS version. 

Figure 7 shows the total memory required by IFS rela-

tive to non-IFS (load/store) implementations of our applica-

tions for the Standard nSP. IFS reduces the footprint 

between 58%, in the case of the multi-sensor analyte probe, 

and 5%, for the single-sensor, processing intensive FIR.  

A tradeoff in using IFS is that instructions become stati-

cally bound to sensors, preventing conventional code size 

reducing techniques, like procedures or loops. Figure 8 

explores this tradeoff. For each application we show on the 

y axis the number of sensors that can be processed by IFS 

and LD/ST implementations as we increase the maximum 

memory available on a Standard nSP. For both implementa-

tions we unroll loops when unrolling allows an increase in 

the number of sensors for the given memory size.  

Within the range of our Standard nSP addressable mem-

ory, 128 Bytes, IFS is generally more efficient than LD/ST, 

i.e., more sensors 

can be processed 

for a given memo-

ry size. An excep-

tion is the 

pathogen counter 

application where 

the traditional 

LD/ST implemen-

tation is more ef-

ficient when 

available memory 

is more than 64 

Bytes and we wish 

to count more than 

5 pathogens. With 

more memory, loop overhead can be amortized over more 

sensors. The same characteristic can be seen for the kinetic 

analysis application; however, in this case the break-even 

point where LD/ST becomes more memory efficient than 

IFS is beyond the maximum addressable memory range of 

our nSPs. 

Figure 7. Impact of using IFS on the memory require-
ment of target nSP applications. 
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0  LD 37 

3  NOT 

4  BNZ 0 

7  LD 38 

10 NOT 

11 BNZ 7 

14 LD 39 

17 NOT 

18 BNZ 7 

21 LD 40 

24 NOT 

25 BNZ 21 

28 LD 41 

31 BNZ 21 

34 OUT 3 

37 sensorA 

38 sensorB 

39 sensorC 

40 sensorD 

41 sensorE 

0  JMP (!A) 0 

3  JMP (!B) 3 

6  JMP (!C) 3 

9  JMP (!D) 9 

12 JMP (E)  9 

15 OUT 3 

   

Figure 6. Code 
size impact of 
IFS on the mul-
ti-analyte probe. 

Up:  IFS (9 bytes) 

Right: LD/ST 

          (21 bytes) 

    

Counter Multi-Analyte 
 
0  JMP (!send) 4 
2  OUTCLR 9 
4  JMP (!A) 12 
6  BNZ 0 
8 INCI  
10 JMP 0 
12 CLR 
13 JMP 0 

 
0  INCI (!A)  
2  INCI (!B)  
4  INCI (!C)  
6  INCI count 
8  BNZ 0 
10 OUTCLR 1 
12 OUTCLR 3 
14 OUTCLR 5 

Imaging Kinetic  Analysis 
 
0 INCI count 
2 OUT 1 
3 JMP 0 
5-15 SENSORS 
 

 
0  JMP (!A) 0 
2  JMP (!B) 2 
4  JMP (!C) 2 
6  JMP (!D) 6 
8  JMP (E) 6 
10 OUT 2 

Table 3. Tiny nSP Programs (8 Byte Memory Space). 
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Figure 9. Influenza-A virus counting simula-
tion.  The nSP node output (bottom) follows 
the virus presence (top). 

5.4 Application Simulation Results 

We verify the expected output of nSP applications using a 

simple cycle-level nSP functional simulator augmented with 

chemical environment and sensor-analyte interaction simu-

lation. Memory access (for a 4-bit word, including sensor 

read) and arithmetic operations are performed in a single 

cycle. The total number cycles per instruction varies be-

tween 2 and 6 depending on instruction length and number 

of memory accesses. 

The environment simulation models time-varying con-

centrations of analytes and the corresponding binding and 

dissociation events for each nSP sensor. The binding event 

probability is modulated by binding and dissociative rate 

constants which are explicitly specified for all distinct sen-

sor-analyte pairs.  

For each application we initialize the nSP with the ap-

propriate program, simulate a chemical environment cha-

racteristic for that application and follow the program 

output in time. The following details the results. 

Pathogen Counting. We simulate an influenza virus en-

vironment using published pathogen period and dwell time 

for anti-hemagglutinin based sensors [15]. Figure 9 (bottom 

graph) shows the output of a Standard nSP running the pa-

thogen counting code from Figure 4 in the presence of a 

time-varying pathogen concentration (top). The nSP clock 

cycle time is 100Hz, and the output is requested, via an 

external optical send signal, every 1000 seconds. 

IFS vs LD/ST - Process Monitoring and Kinetic Analysis
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When requested, the program outputs the number of ob-

served pathogen binding events since the last transmission. 

As expected, the value of the output is correlated with the 

pathogen concentration and shows variations due to sto-

chastic (single-molecule) sensor binding. Observing this 

trend could be used to diagnose an infection.  

The minimum nSP clock cycle time is determined by the 

timescale of the analyte-sensor interaction. If the program 

samples sensors too slowly, then binding events could be 

missed. In this experiment the critical sampling threshold is 

less than 1 second (the average dwell time for this patho-

gen-sensor combination). Thefore, the nsP clock rate must 

be fast enough to ensure the program samples the sensors 

frequently enough. Figure 11 shows the output of the virus 

counting application running at various nSP clock rates 

(averaged over ten queries taken 1000 seconds apart). The 

virus concentration and the window of time over which the 

nSP counts binding events are held constant. Given our 

multicycle nSP, the clock frequency must be 100 Hz or 

greater to avoid a misdiagnosis. At lower clock rates patho-

gen binding events are missed as reflected by the decreas-

ing counter value. 

Multi-Analyte Probe. We model 5 generic analytes (A-

E) and execute the molecular probe application code from 

Figure 5, which detects the (A) then (B and C) then (D and 

not E) sequence of events. Figure 10 shows the input con-

centration of each analyte and the program output (OUT) 

over time. 

The result emphasizes the local, single-molecule sensing 

characteristics of the probe. Even though there is still some 

concentration of analyte E present in the system, the pro-

gram asserts its detection output (just before the 8s mark). 

The reason is the stochastic nature of the output decision, 

based on instantaneous nSP-local values of sensors which 

will probabilistically encounter time intervals with no 

bound analyte, even if globally the analyte is still present. 

This could be eliminated by observing analytes over a long-

er window of time to determine their presence or absence. 

6. Related Work 

The most closely related work to ours falls within the gen-

eral realm of amorphous computing [1], which is predicated 

on the existence of large numbers of inexpensive devices 

with limited computational ability, limited memory capaci-

ty, and limited communication range. The set of potential 

applications for amorphous computing is vast, ranging from 

smart paint to in vivo computation for biological applica-

tions. Our work also has similarities to early microproces-

sor designs [7] and the broad area of sensor networks [11, 

13] and ultra-low power sensor processors [26]; however, 

our small scale creates significantly different resource con-

straints. Other work explores novel molecular logic, but 

currently only presents individual gate functionality [3]. 

Other closely related work includes the Decoupled Array 

Multiprocessor (DAMP) [4], the Nano-scale Active Net-

work Architecture (NANA) [16] and the Self-Organizing 

SIMD Architecture (SOSA) [17] which all use DNA-based 

self-assembly of nano-electronic devices. Our work also 

uses DNA self-assembly but focuses on novel single mole-

cule optical devices, thus achieves higher density and pro-

vides an efficient method for macro-scale interfacing (pitch 

matching in electronics). 

7. Conclusion 

Two driving forces on computer architecture are applica-

tion requirements and technology change. The combination 

of important problems in the life sciences and advances in 

material science are exposing a new computational domain: 

biological scale integrated sensing and processing. The 

ability to utilize programmable devices at biological scales 

may enable life scientists to perform hypothesis testing pre-
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Figure 11. The pathogen binding kinetics determine the 
minimum  nSP clockrate before counting becomes inac-
curate due to missed events. 
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viously thought impossible. This domain presents new chal-

lenges to computer architects due to the extreme size con-

straints: a device must be capable of diffusing through small 

volumes while still meeting application requirements. 

This paper introduces an architecture for nanoscale sens-

ing and processing. We analyze the application characteris-

tics (e.g., long time scales and common operations) to 

design a multicycle accumulator-based architecture. A nov-

el aspect of this architecture is the use of instruction-fused 

sensing that exploits the unified use of nanoscale devices 

for both sensing and logic design to allow sensors to direct-

ly modify logic values (i.e., instruction opcode bits). We 

implement several representative applications that execute 

on our proposed architecture and demonstrate capabilities 

(e.g., sensing based on complex logic) beyond those 

achievable with current simple biological sensors. The work 

presented in this paper represents our first steps toward 

developing biological scale computing systems. 
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