Acid–base and electrochemical properties of manganese meso(ortho- and meta-N-ethylpyridyl)porphyrins: potentiometric, spectrophotometric and spectroelectrochemical study of protolytic and redox equilibria†

Tin Weitner,†a Ana Budimir,a Ivan Kos,a Ines Batinić-Haberleb and Mladen Biruš*a

Received 1st June 2010, Accepted 6th September 2010
DOI: 10.1039/c0dt00585a

The difference in electrostatics and reduction potentials between manganese ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP) and manganese meta-tetrakis(N-ethylpyridinium-3-yl)porphyrin (MnTE-3-PyP) is a challenging topic, particularly because of the high likelihood for their clinical development. Hence, a detailed study of the protolytic and electrochemical speciation of MnII–IVTE-2-PyP and MnII–IVTE-3-PyP in a broad pH range has been performed using the combined spectrophotometric and potentiometric methods. The results reveal that in aqueous solutions within the pH range 2–13 the following species exist: \((\text{H}_2\text{O})\text{Mn}^\text{II}\text{TE-PyP}^\text{m+n}, (\text{HO})\text{Mn}^\text{II}\text{TE-PyP}^\text{m+n}, (\text{HO})\text{Mn}^\text{II}\text{TE-PyP}^\text{m+n}, (\text{O})\text{Mn}^\text{II}\text{TE-PyP}^\text{m+n}, (\text{O})(\text{H}_2\text{O})\text{Mn}^\text{II}\text{TE-PyP}^\text{m+n}, (\text{O})(\text{H}_2\text{O})\text{Mn}^\text{II}\text{TE-PyP}^\text{m+n}\) \((m = 2, 3)\). All the protolytic equilibrium constants that include the accessible species as well as the thermodynamic parameters for each particular protolytic equilibrium have been determined. The corresponding formal reduction potentials related to the reduction of the above species and the thermodynamic parameters describing the accessible reduction couples were calculated as well.

Introduction

Over the last decade, there has been a great deal of interest in manganese porphyrins (MnPs) because of their unique electronic properties – robustness as oxidation catalysts. Based on structure–activity relationships where metal-centred reduction potential, \(E_{1/2}\), was related to ability to disproportionate/dismute superoxide, the ortho Mn(III) N-alkylpyridylporphyrins were identified as the most potent SOD mimics.1 We have recently shown that the water-exchange rates at Mn(III) in this type of MnPs is fast enough not to interfere with their high rates of \(O_2^-\) dismutation.2 Furthermore, based on their ability to easily donate or accept electrons, efficacious MnP-based SOD mimics proved to be excellent scavengers of peroxynitrite and most efficacious in favourably affecting cellular transcription activities, resolving the excessive inflammatory and immune response.3,4,5 Mn(III) N-alkylpyridylporphyrins possess five positive charges in the proximity of the metal site and thus afford both thermodynamic and electrostatic facilitation for the reaction with anionic superoxide and peroxynitrite. Thus they proved remarkable efficacy in ameliorating diseases that have oxidative stress in common, such as central nervous system disorders, diabetes, cancer radiation injuries, etc. The rate of \(O_2^-\) dismutation, \(k_{\text{cat}}\), can conveniently be taken as an indicator of their potential as therapeutics. In addition to the ability to affect redox-based processes, their efficacy in \(\text{in vivo}\) is affected by their bioavailability. This in turn is affected by their lipophilicity, shape, size, rotational flexibility, etc. The comprehensive study on SOD-deficient \(E.\ coli\) shows that meta isomer, MnTE-3-PyP\(^{\text{m+n}}\), with 10-fold lower \(k_{\text{cat}}\) provides same efficacy in protecting \(E.\ coli\) as ortho isomer, MnTE-2-PyP\(^{\text{m+n}}\), due to 10-fold higher lipophilicity, which in turn results in 10-fold higher cellular accumulation. Thus both ortho and meta isomers of N-ethylpyridylporphyrin may be considered perspective therapeutics. While the \(O_2^-\) dismutation involves the MnIII/P/MnII redox-couple, the removal of peroxynitrite (ONOO\(^-\)) is widely considered as a major damaging species in \(\text{in vivo}\) occurs through its binding to the Mn(III) site followed by its two-electron reduction to NO\(^2\) along with oxidation of MnII to MnIII.

Hence, the basic chemistry of manganese(II–IV) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin and meta-tetrakis(N-ethylpyridinium-3-yl)porphyrin (Fig. 1a and 1b), related to the Mn site which is responsible for their ability to affect redox-based cellular signalling processes, is addressed in this study.

Although biological relevance of MnPs was the primary reason for conducting this study, an additional reason to undertake it was the observation of a strong effect of a slight positional change centered formal reduction potential and the antioxidant capacity of the MnPs.

The reduction potentials for aqua MnIII/P/MnII and MnIII/P/MnII couples have been reported,7,8,9 but several reports differ in the identities of all relevant species, or the data have been collected under different experimental conditions. A great variety of different complex species have been proposed so far, as for instance \((\text{O})\text{Mn}^\text{III}P, (\text{O})(\text{HO})\text{Mn}^\text{III}P\) and MnII\(^{\text{m+n}}\) \((\text{H}_2\text{O})\text{Mn}^\text{II}P\) and \((\text{HO})(\text{H}_2\text{O})\text{Mn}^\text{III}P\) as well as \((\text{HO})(\text{H}_2\text{O})\text{Mn}^\text{III}P\) species.9 However, none of the papers report the ionic strength, which has been shown to affect the proton dissociation of the complexes to

*University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, Zagreb, 10000, Croatia
†Duke University Medical School, Department of Radiation Oncology, Durham, NC, 27710, USA
‡Electronic supplementary information (ESI) available: Figures S1–S14 and Tables S1–S2. See DOI: 10.1039/c0dt00585a
†Taken in part from Tin Weitner’s PhD thesis submitted to the University of Zagreb.
Experimental

Throughout the experiments, double distilled water and the highest purity chemicals were used. The measurements were performed under an N₂ or Ar atmosphere. The buffers used were prepared from CH₃COONa (Sigma), Na₂B₄O₇·10H₂O (Riedel-de Haën), CAPS (N-cyclohexyl-3-aminopropanesulfonic acid) (Sigma), Na₂HPO₄·2H₂O (Merck) and NaH₂PO₄ (Merck). The pH of aqueous solutions was determined on a Mettler DL50 titrator with a Mettler DG111-SC glass electrode and a thermostatted titration vessel. The pH electrode was calibrated by titration of a strong acid with a strong base in 2M NaClO₄.

The investigated metalloporphyrins, MnIII-TE-2-PyPCl₃ and MnIII-TE-3-PyPCl₃, were synthesized according to the published procedures. MnIIIPs were prepared by the reduction of MnIIIPs with ascorbic acid (Fluka), whereas the oxidation of MnIIIPs MnIIITE-3-PyPCl₅, were synthesized according to the published procedures. An equimolar solution of octacyanomolybdate(V/IV) was prepared according to published procedures immediately before the experimental measurements. The UV-Vis spectra were recorded on a Cary 50 spectrophotometer equipped with an optic fiber immersion probe and a thermostatted titration vessel or a thermostatted cell holder.

Results

Acid–base properties of MnTE-m-PyP (m = 2, 3) complexes

Deprotonation of MnIII-TE-m-PyP. In an aqueous solution, MnPs can axially coordinate water molecules, which can deprotonate to hydroxo- and/or oxo-complexes, depending on the oxidation state and pH. Such deprotonation is usually associated with an immediate spectral change observable in the UV-Vis spectral region. The observed spectral change of the MnIII-TE-2-PyP in an aqueous solution as function of pH is shown in Fig. 2. Since no spectral change has been observed from pH 9 down to pH 1.5, these spectra are not shown in the figure.

An absence of isosbestic points during the titration clearly indicates an involved equilibrium that includes at least three absorbing species. Indeed, the spectral analysis by the SPECFIT program confirmed three relevant absorbing species related through the acid–base equilibrium defined by two pKₐ-s. Fitting such a reaction model to the experimental data resulted in the following values: pKₐ₁ = 10.89 ± 0.01 and pKₐ₂ = 11.62 ± 0.02. The inset of Fig. 2 illustrates the theoretical spectra of the relevant species predicted from the fit.

A similar spectral change as function of pH in an aqueous solution was observed for MnIII-TE-3-PyP and is shown in Fig. S1. Fitting the model to the experimental data resulted in the following values: pKₐ₁ = 11.57 ± 0.01 and pKₐ₂ = 12.70 ± 0.09.

Deprotonation of MnIII-TE-m-PyP. Since in acidic medium MnIIIPs decompose to free metal ions and the porphyrin ligand,
it was necessary to determine the acidity range in which the MnIIPs were stable enough to perform the titrations. Hence, an aqueous solution of each MnP was adjusted to a particular pH, purged with argon in a SEC UV-Vis cell and a negative potential of ca. -250 mV vs. the formal potential of a particular MnP was applied to the Pt-electrodes inserted in the solution. The time-dependent spectral changes observed for both MnIIPs, continuously monitored for ca. 30 min in an anaerobic cell at constant pH (Fig. S2 and S3, respectively), confirm the thermodynamic lability of both MnIIPs. After the initial reduction at pH ≤ 2, an "irreversible" decomposition of the formed MnIITE-2-PyP was observed, characterized by the formation of a species with an absorbance maximum characteristic of the free porphyrin (H$_2$TE-2-PyP, $\lambda_{\max} = 415$ nm). The observed spectral changes at pH 4 and 8 are similar, except that at pH 4 the formed product cannot be quantitatively re-oxidized to MnIITE-2-PyP. This is an indication of the proton-concentration dependence of the deprotonation rate. MnIITE-3-PyP was found to be even more unstable, since the extensive decomposition of this complex to the free metal ion and the porphyrin ligand was observed already at pH 4. Therefore, the "safe" acidity ranges for the acid–base titrations of both MnIIPs were established at pH > 7.

Maintenance of the total MnTE-2-PyP in reduced form was accomplished by the addition of 1 mM ascorbic acid and by keeping aqueous solutions under purified argon. The observed spectral change of MnIITE-2-PyP in an aqueous solution in the presence of ascorbic acid as a function of pH is shown in Fig. 3.

The SPECFIT factor analysis reveals two relevant absorbing species present in the solution, but the existence of the third one could not be definitively ruled out. Therefore, the observed spectral data were fitted to two different models, one affording two spectral species and one pK_a value and another one affording three spectral species and two pK_a-s. Fitting the former model to the experimental spectral data resulted in the value of $pK_a = 11.75 \pm 0.01$, whereas fitting the latter model to the same experimental data resulted in $pK_a = 9.7 \pm 0.2$ and $pK_a = 11.76 \pm 0.01$.

The 3-species model for MnIITE-2-PyP deprotonation produces a slightly better fit, which can be expected due to more degrees of freedom. Standard deviation for that model is only slightly better than the one for the 2-species model ($\sigma = 1.8 \times 10^{-3}$ vs. $\sigma = 2.1 \times 10^{-3}$) and the residuals of spectral data are very similar for both models. However, the theoretical spectra of the fully protonated and monodeprotonated species of MnIITE-2-PyP in the 3-species model are practically identical (Fig. S4), and the calculated pK_a value has a ten times larger standard deviation than pK_a. Furthermore, the pK_a value for the 2-species model is remarkably similar to pK_a for the 3-species model. In conclusion, our result on the acid–base equilibrium of MnIITE-2-PyP confirms only one pK_a with certainty, while the other one is not supported by the current experimental data.

The observed visible spectral change of the MnIITE-3-PyP in the presence of ascorbic acid as a function of pH is similar to the one obtained for MnIITE-2-PyP and is shown in Fig. S5, but to maintain the total MnTE-3-PyP in its reduced form, an addition of 10 mM ascorbic acid was necessary. Fitting the 2-species model including a single-proton dissociation to the experimental data resulted in the value of $pK_a = 12.04 \pm 0.03$. The theoretical spectra of the involved species (inset of Fig. S5) reveal the similarity of the two studied MnIIPs. It is worth noting that the spectra of MnIITE-3-PyP obtained by either the electrochemical reduction or the chemical reduction with ascorbic acid, match each other more than satisfactorily (Fig. S6).

Deprotonation of MnIIITE-m-PyP. In order to determine the deprotonation patterns of the MnIIIPs, the spectrophotometric pH-titrations were performed under purified argon in the presence of an efficient oxidant. Maintenance of the total MnTE-2-PyP in oxidized form in mildly basic conditions was achieved with 0.1 mM [Mo(CN)$_6$]$^{3-}$. Dependence of the observed visible spectrum of MnIIITE-2-PyP in an aqueous solution on pH is shown in Fig. 4. Above pH 12.3 no further spectral change has been observed and these data are not shown in the figure.

The spectral analysis revealed two relevant absorbing species related through a single-proton exchange. Fitting the model to the experimental data resulted in the value of $pK_a = 11.14 \pm 0.02$. The
predicted theoretical spectra of relevant species are shown as an inset in Fig. 4. Below pH 9.7 the reduced form of the complex is extremely stabilized and a possible deprotonation constant in that pH range was inaccessible by the presented type of experiments.

The titration of MnIII-TE-3-PyP was carried out under very similar experimental conditions as described for MnIV-TE-2-PyP, and the observed spectral change is similar as well (Fig. S7). The spectral analysis using the SPECFIT program again revealed only two relevant absorbing species and fitting this model to the experimental data resulted in a single value of pKₐ = 11.99 ± 0.04.

Electrochemical properties of MnTE-m-PyP (m = 2, 3) complexes

As presented above, the deprotonations of each MnIII and MnIV were found to be characterized by only one pKₐ. Based on these results alone, structures of the species linked by a single proton exchange cannot be distinguished. In order to resolve this ambiguity we set up a new series of experiments including pH-spectrophotometric titrations of both MnPs in the presence of either ascorbic acid or octacyanomolybdate(v) but with the particular MnP present in two oxidation states. The obtained results allow relating the thermodynamic parameters of the investigated acid–base equilibria to the formal reduction potentials of each couple, as well as the number of transferred protons transferred in the equilibria involved.

Reduction of MnIII-PS with ascorbate. In order to determine the values of the formal reduction potential for the studied MnIII/MnIV couples, the spectrophotometric titrations were performed in the presence of ascorbic acid, with respect to the “safe” acidity range. The spectral data reveal a gradual reduction of both MnPs with ascorbic acid upon addition of NaOH to the solutions.

The oxidation of ascorbate, Asc⁺⁻, proceeds through two distinct steps. The first-step formation of a free-radical anion, Asc⁻⁻, is followed by a very fast disproportionation of the formed radical yielding ascorbate dianion and dehydroascorbic acid: 2Asc⁻⁻ ⇋ Asc⁻⁻ + D. Dehydroascorbic acid is further transformed to the final product by a relatively slow but irreversible reaction. Therefore, in order to maintain the “reversibility” of the studied redox reactions during the spectrophotometric titrations, each spectrum has been measured immediately after mixing the reactants at the appropriate pH, thus avoiding the degradation of both MnPs and dehydroascorbic acid.

Fig. 5 and Fig. S8† show the spectral changes of MnIII-TE-2-PyP and MnIII-TE-3-PyP in the presence of a large molar excess of ascorbic acid upon addition of NaOH, respectively. In both experiments the concentration of dehydroascorbic acid was maintained constant and in a large molar excess over MnPs by the initial addition of ferricyanide to oxidize a part of ascorbate according to the reaction: 2[Fe(CN)₆]³⁻ + Asc⁻⁻ ⇋ 2[Fe(CN)₆]²⁻ + D. The pH values were varied within the pH-range 1.5–5.1 (for the sake of clarity not all measured spectra are shown). Inset: The theoretical spectra of MnIII-TE-2-PyP⁺⁺ (black) and MnIII-TE-2-PyP⁺⁺ (red).

The data shown in Fig. 5 and Fig. S8† were fitted in order to determine the half-reduction points, i.e. the pH values at which [MnIII-TE-m-PyP]/[MnIV-TE-m-PyP] = 1. For MnIII-TE-2-PyP and MnIII-TE-3-PyP the calculated half-reductions are found at pH = pKᵦ = 3.21 ± 0.02 and pH = pKᵦ = 8.84 ± 0.04, respectively. The theoretical spectra shown in the insets of these two figures are in excellent agreement with the theoretical spectra of the same species obtained by the separate spectrophotometric pH-titrations of each MnP: MnIII-TE-2-PyP⁺⁺ (Fig. 2), MnIII-TE-2-PyP⁺⁺ (Fig. 3), MnIII-TE-3-PyP⁺⁺ (Fig. S1)† and MnIII-TE-3-PyP⁺⁺ (Fig. S5).†

The formal reduction potential of ascorbic acid, E₀D, H⁺/H₂Asc = +390 mV, is pH-dependent due to the deprotonations of H₂Asc.

Our potentiometric titration of ascorbic acid in 2 M NaClO₄ at 25°C afforded the values of pKᵦ = 4.21 ± 0.03 and pKᵦ = 11.13 ± 0.05. The Nernst equation for the potential of D, H⁺/H₂Asc couple expressed in terms of total concentrations of both ascorbic acid and dehydroascorbic acid at 25 °C is therefore:

\[E = E₀D, H⁺/H₂Asc - \frac{0.0591}{2} \log \left(\frac{[Asc]_{tot}}{[Asc]_{tot} + [Asc]_{tot}K_{A1A} + [Asc]_{tot}K_{A2A}} \right) \]

(2)

Using eqn (2), the potentials of the 0.25 mM dehydroascorbic acid/19.75 mM ascorbic acid couple at pH = 8.84 and pH = 3.21 can be calculated as −52 mV and +145 mV, respectively. Since the reaction solutions were left to equilibrate at each point of the titration, the calculated potentials equal the formal reduction potentials of fully protonated MnIII/PnIV couples.

Oxidation of MnIII-PS with octacyanomolybdate(v). Below pH 10, in the presence of octacyanomolybdate(v), the investigated porphyrin complexes were mixtures of MnIII/IV oxidation states. The reactions of both MnIII-PS with octacyanomolybdate(v) can be written as: MnIII-TE-m-PyP⁺⁺ + [MoV(CN)₆]³⁻ ⇋ MnIV-TE-m-PyP⁺⁺ + [MoIV(CN)₆]²⁻. By a gradual increase of pH from neutral up to 10, a 0.1 mM [Mo(CN)₆]²⁻ gradually oxidizes either of the MnIII-PS in solution. The spectral changes caused by the addition...
of NaOH to the neutral solutions of MnTE-2-PyP and MnTE-3-PyP in the presence of equimolar octacyanomolybdate(V/IV) are shown in Fig. 6 and Fig. S9† respectively.

For each MnP, the SPECFIT spectral analyses indicate two absorbing species related through the simultaneous dissociation of two protons. The formal reduction potential of octacyanomolybdate has been determined as $E_{(MnIII)te-2-PyP}^{red} = -870$ mV by CV experiments in 2 M NaClO₄. Within the studied pH range, this by the following apparent equilibrium constant:

$$K_{app} = \frac{[Mn^{III}TE-m-PyP^+][H^+]}{[H_2O]_2Mn^{III}TE-m-PyP^+]^2}$$ (3)

Considering that the concentrations of $[Mn^{III}CN]^{2-}$ and $[Mn^{III}CN]^{5-}$ were practically equal during the entire titrations (the total octacyanomolybdate is in a very large molar excess over MnPs), the calculated values of K_{app} for the two MnPs numerically equal the corresponding values of K_{app} given above. From the values of K_{app} and the deprotonation constants listed in Table 1 for the two MnPs, the values of the formal reduction potentials of individual species were easily calculated from Nernst equation and are listed in Table 2.

Thermodynamics of deprotonation of MnXTE-m-PyP (X = III, IV; m = 2, 3) complexes

In an attempt to identify the species of MnPs involved in the reaction with octacyanomolybdate(V) (Fig. 6 and Fig. S9†), we have performed additional pH-spectrophotometric titrations of the MnPs, the values of the formal reduction potentials for the one-electron couples obtained by the spectrophotometric pH titrations at $\theta = 25 ^\circ C$, $I = 2$ M (NaClO₄), assigned as in Scheme 1.

Table 1 Thermodynamic data and deprotonation constants at 25 °C, $I = 2$ M NaClO₄ (assigned as in Scheme 1) of manganese alkylpyridyl complexes

<table>
<thead>
<tr>
<th>Species</th>
<th>$pK_{a1} \pm \sigma$</th>
<th>$\Delta_{a1}H^\circ \pm \sigma$</th>
<th>$\Delta_{a1}S^\circ \pm \sigma$</th>
<th>$pK_{a2} \pm \sigma$</th>
<th>$\Delta_{a2}H^\circ \pm \sigma$</th>
<th>$\Delta_{a2}S^\circ \pm \sigma$</th>
<th>$pK_{a3} \pm \sigma$</th>
<th>$\Delta_{a3}H^\circ \pm \sigma$</th>
<th>$\Delta_{a3}S^\circ \pm \sigma$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnIII-TE-2-PyP</td>
<td>11.75 ± 0.01</td>
<td></td>
<td></td>
<td>12.04 ± 0.03</td>
<td></td>
<td></td>
<td>11.99 ± 0.03</td>
<td></td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>MnIIITnBu-2-PyP</td>
<td>11.97 ± 0.03</td>
<td>59 ± 2</td>
<td>32 ± 7</td>
<td>11.62 ± 0.02</td>
<td>48 ± 3</td>
<td>62 ± 11</td>
<td>11.75 ± 0.02</td>
<td>52 ± 3</td>
<td>37 ± 11</td>
<td>13</td>
</tr>
<tr>
<td>MnIIITnBu-3-PyP</td>
<td>11.57 ± 0.01</td>
<td>51 ± 3</td>
<td>51 ± 9</td>
<td>12.70 ± 0.09</td>
<td>51 ± 3</td>
<td>72 ± 11</td>
<td>11.78 ± 0.02</td>
<td>48 ± 2</td>
<td>63 ± 7</td>
<td>13</td>
</tr>
</tbody>
</table>

* Reaction enthalpies are given in kJ mol⁻¹. * Reaction entropies are given in J K⁻¹ mol⁻¹.

Table 2 The formal reduction potentials for the one-electron couples obtained by the spectrophotometric pH titrations at $\theta = 25 ^\circ C$, $I = 2$ M (NaClO₄), assigned as in Scheme 1

<table>
<thead>
<tr>
<th>Formal potential</th>
<th>MnTE-3-PyP</th>
<th>MnTE-2-PyP</th>
<th>MnIIITnBu-2-PyP</th>
</tr>
</thead>
<tbody>
<tr>
<td>E^{0} / V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E^{red} / V</td>
<td>-0.052 ± 0.001</td>
<td>+0.145 ± 0.001</td>
<td>+0.203</td>
</tr>
<tr>
<td>E^{ox} / V</td>
<td>-0.080 ± 0.001</td>
<td>+0.094 ± 0.001</td>
<td>+0.191</td>
</tr>
<tr>
<td>E^{app} / V</td>
<td>+0.479 ± 0.001</td>
<td>+0.578 ± 0.001</td>
<td>+0.399</td>
</tr>
</tbody>
</table>

* Values taken from reference 13

Fitting the proposed model to the experimental data resulted in the value of $pK_{app} = 17.71 ± 0.02$ and $pK_{app} = 17.85 ± 0.01$ for (H₂O)₃MnIII-TE-2-PyP⁺ and (H₂O)₃MnIII-TE-3-PyP⁺, respectively. The theoretical spectra shown in the inset of these two figures are again in excellent agreement with the theoretical spectra of the same species obtained by the separate spectrophotometric pH-titrations of each MnP: MnIII-TE-2-PyP⁺ (Fig. 2), MnIII-TE-2-PyP⁺ (Fig. 4), MnIII-TE-3-PyP⁺ (Fig. S1†) and MnIV-TE-3-PyP⁺ (Fig. S7).†

Taking the above mentioned into account, the experimental data should be fully depicted by the redox reaction: (H₂O)₃MnIII-TE-m-PyP⁺ + [Mn(CN)₅]³⁻ ⇄ (O)₃(H₂O)MnIV-TE-m-PyP⁺ + [Mn(CN)₅]⁵⁻ + 2H⁺, and the equilibrium constant given by eqn (4).

$$K_{eq} = \frac{[(O)₃(H₂O)Mn^{IV}TE-m-PyP^+][Mn(CN)_₅]^{5-}[H^+]^2}{[(H₂O)₃Mn^{III}TE-m-PyP^+]^2}$$ (4)

Published on 04 November 2010 on http://pubs.rsc.org | doi:10.1039/C0DT00585A
Table 3 Thermodynamic data for the accessible redox couples of the studied manganese porphyrin complexes obtained in 2 M NaClO₄. The values were calculated from formal redox potentials vs. SHE.

<table>
<thead>
<tr>
<th>Couple</th>
<th>$\Delta H^\circ \pm \sigma$</th>
<th>$\Delta S^\circ \pm \sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-2\text{-PyP}^+ + 2\text{H}^+ + e^- \rightarrow (\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-2\text{-PyP}^2$</td>
<td>-182 ± 5</td>
<td>48 ± 18</td>
</tr>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-2\text{-PyP}^+ + \text{H}^+ + e^- \rightarrow (\text{H}_2\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-2\text{-PyP}^2$</td>
<td>-133 ± 8</td>
<td>-36 ± 21</td>
</tr>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-2\text{-PyP}^+ + e^- \rightarrow (\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-2\text{-PyP}^2$</td>
<td>-85 ± 11</td>
<td>-98 ± 32</td>
</tr>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-3\text{-PyP}^+ + 2\text{H}^+ + e^- \rightarrow (\text{H}_2\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-3\text{-PyP}^2$</td>
<td>-185 ± 11</td>
<td>4 ± 32</td>
</tr>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-3\text{-PyP}^+ + \text{H}^+ + e^- \rightarrow (\text{H}_2\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-3\text{-PyP}^2$</td>
<td>-174 ± 5</td>
<td>43 ± 16</td>
</tr>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-3\text{-PyP}^+ + e^- \rightarrow (\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-3\text{-PyP}^2$</td>
<td>-123 ± 8</td>
<td>-14 ± 25</td>
</tr>
<tr>
<td>$(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-3\text{-PyP}^+ + 2\text{H}^+ + e^- \rightarrow (\text{H}_2\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-3\text{-PyP}^2$</td>
<td>-72 ± 11</td>
<td>-86 ± 36</td>
</tr>
</tbody>
</table>

* Reaction enthalpies are given in kJ mol⁻¹. * Reaction entropies are given in J K⁻¹ mol⁻¹.

both MnPs in the temperature range from 15 °C to 35 °C. The variations of the observed ionization constants of MnIII Ps and MnII Ps with temperature are presented in Fig. S10 and S11, respectively. An excellent linearity of the van’t Hoff plots was obtained with the correlation coefficients 0.947 < R < 0.992. From the intercepts and slopes of van’t Hoff plots, the reaction enthalpies and entropies are calculated and entropies are given in Table 1.

Thermodynamics of oxidation of MnIVTE-m-PyP (X = III, IV; m = 2, 3) complexes with octacyanomolybdate(v)

In order to evaluate the thermodynamic parameters for the MnIV/III Ps electron-transfer reactions, the temperature dependences of K_{app} defined by eqn (3) were also examined in the temperature range from 15 °C to 35 °C. The values of K_{app} determined at different temperatures and the measured temperature dependence of the formal reduction potential of octacyanomolybdate (Fig. S12) combined with the reported value of absolute reduction potential of hydrogen gas electrode ($E^\circ = +4.44$ V) enabled the construction of plots for the temperature dependence of both the formal and the absolute reduction potentials of $(\text{O})(\text{H}_2\text{O})\text{Mn}^{\text{IV}}\text{TE}-m\text{-PyP}^+, 2\text{H}^+ / (\text{H}_2\text{O})\text{Mn}^{\text{II}}\text{TE}-m\text{-PyP}^2$ redox couples (Fig. S13 and S14). Omitting the variation in heat capacity in the temperature interval from 288.15 K to 303.15 K, the thermodynamic parameters can be calculated from the slopes of E° vs. T and E° vs. T ($\Delta S = nF \Delta E / \Delta T$ and $\Delta H = -nFE + T\Delta S$), resulting in the values given in Tables S3 and S1.

Discussion

The equilibrium spectrophotometric measurements reveal three forms of MnIII Ps within the studied pH range (1.5 < pH < 13). Considering the different experimental conditions used, the obtained values of the deprotonation constants of MnIII Ps are quite close to the ones reported for similar complexes, e.g. the methyl analogues of the studied porphyrins (pK_a(MnIII TM-2-PyP) = 10.5, pK_a(MnIII TM-2-PyP) = 11.5, and pK_a(MnIII TM-3-PyP) = 12.2, pK_a(MnIII TbBu-2-PyP) = 10.3, pK_a(MnIII TbBu-2-PyP) = 11.2). Since the titrations were carried out down to pH 1.5, it can be safely assumed that the observed fully deprotonated species of both MnIII Ps are diaqua complexes, with two axially coordinated water molecules.

On the other hand, only two forms of MnII Ps could be experimentally identified. The question that arises is which species

is experimentally inaccessibly. This dilemma was resolved by combining the results of acid/base titrations when total MnPs were reduced, with the results of the titrations when the manganese in MnPs existed in both +2 and +3 oxidation states. When MnIII Ps were titrated with NaOH in the presence of ascorbic acid in the pH region where only their fully protonated (diaqua species) complexes exist, the redox reactions were accomplished by no proton exchange on the MnPs. Obviously, the experimentally accessible MnIII Ps species are the fully protonated and the monodeprotonated ones.

The inability to detect fully deprotonated MnIII Ps came rather as a surprise, considering that during the titrations the pH of the solutions was increased up to 13. However, in contrast to the MnIII Ps and the MnIV Ps, the MnII Ps coordinate only one axial water molecule because of an increase of the manganese ion radius upon its reduction. In turn, manganese is inserted slightly above the porphyrin plane, one of the coordinated water is driven away, the thermodynamic stability is decreased and the kinetic inertness of MnIII Ps in acidic medium is lost, leading to the observed decomposition of the complexes (Figs. S2 and S3).

For the same reason, the species that would form upon a full deprotonation of MnIVTE-2-PyP must coordinate only an oxo-ligand. Such a complex may be destabilized by the unfavourable solvent reorganizations caused both by the overall charge decrease of the complex and a charge redistribution within the complex species induced by a strong π-bonding of oxo-ligand to the central Mn(II) ion. A plausible model for the deprotonation and redox reactions of MnIII/II Ps, based on the above mentioned arguments, is depicted by the reaction Scheme 1 and the values of the deprotonation constants obtained according to this model are listed in Table 1.

Based on the fitting procedure, only two forms of MnIII Ps were identified in aqueous solutions. It should be noted that the inability to detect more protolytically related species is a consequence of our inability to maintain total MnPs in the +4 oxidation state below pH 10, which limited the pH range of titrations. It has been shown that MnIII Ps are unstable, particularly at a low pH, reacting with water to regenerate MnII Ps.

Besides the question of identification of the experimentally inaccessible species, an additional question is whether the observed deprotonated complexes have coordinated water molecule(s) at all. An increase of positive charge on the manganese is expected.
to increase the acidity of the coordinated water molecules.\(^b\) According to Scheme 1, the oxidation of \((\text{H}_2\text{O})\text{Mn}^{III}\text{P}^+\) could be accompanied by the observed double-deprotonation only if \(pK_{a2} < 9\). This implies at least a four-units decrease of \(pK_a\) upon oxidation of \(\text{Mn}(III)\) to \(\text{Mn}(IV)\). Therefore, it appears that the calculated values of \(K\) for both \(\text{Mn}^{III}\text{Ps}\) are more conveniently characterized by the formal reduction potentials and the species involved are coloured black, blue, and red, respectively.

To increase the acidity of the coordinated water molecules,^b^ According to Scheme 1, the oxidation of \((\text{H}_2\text{O})\text{Mn}^{III}\text{P}^+\) could be accompanied by the observed double-deprotonation only if \(pK_{a2} < 9\). This implies at least a four-units decrease of \(pK_a\) upon oxidation of \(\text{Mn}(III)\) to \(\text{Mn}(IV)\). Therefore, it appears that the calculated values of \(K\) for both \(\text{Mn}^{III}\text{Ps}\) are more conveniently characterized by the formal reduction potentials and the species involved are coloured black, blue, and red, respectively.

The equilibria describing the observed behaviour of MnPs in aqueous solutions. The directly determined, the indirectly determined and the experimentally inaccessible species are the diaqua-, hydroxo-, and dioxo-complexes.

The combination of the calculated values of \(K\) with the reported \(E_{D\text{H}^+\text{H}^+}\), afforded the calculation of the relevant formal reduction potentials \(E_{fr}^n, E_{fr}^o\) and \(E_{fr}^u\), given in Table 2, along with the potentials recalculated for MnTnBu-2-PyP complex\(^{11}\) according to the model given in Scheme 1. The most convenient way of navigating through the Scheme 1 is to calculate the corresponding values of \(\Delta G^{fr} = -RT\ln K\), or \(\Delta G^{fr} = -RT\ln K\), allowing simple calculation of the formal redox potentials. For instance, \(E_{fr}^o = \Delta G^{fr}(F=K)/F = \Delta G^{fr}(D=K+2\text{H}^+) + \Delta G^{fr}(D=\text{E}+\text{H}^+) + \Delta G^{fr}(E=\text{F}+\text{H}^+)/F\) (the formal redox potentials for all experimentally available redox transitions are given in Table S2).^\(^*\)

The values shown in Table 1 reveal a gradual decrease of \(pK_{a1}\) values of MnTE-2-PyP upon the increase of oxidation number of the coordinated manganese ion. The increased acidity of the coordinated water molecule is very probably caused by the strengthening of the Mn-O bond and consequent weakening of the O–H bond upon the building up of positive charge on the central metal ion. Rather small differences between \(pK_{a1}\) of the reduced and oxidized forms of MnPs are probably caused by the additional coordination of a water molecule in the latter forms. The lower \(pK_a\) for the ortho than meta derivatives is attributed to the proximity, and hence stronger electron-withdrawing effect of the pyridyl positive charges to the porphyrin ring.

The obtained thermodynamic parameters reveal that all the deprotonation reactions are accomplished by a significant decrease of entropy. The reported value of proton hydration entropy \((\Delta_{\text{H}_2\text{O}}S(\text{H}^+)) = -87.6 \text{ J K}^{-1} \text{ mol}^{-1})^{11}\) clearly shows that the overall reaction entropies are dominated mainly by the hydration entropy of the released proton, whereas the entropy changes related to the individual MnP moieties are all positive ranging from ca. +7 J K\(^{-1}\) mol\(^{-1}\) up to +72 J K\(^{-1}\) mol\(^{-1}\). This can be explained by the weakened hydration of the deprotonated MnPs caused by a decrease of their overall charge upon the dissociation of one proton. As in case of MnTnBu-2-PyP,\(^{13}\) the obtained reaction enthalpies for the deprotonation of Mn\(^{III}\)Ps are indeed very close to the enthalpies for the second deprotonation of Mn\(^{III}\)Ps. However, all the enthalpy values obtained in this work, including the enthalpies for the first deprotonation of Mn\(^{III}\)Ps, are within the limits of experimental errors, making this thermodynamic parameter indecisive regarding the assignation of the Mn\(^{III}\)Ps deprotonation processes to the aqua or aquoxo species.

The calculated values in Table 2 differ somewhat from the previously published potentials determined by cyclic voltammetry.\(^7\) The differences in \(E^o\) vs. SHE are due to the differences in methodology and electrode calibration. Yet, importantly, the differences in \(E_{fr}\) among members of Mn(III) N-alkylpyridylporphyrin series remain and thus all relationships that have been based on \(E_{fr}\) are also correct.

It is interesting to inspect the values of the formal reduction potentials shown in Table 2. While the formal reduction potentials for the Mn\(^{III}\)Ps/Mn\(^{III}\)Ps couples are all exergonic, the formal reduction potentials of the Mn\(^{III}\)Ps/Mn\(^{III}\)Ps couples for both ortho- MnPs are still exergonic, though less positive, whereas for the meta-MnPs they switch to the endergonic (i.e. negative). This phenomenon is a consequence of a larger separation between the electron-withdrawing positive charges on the pyridinium substituent and the central Mn ion in the meta complexes, which decreases the Mn-site electron deficiency making Mn less apt to accept electrons. The results are consistent with the reported observation for MnTMPyP complexes, which show that the “ortho effect” observed for the Mn(III)/Mn(II) couple is greatly diminished in the case of the high-valent Mn(IV)/Mn(III) couple due to the mutual cancellation with the effect of \(pK_{a1}\) and \(pK_{a2}\) changes.\(^6\)

Additionally, it is interesting to make a short inspection of the thermodynamic data collected in this work regarding the electron transfer processes. All the accessible couples that involve the double protonation are characterised by a positive entropy change. Its origin must be in the dehydration of the proton since

Scheme 1 The equilibria describing the observed behaviour of MnPs in aqueous solutions. The directly determined, the indirectly determined and the experimentally inaccessible equilibrium constants, the formal reduction potentials and the species involved are coloured black, blue, and red, respectively.
the positive entropy changes diminish in the reductions linked to the dissociations of only one proton and, even more so, in the reductions with no proton dissociation at all. Furthermore, at the ambient temperature, the main driving force of the reduction is the enthalpy change. Taking into account the convention by which the formation enthalpies of H^+ and e^{-} equal zero at all temperatures, the calculated reaction enthalpies correspond to the transformation of related complex species. Therefore, the enthalpy decrease must be due either to the exothermic binding of proton(s) to the oxo ligand, or to the increased hydration of the complex species which undergoes the increase of charge from +4 to +5. The thermodynamics of proton binding can be circumvented by considering the reactions: $(O)(H_2O)Mn^{IV}TE-m-PyP^+$($aq$) $+$ e^{-} \rightarrow $(O)(H_2O)Mn^{III}TE-2-PyP^+$($aq$) and $(O)(H_2O)Mn^{III}TE-3-PyP^+$($aq$) $+$ e^{-} \rightarrow $(O)(H_2O)Mn^{III}TE-3-PyP^+$($aq$). The calculated relative thermodynamic parameters are $\Delta H^\circ = -85$ kJ mol$^{-1}$, $\Delta S^\circ = -98$ J K$^{-1}$ mol$^{-1}$, and $\Delta F^\circ = -72$ kJ mol$^{-1}$, respectively (Table 3). The entropy changes oppose the spontaneity of these two reductions, but the increase in enthalpies, caused by the dehydration of complex species as their positive charge is reduced, is far exceeded by the exothermic electron affinity of these two Mn(IV) complex cations.

The electron affinities, i.e., their opposites, the ionisation potentials, (which in turn can be compared to the ionisation potential of MnIII) can be calculated for $(O)(H_2O)Mn^{IV}TE-m-PyP^+$($aq$) species as the difference between the calculated absolute potentials, (which in turn can be compared to the ionisation potentials of related complex species). We have determined all the protolytic equilibrium constants of these two MnPs, by which the electron density in the porphyrin ring is changed. The similar direction peak-shift is caused by the deprotonation of the aqua ligand causes such an effect, the spectra of double-deprotonated species would all indicate a preference for the oxo- over dihydroxo prototropic structures.

The UV peaks of all aqua-MnIVPs show red shift upon the manganese oxidation to MnIII ion, possibly due to the electron-withdrawing nature of the central metal ion in the higher oxidation state which caused the electronic density on the porphyrin macrocycle to decrease to a certain degree. This in turn decreases the conjugation throughout the ring and causes the reduction of the electron transition energy of the porphyrin macrocycle, accounting for the red shift in its UV absorption peak. An opposite direction peak-shift is caused by the deprotonation of the aqua MnPs, by which the electron density in the porphyrin ring is increased, increasing the conjugation and in turn the electron transition energies as well. Upon the oxidation of manganese from +3 to +4 in $(O)(H_2O)Mn^{III}TE-m-PyP^+$, a blue shift was also observed, which was much smaller in the meta derivative, in accordance with the above mentioned difference in the proximity of the electron withdrawing group on the porphyrin. The similar spectral characteristics are exhibited by the butyl derivative as well,19 showing that the length of the side chains has little effect on the spectral shapes and peak positions of the MnPs complexes.

In conclusion, our results reveal that in aqueous solutions in the pH range \sim2–13 the following accessible species exist: $(H_2O)Mn^{IV}TE-m-PyP^+$, $(HO)Mn^{IV}TE-m-PyP^+$, $(H_2O)Mn^{III}TE-m-PyP^+$, $(HO)(H_2O)Mn^{IV}TE-m-PyP^+$, $(HO)(H_2O)Mn^{III}TE-m-PyP^+$, $(H_2O)Mn^{IV}TE-PyP^+$ and $(HO)(H_2O)Mn^{IV}TE-m-PyP^+$. We have determined all the protolytic equilibrium constants that include these species as well as the thermodynamic parameters of the relevant protolysis reactions. The corresponding formal reduction potentials related to the reduction of the above species and the thermodynamic parameters describing the accessible reduction couples were calculated as well.

While for the speciation of MnIVTE-m-PyPs the obtained results entirely confirm the reaction model proposed for the MnIIITnBu-2-PyP, the previous attribution of the observed species for MnIVTnBu-2-PyP that was based on the thermodynamic parameters alone, erroneously proposed $(H_2O)Mn^{IV}TnBu-2-PyP^+$, $(H_2O)(H_2O)Mn^{IV}TnBu-2-PyP^+$ and $(H_2O)Mn^{IV}TnBu-2-PyP^+$ as the experimentally inaccessible species.13 Therefore, the presented results proved that the derivation of a correct reaction model

Table 4 The spectral characteristics of various MnPs species obtained by the spectrophotometric pH titrations at $\theta = 25^\circ$C, $I = 2$ M (NaClO$_4$)

<table>
<thead>
<tr>
<th>Species</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(H_2O)Mn^{III}TE-m-PyP^+$</td>
<td>λ_{max}/nm, $\epsilon/10^3$ M$^{-1}$ cm$^{-1}$</td>
<td>λ_{max}/nm, $\epsilon/10^3$ M$^{-1}$ cm$^{-1}$</td>
</tr>
<tr>
<td>$(H_2O)Mn^{IV}TE-m-PyP^+$</td>
<td>437, 2.021</td>
<td>441, 2.601</td>
</tr>
<tr>
<td>$(O)(H_2O)Mn^{IV}TE-m-PyP^+$</td>
<td>407, 449, 0.702 0.587</td>
<td>408, 455, 0.795 1.064</td>
</tr>
<tr>
<td>$(HO)(H_2O)Mn^{IV}TE-m-PyP^+$</td>
<td>455, 1.384</td>
<td>462, 1.549</td>
</tr>
<tr>
<td>$(O)(H_2O)Mn^{III}TE-m-PyP^+$</td>
<td>435, 453(sh), 0.766 0.923</td>
<td>440, 456(sh), 0.923</td>
</tr>
<tr>
<td>$(O)(H_2O)Mn^{III}TE-m-PyP^+$</td>
<td>443, 1.300</td>
<td>446, 1.562</td>
</tr>
<tr>
<td>$(O)(H_2O)Mn^{III}TE-m-PyP^+$</td>
<td>423, 0.738</td>
<td>425, 0.996</td>
</tr>
<tr>
<td>$(O)(H_2O)Mn^{III}TE-m-PyP^+$</td>
<td>444, 0.755</td>
<td>427, 0.849</td>
</tr>
</tbody>
</table>
based only on the thermodynamic data could be rather misleading, indicating the necessity of a more comprehensive approach, including the investigation of electrochemical properties of MnP complexes as well.

Acknowledgements

The authors are thankful to the Croatian Ministry of Science (MZOŠ grant: 006-0061247-0009) and to Duke University’s CTSA grant 1 UL 1 RR024128-01 from NCRR/NIH for their financial support.

References