Influenza Vaccination of Household Contacts of Newborns: A Hospital-Based Strategy to Increase Vaccination Rates

Author(s): Emmanuel B. Walter, MD, MPH, Norma J. Allred, PhD, MSN, Geeta K. Swamy, MD, Anne S. Hellkamp, MS, Rowena J. Dolor, MD, MHS

Source: Infection Control and Hospital Epidemiology, Vol. 31, No. 10 (October 2010), pp. 1070-1073

Published by: The University of Chicago Press on behalf of The Society for Healthcare Epidemiology of America

Stable URL: http://www.jstor.org/stable/10.1086/656563

Accessed: 10/06/2011 13:04

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ucpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Influenza Vaccination of Household Contacts of Newborns: A Hospital-Based Strategy to Increase Vaccination Rates

Emmanuel B. Walter, MD, MPH; Norma J. Allred, PhD, MSN; Geeta K. Swamy, MD; Anne S. Hellkamp, MS; Rowena J. Dolor, MD, MHS

We implemented a hospital-based influenza vaccination program for household contacts of newborns. Among mothers not vaccinated prenatally, 44.7% were vaccinated through the program, as were 25.7% of fathers. A hospital-based program provided opportunities for vaccination of household contacts of newborns, thereby facilitating better adherence to national vaccination guidelines.

Infect Control Hosp Epidemiol 2010; 31(10):1070-1073

There is no influenza vaccine licensed for administration to infants aged less than 6 months, despite reports of elevated rates of influenza-associated hospitalization and mortality for this age cohort. Consequently, the Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention recommends a “cocooning” prevention strategy, whereby household contacts are vaccinated to reduce the risk for transmission of the influenza virus to infants. Vaccination of household contacts of newborns remains an unmet challenge: nationally, rates of influenza vaccination coverage among pregnant women and household contacts of persons at high risk are 24% and 19.5%–24.8%, respectively. These low rates underscore the need for novel strategies to increase rates of vaccination among newborns’ household contacts. Consequently, we implemented a hospital-based program for administering influenza vaccine to household contacts of newborns. Our study analyzed the effect of the hospital-based influenza vaccination program for this population and identified predictors for influenza vaccination among new mothers.

METHODS

The program was conducted during the period from October 2007 through February 2008 at the postpartum unit of Durham Regional Hospital, located in Durham, North Carolina. Preservative-free, trivalent inactivated influenza vaccine was offered to new mothers and household contacts of newborns. The vaccine was provided free to all, but an administration fee was billed to new mothers alone. A stand-alone standing order for trivalent inactivated influenza vaccine that did not require an individual physician’s signature was used. Postpartum nursing staff gave new mothers informational packets containing a letter introducing the program, coupons for free trivalent inactivated influenza vaccine for household contacts of newborns, and an influenza vaccine information statement. The vaccine was administered to new mothers by hospital nursing staff in the postpartum unit and to household contacts by a part-time research nurse in a room adjacent to the postpartum unit. New mothers and household contacts were permitted to receive trivalent inactivated influenza vaccine from the program either during the newborn’s hospitalization or after the newborn was discharged. Additional components of the vaccination program included educational sessions with the medical and nursing staff; promotional materials, such as posters and buttons; and vaccine reminders mailed after delivery.

The primary study outcome was influenza vaccination coverage for new mothers and other household contacts of newborns both before and after delivery. Household contacts were defined as persons who lived or resided in the household, as enumerated by new mothers. Vaccine receipt was determined by use of sequential maternal interviews, including an in-person hospital-based interview on the day of the mother’s discharge and a follow-up telephone interview that occurred 6–8 weeks later. After obtaining written informed consent from mothers, the interviewer conducted the 15-minute in-person interview to obtain demographic and contact information; history of prenatal care and delivery, high-risk medical conditions, and prenatal influenza vaccination; and information regarding household contacts, including age, relationship, and influenza vaccination status for all household members. The brief follow-up interview was performed to obtain updated influenza vaccination information for new mothers and household contacts.

Continuous baseline characteristics are presented as median values with interquartile ranges. Categorical baseline variables were compared using the Mantel-Haenszel χ^2 test for ordinal variables (education level), the Fisher exact test for infrequently occurring variables (medical history), or a likelihood ratio χ^2 test (all others). Analyses were conducted using SAS, version 8.2 (SAS Institute). This study was approved by the institutional review board of Duke University Health System and was registered with ClinicalTrials.gov (identifier: NCT00570037).

RESULTS

During the study period, there were 904 deliveries (including 14 sets of twins) to 890 mothers. Informational packets were
Table 1. Baseline Maternal Characteristics and Influenza Vaccination Rates According to Time Period Stratified by Patient Group for Women Delivering at Durham Regional Hospital, Durham, North Carolina (October 2007–February 2008)

<table>
<thead>
<tr>
<th>Patient group</th>
<th>All patients</th>
<th>Patients who received influenza vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 238)</td>
<td>Before delivery</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>97/237 (41)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR), years</td>
<td>29 (25–33)</td>
<td></td>
</tr>
<tr>
<td><30 years</td>
<td>129/237 (54)</td>
<td>53/129 (41)</td>
</tr>
<tr>
<td>(\geq 30) years</td>
<td>108/237 (46)</td>
<td>44/108 (41)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>8/238 (3)</td>
<td>2/8 (25)</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>230/238 (97)</td>
<td>95/230 (41)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>73/236 (31)</td>
<td>23/73 (32)*</td>
</tr>
<tr>
<td>White</td>
<td>141/236 (60)</td>
<td>66/141 (47)</td>
</tr>
<tr>
<td>Asian</td>
<td>11/236 (5)</td>
<td>5/11 (45)</td>
</tr>
<tr>
<td>Other</td>
<td>11/236 (5)</td>
<td>1/11 (9)</td>
</tr>
<tr>
<td>Primary insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private or managed care</td>
<td>179/238 (75)</td>
<td>74/179 (41)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>56/238 (24)</td>
<td>21/56 (38)</td>
</tr>
<tr>
<td>None</td>
<td>3/238 (1)</td>
<td>2/3 (67)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\geq 1) year of postgraduate study</td>
<td>66/238 (28)</td>
<td>31/66 (47)</td>
</tr>
<tr>
<td>College graduation</td>
<td>72/238 (30)</td>
<td>26/72 (36)</td>
</tr>
<tr>
<td>High school graduation, GED, or some college</td>
<td>91/238 (38)</td>
<td>33/91 (36)</td>
</tr>
<tr>
<td>Grade 12 or less</td>
<td>9/238 (4)</td>
<td>7/9 (78)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmarried</td>
<td>71/238 (30)</td>
<td>22/71 (31)</td>
</tr>
<tr>
<td>Married</td>
<td>167/238 (70)</td>
<td>75/167 (45)</td>
</tr>
<tr>
<td>Location of prenatal care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health department or community health center</td>
<td>25/235 (11)</td>
<td>15/25 (60)</td>
</tr>
<tr>
<td>Private office</td>
<td>210/235 (89)</td>
<td>82/210 (39)*</td>
</tr>
<tr>
<td>Employed in healthcare profession</td>
<td>58/238 (24)</td>
<td>27/58 (47)</td>
</tr>
<tr>
<td>No</td>
<td>180/238 (76)</td>
<td>70/180 (39)</td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>31/238 (13)</td>
<td>9/31 (29)</td>
</tr>
<tr>
<td>No</td>
<td>207/238 (87)</td>
<td>88/207 (43)</td>
</tr>
<tr>
<td>Cardiac condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10/238 (4)</td>
<td>4/10 (40)</td>
</tr>
<tr>
<td>No</td>
<td>228/238 (96)</td>
<td>93/228 (41)</td>
</tr>
<tr>
<td>Medical condition interfering with breathing</td>
<td>9/238 (4)</td>
<td>2/9 (22)</td>
</tr>
<tr>
<td>No</td>
<td>229/238 (96)</td>
<td>95/229 (41)</td>
</tr>
</tbody>
</table>

Note. Data are proportion (%) of patients, unless otherwise indicated. GED, general educational development; IQR, interquartile range.

\(a \) \(P = .03 \).

\(b \) \(P = .02 \).

\(c \) \(P = .05 \).

distributed to 733 postpartum women (82%), and 364 women (41%) were approached in random order for a postpartum interview on the day of discharge. Of the mothers approached, 238 (65%) were interviewed in the hospital, and 194 (82%) of these received a follow-up interview. The majority of women were white (141 [60%] of 236), married (167 [70%] of 238), and privately insured (179 [75%] of 238), had a college or some postgraduate education (138 [58%] of 238), and received prenatal care from a private obstetrical care provider (210 [89%] of 235) (Table 1). A large proportion
were employed in the healthcare professions (58 [24%] of 238), and a substantial proportion reported having asthma or a lung condition (31 [13%] of 238).

Whereas 124 of the 238 women (52.1%) reported being offered a flu shot during pregnancy, 97 women (40.8%) reported receiving one before delivery (Table 2). Among the 141 women who reported that they did not receive a flu vaccine during pregnancy, 63 (44.7%) received one during their hospitalization and 5 (3.5%) received one after discharge, either at the hospital or elsewhere. Women reported that 53 of 206 fathers (25.7%), 12 of 172 siblings (7.0%), and 7 of 98 other relatives (7.1%) received a flu shot at the delivery hospital prior to discharge of the newborn. Among all 718 household contacts, 219 (30.5%) were vaccinated prior to the newborn’s birth, 135 (18.8%) were vaccinated in the birthing hospital prior to the newborn’s discharge, and 40 (5.6%) were vaccinated after the newborn’s discharge.

When compared with women who received prenatal care in a private provider office, women who received prenatal care at a public health department or community health center were more likely to receive an influenza vaccine during the prenatal period (15 [60%] of 25 women vs 82 [39%] of 210 women; \(P < .05 \)) (Table 1). These observed differences in coverage rates among women who received prenatal care in varied settings were not present when vaccination that occurred during the hospitalization and postdischarge period was combined with vaccination during the prenatal period. Likewise, observed differences in vaccination rates among racial groups were smaller when the entire perinatal period was considered, rather than only the prenatal period. Overall influenza vaccination rates for the prenatal and postpartum period were higher for women aged 30 years or more than for younger women (83 [77%] of 108 women vs 82 [64%] of 129 women; \(P = .03 \)). Age-related differences in vaccine coverage were not observed when only prenatal vaccination was assessed.

DISCUSSION

We implemented a hospital-based influenza vaccination program for household contacts of newborns, which, combined with vaccination efforts by community healthcare providers, was able to achieve a 54.9% vaccination rate among all household contacts of newborns. Furthermore, offering vaccine to all postpartum women mitigated differences in vaccine coverage that we observed among different racial groups and among women who received prenatal care in different settings. We obtained coverage rates that were greater than nationally reported rates among pregnant women and household contacts but were less than those observed in intervention programs for parents of newborns receiving intensive care. Factors likely influencing the differences in vaccination rate between parents of our healthy newborn population and parents of sick newborns include the differences in length of hospital stay, the presence of both parents during the course of care, and a higher motivation to receive vaccination to protect a critically ill newborn. Media reports of a mismatch between the strains of influenza virus circulating in the community and the strains contained in the vaccine may also have adversely affected our vaccination efforts.

In summary, influenza vaccination of household contacts of newborns as part of postpartum hospital care should be considered as an approach to implementing “cocooning” vaccination strategies. Administering influenza vaccine in the hospital afforded household contacts protection from influenza at a point in time earlier than when they may otherwise have received influenza vaccine, thereby potentially affording newborns a longer period of time during which they are “cocooned.” Unlike for mothers and siblings, many of whom have vaccination opportunities during prenatal care or as part of a childhood vaccination program, for many new fathers, the hospital program that we implemented may have provided their only contact with the medical system and an opportunity for influenza vaccination.

ACKNOWLEDGMENTS

We acknowledge the work and dedication of the following study staff: Luis Ballon, BS; Kathlene Chmielewski, AS; Beth Patterson, RN, BSN; and Diane Wingo, RN. We also acknowledge the assistance of Amanda McMillan in preparing the manuscript.

Financial support. Centers for Disease Control and Prevention cooperative agreement with Duke University (5U01IP00074-02).
Potential conflicts of interest. E.B.W. reports that he is a member of the speakers’ bureau for Sanofi Pasteur and has conducted clinical trials for Sanofi Pasteur, GlaxoSmithKline, Novartis, and Medimmune. R.J.D. reports that she has conducted clinical trials for CSL. G.K.S. reports that she is a member of the speakers’ bureau and has conducted clinical research for GlaxoSmithKline. All of the named companies manufacture influenza vaccines. All other authors report no conflicts of interest relevant to this article.

From the Duke Clinical Vaccine Unit and Primary Care Research Consortium (E.B.W., A.S.H., R.J.D.) and the Department of Obstetrics and Gynecology, Maternal-Fetal Medicine (G.K.S.), Duke University Medical Center, Durham, North Carolina; and the Centers for Disease Control and Prevention, Atlanta, Georgia (N.J.A.).

Address reprint requests to Emmanuel B. Walter, MD, MPH, Duke Children’s Primary Care Clinic, 4020 North Roxboro Street, Durham, NC 27704 (walte002@mc.duke.edu).

Received April 26, 2010; accepted July 7, 2010; electronically published August 30, 2010.

The views in this article are those of the authors and do not necessarily represent those of the Centers for Disease Control and Prevention, US Department of Health and Human Services.

© 2010 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2010/3110-0014$15.00. DOI: 10.1086/656563

REFERENCES