NEWLY RESOLVED RELATIONSHIPS IN AN EARLY LAND PLANT LINEAGE: BRYOPHYTE CLASS SPHAGNOPSIDA (PEAT MOSSES)¹

A. JONATHAN SHAW²,¹¹, CYMON J. COX³, WILLIAM R. BUCK⁴, NICOLAS DEVOS⁵, ALEX M. BUCHANAN⁶, LYNETTE CAVE⁶, RODNEY SEPPETL⁷, BLANKA SHAW², JUAN LARRAIN⁸, RICHARD ANDRUS⁹, JOHANN GREILHUBER¹⁰, AND EVA M. TEMSCH¹⁰

²Duke University, Department of Biology, Durham, North Carolina 27708 USA; ³Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; ⁴Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York 10458 USA; ⁵Institute of Botany, University of Liège, B22 Sart Tilman, B-4000 Liège, Belgium; ⁶Tasmanian Herbarium, Private Bag 4, Hobart, Tasmania 7001, Australia; ⁷Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia; ⁸Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile; ⁹Departments of Environmental Studies and Biological Sciences, Binghamton University, Vestal Parkway East, P.O. Box 6000, Binghamton, New York 13902 USA; and ¹⁰Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Rennweg 14, A 1030 Vienna, Austria

• Premise of the study: The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350–500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida.

• Methods: Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity.

• Key results: Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera.

• Conclusions: The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.

Key words: Ambuchanania; bryophyte phylogeny; land plant phylogeny; peat mosses; Sphagnopsida; Sphagnum.

Phylogenetic analyses of genome structure and nucleotide sequences from mitochondrial, plastid, and nuclear genes have corroborated the view held by botanists for over a century that the bryophyte groups (mosses, liverworts, hornworts) comprise early-diverging land plant lineages that originated before the appearance of vascular plants (Haeckel, 1876; Campbell, 1895; Bower, 1935; Kenrick and Crane, 1997; Shaw and Renzaglia, 2004). Early cladistic analyses based on morphological characters (Mishler and Churchill, 1984) showed that the three bryophyte groups, classified by most botanists of the time as a single phylum because of their similar gametophyte-dominant life cycles, more likely represent a paraphyletic grade that diverged before the emergence of the vascular plants. In fact, Haeckel’s (1876) tree similarly shows mosses and liverworts as a paraphyletic grade basal to the vascular plants. Recent data sets appear to favor the hypothesis that liverworts (phylum Marchantiophyta) comprise the earliest-diverging lineage, followed by the mosses (Bryophyta) and hornworts (Anthocerophyta) (Qiu et al., 1998; Nickrent et al., 2000; Shaw and Renzaglia, 2004). However, the most data-rich studies to date, based on chloroplast or mitochondrial organellar proteins, like analyses based on sperm cell morphology (Garbary et al., 1993), identify a clade uniting liverworts and mosses, and additional data are still needed before we can consider the branching order of early land plant lineages to be finally resolved (Nishiyama et al., 2004; Rodríguez-Ezepeleta et al., 2007; Terasawa et al., 2007; but see also Qiu, et al., 2006). Notwithstanding that much remains to do, great progress has been made toward resolving phylogenetic relationships within the mosses (phylum Bryophyta s.s.) (e.g., Cox and Hedderson, 1999; Cox et al., 2000; Newton et al., 2000; Goffinet et al., 2001; Stech and Frey, 2008; Goffinet et al., 2009; Wurzmund et al., 2010). Major clades resolved by molecular data to a large extent mirror previous classifications based on morphology (e.g., Fleischer, 1923; Brothérus, 1924–1925; Vitt, 1984). A simple classification for Bryophyta that represents phylogenetic relationships divides the phylum into five classes: Bryopsida, Ambuchananiaceae, Heterosporales, Sphagnopsida, and Anthocerotopsida.
Takakiopsida, Andreaeopsida, Andreaeobryopsida, and Sphagnopsida (Stech and Frey, 2008; Goffinet et al., 2009). The classes of phylum Bryophyta differ in basic developmental features including embryological origins of the sporogenous and columellar tissue of spore mother cells (Cavers, 1911; Schofield, 1985; Crum, 2001b; Garbary et al., 1993; Vanderpoorten and Goffinet, 2009). The class Bryopsida includes most familiar mosses, with some 10000 species (Crosby et al., 2000). The Andreaeopsida and Sphagnopsida each include about 350–500 species, the Takakiopsida two, and Andreaeobryopsida one.

The Sphagnopsida comprise a morphologically distinctive group, and some have argued that they should be classified in a phylum separate from other mosses (Steere, 1958; Crum, 2001b). Phylogenetic analyses based on morphological and molecular characters, however, have shown that the Sphagnopsida are part of a monophyletic Bryophyta (i.e., mosses: Garbary et al., 1993; Hedderson et al., 1996; Beckert et al., 1999). Within the Bryophyta, plants of Sphagnopsida are distinguished from other mosses by numerous morphological and developmental features. Gametophyte features include thalloid protonemata (shared with Andreaeopsida and a few early-diverging members of the Bryopsida), dimorphic leaf cells of mature leaves, and typical absence of rhizoids attaching mature plants to their substrates. Enlarged, hyaline leaf cells, dead at maturity and with various reinforcing cell wall fibrils and pores, are enclosed within a network of much narrower chlorophyllose cells. This pattern is not found in any other moss, although loosely analogous cell dimorphism occurs in scattered species of the class Bryopsida. Ontogeny of the chlorophyllose and hyaline cells during leaf development in Sphagnum is unique (e.g., Holcombe, 1984; Butterfass, 1992). Asymmetric cell divisions during leaf ontogeny give rise to groups of three cells from a single initial (a so-called triad), one hyaline and empty at maturity and two chlorophyllose cells (Butterfass, 1992). At maturity, each hyaline cell is surrounded by five or more narrow hyaline cells, two of them derived from the same triad and others related by cell lineage to adjacent hyaline cells.

The Sphagnopsida also differ from other mosses in that elongation of gametophyte stems involves subsapical meristem activity in fully differentiated cells derived from the apical cell itself (Ligron and Duckett, 1998). The sperm cells of Sphagnum are characterized by at least five apomorphic character states pertaining to the flagellar apparatus, and antheridia of Sphagnum differ from those in other mosses in lacking opercular cells (Garbary et al., 1993). The gametophyte–sporophyte junction in Sphagnum lacks placental wall ingrowths, in contrast to those of other mosses (Ligron et al., 1993).

The sporophyte generation of Sphagnopsida is also highly differentiated. The sporophyte lacks a seta (stalk) and is instead raised on a pseudopodium of (maternal) gametophyte origin, a feature shared with Andreaeopsida but not Andreaeobryopsida, Bryopsida, or Takakiopsida. The sporogenous tissue within the sporangium of Sphagchnpsida develops from embryonic amphihecal rather than endothelial tissue and overarches a massive columella (derived from the endothecium). The columella is much more slender in other mosses and the sporogenous tissue is derived from the outer layer(s) of endothecium, rather than the amphihecal. Endothecium and amphihecal differentiate at a very early stage of sporophyte development, and the difference between Sphagchnpsida and other mosses is viewed as fundamental. The sporangia (capsules) of Sphagchnpsida dehisce by an apical operculum, as in Bryopsida (in contrast to the vertical or spiral suture lines in Andreaeopsida/Andreaeobryopsida and Takakiopsida, respectively), but unlike most true mosses (Bryopsida), Sphagchnpsida have no peristomes and the capsules open via a unique “pop-gun” mechanism wherein the operculum detaches explosively as the capsule shrinks in diameter (Duckett et al., 2009).

The Sphagchnpsida are currently classified in two orders (Ambuchananiaceae, Sphagnaceae), each with a single family and genus (Ambuchananiaceae, Ambuchanania; Sphagnaceae, Sphagnum) (Seppelt, 2000; Crum, 2001b). Ambuchanania leucobryoides (as Sphagnum) was described (Yamaguchi et al., 1990) from a single collection made in Tasmania in 1987. It was first classified in a new section of Sphagnum but later (Crum and Seppelt, 1999) moved to a newly erected family and order.

Ambuchanania has hyaline and chlorophyllose (i.e., dimorphic) leaf cells like Sphagnum, and some of the hyaline cells are ornamented with cell wall fibrils and pores. Although the morphological details of the leaf areolation differ from any Sphagnum species, these features clearly connect Ambuchanania to the latter genus. Also like Sphagnum, Ambuchanania gametophytes lack rhizoids at maturity. Gametophyte plants are relatively small and lack fasciculate branching, an unusual but not unique trait in Sphagnum. Ambuchanania has bisexual gametophytes like some species of Sphagnum, but the antheridia are oblong-elongate, unlike the spherical antheridia of Sphagnum. The antheridia of Ambuchanania occur in naked clusters below the archegonia, rather than on well-differentiated branches as in Sphagnum, and the archegonia are terminal on stems rather than on short lateral branches as in Sphagnum.

The sporophyte of Ambuchanania is similar to those in Sphagnum and is raised on a terminal pseudopodium of gametophytic origin. Like Sphagnum, the capsule wall of Ambuchanania has abundant pseudostomata, similar in structure to stomata but apparently nonfunctional (Crum, 2001b; Duckett et al., 2009). It is because of these many structural features that distinguish Ambuchanania from Sphagnum that the genus has been classified in a separate family and order from Sphagnum. This interpretation is supported by molecular phylogenetic data presented by Shaw (2000) and greatly expanded here. The interpretation of morphological evolution in the Sphagchnpsida and the classification for the group are, however, complicated by new information (below) that several species having more or less typical morphology for Sphagnum are more closely related to Ambuchanania than they are to Sphagnum s.s.

In this paper, we present new molecular data on relationships in the Sphagchnpsida, illustrate selected morphological characters of Ambuchanania and related species, and propose a new classification for the class Sphagchnpsida.

MATERIALS AND METHODS

Taxon sampling and data acquisition—Extraction, amplification, and sequencing followed protocols described in Shaw et al. (2003). The following genes were sequenced: photosystem II (PSII) reaction center protein D1 (psbA), photosystem II (PSII) reaction center protein T (psbT-H), ribulose-bisphosphate carboxylase gene (rbcL), RNA polymerase subunit beta (rpoC1), ribosomal small protein 4 (rps4), RNAiGly (UCC) (trnG), and the trnL (UA A) 59 exons/translation (GAA) region (trnL) from the plastid genome; introns within nadH protein-coding subunits 5 and 7 (nad5, nad7, respectively) from the mitochondrial genome; and 18S ribosomal RNA (18S) and 26S ribosomal RNA (26S) from the nuclear genome. The nuclear ribosomal internal transcribed spacer region (ITS) was sequenced in selected species and inferences from these data are briefly discussed, but they were not included in the formal phylogenetic analyses. Primer sequences for amplifying and sequencing the loci were provided in Shaw et al. (2003), with the exception of rpoC1. For this locus, we used primers...

Two nucleolar molecular data sets were constructed, one with a diverse range of 56 taxa taken from across the Bryophyta plus the species of Marchantia as outgroups (60 taxa and eight loci), and a second data set with a restricted number of taxa but more data (nine taxa and 11 loci). The 60-taxa data set includes 26 species of class Bryopsida, the “true” (peristomate) mosses. These represent all major clades of Bryopsida; the data set was used by Cox et al. (2004) to resolve backbone relationships among mosses. As in that previous analysis (Cox et al., 2004), our data set also includes (in addition to Bryopsida) one sample each of Takakia (Takakiopsida), Andreaea (Andreaopsida), and Andreaeobryum (Andreaeobryopsida). To this data set we added 24 species of Sphagnum representing all the commonly recognized infrageneric groups (subgenera or sections, depending on the author; e.g., Warmstorf, 1911; Crum, 1984), plus two species of uncertain relationship within Sphagnum (i.e., S. sericeum Müll. Hal, S. inretortum H. A. Crum, Shaw et al., 2003 [the latter as S. lapazense]), and a sample of Ambuchanania leucobryoides recently collected from Tasmania (Johnson et al., 2008).

In an attempt to evaluate the possibility that Ambuchanania leucobryoides and S. inretortum are sister species, a hypothesis developed from analyses of the 60-taxa data set, we removed the liverwort outgroups and all exemplars of class Bryopsida, represented Sphagnum s.s. (which is unambiguously supported as monophyletic) by two divergent species, and also included Ambuchanania, S. inretortum and S. sericeum, which were resolved outside Sphagnum s.s. in the 60-taxa analysis (as well as by analyses in Shaw et al., 2003). Exemplars of Andreaea and Takakia were included as outgroups to establish phylogenetic polarity within the Sphagnopsida.

One of the critical taxa in this study, S. inretortum, is represented by two population samples in our analyses. One is the type specimen of S. lapazense H. A. Crum (Bolivia, sampled with permission of H. Crum), and the second is from a morphologically similar population (Chile) discovered while this work was in progress. When this manuscript was almost completed, we realized (based on morphological comparisons) that the type specimen of S. inretortum (Bolivia) also appears to be conspecific with plants from these other populations (i.e., both populations were S. inretortum) and collected in 1986 with attempts to amplify DNA from it (with permission of H. Crum) have been unsuccessful. On the basis of morphological similarities all three specimens are referred to here as S. inretortum, which is an earlier name than S. lapazense.

Reduced sampling relative to the 60-taxa data set, especially the removal of the liverwort outgroups and species of bryopsid mosses, permitted more of the data to be included in analyses because alignment of more variable regions could be accomplished without unacceptable ambiguity. In addition, sequences from three additional loci were added to the concatenated data: nad5 from the mitochondrial genome and rpoC1 and psbT from the plastid genome.

The 60-taxa, 8-logos data set was used in a companion paper (Shaw et al., 2010) to the present one, describing the timeframe of diversification in Sphagnopsida, and GenBank accession numbers were reported in that paper. For the sake of completeness, all GenBank numbers including those previously published as well as those newly generated for this paper, are provided in Appendix 1. The two data matrices used for these analyses are available in TreeBase (http://treebase.org, accession number TB2:10581).

Phylogenetic analyses: 60-taxa, eight-location data set—Single-locus data sets of SSU, LSU, rbcl, rps16, psbA, trnG, trnL, and nad7 sequences were aligned using the software MUSCLE (vers. 3.7; Edgar, 2004) with default options. Alignments were adjusted by eye using the program SEA VIEW (vers. 4; Galtier et al., 1996); regions of ambiguous alignment were identified and excluded from further analysis. Taxa with identical sequences after exclusion of ambiguous regions were reduced to a single taxon representative before the analyses were conducted to reduce the computational effort required—the excluded taxa were later restored to the trees when represented graphically. Optimal substitution models were selected to maximize the Akaike information criterion (AIC) statistic for each locus using the software MrModeltest (vers. 2.3; Nylander, 2004) in conjunction with the program PAUP* (vers. 4.0b10; Swofford, 1998).

Maximum likelihood (ML) bootstrap analyses were conducted (300 replicates) on each individual gene using the program RAxML (vers. 7.0.4; Stamatakis, 2006). All genes were analyzed using the optimal models except trnL whose optimal model Hasagawa-Kishino-Yano (HKY) is not implemented in RAxML. For trnL, the best model identified by AIC and implemented in RAxML was used; i.e., the general time-reversible model (GTR).

Each gene data set was analyzed with the Bayesian Markov chain Monte Carlo (MCMC) inference software p4 (Foster, 2004) using the optimal model plus a polytomy prior (resolution class prior with C = log(10); Lewis et al., 2005), and with a single composition vector (i.e., the composition was tree-homogeneous). The composition-homogeneous model used was described in the simulation of the posterior predictive distribution (PPD) of the χ2 statistic (Foster, 2004). If the data were shown to fail the PPD test of homogeneity, successive additional composition vectors were added using the node discrete composition heterogeneity model (NDCH; Foster, 2004; Cox et al., 2008) until the model composition fit the data (i.e., the χ2 statistic of the data could no longer be rejected as falling outside the NDCH distribution at a P < 0.05 level of significance). The multiple composition tree-homogeneous NDCH models were considered optimal when the model composition fit could not be rejected. Each MCMC analysis was run for 20,000,000 generations with four parallel chains (i.e., Metropolis-coupled MCMC), and free parameter tuning values were automatically determined prior to the start of the MCMC. “Mixing” of the MCMC chains and effective sample size (ESS) scores of parameters were monitored so that the correct behavior of the MCMC could be assessed. Symmetrical mixing among adjacent chains and ESS values in excess of 300 were considered indications that the chain was behaving well. If the mixing was found to be inadequate the MCMC temperature parameter was adjusted and the chain restarted. If the ESS values were too low the chain was run for additional generations.

For all the MCMC described here, the “burn-in” of each MCMC was determined by visual inspection of the log likelihood score across the sampled generations. Log marginal likelihoods of all MCMC analyses were calculated using eq. 5 of Newton and Raftery (1994) as implemented in p4. A combined data set of the 60 taxa for the eight individual loci was constructed with previously identified ambiguous regions removed. All taxa had unique sequences across the combined eight genes. The optimal single model for the combined data set was determined by MrModeltest as described above. ML bootstrap analyses were conducted with 300 replicates using RAxML with a data-homogeneous (GTR+Γ) model. In addition, a data-heterogeneous ML bootstrap analysis (300 replicates) was conducted using a separate model (GTR+Γ+8) for each gene partition. Homogeneous MCMC analyses were conducted using MrBayes (vers. 3.1.2; Ronquist and Huelsenbeck, 2003) under a GTR+Γ model for 20,000,000 generations with the default two runs (each of four chains). Convergence between the two chains was assumed when the average standard deviation of split frequencies fell below 0.0001. Similar tree- and data-homogeneous MCMC analyses, but including a polytomy prior (GTR+Γ+P, other settings as above), were run in p4 for 20,000,000 generations as described previously. Model data-homogeneous but composition tree-heterogeneous (NDCH) analyses with two composition vectors and the polytomy prior (GTR+Γ+P+NDCH(2)+P) were conducted in p4 as described previously. A model data-heterogeneous and composition tree-heterogeneous (NDCH) analysis was conducted in p4 with a separate NDCH model for each partition (the optimal models found previously) with the polytomy prior and a partition-rate prior ([issuGTR+Γ+P+NDCH(2)] + issuGTR+Γ+P+NDCH(3) + rps16GTR+Γ+P+NDCH(3) + rps16GTR+Γ+P+NDCH(2) + nd5GTR+Γ+P+NDCH(2)+P + nad7GTR+Γ+P+NDCH(2)+P+P). Bayesian MCMC analyses were also conducted with the software Phylobayes (vers. 2.3c; Lartillot and Philippe, 2004) under the CAT model with a mixture of multiple GTR substitution models and a gamma distribution of rates among sites (CAT+GTR+Γ). Two separate runs were conducted for ~138,000 cycles, and results compared between chains using the “bpcomp” program to ensure that the chains had converged. After discarding the burn-in of each chain, tree and parameter estimates were determined by combining the results of both chains. Posterior predictive simulations of the χ2 statistic were calculated using the Phylobayes software “ppred.”

Phylogenetic analyses: Nine-taxa, 11-location data set—A nine-taxon combined data set was constructed with the previous eight genes plus rpoC1, psbT, and nad7. ML bootstrap analyses were conducted using RAxML with 300 replicates under the optimal model. Tree-homogeneous MCMC analyses were conducted in p4 using the polytomy prior, and tree-homogeneous NDCH analyses were conducted with the addition of a second composition vector. Phylobayes analyses under the CAT+GTR+Γ model were conducted for ~130,000 cycles in a single run. Further details of the analyses are as described previously for the 60-taxon data set.

Genome size estimates—Sphagnum is relatively conservative in chromosome number; only gametophytic numbers of N = 19 and N = 38 have been documented (Fritsch, 1982) although indirect evidence (genetic data and flow cytometric analyses) have identified two southern hemisphere species that appear to have triploid gametophytes (Karlin et al., 2009). Genome size estimates for Ambuchanania Sphagnopsida.
leucobryoideae, S. inerotatum, and S. sericeum were undertaken to compare inferred ploidal levels in these species to gametophytically haploid and diploid taxa.

Flow cytometry (FCM) of herbarium samples was conducted using the Otto buffer system for isolating nuclei by chopping, propidium iodide as the DNA stain, and fresh Solanum pseudocapsicum (1C = 1.295 pg or 1266.5 Mbp; Temsh et al., 2010) as a pseudo-internal standard. A Partec CyFlow flow cytometer equipped with a green laser was employed as described in Ricca et al. (2008).

Determination of nuclear Feulgen DNA content (FDM) from herbarium specimens with DNA image analysis used methods described previously for fixed fresh material and herbarium specimens of Sphagnum (Ricca et al., 2008). Apical meristems were detached from herbarium specimens under distilled water so that the smallest embryonic leaves and the meristem itself were immediately exposed to fixative chemicals. Fixation time in 4% phosphate-buffered formaldehyde (pH 7) was 90 min at 20°C. In some instances (Ambuchanania [Buchanan 16981], S. inerotatum [Price et al., 1236]), meristems were directly brought to 5N HCl without fixation. As a reference for staining intensity, embryonic meristems from dry seeds of Pisum sativum ‘Kleine Rheinländerin’ (2C = 8.84 pg; Greilhuber and Ebert, 1994) were processed synchronously and cut into pieces after about 5 min when softening had occurred. Formaldehyde was carefully removed with several rinses of methanol-acetic acid (3:1) for about 30 min. This postfixative was removed with several rinses of distilled water. Hydrolysis in 5 N HCl at 20°C was for 90 min (formaldehyde fixation) or for 60 min (no fixation), followed by a thorough wash in distilled water for 10 min. Staining in Schiff’s reagent (Merck, Whitehouse Station, New Jersey, USA) was done for 90 min at 20°C. Schiff’s reagent was washed out for 30 min with SO2-water. The material was briefly softened in 45% acetic acid and squashed onto glass slides, standard and unknown side by side. Coverslips were removed over a cold-plate after freezing. The slides were air-dried and kept light-protected until measurement, which occurred within 48 h.

Dye content of the Feulgen-stained nuclei was measured using the Cires (Cell Imaging and Retrieval System, Kontron, Munich), with a Zeiss 63× oil Plan Neofluar objective, using Köhler illumination and the green channel of the video camera, a green interference filter, a neutral density filter, the shading correction option, and local background determination (around each measured nucleus separately). Almost all geometricaly suitable moss nuclei of a slide were measured (114 on average, from 7–314 per slide; i.e., those automatically segmentable and in clear background) and a similar number of standard 2C nuclei, but mostly not more than 100, which is sufficient for a stable mean value.

DNA contents in Mbp (1C), were calculated using the ratio of moss nuclei (1C and 2C) vs. standard 2C nuclei corrected to 1C according to the replication state, multiplied by 8.84 pg or 8645.52 Mbp (conversion factor pg to Mbp = 978; Doležel et al., 2003).

RESULTS

Phylogenetic reconstructions: 60-taxon, eight-locus data set—Total numbers of amplified nucleotides, numbers of nucleotides included in analyses after pruning of regions of ambiguous alignment, and optimal substitution models for each locus are provided in Table 1. Single-locus reconstructions models for maximum likelihood and Bayesian inference are shown in Appendix S1 (see the Supplemental Data at http://www.amjbot.org/cgi/content/full/ajb.1000055/DC1, Figs. S.1.1-S.1.8 and S.1.9-S.1.16, respectively). The position of Polytrichadelphus purpureus with the outgroups in the rbcL NDCH analysis (Fig. S.1.11) appears to be anomalous and does not appear in the ML analysis of the data (Fig. S.1.3). No other significant incongruence was detected among single-locus reconstructions, and the eight loci were combined as a single concatenated matrix. A total of 4230 sites were excluded because of ambiguous alignment across the eight loci (Table 1). The combined matrix included 8498 nucleotide sites that were included in subsequent analyses. Of the 8498 included sites, 3380 represent the nuclear genome (nrDNA), 3378 the plastid genome, and 1740 the mitochondrial genome.

Phylogenetic reconstructions based on the combined eight-locus matrix were obtained using seven different combinations of analytical method (ML and Bayesian) and models of evolution (Table 2). The models ranged from a relatively simple homogeneously substitution pattern across taxa and sites, to one (model 6 in Table 2) with 123 parameters such that the analysis is both data heterogeneous for the substitution model and tree heterogeneous across each locus/partition. The Phylobayes CAT analysis (model 7 in Table 2) dynamically models composition heterogeneity across the data, but without having to prespecify which sites evolve under which composition (as in model 6).

Results of all analyses of the concatenated data are provided in online Appendix S1, supplemental Figs. S17–S25. Figure 1 shows the reconstruction from analyses under model 6 (Table 2), with bootstrap proportions and Bayesian posterior probabilities for critical nodes provided from that analysis and from three other models (see legend for Fig. 1). We focus here on relationships of Ambuchanania to other species traditionally classified in Sphagnum. Support for most other nodes on the tree are not shown; results from analyses of relationships within the class Bryopsida based on almost the same set of taxa and loci were described by Cox et al. (2004).

All analyses support the following inferences. The Sphagnopsida, including Ambuchanania and all species of Sphagnum, comprise a monophyletic group. Support is maximal under both ML and all Bayesian models. A large group of Sphagnum species representing the traditional groups (subgenera or sections)

<table>
<thead>
<tr>
<th>Locus</th>
<th>Taxa</th>
<th>Incl. taxaa</th>
<th>Total sites</th>
<th>Incl. sitesb</th>
<th>Optimal modelc</th>
<th>P-valuec</th>
<th>−log(lmc)</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSU</td>
<td>56</td>
<td>43</td>
<td>1896</td>
<td>1619</td>
<td>GTR+I+NDCH(2)+P</td>
<td>0.5784</td>
<td>4208.4413</td>
<td></td>
</tr>
<tr>
<td>LSU</td>
<td>50</td>
<td>50</td>
<td>2275</td>
<td>1761</td>
<td>GTR+I+NDCH(3)+P</td>
<td>0.0007</td>
<td>5987.1519</td>
<td></td>
</tr>
<tr>
<td>rbcL</td>
<td>59</td>
<td>55</td>
<td>1659</td>
<td>1282</td>
<td>GTR+I+NDCH(2)+P</td>
<td>0.9987</td>
<td>10187.1225</td>
<td></td>
</tr>
<tr>
<td>rps4</td>
<td>60</td>
<td>56</td>
<td>1063</td>
<td>568</td>
<td>GTR+I+NDCH(2)+P</td>
<td>0.6072</td>
<td>6094.2647</td>
<td></td>
</tr>
<tr>
<td>psba</td>
<td>59</td>
<td>52</td>
<td>1712</td>
<td>1144</td>
<td>GTR+I+NDCH(2)+P</td>
<td>0.7603</td>
<td>6766.5207</td>
<td></td>
</tr>
<tr>
<td>trnG</td>
<td>58</td>
<td>44</td>
<td>1089</td>
<td>204</td>
<td>GTR+I+P</td>
<td>0.0619</td>
<td>1811.1586</td>
<td></td>
</tr>
<tr>
<td>trnL</td>
<td>57</td>
<td>44</td>
<td>1055</td>
<td>180</td>
<td>HKY+P</td>
<td>0.4000</td>
<td>1183.5210</td>
<td></td>
</tr>
<tr>
<td>nad7</td>
<td>50</td>
<td>50</td>
<td>1979</td>
<td>1740</td>
<td>GTR+I+NDCH(2)+P</td>
<td>0.1881</td>
<td>5883.1619</td>
<td></td>
</tr>
</tbody>
</table>

a Number of taxa included in analyses after identical sequences were reduced to a single representative.

b Number of sites included after ambiguously aligned regions were excluded.

c Optimal model for each locus: the substitution rate matrices and among-site rate variation parameters were determined by MrModeltest, and the optimal number of composition vectors determined by posterior predictive simulations of the χ2m statistic; +P indicates with the addition of the polytomy prior.

d P-value of the NDCH posterior predictive simulations of the χ2m statistic.

e Log marginal likelihoods calculated according to the Eq. 16 of Newton and Raftery (1994).

f For the LSU data, three composition vectors did not fit: χ2m statistic of original data: 124.3, range of statistic in posterior predictive simulations: 5.26 to 116.79 (in homogeneous data the range was 3.68 to 29.82).
Acutfolia, Caspidata, Polyclada (S. wulfianum), Rigida, Sphagnum, Squarrosa, and Subsecunda, form a monophyletic group, also with maximal support from all analyses (Fig. 1, Sphagnum). Branch lengths appear extremely short within this clade, at least compared to branches throughout the rest of the tree. Nevertheless, monophyly of the traditional sections is significantly supported in most analyses (not shown in Fig. 1 but evident in Figs. S17–S25). The branches appear virtually nonexistent in Fig. 1 simply because they are very short relative to other branches in the reconstruction.

Two other species traditionally considered members of the genus Sphagnum fall outside Sphagnum s.s. (Fig. 1). Two samples of the Southeast Asian species, S. sericeum, are identical across all 8498 nucleotides included in these analyses but are together resolved as a separate clade of Sphagnopsida. Sphagnum inretortum of western South America is also resolved outside Sphagnum s.s. and is in fact strongly supported as sister to Ambuchanania leuco-bryoides by all Bayesian analyses, though not by ML bootstrapping (Fig. 1, Table 2). Relationships between S. sericeum, the clade containing Ambuchanania plus S. inretortum, and Sphagnopsida are not resolved; although all analyses converge on the inference that S. sericeum, S. inretortum, and Ambuchanania are outside the main clade of Sphagnum, no analysis supports S. sericeum, S. inretortum, and Ambuchanania in a single clade sister to Sphagnopsida (Table 2). Branch lengths indicate that these three taxa outside the main Sphagnum clade are each highly distinct at the molecular level compared to any species within Sphagnum s.s., even those in different traditional sections.

Reconstructions from analyses of the concatenated 11-locus data set were rooted with Andreea and Takakia. All analyses support a monophyletic Sphagnopsida with maximal support. Moreover, all analyses resolve three clades of Sphagnopsida, one including the two samples of S. sericeum, another including the two exemplars of Sphagnum s.s. (represented by S. palustre [section Sphagnum] and S. lescurii [section Subsecunda]), and the third including Ambuchanania plus the two samples of S. inretortum. The clade including Ambuchanania plus S. inretortum is supported by Bayesian posterior probabilities of 1.0 in analyses employing a homogeneous substitution model, and in two analyses employing heterogeneous models of varying complexity (see legend for Fig. 2). Under maximum likelihood, this clade is moderately supported by bootstrapping (0.71; Fig. 2). The two samples of S. inretortum are identical across all 11 705 nucleotides, as are the two samples of S. sericeum. It is worthy of note that although monophyly of Ambuchanania plus S. inretortum is strongly supported by these analyses, branch lengths show that they are phylogenetically divergent compared to, for example, S. palustre and S. lescurii, representing two sections within the traditional genus Sphagnum.

In an additional test of the inference that Ambuchanania and S. inretortum are sister taxa, rather than Ambuchanania being sister to all remaining Sphagnopsida, we constrained the tree in a Bayesian MCMC (GTR+I+Γ+NDCH(2)+P) to force the monophyly of Sphagnum, including S. sericeum and S. inretortum. This constraint forces a topology in which A. leuco-bryoides is the sister group to the rest of the Sphagnopsida. The constraint analysis tree had a marginal likelihood of −25772.9892 (Table 3, model 5; online Fig. S1.28), compared to the same analysis without the constraint: −25708.5622 (Table 3, model 3; online Fig. S1.24). The difference of 19.427 likelihood units favors the unconstrained analyses that places Ambuchanania as sister to S. inretortum. A Bayes Factor (2 loge(M1|M2) = 2 × 19.427) of 38.854 strongly favors this interpretation.

Phylogenetic reconstructions: nine-locus 11-locus data set—Primarily because of the unexpected result from analyses of the 60-taxa, eight-locus data set that Ambuchanania leuco-bryoides and Sphagnum inretortum were resolved as sister species, we developed a second data set with fewer taxa and more nucleotide characters. During the course of this study, a second (Chilean) sample of S. inretortum became available so we included it in these analyses. The final analyzed data set included 11 705 nucleotide sites (Table 3), with 739 informative characters under parsimony. Base compositions of the individual loci and the concatenated data set are provided in Table 4.

Reconstructions from analyses of the concatenated 11-locus data set were rooted with Andreea and Takakia. All analyses support a monophyletic Sphagnopsida with maximal support. Moreover, all analyses resolve three clades of Sphagnopsida, one including the two samples of S. sericeum, another including the two exemplars of Sphagnum s.s. (represented by S. palustre [section Sphagnum] and S. lescurii [section Subsecunda]), and the third including Ambuchanania plus the two samples of S. inretortum. The clade including Ambuchanania plus S. inretortum is supported by Bayesian posterior probabilities of 1.0 in analyses employing a homogeneous substitution model, and in two analyses employing heterogeneous models of varying complexity (see legend for Fig. 2). Under maximum likelihood, this clade is moderately supported by bootstrapping (0.71; Fig. 2). The two samples of S. inretortum are identical across all 11 705 nucleotides, as are the two samples of S. sericeum. It is worthy of note that although monophyly of Ambuchanania plus S. inretortum is strongly supported by these analyses, branch lengths show that they are phylogenetically divergent compared to, for example, S. palustre and S. lescurii, representing two sections within the traditional genus Sphagnum.
Fig. 1. Phylogram showing inferred relationships among mosses (Phylum Bryophyta) based on Bayesian analyses of the 60-taxon, eight-locus data set under the heterogeneous across-data across-tree substitution model (no. 6 in Table 2). Four support values associated with nodes are as follows (models listed in Table 2): upper left, model 5; upper right, model 6; lower left model 7; lower right, model 2.
Table 3. Analyses of the concatenated 9-taxon, 11-locus data set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Model</th>
<th>$-\log (L_\text{m})$</th>
<th>P^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>1. GTR+I+Γ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bayesian</td>
<td>2. GTR+Γ+I+P</td>
<td>25813.5131</td>
<td>0.0000</td>
</tr>
<tr>
<td>Bayesian</td>
<td>3. GTR+Γ+I+NDCH(2)+P</td>
<td>25708.5622</td>
<td>0.3080</td>
</tr>
<tr>
<td>Bayesian</td>
<td>4. CAT-GTR+Γ</td>
<td>21932.8669</td>
<td>0.0000</td>
</tr>
<tr>
<td>Bayesian</td>
<td>5. GTR+Γ+I+NDCH(2)+P+constraint</td>
<td>25727.9892</td>
<td>0.4007</td>
</tr>
</tbody>
</table>

a P-value of the NDCH posterior predictive simulations of the χ^2_m statistic.

Recent *Ambuchanania* sample from 2008 had no embryonic leaves and exhibited no nuclei at all, perhaps because there was cyttoplasmic decay before drying occurred. Flow cytometry was unsuccessful as well. Previous experience has shown that *Sphagnum* herbarium specimens (1) give progressively lower Feulgen readings with increasing age, and (2) require optimal drying for good results. It was thus expected that specimens as old as 29 yr would result in data that could only be regarded as minimum values for genome size, which in vivo would almost certainly be higher. Nevertheless, the size of the nuclei could be used as additional criterion for inferring ploidy. For comparison, a voucher of *S. girgensohnii* from 1990 was Feulgen-stained. Two slides from two capitula of this sample had 1C-values of 271.3 and 312.2 Mbp, indicating high interslide variation (here 1.15-fold) and 0.58 to 0.71-fold reduced staining compared to fresh material, for which 1C = 442–467 Mbp has been reported (Temsch et al., 1998; Bennett and Leitch, 2005).

Comparison of FDM with an FCM estimate was possible for the Chilean sample of *S. inretortum*, which was only 6 mo old and therefore recent enough that reliable genome size data could be obtained using both methods. This species had 353.7 Mbp (a relatively low haploid value) with FCM and maximally 292.8 Mbp with Feulgen densitometry, 0.83-fold lower than the FCM-derived value. This indicates some decay of DNA during preservation over the 6-mo period because fresh vouchers typically give similar values with FDM and FCM (Ricca et al., 2008). Five slides (branch tips) were measured with FDM and varied 1.14-fold between 256.3 and 292.8 Mbp. For *S. inretortum*, nine slides (branch tips) yielded values between 212.4 and 289.8 Mbp (1.36-fold variation). The lowest FDM values (Table 5) were, not surprisingly, recorded for *S. sericeum* collected in 1982 and 1980 (i.e., vouchers 26 and 28 yr old).

For *Ambuchanania*, a sample approximately 1 yr old yielded an estimate of 256 Mbp from one meristem, with a CV of 5.3% in 1C nuclei, which is normal. The nuclei appeared shrunk and irregular in form, but well stained. Their size was relatively small, and the nuclear DNA content implies a ploidal level of not more than haploidy, provided the genome is comparable in structure to a *Sphagnum* genome.

The high and certainly artifactual variation between slides of one sample made it futile to use mean values of accessions as a best-estimate of genome size. Rather, the slides with highest Feulgen values and therefore least DNA loss were considered the best estimates for inferring ploidal level (Table 5). In summary, genome sizes for all five *Sphagnum* samples and *Ambuchanania* are small enough to exclude the possibility that they correspond to polyploid species of *Sphagnum* (i.e., diploid gametophytes, $N = 38$). One cannot, however, exclude the possibility that the particularly low values in *S. sericeum* indicate an even smaller genome size and chromosome number than is typical for haploid sphagna, which have 1C-values between 383 and 495 Mbp, while diploid species have between 796 and 931 Mbp (Temsch et al., 1998). This ranks relatively low but well within the bryophyta, with mosses (Voglmayr, 2000) having 1C-values between 170 and 2112 Mbp, and liverworts between 206 and 7791 Mbp (Temsch et al., 2010).

Morphological observations

We describe here the salient morphological characteristics of the three taxa resolved by phylogenetic analyses as outside the core clade of *Sphagnum* species, but within the deeper Sphagnopsida clade. Our focus is on those features that agree, or not, with typical morphological traits of species traditionally included in the genus *Sphagnum*. More exhaustive descriptions of morphology for *S. sericeum* was provided by Eddy (1977), for *S. inretortum* by Crum (1990, 2001a), and for *Ambuchanania leucobryoides* by Yamaguchi et al. (1990).

Sphagnum sericeum—In terms of whole-plant architecture, *S. sericeum* is a “mainstream” *Sphagnum*. Sporophytes are borne on pseudopodia as in other *Sphagnum* species; there are abundant pseudostomata among the capsule exothecial cells (Fig. 3A). Aside from an unusually glossy appearance of the gametophytes (when dry), the plants do not stand out as aberrant relative to other species of *Sphagnum*. They are relatively robust, to 10 cm or more in length, with well-developed terminal capitula and lateral branches in fascicles of 3–4 (Fig. 3A). Within each fascicle, there are typically two spreading branches and 1–2 pendent branches. In cross-section, the stems have a small central zone of thin-walled cells surrounded by a well-defined region of small thick-walled cells (the so-called wood-cylinder), as in most species of *Sphagnum*. On the outside, there is an abruptly differentiated cortex with (2–)3 layers of enlarged thin-walled cells (Fig. 3B). The cortex of branches consists of rectangular nonporose cells and well-differentiated retort cells (Fig. 3C).

The stem leaves of *S. sericeum* are ovate-triangular with abruptly acute to cuspidate apices (Fig. 3I). The branch leaves are more gradually acute to acuminate, widest at about midleaf (Fig. 3J). Perichaetal leaves are larger than vegetative stem or branch leaves, with gradually acuminate apices (Fig. 3D).

It is the structure of the leaf cells that sets *S. sericeum* apart from most other species of *Sphagnum*. Most significantly,
S. inretortum from Bolivia he proposed a new section of *Sphagnum* to accommodate it (sect. *Inretorta* H. A. Crum). The main feature, as the name suggests, was the absence of retort cells in the branch cortex. Crum noted that the branch leaves of *S. inretortum* have a marginal resorption furrow (as in sections *Sphagnum*, *Rigida*, and a few species of *Acutifolia*) but lacks the cucullate branch leaf apices and fibrillose stem and branch cortical cells of section *Sphagnum*. He compared *S. inretortum* to species in sections *Rigida* and *Subsecunda* (the latter because of similarities in stem cross sectional anatomy) but eliminated these sections from consideration because of various incompatibilities. About 10 years later, Crum (2001a) described *S. lapazense*, also based on plants collected in Bolivia. The type collection of *S. lapazense* was collected in Departmento La Paz, as was *S. inretortum*, and the plants are very similar. Crum (2001a), however, assigned *S. lapazense* to the section *Sphagnum*. An additional collection that is very similar morphologically to the types of *S. inretortum* and *S. lapazense* was recently collected in Chile (J. Larraín and R. Andrus, unpublished data).

S. sericeum is one of only about three species of *Sphagnum* that lack fibrils on the walls of the hyaline leaf cells (Figs. 3G, H, K). Each cell typically has a single pore near the distal end on the outer (convex) surface. Compared with most other species of *Sphagnum*, there is a more irregular pattern of chlorophylllose and hyaline cells in *S. sericeum*, with patches of hyaline cells (Fig. 3G) rather than the more typical and very regular arrangement of one broad hyaline cell surrounded by four narrower chlorophylllose cells. Patches of cells such as observed in *S. sericeum* (and occasionally in other sphagna) likely reflect either transformation of chlorophylllose into hyaline cells during development, or additional symmetric cell divisions during leaf ontogeny (Butterfass, 1992). Leaf cells along the leaf margins sometimes protrude as serrulations (Fig. 3L), a feature common throughout the bryopsid mosses, but otherwise unknown in *Sphagnum*.

Fig. 2. Phylogram showing inferred relationships among *Sphagnum lescurii*, *S. palustre*, *Flatbergium sericeum*, *Eosphagnum inretortum*, and *Ambuchanania leucobryoides*, rooted with *Andreaea* (*Acroschisma*) *wilsonii* and *Takakia lepidozioides* based on Bayesian analyses of the nine-taxon, 11-locus data set under the heterogeneous plus polytomy prior model. Four support values associated with nodes are as follows: upper left, heterogeneous plus polytomy; upper right, homogeneous plus polytomy; lower left, data heterogeneous CAT; lower right, homogeneous ML.

Table 5. Nuclear Feulgen DNA contents for herbarium specimens of *Ambuchanania* and *Sphagnum* species. Values for 1C nuclei from slides with worst (lowest) and best (highest) staining are shown. If not indicated otherwise, samples were processed using formaldehyde fixation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collector, voucher</th>
<th>Year (age, yr)</th>
<th>No. of slides</th>
<th>Lowest slide</th>
<th>Highest slide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambuchanania</td>
<td>Buchanan, 16981</td>
<td>?</td>
<td>1</td>
<td>—</td>
<td>256.0 (150; 5.78)</td>
</tr>
<tr>
<td>S. sericeum</td>
<td>Damman & Larsen, A81386</td>
<td>1982 (17)</td>
<td>2</td>
<td>128.5 (30; 6.45)</td>
<td>185.6 (100; 4.65)</td>
</tr>
<tr>
<td>S. sericeum</td>
<td>Lai, 11370</td>
<td>1980 (29)</td>
<td>1</td>
<td>—</td>
<td>127.7 (223; 10)</td>
</tr>
<tr>
<td>S. sericeum</td>
<td>Yamaguchi et al., 18926</td>
<td>2000 (9)</td>
<td>1</td>
<td>223.1 (54; 9.62)</td>
<td>289.8 (34; 5.86)</td>
</tr>
<tr>
<td>S. inretortum</td>
<td>Price et al., 1236</td>
<td>1999 (10)</td>
<td>9</td>
<td>212.4 (100; 3.92)</td>
<td>289.8 (34; 5.86)</td>
</tr>
<tr>
<td>S. girgensohnii</td>
<td>Andrus, 11835</td>
<td>2008 (<1)</td>
<td>5</td>
<td>256.3 (49; 8.62)</td>
<td>292.8 (100; 4.48)</td>
</tr>
<tr>
<td>S. inretortum</td>
<td>R. Krisai</td>
<td>1990 (19)</td>
<td>2</td>
<td>271.3 (251; 7.35)</td>
<td>312.2 (251; 5.13)</td>
</tr>
</tbody>
</table>

a HCl hydrolysis occurred without previous fixation.

b 1C = 353.7 Mbp estimated using flow cytometry.

Fig. 3. Morphological characters of Flatbergium sericeum. (A) Gametophyte plant bearing sporophytes (Carr 15198). (B) Stem, transverse section (Yamaguchi 18295). (C) Branch cortex, showing retort cells and smaller nonporose cells (Carr 15198). (D) Perichaetial leaf (Yamaguchi 18295). (E, F) Branch leaf, transverse sections (Carr 15198). (G) Upper stem leaf cells, inside surface (Yamaguchi 18295). (H) Upper stem leaf cells, outside surface (Carr 15198). (I) Stem leaf (Yamaguchi 18295). (J) Branch leaf (Yamaguchi 18295). (K) Upper branch leaf, outside surface (Yamaguchi 18295). (L) Upper branch leaf, marginal cells (Carr 15198). All voucher specimens in DUKE.
differences between these three specimens (discussed below), we currently interpret them as conspecific and refer to them as S. inretortum. We were not able to obtain sequence data from the type of S. inretortum, but the type of S. lapazense and the recent Chilean collection are identical across 11705 nucleotide characters. The species-level systematics of S. inretortum is worthy of additional study when additional collections come to light.

In cross section, the stems in all three collections have a central zone of thin-walled cells internal to a gradually differentiated wood cylinder of thicker-walled cells and a single layer of thin-walled cortical cells (Fig. 4E). Species of section Sphagnum are characterized by a multistratose cortex, typically with three layers of enlarged thin-walled stems. Stem leaves of the Chilean specimen are ovate and broadly acute, broadest about midway up the leaf (Fig. 4G). Stem leaves of the S. inretortum and S. lapazense type specimens have straighter margins and somewhat more abruptly narrowed apices, but it was difficult to isolate well-formed stem leaves from either specimen. A stem leaf from the S. inretortum specimen (Fig. 4H) is lunate-oblong and broadly acute and that of the S. lapazense specimen is similar (not shown).

Branches in all three specimens (the types of S. inretortum and S. lapazense, and the Chilean collection) lack cortical retort cells. Rather, all cortical cells are elongate-rectangular and aporose (Fig. 4C). Branch leaves in the three specimens are similar in shape, but those of the Chilean specimen are substantially larger (Fig. 4I–K). The branch leaves have weakly inrolled apices, not as cucullate as is characteristic of species in section Sphagnum, though more so than is typical of plants in other sections. They lack the resorption of outer hyaline cell walls near the leaf apices; such resorption is highly characteristic of species in section Sphagnum.

Branch leaves have stout, sometimes branched fibrils (Fig. 5E–I). On the outer surface, the hyaline cells have irregular longitudinal pleats that seem to derive from some kind of cuticular layer (Fig. 5G–I, best seen in the type of S. lapazense; Fig. 5G). This feature appears to be associated with the fact that plants are exceptionally difficult to wet because they very slowly take up even hot water.

Stem leaf cells of the Chilean plants (Fig. 5C) have abundant, round outer pores and few inner pores, whereas the S. lapazense (Fig. 5D) and S. inretortum (not shown) types have few outer pores but abundant, round inner pores. Paralleling differences in pore patterns on the inner and outer hyaline cell surfaces of stem leaves among the three collections, branch leaves also differ in pore patterns on the inside and outside surfaces of the hyaline cells. The Chilean plants (Fig. 5I) and the type of S. inretortum (Fig. 5H) have abundant round pores on the outer surfaces of the hyaline cells but few scattered pores on the inner surfaces (S. inretortum shown in Fig. 5F). In contrast, the type of S. lapazense has few or no pores on the outer surfaces (Fig. 5G) and abundant, round pores on the inner surfaces (Fig. 5E).

All three specimens have branch leaf chlorophyllose cells that are lenticular and included, or nearly so, in transverse view (Fig. 4M, N). They also have a marginal resorption furrow that can be seen either in transverse view (Fig. 4L) or as a ragged leaf margin in surface view (Fig. 5D).

Some of the Chilean plants had sporophytes borne on pseudopodia (Fig. 4A), as did some plants in the type of S. inretortum (Fig. 4D). The sporophyte exothecial cells are short-rectangular as is typical for Sphagnum, and pseudostomata are abundant (not shown). The pseudopodia in the Chilean plants are barely exerted from the bushy capitulum, whereas those in the S. inretortum type are conspicuously elongate (Fig. 4D). Well-developed perichaetial leaves are carried upward on the pseudopodia of the S. inretortum type, and these are gradually differentiated in size and shape from the vegetative leaves (Fig. 4F). Upper cells of perichaetial leaves tend to be devoid of pores, and the fibrils consist of stout but incomplete thickenings (Fig. 5A, B).

Despite the presence of sporophytes in two of the three collections, we did not observe antheridia, either on the same plants with sporophytes or on separate plants.

Ambuchanania—Unlike the previous two species, Ambuchanania is highly divergent in gross morphology and anatomical detail from any species of Sphagnum. The plants are relatively small, generally about 0.5–3 cm in length (and maybe longer but mostly buried in sand when growing) and without terminal capitula or branch fascicles (Fig. 6A, B). In nature, the plants are mostly buried in their sandy substrates, except for apical portions of the gametophytes. The leaves are exceptionally large, especially considering the diminutive size of the whole plants, and are erect and loosely imbricate wet or dry. Although fasciculate branching is absent, the plants can have lateral branches, which appear to be of two more or less distinct types, either slender with very small leaves (Fig. 6B, left arrow) or more stout with much larger leaves (Fig. 6B, right arrow). The slender branches with small leaves eventually do produce larger leaves (observed but not illustrated). Stems consist of more or less uniform cells in transverse section (Fig. 6C); a clear wood cylinder of thick-walled cells is absent, as are abruptly differentiated cortical cells. Branch axes have uniform cortical cells, and retort cells are absent (Fig. 6D). In transverse view, the branches are like slender stems.

Leaves have dimorphic hyaline and chlorophyllose cells (Fig. 6E). Viewed from the inner or outer convex surface, the hyaline cells are rounded hexagonal to rhombic (Fig. 6K). In transverse section, large hyaline cells that reach the inner concave and outer convex surfaces alternate in a fairly regular fashion with smaller triangular hyaline cells that are transversely adjacent to small lenticular to tear-drop shaped chlorophyllose cells (Fig. 6I). Developmental studies of how the dimorphic hyaline and chlorophyllose cells differentiate are needed, but the transverse adjacency of the smaller triangular hyaline cells and the chlorophyllose cells suggests that each pair may be derived from a cell division during leaf ontogeny. Their transverse adjacency results in the leaf being bistratose between the larger hyaline cells that extend from the inner to outer leaf surface. This pattern is fairly regular, but irregularities in cell division patterns are also apparent. The arrangement of hyaline and chlorophyllose cells making up leaves of Ambuchanania suggest a very different developmental sequence relative to the well-documented ontogeny in Sphagnum leaves; cell structure in the leaves of S. seri- ceum and S. inretortum, in contrast, do not suggest any significant deviation from the “normal” Sphagnum mode of development.

Along the leaf margins, hyaline cells become narrow and elongate, forming a strongly but gradually differentiated border (Fig. 6I, arrow). Cell wall fibrils and pores are essentially lacking on leaves of main stems; very sparse and tiny pores occur occasionally near the leaf bases (Fig. 6J, arrows). The long, tubular leaves of the short branches (Fig. 6B, right arrow), however, have highly differentiated leaf cells, especially distally, with strong wall fibrils (Fig. 6H) and remarkably large, strongly ringed pores on the inner surfaces (Fig. 6F, G). No other member of the Sphagnopsida has such large or uniquely ringed pores. In the upper leaf parts these pores occur one per cell (Fig. 6G).
Fig. 5. Upper leaf cells of Eosiphagnum inretortum. (A) Upper perichaetial leaf, outer surface (Larrain 31203). (B) Stem leaf, outer surface (Price 1236). (C) Stem leaf, outer surface (Andrus 11835). (D) Stem leaf, inner surface (Price 1236). (E) Branch leaf, inner surface (Price 1236). (F) Branch leaf, inner surface (Feuerer, 1981). (G) Branch leaf, outer surface (Price 1236). (H) Branch leaf, outer surface (Feuerer, 1981). (I) Branch leaf, outer surface (Andrus 11835). All voucher specimens in DUKE.
DISCUSSION

Proposed classification for the Sphagnopsida—Faced with the problem of how to classify diversity within the Sphagnopsida in a way that best reflects phylogenetic relationships, the following observations are relevant. (1) There is a core clade of phylogenetically and morphologically cohesive group of species. (2) Species within that core clade are extremely closely related genetically/phylogenetically. (3) Sphagnum sericeum is uniquely morphologically relative to any species or groups of species within the core clade of Sphagnum. (4) Ambuchanania leucobryoides plus Sphagnum inretortum form a strongly supported clade that is also outside the core clade of Sphagnum species. (5) Ambuchanania leucobryoides and S. inretortum are highly divergent morphologically, and there are no apparent synapomorphies for the clade containing these two species.

We propose a new classification for the Sphagnopsida that takes each of these observations into account. Sphagnum sericeum is sufficiently distinct morphologically and, especially in terms of molecular divergence, to warrant recognition in a separate genus and family. Phylogenetic divergence relative to core Sphagnum species and the sister-group relationship between Ambuchanania and S. inretortum warrants the placement of these two taxa in a separate family, Ambuchananiaceae. The remaining species, all closely related and traditionally classified in the genus Sphagnum, are retained in that genus, classified as the Sphagnopsidae. Segregation of S. sericeum and S. inretortum in families separate from Sphagnum (Sphagnaceae) will displease some, because both species have the capitulate gametophytes with fasciculate branching characteristic of that genus. However, this taxonomic solution best reflects phylogenetic relationships and evolutionary divergence. In terms of the practical consequences of this proposed taxonomic treatment of the Sphagnopsida, it is worth noting that all of the northern hemisphere work on peatland ecology will still deal with each of these observations into account.

A primary division of Sphagnum into groups that correspond to subgenus or section Sphagnum vs. all other groups (Andrews, 1911) is not supported by molecular phylogenetic analyses (Shaw et al., 2003). Sphagnum is divided here into six subgenera corresponding to traditionally recognized groups (e.g., Lindberg, 1882; Warnstorf, 1911; Isoviita, 1966; Crum, 1984). The subgenus Acutifolia is divided into three sections to reflect close phylogenetic relationships between S. wulfianum (sect. Polyclada), S. aongstroemii (sect. Insulosa) and the core Acutifolia (sect. Acutifolia). Shaw et al. (2005) resolved a well-supported monophyletic group that includes the core Acutifolia plus S. wulfianum and S. aongstroemii. Within that clade, S. wulfianum and S. aongstroemii were resolved as the two earliest lineages paraphyletic to a monophyletic Acutifolia s.s. The current classification in which the subgenus Acutifolia includes all these taxa, with sections for S. wulfianum and S. aongstroemii, reflects the monophyly of the broader Acutifolia but also the morphological distinctions between sections Polyclada, Insulosa, and Acutifolia. Subgenus Squarrosa is sister to this inclusive subgenus Acutifolia.

Family Sphagaceae Dumort., Analyse des Familles de Plantes 68. 1829.

Genus Sphagnum L., Species Plantarum 1106. 1753. (type: S. palustre L.)
Fig. 6. Morphological characters of *Ambuchanania leucobryoides* (Buchanan 16981). (A) Gametophyte habit. (B) Gametophyte plant showing two branches (arrows): long branch (left) and short ranch (right). (C) Stem, transverse section. (D) Branch cortex showing absence of retort cells. (E) Stem leaf. (F) Two leaf cell pores showing raised borders, upper part of leaf on short branch. (G) Leaf cell pores, upper part of leaf on short branch. (H) Upper cells of leaf from short branch showing fibrils. (I) Stem leaf transverse sections, median (above) and marginal (below); arrow indicates differentiated leaf border. (J) Base of stem leaf, inner surface, showing very small pores (arrows). (K) Upper stem leaf cells, outer surface. All voucher specimens in DUKE.
northward to China (Eddy, 1977; Li and He, 1999). Warnstorf (1911) classified F. sericeum in a group (at the subsectional level) that he called Sericea, along with the North American species, S. macrophyllum Brid. and S. cribrosum Lindb. [the latter as S. floridanum (Austin) Cardot]. He grouped these species together because they share the unusual feature of lacking wall fibrils in the branch and stem leaf hyaline cells. The only other species of Sphagnum that consistently lack leaf cell fibrils are S. efi brillosum A. L. Andrews and S. novae-caledoniae Paris & Warmst., both endemic to New Guinea. Eddy (1977) and Crum (1992) classified both S. efi brillosum and S. novae-caledoniae in the section Subsecunda, but considered S. macrophyllum and S. cribrosum as belonging to a different section, Isochladus. More recent phylogenetic evidence demonstrates (with strong support from multiple loci) that S. macrophyllum and S. cribrosum are also nested within section Subsecunda (Shaw et al., 2004); unfortunately, S. efi brillosum and S. novae-caledoniae have not been included in molecular phylogenetic analyses. The type specimen of S. efi brillosum (Papua New Guinea, L. J. Brass 4473 NY!) is morphologically quite similar to S. macrophyllum and is likely related within the section Subsecunda.

It is clear from the current results that Flatbergium sericeum, in contrast, is not a member of section Subsecunda, which is part of the core clade of Sphagnum (Sphagnum in Fig. 1). Morphologically, F. sericeum has distinctive features in addition to the absence of leaf cell wall fibrils, but none that would suggest a priori that the species is outside the core group of Sphagnum species. Eddy (1977) classified it in a monospecific subgenus Homophylla of Sphagnum, based on the lack of differentiation in size and shape between the stem and branch leaves, the absence of leaf cell fibrils, and the presence of single pores near the apices of leaf hyaline cells. None of these characters alone is absolutely unique within Sphagnum, but combined, they differentiate F. sericeum from any of the traditionally recognized sections. In transverse section, the shape of the branch leaf chlorophylllose cells, generally diagnostic for different sections of Sphagnum, are compatible with a placement for F. sericeum in the section Subsecunda. Eddy (1977) noted that the stem anatomy of F. sericeum is similar to species in the section Cupidata. In his discussion of F. sericeum and the subgenus Homophylla, Eddy (1977) argued that the absence of leaf cell fibrils in F. sericeum is primitive, whereas their absence in S. macrophyllum, S. cribrosum, and S. novae-caledoniae represents secondary loss(es).

Family Ambuchananiaceae—When Crum and Seppelt (1999) segregated Sphagnum leucobryoides in its own genus, family, and order (Ambuchanania, Ambuchananiaceae, Ambuchananiales, respectively), they provided a single Latin diagnosis, which makes these names nomenclaturally invalid. Seppelt (2000) attempted to validate the Ambuchananiaceae, but because the genus name was still invalid, the family name also remained invalid. We here validate Ambuchanania (above). We choose not to separate the Ambuchananiaceae in a separate order distinct from the Sphagnales.

Both the 60-taxon, eight-locus data set and the nine-taxon, 11-locus data set provide strong support for a sister group relationship between Ambuchanania and Eosphagnum inretortum. Support for this relationship enjoys a 100% posterior probability under Bayesian inference regardless of the substitution model and mode of evolution (98% in one analysis). Maximum likelihood support is weaker; bootstrapping provided less than 50% support in the 60-taxon analyses, but 71% of the bootstrap replicates did resolve E. inretortum as sister to Ambuchanania in the nine-taxon analysis. Despite lackluster support for the sister-group relationship from bootstrapping in the ML analyses, Ambuchanania and S. inretortum were resolved as sister taxa in both optimal ML trees, as they were in all Bayesian reconstructions. The second data set was constructed in an attempt to refute the sister group hypothesis for Ambuchanania and E. inretortum after this relationship was resolved in the 60-taxon data set, but analyses with more genomic sampling provided even stronger support. When we constrained this tree to a topology with Ambuchanania sister to all other species of Sphagnopsida (including F. sericeum and E. inretortum), the constrained topology was significantly less likely than the unconstrained tree that resolved Ambuchanania and E. inretortum as sister taxa. We conclude that this relationship is accurate. For this reason, we classify Ambuchanania (with A. leucobryoides) and Eosphagnum (with E. inretortum) in the same family, Ambuchananiaceae.

Genus Eosphagnum—Eosphagnum inretortum conforms to “mainstream” Sphagnum architecture at the whole-plant level, with terminal capitula, typical anatomy of stems and branches, fasciculate branching, and dimorphic leaf cells with the hyaline cells ornamented by pores and wall fibrils. The branch cortex lacks retort cells, but these are lacking in other Sphagnum species scattered across the genus. Differentiated retort cells are lacking in the sections Sphagnum and Rigida within the core clade of Sphagnum, although the cortical cells commonly have pores. In S. macrophyllum and S. cribrosum (section Subsecunda), the branches lack retort cells and cortical cells are aporose, very similar to those found in E. inretortum. Clearly, details of cortical cell morphology are labile within Sphagnum.

When he described Sphagnum (Eosphagnum) inretortum as a new species (as S. lapazense), Crum (2001a, p. 107) stated, “Because of the cucullate leaves with resorption furrows at the margins, the species clearly belongs in the section Sphagnum, although the leaves lack membrane gaps at the back of the apex and fibrils in the stem and branch cortex.” The elliptical shape of branch leaf chlorophylllose cells in transverse section is consistent with a placement in section Sphagnum, as are the large size and limited number of branch leaf pores. Despite a superficial similarity to species of section Sphagnum, Eosphagnum inretortum has features inconsistent with that section. The stem cortex of section Sphagnum species is differentiated as 3–4 layers of enlarged hyaline cells, whereas the cortex in E. inretortum consists of a single layer of enlarged cells. Branch leaves of species in section Sphagnum are cucullate and have extensive resorption of cell walls on the outer convex surfaces near the leaf apices (the membrane pleats mentioned by Crum, 2001a); these features are both absent in E. inretortum. Crum (1990) cited this absence of resorption when he excluded E. inretortum from the section Sphagnum, but trivialized the difference when he chose to classify S. lapazense within the section Sphagnum 11 yr later (Crum, 2001a). Moreover, E. inretortum lacks fibrils in the stem and branch cortical cells, a feature characteristic of, though somewhat variable within, the section Sphagnum. Some species of the section do have the fibrils weakly developed, rudimentary, or virtually absent, but there is no hint of cortical cell fibrils in E. inretortum. The combination of morphological traits characterizing E. inretortum would seem to exclude the species from placement in any known section of Sphagnum. Some morphologically aberrant species (e.g., S. macrophyllum; S. pylaeii Brid.) nevertheless appear to be phylogenetically nested within larger sections and the same could be true for E. inretortum. However, molecular data presented
in Shaw et al. (2003) and strongly corroborated here, demonstrate unambiguously that *E. inretortum* has no close relationship to the section *Sphagnum* or to the genus *Sphagnum*

The species-level taxonomy of the genus *Eosphagnum*, which we currently consider to be monospecific, may need to be revisited in the future. We recognize a single species, *E. inretortum*, despite a level of variation in leaf pore structure that might in some cases distinguish different species in *Sphagnum*. Crum’s (2001a) original protologue of *S. lapazense* was confused because his written description did not match his illustrations. In the text, he described the branch leaves in the type of *S. lapazense* as having few or no pores on the outer convex surfaces, with 4–9 round pores on the inner surfaces. This description agrees with our observations on the type collection (*Price 1236*). His illustrations, however, are reversed; his fig. 1b (Crum, 2001a) shows cells with round pores but is labeled as from the outer surface, and fig. 1c, labeled as the inner surface, shows cells with no pores. The latter shows the characteristic striations found on the outer surfaces of hyaline cells in all three collections of *E. inretortum* (illustrated in the current paper as Fig. 5G–I).

In contrast to the type of *Sphagnum lapazense*, the Chilean collection that we currently attribute to *Eosphagnum inretortum* has branch leaves with more conspicuous pores on the outer surfaces than on the inner surfaces (matching Crum’s illustrations of *S. lapazense*, though not his description of that species)! In pore structure, the type of *E. inretortum* is intermediate between the Chilean collection and the type of *S. lapazense*, providing evidence that the differences among plants represent conspecific variation. Moreover, the Bolivian (*S. lapazense*) and Chilean samples were identical across the 11705 nucleotides included in the nine-taxon, 11-locus data set. They do differ at one site in a variable part of the ITS (nrDNA) locus that was excluded from the formal analyses because it could not be aligned across all nine taxa.

Genus Ambuchanania—When they first described *A. leucobryoïdes*, Yamaguchi et al. (1990) placed the species in a new section, *Buchanania*, of the genus *Sphagnum*. Crum and Seppelt (1999) reviewed the morphological features that set this species apart from other peat mosses and elevated the section to generic rank as *Ambuchanania* (because at the generic level the name *Buchanania* is preoccupied). Two genera have been segregated from *Sphagnum* over the years (i.e., *Isocladus* Lindb. for *S. macrophyllum*, *Hemitheca* (Lindb. ex Braithw.) Lindb., an invalid name proposed provisionally by Lindberg (1882) for *S. pylaesii*). However, neither of these segregate genera has been widely accepted.

Ambuchanania leucobryoïdes is far more distinct morphologically from any other species of *Sphagnum* than is *S. macrophyllum* or *S. pylaesii*. Unique morphological characteristics of *A. leucobryoïdes* were described in detail by Yamaguchi et al. (1990) and summarized by Crum and Seppelt (1999). The gametophytes are simple or sparsely and irregularly branched, a feature that is shared with some other species of *Sphagnum*, especially in the section *Subsecunda*. However, more significant than the difference in overall gametophyte architecture characterizing *Ambuchanania* are numerous unique anatomical features. The stem of *Ambuchanania* consists of more or less uniform cells with no differentiation of wood cylinder or enlarged cortical cells. Moreover, the leaves of *Ambuchanania* are partially bistratose and have a conspicuous border of linear cells, features with no counterparts in other *Sphagnum* species. The leaf cells are dimorphic, with chlorophylllose and hyaline cells, but the arrangement of the two cell types is unlike that of any *Sphagnum* species, and although leaf development has not been documented in *Ambuchanania*, it is clear from the arrangement of hyaline and chlorophylllose cells that leaf ontogeny departs significantly from the regular pattern described for *Sphagnum* (Holcombe, 1984). Lateral branches in *Ambuchanania* are uncommon and are of two more or less distinct types: short and long branches (Yamaguchi et al., 1990). The leaves of these branch types differ in size, shape, and cellular anatomy. Pores and fibrils, both hallmarks of sphaignoid mosses, are better developed on the leaves of short branches.

As in *Sphagnum*, the sporophyte of *Ambuchanania* lacks a seta, and the capsule is instead raised on a pseudopodium of gametophytic origin. The sporophytes of *Ambuchanania* do not appear to differ in any significant way from those of *Sphagnum* and are presumed to share similar embryological features that distinguish *Sphagnum* from other mosses. The origin of sporogenous tissue from amphithecial rather than endothecial cells, as in other species of Sphagnopsida, is presumed to characterize *Ambuchanania*, although this needs to be confirmed. *Ambuchanania* has bisexual gametophytes and archegonia are borne in terminal clusters with the antheridia situated at the base of these clusters (Yamaguchi et al., 1990). *Sphagnum* can have uni- or bisexual gametophytes, and the perichaetia (archegonia and surrounding leaves), in contrast to *Ambuchanania*, are not terminal on the main stem but are rather on short branches near the stem apices. The antheridia are produced on catkin-like branches in the capitula well removed from the perichaetia in *Sphagnum* species with bisexual gametophytes. The antheridia of *Ambuchanania* are oblong-elliptical, similar to those of other mosses but unlike the globose antheridia of all *Sphagnum* species.

Implications of Sphagnopsida phylogeny for morphological evolution—Although the relative timing of phylogenetic branching among the three major clades of Sphagnopsida is unresolved, the sister-group relationship between *Eosphagnum* and *Ambuchanania* implies that the simple and highly divergent gametophyte morphology of *Ambuchanania* is derived rather than primitive. Regardless of whether *Flatbergium sericeum* diverged first and the *Ambuchanania* plus *Eosphagnum* clade is sister to the core *Sphagnum* clade, or *Ambuchanania* plus *Eosphagnum* diverged first, our phylogenetic results favor the interpretation that *Ambuchanania* evolved from an ancestor that had “mainstream” *Sphagnum* architecture, i.e., fasciculate branching, a terminal capitulum, and dimorphic leaf cells comprising unistratose leaves. Although both *Ambuchanania* and *E. inretortum* lack retort cells in the cortex of branches, *F. sericeum* has well-developed and typical retort-shaped cortical cells. It is currently ambiguous from our phylogenetic results whether the absence of retort cells in the *Ambuchanania* plus *Eosphagnum* clade represents a loss or plesiotypic absence. Our results are also ambiguous with regard to whether the absence of leaf cell fibrils in *F. sericeum* is derived or plesiotypic.

The positions and morphology of gametangia in *Ambuchanania* have weighed heavily in arguments that the species should be segregated from *Sphagnum* into its own genus, family, and order of Sphagnopsida (Crum and Seppelt, 1999; or in its own section of *Sphagnum*: Yamaguchi et al., 1990). The gametophytes are bisexual, but unlike bisexual species of *Sphagnum*, archegonia are terminal on the stems rather than on short lateral branches produced near the stem apices, and antheridia are borne at the bases of the perichaetia rather than on specialized branches of the capitula. Antheridia of *Ambuchanania* are elongate like
those found in other mosses, whereas antheridia are globose in all Sphagnum species from which they have been described (unknown in a few). The antheridia of Flatbergium sericeum are globose and therefore typically sphenoid. The type specimen of S. lapazense bears no sporophytes or gametangia, but the type of Eosphagnum inretortum and the population from Chile had sporophytes when they were collected. Nevertheless, antheridia could not be located among plants from either locality. Most species of Sphagnum produce antheridia 6 months or more before they form mature sporophytes, so it is not surprising that both sporophytes and antheridia did not occur in the same collections. If it turns out that E. inretortum has typical round sphenoid antheridia, it would imply that elongate antheridia is an autapomorphy for Ambuchanania. If on the other hand, E. inretortum has elongate antheridia, the evolution of this trait would remain ambiguous. The elongate antheridia of Ambuchanania might be a pleisiomorphic trait retained from an ancestor in common with the Takakiopsida, or it could be a synapomorphy for the Ambuchanania plus Eosphagnum clade. The likelihood of these two alternative scenarios would depend on the relative branching order of Flatbergiaceae, Ambuchanianiaceae, and Sphagaceae.

Timeframe of diversification in the Sphagnopsida—Shaw et al. (2010) estimated divergence times from the phylogeny shown in Fig. 1 based on a relaxed clock model using Bayesian methods implemented in BEAST (Drummond and Rambaut, 2007), calibrated with estimated substitution rates of nuclear, plastid, and mitochondrial loci. Their estimates, albeit crude, suggest that the Sphagnopsida is an ancient group and diverged from the Takakiopsida, or it could be a synapomorphy for the Ambuchanania plus Eosphagnum clade. Most species of Sphagnum and Spagnumopsida are very limited but what is known does not contradict this chronology. The earliest fossils attributed to the group belong to the Permian genus Protosiphagnum (Neuberg, 1960). Protosiphagnum is said to have a leaf midrib (unlike any extant Sphagnum), although the evidence based on photographs is not overly convincing. The species does appear to have dimorphic leaf cells. The arrangement of putative hyaline and chlorophylllose cells in Protosiphagnum was interpreted by Butterfass (1992) in relation to the development of dimorphic cells in extant species, and it appears that the patterns of cell divisions may be similar. Actual developmental sequences for leaves of Protosiphagnum are, of course, not known. A few other Paleozoic species of Sphagnopsida have been described but assigned to genera other than Sphagnum; leaves and spores that appear to represent Sphagnum are known from the Mesozoic and Tertiary (reviews in Lacey, 1969; Oostendorp, 1987).

If the divergence of Ambuchanania and Eosphagnum was some 50 Ma as implied by that chronology, it is perhaps less surprising that the two relictual species differ so greatly in morphology. The long branches separating early-diverging lineages within the Sphagnopsida (Flatbergium, Ambuchanania, Eosphagnum), and separating these lineages from Sphagnum s.s., suggest that extensive extinction of other early-diverging taxa might have occurred. By comparison, if we consider morphological diversity among extant species within Sphagnum and imagine what levels of morphological disparity might look like if phylogenetically intermediate species were currently extinct, comparable patterns could occur. The morphological disparity between E. inretortum and A. leuco-bryoides could reflect extinction of other related species over the last ca. 50 Myr since the Ambuchanianiaceae diverged from the Flatbergiaceae.

Relationship of Sphagnopsida to other classes of phylum Bryophyta—Several previous molecular analyses (e.g., Newton et al., 2000; Nickrent et al., 2000; Cox et al., 2004; Qu et al., 2006) have resolved Takakia as sister to Sphagnum, though rarely with high bootstrap support. That sister-group relationship was also resolved by all analytical models we employed for the 60-taxon, eight-locus data set presented here. The ML and homogeneous Bayesian analyses provided strong support for a Takakia plus Sphagnum clade (95% and 91% bootstrap support in online Appendix S1, supplemental Figs. S.1.17 and S.1.18, 1.0 posterior probability in Fig. S.1.19). But when the polytomy prior was added to the Bayesian analysis (Fig. S.1.20) the posterior probability dropped to 0.92, and when composition was modeled across the tree (Appendix S1: Figs. S.1.21, S.1.22–S.1.28), support disappeared completely. These results suggest that support for the Takakia plus Sphagnopsida clade may be due to a phylogenetic artifact caused by nonstationary composition bias.

Morphological characters suggest a closer relationship of Takakia to Andreaea and/or Andreaeobryum than to Sphagnum (Murray, 1988; Renzaglia et al., 1997). However, at least some such similarities may be pleiotypic within the mosses (for example, effects [or lack thereof] of calyptrae on normal capsule development, restriction of placental transfer cells to the sporophyte tissue, absence of sporophytic conducting cells [Renzaglia et al., 1997]) and are therefore uninformative with regard to relationships among groups. A critical feature is the embryological origins of the sporogenous tissue of sporophytes derived from the endothecium in Andreaea, Andreaeobryum, and bryopsid mosses, but from the amphithecium in Sphagnum. Origin of the sporogenous tissue in Takakia is not known, though anatomical features of mature sporophytes suggest that is may be endothecial.

Overall, Takakia and species of Sphagnopsida are extremely different in morphology, but Takakia is also very different from Andreaea, Andreaeobryum, or any other moss. If phylogenetic reconstructions that resolve Sphagnopsida plus Takakia as sister to a clade containing Andreaea, Andreaeobryum, and the rest of the (bryopsid) mosses, a classification of phylum Bryophyta with two subphyla would best reflect history. This would provide an alternative hypothesis to that of Stech and Frey (2008) in which three groups of equal rank are recognized (Takakiophytina, Sphagnophytina, Bryophytina), or that of Goffinet et al. (2009) in which five groups are distinguished (Sphagnopsida, Takakia, Andreaeobryopsida, Andreaeopsida, Bryopsida).

LITERATURE CITED

BOLLBACK, J. P. 2002. Bayesian model adequacy and choice in phyle-

BUTTERFASS, T. 1992. The patterns of cell division and chloroplast
replication in young leaflets of Sphagnum. Journal of Bryology 17:
143–153.

CAMPBELL, D. H. 1895. The structure and development of mosses and

CAVERS, F. 1911. The inter-relationships of the Bryophyta. New

relationships among the mosses based on heterogeneous Bayesian
analysis of multiple genes from multiple genomic compartments.

Science 319: 143–145.

series 2, part 11, 1–180. New York Botanical Garden, New York,
New York, USA.

CRUM, H. A. 1990. Sphagnum inreutornum, a new species in a new section

Bryologist 95: 274–279.

from the University of Michigan Herbarium 23: 107–114.

CRUM, H. A. 2001b. Structural diversity of bryophytes. University of
Michigan Herbarium, Ann Arbor, Michigan, USA.

reconsidered. Contributions from the University of Michigan Herbarium

DRUMMOND, A. J., and A. RAMBAUT. 2007. BEAST: Bayesian evolution-
ary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

Duckett, J. G., S. PRESSEL, K. N. Y. P’NG, and K. S. RENZAGLIA. 2009. Exploding a myth: The capsule dehiscence mechanism and function of

EDGAR, R. C. 2004. MUSCLE: Multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Research 32:
1792–1797.

FLEISCHER, M. 1923. Allgemeine Ubersicht des natürlichen System der
J. Brill, Leiden, Netherlands.

Biology 53: 485–495.

FRITSCHE, R. 1982. Index to plant chromosome numbers—Bryophyta.
Schleteria and Holkema, Boston, Massachusetts, USA.

GALTIER, N., M. GOUVY, and C. GAUTIER. 1996. SEA VIEW and PHYLO-
WIN: Two graphic tools for sequence alignment and molecular phylo-

GARBARY, D. J., K. S. RENZAGLIA, and J. G. DUCKETT. 1993. The phy-
logeny of land plants: A cladistic analysis based on male gametogene-

Press, New York, New York, USA.

Bryophyta (mosses): Systematic and evolutionary differences from an

HAECKEL, E. 1876. The history of creation, vol. 2., Appleton, New
York, New York, USA.

relationships of bryophytes inferred from nuclear encoded RNA gene

HOLCOMBE, J. W. 1984. Morphogenesis of branch leaves of Sphagnum
mezallanicum Brd. Journal of the Hattori Botanical Laboratory
57: 179–240.

ISOVIITA, P. 1966. Studies on Sphagnum L. 1. Nomenclatural revision of

JOHNSON, K. A., J. WINHAM, A. M. BUCHANAN, and J. BALMER.
2008. Ecological observations and new locations of a rare moss,
Ambuchania leucobroidyces. Papers and Proceedings of the Royal
Society of Tasmania 142: 79–84.

KARLIN, E. F., S. B. BOLES, M. RICCA, E. M. TEMSCH, J. GREILHUBER,
and A. J. SHAW. 2009. Three genome moses: Complex double
alloploidy origins for triploid gametophytes in Sphagnum. Molecular

KENrick, P., and P. R. CRANE. 1997. The origin and early diversifica-
tion of land plants: A cladistic study. Smithsonian Institution Press,
Washington, D.C., USA.

Philosophical Society 44: 189–205.

LARTILLOT, N., and H. A. PHILIPPE. 2004. Bayesian mixture model for
across-site heterogeneities in the amino-acid replacement process.

LEWIS, P. O., M. HOLDER, and K. E. HOLsINGER. 2005. Polytomies
and Bayesian phylogenetic inference. Systematic Biology 54:
241–253.

Garden, St. Louis, Missouri, USA.

LIGRONE, R., and J. G. DUCKETT. 1998. Development of the leafy shoot in
Sphagnum (Bryophyta) involves the activity of both apical and sub-

LIGRONE, R., J. G. DUCKETT, and K. S. RENZAGLIA. 1993. The game-
tophyte–sporophyte juncture in land plants. Advances in Botanical

J. C. Frenckell, Helsinki, Finland.

MISHER, B. D., and S. P. CHURCHILL. 1984. A cladistic approach to the

MURRAY, B. M. 1988. Systematics of the Andreaeopsida (Bryophyta): Two orders with links to Takakia. Beihete zur Nova Hedwigia 90:
289–336.

Trudy Geological Institute, Leningrad 19: 1–104 [in Russian].

NEWTON, A. E., C. J. COX, J. G. DUCKETT, J. A. WHEELER, B. GOFFINET,
major moss lineages: Analyses based on multiple genes sequences

NEWTON, M. A., and A. E. RAFFTERY. 1994. Approximate Bayesian in-
ference with the weighted likelihood bootstrap. Journal of the Royal

relationships of land plants with special reference to bryo-
phytes and the earliest land plants. Molecular Biology and Evolution
17: 1885–1895.

NISHIYAMA, T., P. G. WOLF, M. KUGITA, R. B. SINCLAIR, M. SUGITA,
indicates that bryophytes are monophyletic. Molecular Biology and
D. H. Shaw et al. — Phylogeny and classification of Sphagnopsida

September 2010

18926; DUKE. Sphagnum squarrosum Crome; SB1248; AY309730, AY298287, AY309620, GQ375075, AY309509, AY313208, AY309706, AY309572, AY309596, AY309772; Higuchi 40888; DUKE. Sphagnum steerei R.E. Andrus; SB367; AY309731, AF192574, AY309621, GQ375077, AF197081, AF198016, AY309707, AY309573, AY309597, AY309773; Andrus 8574; DUKE. Sphagnum strictum Sull.; SB79; AY309732, AF192585, AY309622, GQ375080, AF197068, AF198003, AY309708, AY309574, AY309598, AY309774; Shaw 9406; DUKE. Sphagnum subnitens Russow & Warnst.; SB367; AY309733, AF192596, AY309623, GQ375059, AF197092, AF198027, AY309709, AY309575, AY309599, AY309775; Shaw 9723; DUKE. Sphagnum tenerum Sull. & Lesq. ex Sull.; SB75; AY309734, AF192588, AY309624, GQ375060, AF197065, AF198000, AY309710, AY309576, AY309600, AY309776; Shaw 9335; DUKE. Sphagnum teres (Schimp.) Ångström; SB366; AY309735, AF192596, AY309625, GQ375076, AF197090, AF198025, AY309711, AY309577, AY309601, AY309777; Hedderson 7928; DUKE. Sphagnum wulfianum Girgensohn; SB1248; AY309736, AY298357, AY309626, GQ375068, AY309510, AY313209, AY309712, AY309578, AY309602, AY309778; Shaw 9855; DUKE. Takakia lepidozoides S. Hatt. & H. Inoue; SB473; AF306950, AY312947, AY312921, AJ269686, AF197061, GQ368598, AY312936, AY312889, AJ309978, GQ368624; Schofield 86563; DUKE. Tetrakhtis pellucida Hedw.; MDP474; AY908021, AF231908, —, U18527, AF226033, GQ368596, U87091, AY908812, —, GQ368619; Risk & Gross 105858; DUKE. Tettaplodon mnioides (Sw. ex Hedw.) Bruch & Schimp.; L3; AF023804, AF023730, AY312922, AF023691, —, GQ368595, AY312937, —, AY330474, GQ368618; Soderstrom s.n.; RNG. Timmia megapolitana Hedw.; BG1003; AF222902, AY312948, AY312923, AY330423, AY330452, GQ368597, AY312938, AY312890, AY330475, GQ368616; Schofield 97957; DUKE.