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We have developed an alternative approach to optical design which operates in the analytical domain so that
an optical designer works directly with rays as analytical functions of system parameters rather than as dis-
cretely sampled polylines. This is made possible by a generalization of the proximate ray tracing technique
which obtains the analytical dependence of the rays at the image surface (and ray path lengths at the exit
pupil) on each system parameter. The resulting method provides an alternative direction from which to ap-
proach system optimization and supplies information which is not typically available to the system designer. In
addition, we have further expanded the procedure to allow asymmetric systems and arbitrary order of approxi-
mation, and have illustrated the performance of the method through three lens design examples. © 2010 Op-

tical Society of America
OCIS codes: 080.2740, 080.6755, 220.3620.

1. INTRODUCTION

The design of an optical system typically proceeds with
the use of a modern computer program for performing ex-
act ray tracing. The user first models the optical layout
and constructs a merit function, after which the program
uses ray trace data to minimize the merit function by ad-
justing the system parameters. The most common optimi-
zation algorithm used is damped least-squares [1], which
is fast but has the drawback that it is limited to finding
only local minima. If the starting optical configuration is
far enough from the global minimum, and the merit func-
tion is complicated enough to possess a number of local
minima (as in almost all cases of interest), then the
chance of converging on the global solution quickly ap-
proaches zero. Global optimization techniques [2] such as
simulated annealing [3] or genetic algorithms [4] can of
course get around this problem, but require extensive
computational resources [5]. While it is possible to mini-
mize the computational effort needed by providing the al-
gorithm with a starting configuration which is as close as
possible to the global solution, thereby minimizing the
search space, the method for doing this relies heavily on
the intuition of the designer and on tools developed in
classical aberration theory (such as aberration cancella-
tion in symmetric systems).

We present what we believe to be a new design tool
which approaches the problem from a different direction,
and thus may be helpful in situations where traditional
tools get stuck: a ray tracing engine that provides the ex-
pression for the rays, to any desired polynomial order of
approximation, as an analytical function of the system pa-
rameters. The approach is a generalization of the proxi-
mate ray tracing method developed by Hopkins [6-8]—a
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generalization which is made possible through the power
of modern computer algebra systems [9] to manipulate
large analytical equations.

In its original form, proximate ray tracing involves first
analytically calculating the formulas for transfer and re-
fraction at each polynomial order of approximation. A ray
trace then involves calculating the numerical values of
the ray-surface intersection point at each surface, at each
order of approximation. The procedure was thus devel-
oped as an efficient method of numerically calculating
higher-order aberration coefficients, and it requires trac-
ing only a small set of special rays to obtain the aberra-
tion coefficient values. The generalization we present
here extends proximate ray tracing’s analytical approach
to the entire design process, without numerical substitu-
tion. Thus, rather than obtaining analytical formulas for
each individual refraction and transfer step in the trace,
we obtain a single formula for the rays at the image plane
(and exit pupil). We can thus obtain the aberration coeffi-
cients in analytical form, in which the functional depen-
dence of the lens merit function on the system parameters
is retained. The aim is to show that with the aid of mod-
ern computer algebra systems, optical design problems
that are currently performed numerically can also be
done in the analytical domain, and that this can have sig-
nificant advantages for understanding the design prob-
lem.

A closely related approach for analytical ray tracing
was taken by Kondo and Takeuchi [10] through the use of
matrices and the selection of a proper vector basis for
modeling the nonlinear effects present in ray tracing (up
to the desired order of approximation). While similar to
the approach presented here, it lacks the conceptual sim-
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plicity of proximate ray tracing, and thus we feel that it is
a much more cumbersome tool to work with. That is, for
many optical engineers, the concept of equating terms of
like order in the Taylor expansion of a nonlinear equation
is a much more familiar process than that of constructing
a nonorthogonal vector basis in which to represent a non-
linear transformation. This conceptual simplicity becomes
important for understanding what to do with the large set
of polynomial terms generated by either approach.

Kondo and Takeuchi’s matrix approach was modified by
Lakshminarayanam and Varadharajan [11], and also by
Almeida [12], and adapted for use in a computer algebra
system [13], but published work has been limited to opti-
cal modeling rather than design, in that it does not treat
the merit function or the optimization procedure. This
misses one of the central strengths of working in the ana-
Iytical domain: the tractability of polynomial equations
allows the use of more robust optimization techniques.

Other attempts at analytical ray tracing have also been
made. Walther [14,15] developed an analytical approach
which makes use of eikonals rather than rays and is thus
less accessible for many optical engineers. Kryszczynski
[16] provided some tentative steps toward analytical de-
sign based on rays, but only supplies an outline of an al-
gorithm. Although it may at first appear mathematically
complex, we hope to show that the proximate ray tracing
method makes the analytical approach both accessible
and practical.

In the discussion below, we first review Hopkins’
method [6-8] and show how it can be readily generalized
to arbitrary orders of approximation and to asymmetric
systems. We then show how to construct the merit func-
tion and optimizer for designing optical systems with this
approach and present three example designs. Finally, we
conclude with a discussion of the advantages and disad-
vantages of this technique.

2. TRANSFER

Hopkins [6-8] described proximate ray tracing as an it-
erative ray tracing technique in algebraic form. The basic
approach is

1. A polynomial series expansion for basic and inter-
mediate variables are inserted into the exact ray trace
equations.

2. Any sines and cosines are series-expanded, and any
multiplications, divisions, and square roots are performed
as series operations.

3. Terms of a given order are collected together, and
higher-order terms are obtained using lower-order solu-
tions via a triangular set of equations.

Ray tracing consists of two basic operations: transfer
and refraction. Using the ray path length w as the trans-
fer parameter, the transfer equations can be written as

Yo =T+ W,Cs, (1)

where r=(x,y,2) is the ray position vector, e=(c,,c,,c,) is
the direction cosine vector, and s indicates the surface in-
dex (i.e., transfer from surface s to surface s+1). To sim-
plify the equations below, we will usually leave the sur-
face index implied, except where it is needed. Here z is
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taken to be the optical axis, and multiplying w by the re-
fractive index n of the medium gives the ray optical path
length. The refraction equations can be written as [[17], p.
133]

n(eXN)=n'(e¢’' XN), (2)

where N=(N,,N,,N,) is the normal vector of the surface,
and

N = VAr), (3)

when f(r)=0 defines the surface. Note that the optical
path length of a ray through the entire system is given by
W:Zssz_llnsws when w, is the ray path length for transfer
from surface s to s+1.

The first step in the proximate ray trace procedure is to
expand all of the relevant variables in the transfer and re-
fraction equations in various orders of approximation.
Thus, each ray trace variable is expressed in the form

x=0+20 4+ x® 4 5@ 4@y

y=04yD4y@ 1)@ L@
22204201 @4 0 @
cx=0+c§cl)+c§c2)+c;3)+c;4)+ e
cy=0+c§1)+c§2)+c§,3)+c;4)+ EEEIN
c;=1+cV4cPac® ey

w=w?+wV+w?+w® +w® - (4)

The superscripts in parentheses indicate the order of ap-
proximation so that the first nonzero term on the right
hand side of each of these equations represents a paraxial
variable, and succeeding terms represent the nonlinear
dependence on the paraxial variables. The term z© rep-
resents the axial transfer distance from the surface vertex
to the previous surface (and is thus a negative quantity
for rays propagating from left to right).

The primary variables used to define the rays, the en-
trance pupil coordinates (xp,Ye;) and the field angles
(6y,06,), are treated as paraxial variables and thus do not
have an order-expansion. The final expressions for the
rays will give the image coordinates in terms of these pri-
mary variables and of the parameters used to define each
surface. In aberration theory it is more common to work
with normalized field angles H, defined either as
(H, 7Hy) =(1/ Omax) (6x, 6,), where Omax=[(max{ ex})2
+(max{6,})?]"2, or as (H,,H,)=(6,/max{6,},0,/max{6,}).
In the presentation below, we will continue to use 6 rather
than H to represent field angles.

The elements of the direction cosine vector for the inci-
dent ray are given by c,=sin 6,, c,=sin 6,, and c,
= i\s’l—ci—ci for a ray propagating in the +z direction.
Thus
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1) 4 .(3) !
(e, +cy +---)=0y—§t9§+ e
1 1 1
(c§0)+c22)+c£4)+-~)=1—5(0§+ ) + {1—6(032# 95)2+g(0ﬁ

+6§)}+---.

In Hopkins’ presentation [6-8] of the proximate ray
trace equations, the variables x, y, c,, and ¢, have only
odd-order terms, and the variables z, c¢,, and w have only
even-order terms due to his assumption of rotational sym-
metry about the optical axis. In order to design more gen-
eral optical systems, we drop these symmetry assump-
tions here and use the most general form of the equations.

Substituting the order-expanded variables for r, ¢, and
w into the transfer equations (1) results in

0= zf]o) +w©,

r® = £V 4 ¢V 4 ¢y
r® = r® 4 @O 4 Wy 4 ¢Op®)

r® = 58 4 ¢®p 4 @D 4 Vi@ 4 cOp®)

in which we label the surface before transfer as s=0 and
that following transfer as simply s. Each line contains
only terms of equal order, such that the number of equa-
tions in the resulting system is equal to the desired order
of approximation. Using the fact that ¢®=1 and cg(co)=c;0)

z
=0, the transfer equations split into
w® = _ 2O,

1)

S

— 20— Wy

wV =z w",

w® =2

>

_282) _ ciZ)w(O) _ Cil)w(l)

P =xV 4 cWPw©),

@)

X

(1)w(1),

= 6@+ cPw® +

1 1 1
Y =y 4 cDip©),

y(SZ) =y62) + c}(/Z)w(O) + c}(,l)w(l)’

(5)

The zeroth-order equation gives w(®=—z, which is sim-
ply the axial distance from the previous surface vertex to
the current surface vertex. Substituting this result into
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the first-order equation allows one to solve for w¥, and
we can likewise continue to substitute lower-order results
to obtain solutions for the higher-order equations. The re-
sulting sequence of values for w, i.e., (W ?,w@+w®,w®
+wV+w® ), provides an estimate of the real ray path
length to increasing order of approximation. Once all de-
sired orders of w have been solved for, one can then sub-
stitute into the equations for x and y. As with w, the se-
quence (rgo) ,r§0)+r£1),r£0)+ril)+ri2), ...) provides an
estimate of the ray-surface intersection location to in-
creasing order of approximation (see Fig. 1).

One further step is necessary before we can use this
procedure to solve this set of equations. Since the various
orders of the surface sag z, are not yet known, we cannot
yet solve directly for w. First we need to express z, in
terms of known quantities, and for this we need to per-
form the order-expansion of the surface equation.

3. SURFACE EQUATION

The order-expansion of the surface equation is obtained
by taking its Taylor expansion, shown here for a surface
in the form z=z(x,y)

(925 &ZS
Zs(xs’ys) =ZS(O’0) + X (9_ +Ys 0
Ysloo Vs J0,0)
1 2|: 19223:| [ Pz, :|
+ _xS 2 +xsys
2 0x; 0,0) Ixg Iy, ©.0)

1 2|:(9223:|
+ Y| T +oey (6)
2 ay; ©0.0)

in which the (x,,y,)=(0,0) subscript on each square
bracket indicates that the partial derivatives are evalu-
ated at the axial surface point. From Eq. (6), we next sub-
stitute in the order-expansion forms of (x,,y,,z;) and
equate terms of equal order, giving

29=2,0,0),

p) J
e =x(1){ﬁ} +y<1>{ﬁ]
S S s K
s 10,0, %s 10,0,

(y'®,z'©)
(yhz) (y'®),z'®)

(y®z)

Fig. 1. (Color online) The transfer operation involves taking
low-order polynomial approximations of surfaces and modifying
the surface intersection coordinates to increasing accuracy as
higher orders are traced. Shown here are only the first- and
third-order approximations of a spherical surface. The ray path
length w from the left to right surfaces depends on the order of
approximation, as indicated in Egs. (5).
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dz 0z 1 Pz
o] oalZ] ]
9% 1 0,0) s 100 2 7% 10,0

1
s WP Fz 42y R ,
27° ay> 5 oxg dy
s 1(0,0) 8 778.1(0,0)

In the case of a spherical surface with radius of curvature
R whose center of curvature lies on the optical axis, the

. . 2.2
surface equation can be written as z=—R+ \R*-r; (for r
/ . .
= \xf +y§). The order-expansion of this surface produces

zgo) =0,
zgl) =0,

[P
22 °

s 2R

’

223) =0,

1)..3 1
U0 [

“__°
z = +—,
s R 8R?

where [rgl)]zz[xil)]2+[yél)]2. The even-order components
are equal to zero here due to rotational symmetry. Now
we can see that higher-order forms of z; can be written in
terms of lower-order forms of x; and y,. Thus, if we return
to Egs. (5) and substitute in for the order-expanded form
of z, given here, we find that the higher-order equations
can all be expressed in terms of lower-order quantities, al-
lowing the full system of equations to be solved.

While we have shown the order-expansion of a spheri-
cal surface, one may also define a surface by an arbitrary
polynomial in x, and y,, such that z=z(x,y) is given by

25 = @1k + QY + Q5K + QXY + agy + aghS + anx’ly,
+ gyt + agyS + oo (7)
In this case the surface order-expansion gives

zgo) =0,
2= i + ),

22 = ar® 4 + 2[5 + apy D + 205y VP,

s =

4. REFRACTION

The next step in the ray trace procedure is solving for the
refracted ray direction. By combining the refraction equa-
tions (2) and the equation for the surface normal (3) with

Zheng et al.

the normalization condition for the direction cosine vec-
tor, |¢’|=1, we can solve for the refracted direction cosines

!
c,

B,+N,\D
Cp=—, (8)
A,
B,+N,\D
¢y = —Qx 9)
xy
Bz + \J/B
Cz’ = A—, (10)

4

where

A, =n3N,(N?+N:+N?),
A,=n3(N2+N.+N?),
B, =n1nsN,[Nje, - N.Nye, + N,(N.c, - N;c.)],
B, = nynyN [Nie, - N.Nyc, + N (N, - Nyc,)],
B, =ning[- N,(N,c, + Nyc,) + N2 + N))e,],

D =n3NZ[n3(NZ+ N2 +N?) - ni(NZ(c2 +c)) - 2N,N,c,c,
-2N,c,(N,c, +N.c,) + Nf,(cf + cf) + Nf(c§ + c?))],
(11)

and nq, ng are the refractive indices of the media before
and after refraction. In the equations for ¢’ [Egs.
(8)—-(10)], choosing for the solution the positive sign in
front of the square root selects a ray propagating in the +z
direction.

The square root, multiplication, and division in Egs.
(8)—(10) are each nonlinear procedures and so we must
perform each operation in the context of power series to
the appropriate order. The order-expansion of the square
root can be done by searching for an order-expanded vari-
able a, whose square is equal to D, i.e.,

(a(O) +aV 4 ...)(a(O) +aM+ )= (D(O) +DD 4+ ).

This involves solving a triangular set of equations,

a9 = DO
296D 4 oW = pO),
294@ + ¢WaD 4 o240 = D@

(12)

Substituting the order-expanded variables into definition
(11) of D and sorting terms by order, we can obtain the
expressions for D@, DU ete. Inserting these into Egs.
(12), we can solve the zeroth-order equation to give o(?.
Following the back-substitution procedure, we then use
each lower-order solution to solve each higher-order equa-
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tion and eventually obtain all of the unknown terms in «
up to the desired order.

The next step is to perform the division step in Egs.
(8)—(10). For a division such as c=b/a in which all three
variables are taken to have series form (.e., c=¢@+c@
+c@ 4. etc.), we can solve this operation by first multi-
plying both sides by a,

(C(O) +cW 4 ..)(a(O) +a® + )= (b<0) +bW 4 ),
and once again solving the resulting triangular set of
equations for the terms of ¢,

g = 0
WM 4 (Vg = 1)

0@ 4 (Vg 4 (D60 = p@

via back-substitution.
Finally, we also need to obtain the equation for the sur-
face normal vector N=V[z(x,y)-z] so that

J
Nx = _Zs(xs’ys) b
ax

s

P
N = _ZS xS’ S/
=5 (x5,5)

s

N,=-1. (13)

As with all other nonprimary variables in the system, we
take an order-expansion of the normal vector components
in terms of primary variables. The order-expansion for N
takes the form

N,=NO+ NP+ N2 L NO® 4+ N 4
— N (1) (2) (3) 4, ...
Ny=N"+N+N7+N"+ N7+ -+,

N,=NO+NP+N®+ NP+ NP+ - (14)

which we can use to replace the terms on the left hand
side of each equation in Egs. (13). On the right hand side
of each equation, we can use the computer algebra system
to obtain the derivative of z, and substitute into the result
the order-expansion forms of x, and y,. In general, this re-
quires a great deal of analytical work to perform each
mathematical operation in order-expansion form, but
computer algebra systems can work through these steps
without difficulty. For example, for a spherical surface,
the partial derivatives needed for Egs. (13) are

d -X

—2(x,y) = —r5,

o JRZ—x% 2
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d -y

—2(xy) = ————>

dy JRZ =122
so that the division, square root, and square operations
must be done in order-expansion form. In the case of the
polynomial surface example (7), however, we readily ob-
tain the result explicitly,

N;O) =-a,

Nﬁo) =-ay,
NS) =— 2a3x§1) - a4y§1),
Ngvl) - ag! 2a5y

Nj(f) =- 2a3x§2) - ar4yg -3« [x(l)]2 -2ay x(l) (1) - [y(l)]2

N§,2) =—ay x 2a5y - [x(l)]z 2ag x(l) (1) -3a [y(l)]2

Performing this sequence of operations once for each of
Eqs. (8)—(10) gives the solution for the refracted ray direc-
tion cosine vector ¢’. The resulting sequence of values for
c',ie, (¢©,e'Wye'® ¢'Ore/Wie’@ ) provides an
estimate of the real refracted ray angle to increasing or-
der of approximation. Note that for an nth-order ray
trace, the surface must be expanded to order n+1 prior to
taking its derivative in order to obtain an nth-order form
for the surface normal.

While following this ray trace procedure manually is te-
dious and error-prone, it can be made fast and robust
through the use of modern computer algebra systems. In
fact, most such systems provide enough functionality that
the entire transfer and refraction operations can each be
performed in a couple lines of code, and is typically ex-
ecuted within seconds for systems of modest complexity.
(See Appendix A for comments on how to structure the
code to help make this possible.)

5. MERIT FUNCTION

The final result of a proximate ray trace calculation is to
obtain x=xV+x@+--- and y=yV+y@ +--- the position of
the ray at the image plane to each order of approximation.
Each term is itself a function of the ray coordinate at the
entrance pupil (x¢p,Y.p) and the incident ray angle (6,, 6,)
so that we have a polynomial expression in these four
variables in addition to all of the parameters used to de-
fine the various surfaces and their spacings. In order to
design a system, we need to construct a merit function,
for which the mean square spot size is a common choice
[18]. Denoting the merit function by M, we can write

MHJIJJ[x()—xa()]2+[y()—yc( )Pdxpdye,d6,de,,
(15)

where () represents the variable and parameter depen-
dence of the ray coordinates, i.e., (X¢p,Vep, Oy, 0y,...), in
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which the ellipsis indicates the surface parameters of the
system. For a system of spherical surfaces in a rotation-
ally symmetric design, the surface parameters take the
form (Rg,tqg,n¢,R1,t1,n1...)—the radius of curvature,
spacing, and refractive index for the successive surfaces.
In the merit function integral, (xg,y¢) is the Gaussian im-
age point, for which we can simply substitute the first-
order solution of the ray location at the image plane,
(D) (D).

As in the ray trace procedure, if we wish to work with
an analytical merit function, we can insert the order-
expanded variables for x( ) and y( ) in the above integral,
collect terms of like order, and perform the integral on
each order independently. The resulting expression can be
quite long for optical systems of even moderate complex-
ity, and so the use of a computer algebra program is es-
sential here. If the optical system possesses rotational
symmetry, we can simplify the merit function expression
to have the form

M=Jfj[x()_xG()]2+D()_yG()]de)pdpde,

in which the primary variables are no longer
(XepsYVep» O by, ...) but rather (p, ¢, 0,...). That is, the field
angle can be expressed as a scalar, and the pupil location
is now expressed in cylindrical coordinates, i.e., (Xep,Yep)
=(p cos ¢,p sin ¢). For the majority of imaging systems,
the most appropriate choice of integration range is a rect-
angular field and a circular pupil. As long as the integra-
tion range allows us to obtain analytical functions for
polynomial integrands, then it remains possible to obtain
an analytical function for the merit function as well. Note
that the squaring of the terms in the integrand results in
a merit function polynomial of order 2p+4 after integra-
tion, where p is the order of approximation in the ray
trace, and the additional four orders arise from the four
integrals of Eq. (15).

In addition, if we wish to use the spot centroid rather
than the Gaussian image point as our reference for the
merit function, a choice which amounts to ignoring the ef-
fects of distortion on the image, then we can replace
(xg,¥q) with the appropriate centroid (x,y) given by

i()szffx( )dxepdyepdexdey’
&()=ffffy( )dx opdy epd 6,46,

After constructing the merit function, the final step in
designing an optical system is the implementation of an
optimization algorithm to determine the system param-
eters which minimize M. Here we run into many of the
same problems encountered by optimization in the exist-
ing design software: while local techniques are compact
and fast, they typically cannot reach the global solution;
while global techniques are capable of finding the optimal
solution, they require unrealistic computational resources
in order to do so. (Reference [19] provides a useful survey
of modern algorithms for solving polynomial equations.)
For rotationally symmetric systems of modest complexity
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or asymmetric systems of low complexity, existing algo-
rithms are capable of locating global minima. Beyond
these, one must compromise between the computational
resources available and the restriction to local domains.
In the examples shown in Section 7 below, for low com-
plexity systems, we use fast global techniques such as
Mathematica’s [20] NMinimize function, whereas for
more complex problems we resort to simulated annealing.

If the designer wishes, it is also possible to constrain
the optimization using implicit functions of the system
parameters. For example, if we wish to restrict the lens
diameters to be within some allowed range, then—given
the functional form of the ray at the appropriate
surface—we can obtain equations of constraint. For ex-
ample, for a rotationally symmetric spherical lens, the
surface equation gives

2 4
W=k TR

for ray height y and radius of curvature R. Constraining y

to be less than some value y, allows us to solve for an

equation of constraint on R. This can be used by the opti-

mization routine to look for solutions lying only within

the valid design space.

The optimization can run into trouble due to the sheer
size of the analytical formulas produced by the ray trace,
especially for systems with more than a few surfaces and
with surfaces having many modeling parameters (such as
high-order aspheres). When this happens, one thing that
can be done is to fix some of the system parameters and
optimize over the remaining ones. For example, if we fix
the thickness of a lens, then we can give it the numerical
value during ray tracing so that it need not be tracked
analytically. This can greatly simplify the resulting ex-
pressions and make ray tracing and optimization much
faster.

6. EXAMPLE RAY TRACE

Since the discussion up to this point has given the general
expressions for the proximate ray tracing technique, we
illustrate the approach with a simple example, using the
lens shown in Fig. 2 (see also Table 1). This lens model
has been chosen such that the example ray trace can be
presented easily on a printed page: an f/2.2 singlet cylin-

t t
Fig. 2. (Color online) 2D lens model used for the example. Once
the analytical model is completed, we substitute the following pa-
rameter values to give the lens shown: ¢;=5mm, ¢,
=76.6667 mm, and the refractive index is n=1.5. The first lens
surface is convex, and the second surface is planar. The resulting
f/2.2 design has an entrance pupil diameter of 32 mm and a focal
length of 80 mm.
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Table 1. Prescription for the Lens Shown in Fig. 2

s Radius of Curvature  Thickness Index

Pupil 0 © 0

Lens front 1 R t n
Lens back 2 © ty

Image 3 0

drical lens with the (planar) aperture stop placed to coin-
cide with the front surface of the lens. Limiting the ray
trace to two dimensions reduces the definition of a ray to
its (y,z)-coordinates and its angle 6,. In the ray trace
given below, all subscripts refer to the surface number s,
and we limit the approximation to third order for space
reasons. To match common practice in ray tracing, the
surface equations are expressed in terms of the surface
vertex point, with the axial transfer distance inserted into
w® in the transfer equations.

The ray trace starts at the pupil plane (s=0), with the
primary variables y., and 6, defining all incident rays.
The first surface is defined by the equation

¥yt

Z=—+—.
2R 8R?

Applying the transfer equations gives

2
yep
(0) _ (2) _
wy' =0, wy' =—,
0 0 ToRr
2
Yepby
M _ () _
yl yep7 yl 2R,
2
y
d0=0, =2
2R

and the refraction equations for the refracted direction co-
sines are

1
[cj(/l)]l = |:E(n - 1)yep + eyn:| >

1
[e§71s = g5 G3R"n =8y Rin(n = 1) = 8ylyn(n ~1)
-36y5(n*-n-1)],

[ =1,
2 1 2 2
[e;7] =~ Y73 op(1=2n+n%) +y,2n(0,Rn - ,R)
+ 67R*n?].
Transferring to the planar back surface of the lens,

w(IO) = tl’
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1
w® = ﬁ[tﬂ'gp(n ~1)%+ 2R%n% - yX R + 26,y ,Rtsn(n
- 1)]7

t
y(Zl) = Eyep(n -1 +Yept 0yt1n;

1
¥ = — (86 R*n(n - 1)(1+3n) + ¥R%*n(3n% - 1)

6R?
+ 3y§’p(n -D[-R+¢t;+tin(n-1)]- 36yy§pR(n -1[R

+t;(3n%2+n-1))),

and again refracting,

[C;l)]2 = [6yepR2(n -1- GGyRSn]’

6nR?

[Cﬁg)]z =

6R3n[6§’R3n - 30§yepR2n(n -1)- 3y§pn(n -1)

+30,y2,R(2n% +n - 1)],
[CQO)]2 = 17

-1

[c®], = sz e -1+ 6,Rn]?).

Finally, we transfer to the image surface. Here the only
quantity of interest is the ray coordinate y, so we omit the
expressions for w and z,

1
y = R_[yep(_ ty+nR —nty +nty +tn®) + O,R(nty +n’)],
n

3
¥y =

e 2[8ta(n*=3n2+3n - 1) +3n(n - 1)(-R +1t;

+tin(n - 1)1+ 6,y2 [3Rton(n - 1)(2n? + 4n - 3)
-3Rn*(n-1)(R+t1(-3n%+n-1))]

+ 8y ep[3R%*on*(n — 1)(n + 3) + 3R?nt1(n - 1)(3n
+ 1]+ G[2R%,n® + R%;n*(3n* - 1)]}.

This is the analytical expression giving the location of all
rays at the image plane in terms of the variables defining
the incident ray (yep,6,), and of the system parameters
(R,t1,tq,n), to third-order approximation. In order to use
this model to design a lens, we construct a merit function,



1798 J. Opt. Soc. Am. A/Vol. 27, No. 8/August 2010

M= f f [ys() —y5P () Pdy.,d6, = f f [y ) Pdyepd .

At this point, we have not defined any of the system pa-
rameters, pupil size, or field of view. Defining the latter
two allows us to perform the above integrals, and a typi-
cal optical design procedure would involve fixing the val-
ues of 1, t9, and n—or constraining their ranges—prior to
searching for the optimum. (If these three parameters are
allowed to vary freely, one can always obtain a zero-
aberration solution by letting n — or ty—.) For a £10°
field of view and a 32 mm pupil diameter, and fixing the
system parameters at ;=5 mm, £,=76.6667 mm, and n
=1.5, we find the optimal radius of curvature to be R
=41.75 mm.

Even for such a simplified case, we can see that the ex-
pressions are lengthy so that performing design in the
analytical domain requires interacting with these func-
tions via computer algebra systems. They do, however,
provide a much more informative description of the ray
intercepts’ nonlinear dependence on each given system
parameter. This can create a problem of information over-
load, in contrast to the information uncertainty produced
by sampled exact ray tracing.

Note that one needs not expand all surfaces to the same
polynomial order of approximation. The only restriction
here is that the order of approximation in the ray trace
needs to be at least as much as the highest order used for
the surfaces within the system.

7. DESIGN EXAMPLES

To illustrate the performance and flexibility of our design
approach, we show the design of three example systems
and compare to results derived with conventional optical
design software. While comparisons between conven-
tional and new techniques developed during research are
almost invariably unfair, in that more effort is put into
optimizing the latter than the former for the specific cases
at hand, what we wish to show is that the approach dif-
fers qualitatively from conventional methods and is ca-
pable of providing equivalent answers in a wide variety of
designs so that it shows promise as a new design tool.
The first example is a variant of the example ray trace
performed in Section 6, but this time using the lens off-
axis and allowing the two surfaces to be freeform x-y poly-
nomials rather than spherical (see also Fig. 3). The sys-

Fig. 3. (Color online) The lens used in the first design example:
a freeform x-y polynomial singlet lens with an off-axis field. The
system parameters are similar to those of Fig. 2: t;=5 mm, ¢,
=76.6667 mm, and the refractive index is n=1.5, while the sur-
face parameters are the 14 polynomial coefficients (seven for
each surface) out to fourth order. The field of view for this design
is 5°=6,=7° and -1° =4, =+1°.
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tem parameters are ¢;=5mm, £3=76.6667 mm, the
refractive index n=1.5, and the rectangular field of view
is 5°=6,=7° and -1° = ¢,=+1°. Thus, the equations for
the front and back surfaces of the lens are defined as

Zont = 01%2 + aoy? + agy® + ax®y + agx* + agyt + apx®y?,

Zhack = B1x” + Bay® + Bay® + Bux’y + Bsx* + ey + By,

with the a, and g, coefficients left to be determined by the
optimizer. Since the system is symmetric about the x=0
plane, all odd-order terms in x are necessarily zero.

In order to compare the results with conventional de-
sign approaches, we designed this lens using both the
proximate ray trace technique and Zemax [21], with the
resulting coefficients shown in Table 2. The figure of merit
from each design can be calculated in either the domain
used by proximate ray tracing (i.e., an approximate ana-
lytical model) or the domain used by Zemax (i.e., an exact
sampled model), with the following results:

Merit Function Design Method

Domain Proximate Zemax
Analytic Approx. 0.00118 0.00205
Sampled Exact 0.07483 0.05635

Note that both merit functions require approximations—
truncated order in the case of proximate ray tracing and
sampling in the case of Zemax’s default method.

The second design example shows a setup appropriate
to the design of a lenslet used in a multiscale lens [22]. A
multiscale lens involves the use of a standard objective
lens combined with a back-end lenslet array used to per-
form remapping and aberration correction on the image
prior to detection. The modeling of these systems can be
quite complex since the lenslet elements are designed to
have freeform surfaces, and pupil vignetting is both large
and varies rapidly with field angle. The number of sur-
faces present in the system is small, however, making the
problem tractable for analytical ray tracing.

Table 2. Surface Parameters Obtained for the
First Design Example (an Off-Axis Singlet)®

Proximate Zemax

a 1.188x 1072 1.136x 1072

ay 1.137x 1072 1.114%x 1072

as 3.620x107° -2.893 X 1075
ay 1.116x107° -1.790x 1075
as -3.863 %1077 2.478x 1077

ag -1.573%x10°6 -1.097x 1076
g 1.839x107° -8.058 1077
B1 -5.649%x107* -1.124 %1073
Bo -9.805x 10 -1.234x 1073
Bs 2.782% 1076 -2.856 <1075
B 1.150x 107° -1.675x107°
Bs -1.014x 1076 -1.410%x 1077
Be -2.030%x 1076 -1.400%x 1076
Bz 1.034%10°% -1.467x107%

“The proximate ray trace is performed out to sixth order and optimized with
simulated annealing; the Zemax results use damped least-squares optimization.
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This example illustrates the design of a single lenslet
within the array. The goal of the design is to re-image a
section of the initial image plane and also to perform ab-
erration correction so that the re-imaged field contains
less blur than the original field. In the case here, the field
angles re-imaged by the lenslet are 5.75° < §<8.25°, the
entrance pupil diameter is 8 mm, and the lenslet itself is
4 mm in diameter. For the lenslet shown here, the free-
form rear surface is modeled using an x-y polynomial
while the front surface is spherical so that the rear sur-
face has the equation

2

2= ax? + agy? + agy® + a?y + asxt

+ agyt + ax?y?.
The optical layout and prescription for this setup are
given in Fig. 4 and Table 3.

Once again performing the proximate ray trace to sixth
order and constructing the merit function, the simplicity
of this problem allows us to use the general-purpose
NMinimize function in Mathematica. Likewise using Ze-
max’s default optimization tool (damped least-squares),
we obtain the following results:

Merit Function Design Method

Domain Proximate Zemax
Analytic Approx. 0.0003428 0.002169
Sampled Exact 0.12713 0.01467

As before, we find that each method is optimal in its own
domain, although the two designs are quite similar in
shape (see Table 4).

The third design example is a rotationally symmetric
nonimaging concentrator, where each of the lens surfaces
is even aspheric. The goal here is different from that of
the two previous examples in that we are no longer con-
cerned with imaging quality per se. Rather, we want to
maximize the amount of light we can concentrate onto a
given region at the “image plane”—what we call the con-
centration region. Thus, for a given range of incident ray
angles, we attempt to maximize the number of rays inci-
dent on the concentration region.

Due to symmetry, we can produce an approximate so-
lution by confining the field angles and pupil coordinates
to the meridional plane. Thus, we consider a field of view
of —20° = 6,=+20°; the entrance pupil diameter is 2.93
mm, the system track length is 3.14 mm, and the image
size is -1 mm =y =+1 mm. (This design example is mod-
eled after [[23], pp. 189-192].) The light concentration re-

Fig. 4. (Color online) The multiscale lens design example layout
and prescription. The objective is fixed, while we attempt to de-
sign the lenslet to perform aberration correction on the nominal
image (shown by the curved surface between the lenses) and re-
image onto a tilted detector array (shown at the far right). The
square pupil is 8 mm X 8 mm in size, and the objective lens focal
length is 64.45 mm. The lenslet re-images a 2.5° X 2.5° square
field of view.
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Table 3. Multiscale Lens Design Example Layout
and Prescription

Radius of Curvature Thickness

s (mm) (mm) Index
Pupil 0 0 20
Obj. lens front 1 79.60 6 1.5168
Obj. lens back 2 -55.80 72.02
First image 3 0 62.44
Coord. break: rotate about x axis by 4.54°
Lenslet front 4 7.88 1 1.8
Lenslet back 5 %
Final image 6 ©

gion is thus 2 mm long, and we wish to maximize the
amount of incident light reaching this region. If we con-
fine ourselves to analyzing the system in two dimensions,
then the surface equations for this lens are

— 2 4 6
Zfront = X1Y” + @y + agy”,

Zrear = B1y” + By + Bay®.

A naive attempt at constructing a merit function for
this problem would be something like

Dyy2 20°
M= dyep f de, 2
-Dy/2 -20°

where y gives the position of the ray at the image plane
and D, is the diameter of the entrance pupil. While this
function penalizes rays which stray too far from the axis,
what we really want is a penalty which is zero or very
small for rays falling onto the concentration region, but
very large for rays falling outside it. The implementation
of this approach is tricky, however, as it requires ¢; mini-
mization rather than the much more widely used €9 mini-
mization techniques, and also it requires that we work di-
rectly with image coordinates as primary variables,
rather than the object coordinates we have been using up
to now. This is a topic we hope to treat at length in a fu-
ture publication.

An alternative optimization approach takes advantage
of the edge ray principle [[23], p. 183]. The phase space for
rays propagating through the system (Figs. 5 and 6) are
bounded by the square abed. We can choose to map those

Table 4. Surface Parameters Obtained for the
Second Design Example (Multiscale Lenslet)®

Proximate Zemax
ay -0.070 26 -0.066 25
ay -0.068 24 -0.064 25
ag 0.000 08 0.000 19
ay 0.000 02 0.000 17
as 0.002 35 0.001 38
ag 0.002 24 0.001 31
ay 0.004 02 0.002 38

“The proximate ray trace is performed out to sixth order and optimized with
Mathematica’s NMinimize function; the Zemax results use damped least-squares op-
timization.
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Fig. 5. Phase space of the incident rays.

rays represented by line aa’ to the edge of the concentra-
tion region—a point we designate as y,,—and map the
rays represented by line a’b to the edge of the back sur-
face of the lens—a point we designate as (y;,z;). By sym-
metry, this likewise forces all the rays represented by line
cc’ to focus near -y,,, and all the rays represented by line
¢'d to focus near (-y;,z;). The corresponding merit func-
tion can be given the form

Doyf/2
M= f [(ys _yk)2 +(z5— Zk)z]dyep
Dey/D-yar

(Dep/Q)‘ya'
+ j (y _ym)zdyep >

“Dey/2 6=20°

where y, is the y,, value of ray a’. (The value of y, is
determined during the optimization step.) The coordinate
(y3,23) is the ray position on the back surface of the lens—
surface 3 in the system. The reason for choosing this
merit function is as follows: when the incident ray
changes continuously in phase space along the phase-
space boundary from point a to b, ¢, d, and back to a, the
corresponding ray at the image plane will also change
continuously in phase space and form a closed loop. Ac-
cording to the edge ray principle all the incident rays
within the rectangular region abcd in phase space will
fall into the closed loop in the phase space of the rays at
the image plane, bounded at the image plane within the
range —y,, to y,,.

We choose the line aa’ to reach the y,, point at the im-
age plane, and also the line a’d to hit the upper edge of

Fig. 6. (Color online) The approximate ray trace used by the
edge ray principle for designing a concentrator lens. The labeled
rays a, a’, and b are the phase-space points given in Fig. 5. Ray
a’ maps to the edge of the concentration region, at a distance y,,
from the optical axis, while ray b is bent downward so that it
reaches the image plane at y<y,,.
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the lens back surface. Since a’ point has the smallest y,,
value among those rays within the phase-space line a’b,
it should also have the largest ray angle when hitting the
upper edge of the back surface so that its ray angle after
refraction by the back surface will also be largest. Thus, it
will reach the image plane with the largest y coordinate,
¥m, and all other rays along the line a’'b in phase space
will reach the image plane below y,,. Since the ray from
point ¢ in phase space hits the image plane at -vy,,, all
rays from the phase-space line bc should reach the image
plane inside the concentration region (-y,,<y=y,,). And,
due to symmetry, the phase-space lines c¢d and da will fall
inside the concentration region as well. Note that this ap-
proach is not exact: it is possible to generate a surface
which violates these assumptions. Moreover, while we can
use this one-dimensional design approach to generate a
two-dimensional (2D) surface by rotating the design sur-
face about the axis, the analysis above has ignored skew
rays within the system. Nevertheless, we can obtain a
useful design using the above approach, and upon opti-
mizing M with the proximate ray trace equations for y
and y3, we obtain the design,

a;=0.297 73, p;=-0.038 88,
a;=0.018 92, B, =0.023 36,
a3=0.001 71, B3=0.002 53,

The resulting lens is shown in Fig. 7 together with a dia-
gram illustrating the ray mapping. Figure 8 shows the re-
sulting concentration performance, giving the transmis-
sion (portion of rays reaching the concentration region) as
a function of the incidence angle.

8. CONCLUSION

The first implementation of proximate ray tracing, by
Hopkins in 1976 [6-8], appears to have been done as a
method of reducing the computational burden and com-
plexity for calculating higher-order aberrations. By sam-
pling a specific set of rays passing through the system,
one is able to obtain each of the various aberration coeffi-
cients. Our own implementation adapts the proximate ray
tracing concept for use in computer algebra systems in or-
der to perform the entire procedure in the analytical do-
main. This is an important advance in that the analytical
formulas provide information of a qualitatively different
character than that provided by conventional ray tracing.
Some examples of these advantages include: (1) the aber-
ration terms can be simply picked out of the final expres-
sion for the optical path length W= w, as a function of
the incidence angle (H,,H,) and pupil coordinates
(Xep>Yep)s (2) the optimization procedure can take advan-
tage of the properties of well-behaved functions (e.g., poly-
nomials) such as their infinite differentiability; (3) there
is no need to consider sampling density or similar issues
required for discrete ray tracing; and (4) the analytical
functional form more clearly shows some of the difficulties
that ray tracing can encounter, such as the presence of
singularities [25] that can affect the convergence of aber-
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(a)

(b)

Fig. 7. (Color online) (a) Layout of the concentrator lens obtained via the edge ray principle design method; (b) the profile of ray position
y at the image plane as a function of entrance pupil position y,, for 6=20°.

ration series. We plan to present a more thorough discus-
sion of these properties in a subsequent publication.

Each of the advantages stated above can also be given
for the matrix approaches to analytical ray tracing
[10-13]. The difference between the implementation pre-
sented here and the matrix methods is that our approach
is more easily adaptable to general-purpose use by having
the computer algebra program perform much of the ge-
neric analytical calculations, such as obtaining the sur-
face normal, converting coordinate systems, and develop-
ing systems of equations out to arbitrary order. In
addition, while the research presented here considers
only monochromatic systems, we are currently adding
wavelength (or wavenumber, depending on the choice of
coordinate) as an additional primary variable and devel-
oping our code for use in multiwavelength systems. This
is an essential additional step for optical system design
which will be new to analytical ray tracing.

The three design examples presented in Section 7 illus-
trate the flexibility of the analytical approach to treat sys-
tems of arbitrary symmetry and to produce accurate de-
signs. In all three cases the optimization process in both
the proximate and numerical ray trace designs does not

Transmission
1.0
0.8
0.6
04
02
Incident angles (degrees) Pl
P S S S B WPl
0 5 10 15 20 25

Fig. 8. (Color online) Concentrator example’s performance is il-
lustrated by showing the portion of transmitted rays reaching
the concentration region as a function of incidence angle. The ex-
ample shown here (solid line) compares well with that shown in
Fig. 8.9 of [24] (dashed line). A vertical line at 20° illustrates the
maximum angle of incidence used in the design.

require interaction with the designer after defining the
first-order properties of the system.

The drawbacks to analytical ray tracing include (1) for
all but extreme cases, analytical ray tracing will be much
slower than numerical exact ray tracing; (2) the analyti-
cal formulas produced by the method can be quite
lengthy; and (3) analytical ray formulas are harder to in-
terpret due to their unfamiliarity. While each of these
drawbacks is important, they reflect the trade-off of the
new information obtained about a given design.

APPENDIX A

Due to the length of the polynomial expressions which
need to be manipulated for asymmetric systems and high-
order approximations, an important feature of an analyti-
cal ray tracing engine is an efficient means of performing
each required operation. While [13] presents a code for
performing an order-expansion operation, the algorithm
used is quite slow for large expressions. An alternative
approach which is simple to apply for even very large ex-
pressions is the following. For each of the order-expanded
variables present in an expression, we can represent the
sum as a vector where each element of the vector repre-
sents the appropriate order of expansion. Thus, for ex-
ample, inside the computer algebra system we can repre-
sent the variable y as the vector

y =0y My y®, T, (A1)

so that the multiplication operation between variables x
and y, for example, is computed via vector multiplications
as

1'xy'1,

where 1 is the vector of appropriate length containing 1’s
for each element. Here the inner operation, xy', gener-
ates a matrix containing all combinations of elements of x
with elements of y, i.e.,
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2040 (D0 1(2),,(0)

'y 'y 'y
20y a0y @y
XY = 0,0 0,0 @),
x xHye xSy

Y

The outer operations perform the summation over all ma-
trix elements. As given here, a computer algebra system
needs to check the power of each of the variables used in
the expressions and add the powers of all variables within
a given term, in order to obtain the order of a given term.
It is possible to achieve this in a single step by adding an
indicator variable, which we name g. The vector expres-
sion for g is given as

g = (17g,g27g3’ .. ')T'

When we define the vector representation of each variable
to be used, instead of Eq. (A1) we use

v-g=0gyW,.g%y® g3y ),

« . »

where the “” operator represents an element-by-element
multiplication. The indicator vector g is likewise applied
to all variables used in expressions applying order-
expansion methods. When operations such as the x-y mul-
tiplication shown above are performed, one now needs
only to locate the power of g in order to obtain the order of
a given term.

This ability is even more convenient for setting up and
solving systems of equations such as those for transfer or
refraction. For example, when calculating the expansion
of the square root, as in Section 4, instead of manually
setting up the matrix of equations and solving them at
each nonlinear operation, one needs only to ask the com-
puter algebra system to perform the Taylor expansion of
the equation in the variable g. While not optimal in terms
of the computational speed, this method greatly simplifies
the code, for improved readability and comprehension.
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