Gold(I)-Catalyzed Enantioselective Hydroamination of Unactivated Alkenes

by

Seong Du Lee

Department of Chemistry
Duke University

Date:_______________________

Approved:

Ross A. Widenhoefer, Supervisor

Jiyong Hong

Katherine J. Franz

Qiu Wang

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University

2012
ABSTRACT

Gold(I)-Catalyzed Enantioselective Hydroamination of Unactivated Alkenes

by

Seong Du Lee

Department of Chemistry
Duke University

Date:_______________________
Approved:

Ross A. Widenhoefer, Supervisor

Jiyong Hong

Katherine J. Franz

Qiu Wang

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University

2012
Abstract

Numerous methodologies for efficient formation of carbon-nitrogen bonds have been developed over the decades due to the widespread importance of nitrogen containing compounds in pharmaceuticals and bulk commercial chemicals. Among many methods, hydroamination, in particular, has attracted considerable attention owing to its high atom economy and use of simple C-C substrates. As a result, numerous methods for hydroamination have been reported which employ a range of metal catalysts. However, the hydroamination of unactivated alkenes remains an unsolved challenge owing to the low reactivity of the C=C double bond. The recent development of gold(I) as an effective π-activation catalyst prompted us to develop efficient gold (I)-catalyzed methods for enantioselective intra- and intermolecular hydroamination of unactivated alkenes.

A gold(I)-catalyzed method for the enantioselective intramolecular hydroamination of unactivated alkenes has been developed. Various gold(I) catalysts have been synthesized to examine their reactivity and enantioselectivity in asymmetric intramolecular hydroamination. Among the catalysts, bis(gold) complexes containing an axially chiral bis(phosphine) ligand catalyze the enantioselective intramolecular hydroamination of unactivated alkenes with carboxamide derivatives most effectively. The method was effective for both carbamate and urea nucleophiles to form pyrrolidine derivatives with up to 85 % ee.
The first enantioselective intermolecular hydroamination of unactivated alkenes was realized by a gold(I)-catalyzed method. The gold(I) catalyst system adds cyclic ureas to unactivated 1-alkenes to produce corresponding enantiomerically enriched hydroamination product in good yield with enantioselectivity up to 78 % ee.

Polymer-embedded ligands have been synthesized to demonstrate proof of concept for fluxional mechanocatalysis; the outcome of a catalytic reaction is influenced by the stress state of the catalyst. Polystyrene (PS) or styrene acrylonitrile (SAN) was introduced into a chiral bis(phosphine) ligand to generate polymer-embedded ligands. The catalytic reactivity of the synthesized PS and SAN-embedded ligands was examined in palladium catalyzed asymmetric allylic alkylation (AAA) and showed good enantioselectivity of 89 % and 92 % ee, respectively. However, the enantioselectivity of AAA under a shear stress in a bob rheometer displayed no changes compared with the enantioselectivity of AAA observed in the absence of a shear stress.
Dedicated to my wife, Boyoung Yoon, and my parents, Jungho Lee and Backhapja Lee.
Contents

Abstract ... iv

List of Tables .. x

List of Figures ... xi

Acknowledgements ... xvii

Chapter 1 .. 1

Room Temperature Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Unactivated Alkenes .. 1

1.0 Background ... 2

1.1 Introduction ... 3

1.1.1 Metal catalyzed Enantioselective Intramolecular Hydroamination of Unactivated Alkenes ... 3

1.1.1.1 Enantioselective Hydroamination Catalyzed by Rare-Earth Metal Complexes ... 3

1.1.1.2 Enantioselective Hydroamination Using Group 4 Metal Catalysts 10

1.1.1.3 Enantioselective Alkene Hydroamination Catalyzed by Late Transition Metal Complexes .. 15

1.1.2 Special Characteristics of Gold(I) in Homogeneous Catalysis 17

1.1.3 Project Motivation ... 18

1.2 Results and Discussion ... 20

1.2.1 Optimization and Substrate Scope ... 20

1.2.2 Mechanism .. 28

1.2.3. Summary .. 31
List of Tables

Table 1. Effect of ligand on the enantioselectivity of the gold(I)-catalyzed intramolecular hydroamination of γ-alkenyl carboxamide and sulfonamides ... 22

Table 2. Effect of the solvent and silver salt on the gold-catalyzed enantioselective intramolecular hydroamination of 1a and 1b .. 24

Table 3. Enantioselective intramolecular hydroamination of alkenyl amines catalyzed by a mixture of [(S)-L8](AuCl)2 (2.5 mol %) and AgBF4 (5 mol %) in methanol .. 26

Table 4. Effect of silver salt and solvent on the gold(I)-catalyzed enantioselective hydroamination of 1-Octene with 7 .. 130

Table 5. Effect of ligand and solvent on the gold(I)-catalyzed enantioselective hydroamination of 1-octene with 7 .. 133

Table 7. Effect of ligand dihedral angle on the yield and enantioselectivity the palladium-catalyzed AAA reaction of 1,3-diphenylpropenyl acetate with dimethyl malonate to form (E)-dimethyl 2-(1,3-diphenylallyl)malonate employing Cn-Tunephos ligands .. 153

Table 8. Effect of reaction conditions on the AAA reaction 1,3-diphenylpropenyl acetate with dimethyl malonate employing (S)-MeO-BIPHEP as the ligand .. 161

Table 9. AAA reactions under shear stress .. 165
List of Figures

Figure 1. Chiral cyclopentadienyl lanthanocene complexes employed as precatalysts for the intramolecular enantioselective hydroamination of γ-alkenyl amines. ... 5

Figure 2. Substrates that showed poor reactivity or failed to undergo gold-catalyzed enantioselective intramolecular hydroamination. ... 28

Figure 3. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 72% ee) benzyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (6). ... 64

Figure 4. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 78% ee) (9H-fluoren-9-yl)methyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (2b). .. 65

Figure 5. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 84% ee) (9H-fluoren-9-yl)methyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (2c). .. 66

Figure 6. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 76% ee) 2-methyl-N,4,4-triphenylpyrrolidine-1-carboxamide (8). .. 67

Figure 7. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 82% ee) 2-methyl-N,4,4-triphenylpyrrolidine-1-carboxamide (8b). .. 68

Figure 8. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 77% ee) propyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (10). .. 69

Figure 9. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 75% ee) 2-(benzylxy)ethyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (12). .. 70

Figure 10. Chiral HPLC traces (95:5 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 48% ee) 2,2,2-trichloroethyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (14). .. 71

Figure 11. Chiral HPLC traces (99:1 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 55% ee) 9-fluorenylmethyl 2-methyl-4-cyclohexylpyrrolidine-1-carboxylate (16). .. 72
Figure 12. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 85% ee) N-methyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (27) ... 73

Figure 13. Chiral HPLC traces (92:8 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 58% ee) phenyl 2-methyl-4,4-diphenyl-pyrrolidine-1-carboxamide (19) ... 74

Figure 14. Chiral HPLC traces (80:20 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 58% ee) N-(4-iodophenyl)-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (21) ... 75

Figure 15. Chiral HPLC traces (80:20 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 76% ee) 2-methyl-N-(4-nitrophenyl)-4,4-diphenylpyrrolidine-1-carboxamide (23) ... 76

Figure 16. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 72% ee) N-benzyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (2a) ... 77

Figure 17. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 81% ee) N-butyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (25) ... 78

Figure 18. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 38% ee) 1-(2-methylindolin-1-yl)ethanone (29) .. 79

Figure 19. ¹H NMR spectrum of 5 in CDCl₃ ... 80

Figure 20. ¹³C{¹H} NMR spectrum of 5 in CDCl₃ ... 81

Figure 21. ¹H NMR spectrum of 1b in CDCl₃ ... 82

Figure 22. ¹³C{¹H} NMR spectrum of 1b in CDCl₃ ... 83

Figure 23. ¹H NMR spectrum of 7 in CDCl₃ ... 84

Figure 24. ¹³C{¹H} NMR spectrum of 7 in CDCl₃ ... 85

Figure 25. ¹H NMR spectrum of 9 in CDCl₃ ... 86

Figure 26. ¹³C{¹H} NMR spectrum of 9 in CDCl₃ ... 87
Figure 27. 1H NMR spectrum of 11 in CDCl$_3$... 88
Figure 28. 13C{1H} NMR spectrum of 11 in CDCl$_3$.. 89
Figure 29. 1H NMR spectrum of 13 in CDCl$_3$... 90
Figure 30. 13C{1H} NMR spectrum of 13 in CDCl$_3$.. 91
Figure 31. 1H NMR spectrum of 15 in CDCl$_3$... 92
Figure 32. 13C{1H} NMR spectrum of 15 in CDCl$_3$.. 93
Figure 33. 1H NMR spectrum of 28 in CDCl$_3$... 94
Figure 34. 1H NMR spectrum of 6 in CDCl$_3$... 95
Figure 35. 13C{1H} NMR spectrum of 6 in CDCl$_3$.. 96
Figure 36. 1H NMR spectrum of 2b in CDCl$_3$... 97
Figure 37. 13C{1H} NMR spectrum of 2b in CDCl$_3$.. 98
Figure 38. 1H NMR spectrum of 8 in CDCl$_3$... 99
Figure 39. 13C{1H} NMR spectrum of 8 in CDCl$_3$.. 100
Figure 40. 1H NMR spectrum of 10 in CD$_2$Cl$_2$.. 101
Figure 41. 13C{1H} NMR spectrum of 10 in CDCl$_3$.. 102
Figure 42. 1H NMR spectrum of 12 in CD$_2$Cl$_2$.. 103
Figure 43. 13C{1H} NMR spectrum of 12 in CDCl$_2$.. 104
Figure 44. 1H NMR spectrum of 14 in CDCl$_3$... 105
Figure 45. 13C{1H} NMR spectrum of 14 in CDCl$_3$.. 106
Figure 46. 1H NMR spectrum of 16 in CDCl$_3$... 107
Figure 47. 13C{1H} NMR spectrum of 16 in CDCl$_3$.. 108
Figure 48. 1H NMR spectrum of 27 in CDCl$_3$... 109
Figure 49. 13C{1H} NMR spectrum of 27 in CDCl$_3$. 110
Figure 50. 1H NMR spectrum of 19 in CD$_2$Cl$_2$.. 111
Figure 51. 13C{1H} NMR spectrum of 19 in CD$_2$Cl$_2$ 112
Figure 52. 1H NMR spectrum of 21 in CD$_2$Cl$_2$.. 113
Figure 53. 13C{1H} NMR spectrum of 21 in (CD)$_3$CO 114
Figure 54. 1H NMR spectrum of 23 in CD$_2$Cl$_2$.. 115
Figure 55. 13C{1H} NMR spectrum of 23 in (CD)$_3$CO 116
Figure 56. 1H NMR spectrum of 2a in CD$_2$Cl$_2$.. 117
Figure 57. 13C{1H} NMR spectrum of 2a in CD$_2$Cl$_2$ 118
Figure 58. 1H NMR spectrum of 25 in CD$_2$Cl$_2$.. 119
Figure 59. 13C{1H} NMR spectrum of 25 in CD$_2$Cl$_2$ 120
Figure 60. 1H NMR spectrum of 28 in CDCl$_3$.. 121

Figure 61. Chiral bisphosphine ligands utilized for the gold-catalyzed intermolecular
enantioselective hydroamination of 1-alkenes .. 132

Figure 63. Substrate combinations that failed to undergo gold-catalyzed enantioslective
intermolecular hydroamination under our optimized conditions 136

Figure 64. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace,
76 % ee) methyl-3-(octan-2-yl)imidazolidin-2-one (9) .. 143

Figure 65. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace,
71 % ee) 1-(octan-2-yl)-3-phenylimidazolidin-2-one (14) 143

Figure 66. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace,
74 % ee) 1-(4-fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one (15) 144

Figure 67. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace,
78 % ee) 1-tert-butyl-3-(octan-2-yl)imidazolidin-2-one (16) 144
Figure 68. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 73 % ee) 1-(decan-2-yl)-3-methylimidazolidin-2-one (17) .. 145

Figure 69. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 75 % ee) 1-(dodecan-2-yl)-3-methylimidazolidin-2-one (18) .. 145

Figure 70. Examples of mechanocatalysis .. 148

Figure 71. Schematic representation of MeO-BIPHEP for quadrants rule and relationship between dihedral and bite angle .. 151

Figure 72. Dihedral angle of axially chiral bisphosphine ligands .. 152

Figure 73. Schematic representation of fluxional mechanocatalysis .. 155

Figure 74. Illustration of applied steady shear flow to a sample of polymer in the 0.25 mm gap (left) and a cup and bob rheometer (right) ... 163

Figure 75. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of racemic dimethyl 2-(1,3-diphenylallyl)malonate ... 178

Figure 76. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (eq 3.1), 57 % ee 179

Figure 77. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 1), 92 % ee 180

Figure 78. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 2), 92 % ee 181

Figure 79. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 3), 89 % ee 182

Figure 80. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 4), 91 % ee 183

Figure 81. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 5), 92 % ee 184

Figure 82. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 6), 92 % ee 185
Figure 83. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 7), 92 % ee.......................... 186

Figure 84. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 8), 89 % ee.......................... 187

Figure 85. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 9), 89 % ee.......................... 188

Figure 86. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 10), 89 % ee.......................... 189
Acknowledgements

I would like to express my gratitude to all individuals who have offered me personal and scientific support during my doctoral course at Duke University.

First and foremost, I would like to thank my research advisor, Professor Ross A. Widenhoefer, for his guidance and encouragement over the past five years. I have learnt a great deal of invaluable science from him, and I am really grateful that he always waited for me with patience and encouragement, especially, when things were not going well.

I would like to extend my gratitude to dissertation committee, Professor Jiyong Hong, Professor Katherine J. Franz, and Professor Qui Wang for the support and guidance. I would also like to thank Professor Stephen L. Craig for offering me a chance to extend my knowledge and giving me great advice.

I would like to give special thank to present Widenhoefer group members, Rachel Brooner, and Robert Harris for supporting and helping me in various ways. I am grateful to former Widenhoefer group members, Hao Li, Rachel Witek, Zhibin Zhang, Timothy Brown, Kristina Butler, Paramita Mukherjee for their support. Also, I would like to thanks Zachary Kean for running a great project together and sharing valuable ideas.

Finally, I must thank my wife, Boyoung Yoon, for unconditional love, support, and encouragement, and for bringing me lovely sons, Juneseo and Yoonseo. I am also grateful to my parents and parents-in-law for their support and encouragement throughout
my doctoral career. Likewise, I would like to thank my brother, Seongwon Lee, for advice and encouragement.
Chapter 1

Room Temperature Gold(I)-Catalyzed
Enantioselective Intramolecular Hydroamination
of Unactivated Alkenes
1.0 Background

The synthesis of amines has attracted considerable interest for decades due to the importance of amines in pharmaceuticals and commercial chemicals. Among the various synthetic approaches to amines, hydroamination, the direct formation of a C-N bond by addition of an amine to an unsaturated C=C or C≡C bond, represents a particularly expedient and atom-economical route to amines from readily available and inexpensive starting materials.\(^1\) With these advantages, catalytic hydroamination has attracted considerable attention over the past ~30 years. Many examples of hydroamination have been reported employing either early transition metals or late transition metal complexes as catalysts.\(^2\) While many reports document the facile hydroamination of alkynes\(^3-19\) and allenes,\(^20-41\) the hydroamination of unactivated alkenes remains a challenge owing to the stability of the C=C double bond and its low inherent reactivity toward nucleophiles. In this respect, the enantioselective hydroamination of alkenes is particularly challenging because the reaction often requires low temperature to achieve higher enantioselectivity, resulting in low conversion and low reaction rates. For this reason, extant reports of enantioselective alkene hydroamination typically employ activated C=C double bond such as vinylarenes,\(^42-44\) strained olefins,\(^45,46\) and 1,3-dienes.\(^47,48\) Nevertheless, a number of methods for the enantioselective hydroamination of unactivated alkenes have been described employing rare-earth metals, early transition metals (groups 3-5), or late transition metals (groups 8-10).
1.1 Introduction

1.1.1 Metal catalyzed Enantioselective Intramolecular Hydroamination of Unactivated Alkenes

1.1.1.1 Enantioselective Hydroamination Catalyzed by Rare-Earth Metal Complexes

Since Marks reported the first examples of enantioselective hydroamination catalyzed by chiral ansa-lanthanocene complexes in 1992, use of rare-earth metal catalysts for enantioselective hydroamination has progressed significantly. The proposed mechanism for the hydroamination of 4-pentenylamine catalyzed by a rare-earth metallocene complex is initiated by activation of the precatalyst through formation of a metal-amido species (I) by protonolysis of the M–N or M–C bond of a metal-amido or metal-alkyl precatalyst, respectively (Scheme 1). Insertion of the pendant C=C double bond into the M–N bond of I via a chair-like transition state produces metal-alkyl complex (II), and fast protonolysis of the M–C bond of II with the N–H bond of another alkenylamine molecule releases the pyrrolidine product and regenerates the active metal-amido complex (I).
Scheme 1.1. Proposed mechanism of the intramolecular hydroamination of 4-pentenylamine catalyzed by a rare-earth metallocene complex.

1.1.1.1 Cyclopentadienyl Catalysts

Various cyclopentadienyl ansa-lanthanocene catalysts for the enantioselective intramolecular hydroamination of alkenylamines were developed by Marks and coworkers.47,52,53 The catalysts possessed a chiral substituent such as a phenylmenthyl, (−)-mentyl, or (+)-neomentyl group appended to one of the cyclopentadienyl rings of the ansa-metallocene ligand generating diastereomeric catalysts (Figure 1). Cyclization of 4-pentenylamines employing these ansa-lanthanocene precatalysts typically occurred with
poor to modes enantioselectivity.47,50 For example, treatment of 2,2-dimethyl-4-penten-1-amine (1) with a samarocene amido complex at –30 °C led to formation of 2,4,4-trimethylpyrrolidine (2) in 100 % conversion with 74 % ee (eq 1.1).

Figure 1. Chiral cyclopentadienyl lanthanocene complexes employed as precatalysts for the intramolecular enantioselective hydroamination of γ-alkenyl amines.
1.1.1.1.2 Non-Cyclopentadienyl Catalysts

Significant progress in enantioselective hydroamination has been made through employment of non-cyclopentadienyl rare-earth metal complexes including lanthanide ate-complexes, aminothiophenolate complexes, binaphtholate aryl complexes, and bisoxazoline complexes as catalysts.\(^1,2\) Lanthanide ate-complexes displayed moderate to good activity and enantioselectivity of up to 87 % ee as catalysts for the cyclization of \textit{gem}-dialkyl substituted amino alkenes.\(^5\) For example, cyclization of (1-allylcyclohexyl)methanamine catalyzed by ytterbium ate-complex formed 3-methyl-2-azaspiro[4.5]decane in 90 % conversion with 87 % ee (eq 1.2).
Aminothiophenolate complexes catalyzed the intermolecular enantioselective hydroamination of γ- and δ-alkenylamines that contained internal C=C bond or a secondary amine moiety to form the corresponding pyrrolidines or piperidines with moderate to good enantioselectivity. While good enantioselectivity could be realized employing this catalyst system, the reactions were prohibitively sluggish. For example, treatment of 4-pentenylamine with an yttrium aminothiophenolate complex at 30 °C for 552 h formed 2-methylpyrrolidine in >95% conversion and with 89% ee (eq 1.3).
Rare earth binaphtholate aryl complexes with sterically encumbered tris(aryl)silyl substituents showed high reactivity and excellent enantioselectivity for the intramolecular hydroamination of unfunctionalized amino alkenes at room temperature (eq 1.4).56 While the more sterically demanding binaphtholate complex achieved better enantioselectivity with sterically less demanding aminoalkenes, a less sterically demanding binaphtholate complex was more effective for cyclization of more sterically hindered \textit{gem}-diphenyl or \textit{gem}-cyclohexyl substituted alkenyamines. Despite the great success of binaphtholate complexes, an organophosphine oxide substituted binaphtholate complex was significantly less active and enantioselective in catalyzing the hydroamination. (eq 1.5).57
Successful application of bisoxazoline complexes in many enantioselective organic transformations58,59 has led to the application of these to enantioselective alkene hydroamination. However, even with extensive modification of the bisoxazoline ligands, intramolecular hydroamination of alkenyl amines catalyzed by rare earth bisoxazoline
complexes displayed low to moderate enantioselectivity. For example, treatment of 2,2-dimethyl-4-pentenylamine with a lanthanide bisoxazoline complex led to intramolecular hydroamination to form 2,4,4-trimethylpyrrolidine in high conversion with 67% ee (eq 1.6).\(^{60}\)

\[
\begin{align*}
\text{Eq 1.6} & \quad \text{Cat. (5 mol %)} \\
\text{C}_6\text{D}_6, 23^\circ\text{C} & \quad > 98 \text{ % conv.} \\
& \quad 67 \text{ % ee}
\end{align*}
\]

1.1.1.2 Enantioselective Hydroamination Using Group 4 Metal Catalysts

The first example of the enantioselective hydroamination of an unactivated alkene by a group 4 metal complex, was described by Scott in 2004 employing a cationic zirconium aminophenolate complex.\(^{61}\) This catalyst system was effective for the cyclization of secondary aminoalkenes with up to 82 % ee. For example, cyclization of \(N\)-2,2-trimethylhex-5-en-1-amine catalyzed by a cationic zirconium aminophenolate
complex formed 1,2,5,5-tetramethylpiperidine with 100% conversion and with 82 % ee (eq 1.7). The proposed mechanism for the intramolecular hydroamination of a secondary 4-pentenylamine catalyzed by a group 4 complex involves initial generation of an active cationic zirconium amido complex (III), followed by insertion of the pendant C=C bond into the Zr–N bond to generate the zirconium-alkyl species (IV). Protonolysis of the Zr–C bond of IV forms the pyrrolidine product with regeneration of the active catalyst (Scheme 1.2). Owing to facile deprotonation of the cationic zirconium amido complex generated from a primary aminoalkene to generate the inactive zirconium imido complex (V), these zirconium complexes were not effective for the intramolecular hydroamination of the primary 4-pentenylamines.
Scheme 1.2 Proposed mechanism for the intramolecular hydroamination of a secondary 4-pentenylamine catalyzed by a cationic zirconium aminophenolate complex.

Neutral zirconium complexes were effective for the intramolecular enantioselective hydroamination of primary aminoalkenes with modest activities but with good to excellent enantioselectivities. For example, treatment of 2,2-dimethylpent-4-en-1-amine with a catalytic amount of a chiral bis(phosphinic amido) zirconium complex led to isolation of 2,4,4-trimethylpyrrolidine in 91% yield with 80% ee (eq 1.8). Schafer and coworkers have screened a range of neutral zirconium catalysts, and found a chiral bis(amidate) zirconium complex to be the most effective catalyst in terms of reactivity and enantioselectivity. For example, treatment of 2,2-dimethylpent-4-en-1-amine with a
catalytic amount of the enantiomerically enriched zirconium bis(amidate) complex formed 2,4,4-trimethylpyrrolidine in 80 % yield with 93 % ee (eq 1.9).

\[
\text{Cat. (10 mol %)} \quad \text{toluene, 115 °C, 48 h}
\]

91 % yield
80 % ee
The mechanism of the intramolecular hydroamination of a γ-alkenyl amine catalyzed by a neutral zirconium complex is believed to proceed via formation of the imidozirconium intermediate (VI) through protonolysis of both Zr–N bonds of the zirconium bis(amido) precursor by the primary amine group. Subsequent [2+2] cycloaddition of the pendant C=C bond with the Zr=N bond of VI generates the azametallocyclobutane VII. Subsequent protonolysis of the Zr–N and Zr–C bonds of VII with a second molecular of amino alkene releases the pyrrolidine with regeneration of the active catalyst VI.64
Scheme 1.3 Proposed mechanism for the intramolecular hydroamination of 4-pentenylamine catalyzed by a neutral zirconium complex.

1.1.1.3 Enantioselective Alkene Hydroamination Catalyzed by Late Transition Metal Complexes.

Late transition metal complexes typically display lower air and moisture sensitivity and better functional group tolerance than do rare-earth metal or group 4 transition metal complexes. Despite these favorable traits, only two examples of enantioselective intramolecular hydroamination of unactivated alkenes catalyzed by late transition metals have been reported. The first example of late transition metal catalyzed
enantioselective intramolecular hydroamination of unactivated alkenes was achieved by Buchwald group using [Rh(cod)\(_2\)]BF\(_4\) and a dialkybiaryl phosphine ligand.\(^{65}\) The rhodium-catalyzed method was effective for the enantioselective intramolecular hydroamination of a range of amino alkenes with up to 91% ee. For example, treatment of \(N\)-2-methylbenzyl-2-phenyl-4-pentenamine with a 1:1 mixture of [Rh(cod)\(_2\)]BF\(_4\) and a bis(cyclohexyl) \(o\)-binapthyl ligand led to formation of a 1:1:1 of cis- and trans- 2-methyl-1-(2-methylbenzyl)-4-phenylpyrrolidine in 80% combined yield with 87% and 91% ee, respectively (eq 1.10).

The second example of the enantioselective intramolecular hydroamination of an unactivated alkene was reported by Mikami utilizing diastereomERICally pure gold(I) complexes with a chiral phosphoric acid co-catalyst (Eq 1.1).\(^{66}\) The authors believed that
both the reactivity and selectivity of the intramolecular hydroamination of \(N \)-alkenyl ureas was enhanced by the dinuclear gold complex, which provided proximal and bimetallic activation of both the alkene and urea, although no experimental evidence supported these claims. Furthermore, the authors reported the enantioselective intramolecular hydroamination of only one substrate – \(N \)-(2,2-diphenylpent-4-en-1-yl)benzamide – and with only 48% ee (eq 1.11).

![Chemical structure](image)

(eq 1.11)

1.1.2 Special Characteristics of Gold(I) in Homogeneous Catalysis

Numerous publications dealing with homogeneous transition metal catalysis utilizing gold(I) complexes have emerged over the past decade.\(^{67-73}\) Many of these reports describe carbon-carbon and carbon-heteroatom bond formation through the addition of nucleophiles to C–C multiple bonds in the presence of cationic gold(I) complexes. The impressive results of Au(I) catalysis can be attributed in part to the relativistic contraction of the valence s and p shells and relativistic expansion of the valence d and f shells of gold. The relativistic contraction of the valence 6s orbitals of
gold are responsible for the enhanced Lewis acidity and high electronegativity of Au(I) species compared to similar transition metals.74 In conjunction with phosphine ligands, cationic phosphine-Au(I) complexes behave as a ‘soft’ Lewis acids, as cationic Au(I) is a large, diffuse cation sharing positive charge with the phosphine ligand, and serve to activate ‘soft’ electrophiles such as carbon-carbon π-bonds toward nucleophilic attack.71 Also, the pronounced redox stability of Au(I) complexes under ambient conditions can be explained by the relativistic expansion of the Au(I) 5d orbitals. With the expansion of the 5d orbitals, there should be less electron-electron repulsion and the Au(I) 5d electrons are held with greater energy. This produces a less nucleophilic metal species with a low tendency to undergo oxidative addition.

1.1.3 Project Motivation

The most impressive results in the enantioselective intramolecular hydroamination of unactivated alkenes have been achieved using rare-earth and group 4 metal catalysts.2 However, the high moisture and air sensitivity and low functional group compatibility of the rare-earth and group 4 metal catalyst systems have limited the practical utility of these methods. For these reasons, late transition metal complexes have attracted considerable interest as catalysts for the enantioselective hydroamination of alkenes. However, only two examples of enantioselective intramolecular hydroamination of unactivated alkenes have been reported; one which is catalyzed by a rhodium complex65 and one of which is catalyzed by a gold(I) complex.66 The Rh catalyst system
displayed good reactivity and enantioselectivity with a range of substrates but required elevated temperatures for higher reactivity. The gold system catalyzed hydroamination in good yield at room temperature but with moderate enantioselectivity and limited scope. For this reason, a catalyst system that is active at room temperature yielding both good reactivity and enantioselectivity would be desirable.

Widenhoefer and Bender previously reported the room temperature hydroamination of N-alkenyl ureas catalyzed by a gold(I) N-heterocyclic carbene complex.\(^7\) As an example, reaction of 3 with a catalytic 1:1 mixture of gold(I) \(N,N\)-diaryl imidazol-2-ylidine complex and AgOTf (5 mol %) in MeOH at room temperature for 22 h led to isolation of pyrrolidine 4 in 98% yield (eq 1.12). This result suggested the possibility of developing a highly active Au(I)-catalyst system for the enantioselective intramolecular hydroamination of unactivated alkenes run at room temperature. Here we describe our efforts directed toward the development of a gold(I)-catalyzed protocol for the room temperature intramolecular hydroamination of unactivated alkenes.
1.2 Results and Discussion

1.2.1 Optimization and Substrate Scope

Initial studies directed toward development of gold(I)-catalyzed intramolecular alkene hydroamination targeted gold complexes containing enantiomerically pure, dialkyl o-biphenylphosphine ligands (Table 5, L1-L3). This selection was based on previous results showing that gold(I) complexes with electron rich, sterically hindered ligands displayed high reactivity for the intramolecular hydroamination of unactivated alkenes.\(^74\)

In accord with our expectations, a catalyst system consisting of a 1:1 mixture of \((L1)\text{AuCl}\) and \(\text{AgBF}_4\) (5 mol \%) in methanol at room temperature catalyzed the intramolecular hydroamination of 1-benzyl-3-(2,2-diphenylpent-4-enyl)urea (1a) to form pyrrolidine 2a, but with only 15\% ee (Table 1, entry 1). Although Au(I) monophosphine biaryl complexes produced high conversion of 1a to 2a, increasing or decreasing the size of the \(O\)-bound substituent on the ligand failed to produce a catalyst that displayed high enantioselectivity (Table 1, entries 2 and 3).

We then targeted bis(gold) complexes containing an axially chiral bis(phosphine) core in combination with P-bound 3,5-di-\textit{tert}-butyl-4-methoxyphenyl (DTBM) groups; similar ligands have been employed in many highly enantioselective transition metal catalyzed transformations.\(^{20,68,76-79}\) In addition, axially chiral bis(phosphine) ligands with a tunable dihedral angle were of interest; the dihedral angle of ligands can be modified by changing the length of the carbon linker, which can potentially affect their reactivity.\(^80\)
To this end, we synthesized axially chiral bis(phosphine) ligands with P-bound DTBM groups and with a one- (L4), three- (L5), or five-carbon (L6) linker (Table 1). The bis(gold) complexes of these ligands proved only modestly effective as catalysts for the conversion of 1 to 2 and, of these ligands, L6 provided the better enantioselectivity for the conversion of 1b to 2b, but all gave poor conversion (Table 1, entries 4-6).
Table 1. Effect of ligand on the enantioselectivity of the gold(I)-catalyzed intramolecular hydroamination of γ-alkenyl carboxamide and sulfonamides.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkenyl Amine</th>
<th>P-P* or P</th>
<th>Conv.[%]a</th>
<th>ee[%]a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>L1</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>L2</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1a</td>
<td>L3</td>
<td>96</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>1b</td>
<td>L4</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>1b</td>
<td>L5</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>L6</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>1b</td>
<td>L7</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>1b</td>
<td>L8</td>
<td>97</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>1b</td>
<td>L9</td>
<td>34</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>1b</td>
<td>L10</td>
<td>71</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>1b</td>
<td>L11</td>
<td>n.r.</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>1a</td>
<td>L8</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>1c</td>
<td>L8</td>
<td>5</td>
<td>36</td>
</tr>
</tbody>
</table>

*Conversion and enantiopurity determined by HPLC analysis on a chiral stationary phase. n.r. = no reaction.
Another attempt to achieve both good activity and enantioselectivity for the conversion of 1b to 2b was made by modifying the 6,6’-positions of DTBM-MeOBIPHEP ligand (Table 5, L7-L11). Among the ligands tested, the parent ligand DTBM-MeOBIPHEP ligand L8 gave the best combination of reactivity and enantioselectivity. For example, treatment of substrate 1b with a catalytic mixture of [(S)-L8](AuCl)2 (2.5 mol %) and AgBF4 (5 mol %) in methanol at room temperature formed pyrrolidine 2b with 97% conversion and with 78% ee (Table 5, entry 8). Changing the O-bound group to hydrogen (L7), ethyl (L9), isopropyl (L10), or benzyl (L11) group failed to improve the conversion and/or enantioselectivity (Table 1, entries 7-11). Much to our surprise, even small variation of the O-bound substituent at the 6,6’-position, such as changing methyl (L8) to ethyl (L9), resulted in significant deterioration of the activity and enantioselectivity of the conversion of 1b to 2b (Table 1, entries 8 and 9). A 1:2 mixture of bis(gold) complex [(S)-L8](AuCl)2 and AgBF4 also catalyzed the intramolecular hydroamination of alkenyl urea 1a with 100 % conversion and 58 % ee, but hydroamination of sulfonamide 1c catalyzed by [(S)-L8](AuCl)2 and AgBF4 gave only 5% conversion and 36 % ee (Table 1, entry 13).

Further optimization to examine the effect of counterion and solvent on the yield and enantioselectivity of gold-catalyzed enantioselective intramolecular hydroamination employing the gold complex [(S)-L8](AuCl)2 revealed that the enantioselectivity depended strongly on solvent and little on counterion (Table 2). For example, running the hydroamination in non polar solvent such as toluene resulted in a significant decrease in enantioselectivity to 2% for the conversion of 1a to 2a (Table 2, entry 2). Conversely,
altering the nature of the anion of the silver salt had no significant effect on enantioselectivity for the conversion of 1a to 2a (Table 2, entries 6-10).

Table 2. Effect of the solvent and silver salt on the gold-catalyzed enantioselective intramolecular hydroamination of 1a and 1b.

<table>
<thead>
<tr>
<th>entry</th>
<th>substrates</th>
<th>X</th>
<th>solvent</th>
<th>conv.(%)</th>
<th>ee(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>BF₄</td>
<td>dioxane</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>BF₄</td>
<td>toluene</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1a</td>
<td>BF₄</td>
<td>Et₂O</td>
<td>100</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>1a</td>
<td>BF₄</td>
<td>CH₂Cl₂</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1a</td>
<td>BF₄</td>
<td>i-PrOH</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>1a</td>
<td>BF₄</td>
<td>MeOH</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>1a</td>
<td>OTf</td>
<td>MeOH</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>1a</td>
<td>SbF₆</td>
<td>MeOH</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>1a</td>
<td>ClO₄</td>
<td>MeOH</td>
<td>100</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>1a</td>
<td>OTs</td>
<td>MeOH</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>1b</td>
<td>BF₄</td>
<td>CH₂Cl₂</td>
<td>85</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>1b</td>
<td>BF₄</td>
<td>dioxane</td>
<td>51</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>1b</td>
<td>BF₄</td>
<td>toluene</td>
<td>91</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>1b</td>
<td>BF₄</td>
<td>i-PrOH</td>
<td>71</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>1b</td>
<td>BF₄</td>
<td>CF₃CH₂OH</td>
<td>89</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>1b</td>
<td>BF₄</td>
<td>MeOH/H₂O(4:1)</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>1b</td>
<td>BF₄</td>
<td>MeOH</td>
<td>97</td>
<td>78</td>
</tr>
</tbody>
</table>

a Conversion and enantiopurity determined by HPLC analysis on a chiral stationary phase.
From the experiments outlined in the previous paragraphs, we identified the conditions consisting of a 1:2 mixture of \([(S)-\textbf{L8}]\text{AuCl}\) (2.5 mol %) and \(\text{AgBF}_4\) (5 mol %) in MeOH at room temperature for the intramolecular enantioselective hydroamination of \(N\-\gamma\)-alkenyl carbamates and ureas. With these optimized conditions in hand, a variety of \(N\-\gamma\)-alkenyl carbamates and ureas were cyclized to corresponding pyrrolidines in modest to good yield and enantioselectivity (Table 3). Unfortunately, \textit{gem}-diphenyl groups at the homoallylic position of the \(N\-\gamma\)-alkenyl carboxamide derivative were required for to realize both good yield and good enantioselectivity in gold-catalyzed intramolecular hydroamination. When the homoallylic position was substituted with a cyclohexyl group (15) or was unsubstituted (17), the reaction rate and enantioselectivity decreased or no cyclization occurred, respectively (Table 3, entries 9 and 10).
Table 3. Enantioselective intramolecular hydroamination of alkenyl amines catalyzed by a mixture of [(S)-L8](AuCl)_2 (2.5 mol %) and AgBF₄ (5 mol %) in methanol.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>T [°C]</th>
<th>t [h]</th>
<th>Yield[a] [%]</th>
<th>ee° [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R = Cbz</td>
<td>5</td>
<td>23</td>
<td>48</td>
<td>90</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>R = Fmoc</td>
<td>1b</td>
<td>23</td>
<td>48</td>
<td>92</td>
<td>78</td>
</tr>
<tr>
<td>3c</td>
<td>R = Fmoc</td>
<td>2c</td>
<td>0</td>
<td>70</td>
<td>63</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>R = CO₂Me</td>
<td>7</td>
<td>23</td>
<td>48</td>
<td>93</td>
<td>76</td>
</tr>
<tr>
<td>5c</td>
<td>R = CO₂Me</td>
<td>8b</td>
<td>0</td>
<td>70</td>
<td>65</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>R = CO₂Pr</td>
<td>9</td>
<td>23</td>
<td>48</td>
<td>93</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>R = CO₂EtOBn</td>
<td>11</td>
<td>23</td>
<td>48</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>R = Troc</td>
<td>13</td>
<td>23</td>
<td>48</td>
<td>63</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>R = Fmoc</td>
<td>15</td>
<td>23</td>
<td>48</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>R = Fmoc</td>
<td>17</td>
<td>23</td>
<td>48</td>
<td>n.r.</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>R = Ph</td>
<td>18</td>
<td>23</td>
<td>40</td>
<td>92</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>R = 4-ClC₆H₄</td>
<td>20</td>
<td>23</td>
<td>48</td>
<td>70</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>R = 4-NO₂C₆H₄</td>
<td>22</td>
<td>23</td>
<td>48</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>14</td>
<td>R = Bn</td>
<td>1a</td>
<td>-20</td>
<td>48</td>
<td>81</td>
<td>71</td>
</tr>
<tr>
<td>15</td>
<td>R = nBu</td>
<td>24</td>
<td>-20</td>
<td>48</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>R = Me</td>
<td>26</td>
<td>-20</td>
<td>48</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>17d</td>
<td>R = Ac</td>
<td>28</td>
<td>80</td>
<td>48</td>
<td>96°</td>
<td>38</td>
</tr>
</tbody>
</table>

[a] Isolated yield. [b] Enantiopurity determined by HPLC analysis on a chiral stationary phase. [c] Reaction performed in 0.26 M (entries 1,2,4, 6-10 in 0.13 M, entries 10-16 in 0.4 M, entry 17 in 0.34 M). [d] Solvent: dioxane, silver salt: AgSbF₆. [e] Conversion determined by HPLC analysis. n.r. = no reaction.
The reactivity of the [(S)-L.8](AuCl)₂/AgBF₄ catalyst system for the intramolecular hydroamination of unactivated alkenes encouraged us to investigate this transformation at a lower temperature in an attempt to enhance the enantioselectivity. Indeed, the enantioselectivities for the conversion of 1a to 2a and for the conversion of 7 to 8 at 0 °C improved from 78% ee to 84% ee (Table 3, entries 2 and 3) and from 76% to 82% ee, respectively, albeit with somewhat reduced yields (Table 3, entries 4 and 5). The gold-catalyzed enantioselective intramolecular hydroamination of N-γ-alkenyl ureas possessing a functionalized N’-aryl or N’-alkyl group was also efficient (Table 3, entries 11-16). Interestingly, N-γ-alkenyl ureas possessing a less sterically demanding N’-substituent such as a benzyl (1a) or n-butyl (24) or methyl group (26) underwent gold-catalyzed intramolecular enantioselective hydroamination at –20 °C with enantioselectivities up to 85% ee in the case of N’-methyl of 26 (Table 3, entries 14-16). In addition to these examples, gold-catalyzed hydroamination of N-(2-allylphenyl)acetamide (28) formed 1-(2-methylindolin-1-yl)ethanone (29) in 96% yield, but required 80 °C and displayed poor enantioselectivity (Table 3, entry 17).

Gold-catalyzed intramolecular enantioselective hydroamination to form piperidine rings such as 30 occurred with low conversion and moderate enantioselectivity (Figure 2). Similarly, the N-γ-alkenyl acetamide 31, carbamates 32-34, and carboxamide 35 and the N-allyl ureas 36 and 37 failed to undergo gold-catalyzed enantioselective hydroamination.
1.2.2 Mechanism

The reaction pathway for the gold(I)-catalyzed hydroamination of alkenes is generally assumed to proceed via π-activation of the C=C bond toward nucleophilic attack,81-84 and the Widenhoefer group has supported this idea through isolation and study of gold(I) π-alkene complexes.85,86 In this respect, gold(I)-catalyzed intramolecular hydroamination of alkenes presumably occurs through the outer-sphere addition of the nitrogen nucleophile to the gold-coordinated alkene complex (VII) to form a gold alkyl
complex (VIII). Protodeauration of VIII would then release the pyrrolidine and regenerate the cationic gold catalyst (Scheme 3).

![Scheme 3](image)

Along with the mechanism depicted in Scheme 3, the bis(gold) complex employed in our catalyst system was taken into consideration to account for the unusual reactivity and selectivity of this catalyst system. Recently, some groups have posited that bis(gold) complexes show higher reactivity and enantioselectivity relative to mono(gold) complexes because they can coordinate in a bidentate fashion to both an alkene and a
heteroatom.66,87 This concept can be applied to the [(S)-L8](AuCl)\textsubscript{2} catalyst system to account for observations made in the development of our Au(I) catalyst system. Based on this model, a proposed mechanism is depicted in Scheme 4. The bis(gold) complex may coordinate both the alkene and the urea or carbamate group (IX). Outer-sphere addition of the nitrogen nucleophile to the gold-coordinated π-bond followed by loss of a proton generates the gold(I)-alkyl complex (X). Protodeauration of X forms the pyrrolidine product with regeneration of the gold(I) catalyst.

\begin{equation}
\text{Scheme 4}
\end{equation}
Bimetallic coordination may create a more enantiodiscriminating environment owing to conformational rigidity. Also, the proximity of the olefin and nucleophile provided by the bimetallic coordination could increase the reaction rate for cyclization. This would explain why bis(gold) complexes display better enantioselectivity than mono(gold) complexes (Table 5). In addition, the failure of the catalyst system to cyclize sterically bulky N-γ-alkenyl carbamates is consistent with this model as sterically bulky N'-alkyl group would hinder amine coordination, resulting in loss of proximal effect. Likewise, the greater reactivity observed for simple N'-alkyl or benzyl ureas over N'-aryl ureas is in the agreement with the proposed model where the steric bulk of the N'-substituent deteriorates the reactivity of hydroamination by hampering the bimetallic coordination.

1.2.3. Summary

We have developed a gold(I)-catalyzed system for the enantioselective intramolecular hydroamination of unactivated alkenes. This catalyst system was effective for the cyclization of alkenyl carbamates and ureas at or below room temperature with good yield and enantioselectivity up to 85% ee. Also, we proposed a bimetallic activation model that invokes proximal effects and conformational rigidity to account for the high reactivity and enantioselectivity of the Au(I) catalyst system. This gold(I)-catalyzed protocol will offer opportunities to develop more general and enantioselective catalyst systems for enantioselective hydroamination of alkenes.
1.3 Experimental Section

1.3.1 General Methods

Reactions were performed under a nitrogen atmosphere employing standard Schlenk and/or drybox techniques unless specified otherwise. NMR spectra were obtained on Varian spectrometers operating at 500 MHz for 1H NMR and 126 MHz for 13C NMR in CDCl$_3$ at 25 °C unless noted otherwise. IR spectra were obtained on a Nicolet Avatar 360-FT IR spectrometer. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatography equipped with a 25 m polydimethylsiloxane capillary column and FID detector. Chiral HPLC was performed on a Hewlett-Packard chromatograph equipped with a 0.46 cm × 25 cm Chiralpak AD-H column. Column chromatography was performed employing 230-400 mesh silica gel (Silicycle). Thin layer chromatography (TLC) was performed on silica gel 60 F$_{254}$ (EMD Chemicals Inc.). Elemental analyses were performed by Complete Analysis Laboratories (Parsippany, NJ). Room temperature is 23 °C. All solvents were purchased from Aldrich or Acros in anhydrous form and used as received. All reagents were purchased from major suppliers and used as received. 2,2'-diphenyl-4-pentenylamine (38) were synthesized employing a published procedure. Racemic hydroamination products were synthesized employing a published procedure. (S)-dicyclohexyl(2'-methoxy-1,1'-binaphthyl-2-yloxy)phosphine (L1), (S)-(2-(benzhydryloxy)-1,4'-binaphthyl-3'-yl)dicyclohexylphosphine (L2), (S)-3'-
(dicyclohexylphosphino)-1,4'-binaphthyl-2-ol (L3) (Table 1, L1-L3) were synthesized employing known procedure.

1.3.2 Synthesis of Alkenyl Carbamate Substrates

Benzyl 2,2-diphenyl-4-pentenylcarbamate (5). To a suspension of 38 (500 mg, 2.1 mmol) and NaHCO$_3$ (3.2 mmol, 270 mg) in 2:3 mixture of H$_2$O and EtOH (15 mL) was added benzyl chloroformate (375 mg, 2.2 mmol) dropwise, and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was extracted with Et$_2$O (3 × 25 mL) and the organic phase was washed sequentially with H$_2$O and brine. The combined organic extracts were dried (MgSO$_4$) and concentrated in vacuo. The resulting pale yellow oil was chromatographed (hexanes–EtOAc = 5:1) to give 5 as a colorless oil, 93%. TLC (hexanes–EtOAc = 3:1): R_f = 0.42. 1H NMR (Figure 19): δ 7.38-7.32 (m, 8 H), 7.29-7.24 (m, 3 H), 7.21 (d, J = 7.5 Hz, 4 H), 5.52-5.44 (m, 1 H), 5.10 (s, 2 H), 5.02 (d, J = 12.0 Hz, 2 H), 4.40 (bs, 1 H), 3.98 (d, J = 5.5 Hz, 2 H), 2.91 (d, J = 7.0 Hz, 2 H). 13C{1H} NMR (Figure 20): δ 156.3, 145.3, 136.5, 133.7, 128.6, 128.3, 128.24, 128.20, 128.0, 126.5, 118.7, 66.8, 50.3, 47.7, 41.7. Anal. calcd (found) for C$_{25}$H$_{25}$NO$_2$: C, 80.83 (80.82); H, 6.78 (6.69).

(9-Fluorenyl)methyl 2,2-diphenyl-4-pentenylcarbamate (1b), methyl 2,2-diphenylpent-4-enylcarbamate (7), propyl 2,2-diphenyl-4-pentenylcarbamate (9), 2-(benzyloxy)ethyl 2,2-diphenyl-4-pentenylcarbamate (11), and 2,2,2-trichloroethyl 2,2-
diphenyl-4-pentenylcarbamate (13) were synthesized employing a procedure similar to that used to synthesize 5.

(9-Fluorenyl)methyl 2,2-diphenyl-4-pentenylcarbamate (1b). White wax, 81%. TLC (hexanes–EtOAc = 3:1): $R_f = 0.45$. 1H NMR (Figure 21): δ 7.78 (d, $J = 7.0$ Hz, 2 H), 7.52 (d, $J = 7.5$ Hz, 2 H), 7.41 (t, $J = 7.5$ Hz, 2 H), 7.33-7.29 (m, 6 H), 7.27-7.24 (m, 2 H), 7.20 (d, $J = 7.5$ Hz, 4 H), 5.51-5.42 (m, 1 H), 5.01 (d, $J = 6.5$ Hz, 1 H), 4.98 (s, 1 H), 4.36 (d, $J = 7.0$ Hz, 3 H), 4.19 (t, $J = 7.0$ Hz, 1 H), 3.95 (d, $J = 5.5$ Hz, 2 H), 2.86 (d, $J = 7.0$ Hz, 2 H). 13C{1H} NMR (Figure 22): δ 156.2, 145.2, 143.9, 141.3, 133.7, 130.0, 128.3, 128.0, 127.6, 127.0, 126.5, 125.0, 119.9, 118.6, 66.6, 50.4, 47.6, 47.2, 41.6. Anal. calcd (found) for C$_{32}$H$_{29}$NO$_2$: C, 83.63 (83.66); H, 6.36 (6.31).

Methyl 2,2-diphenylpenta-4-enylcarbamate (7). Colorless solid, 88%. TLC (hexanes–EtOAc = 3:1): $R_f = 0.41$. 1H NMR (Figure 23): δ 7.28-7.24 (m, 4 H), 7.21-7.18 (m, 2 H), 7.14 (d, $J = 8.0$ Hz, 4 H), 5.44-5.36 (m, 1 H), 4.98 (s, 1H), 4.95-4.94 (m, 1 H), 4.23 (br s, 1 H), 3.88 (d, $J = 6.0$ Hz, 2 H), 3.56 (s, 3 H), 2.84 (d, $J = 6.5$ Hz, 2 H). 13C{1H} NMR (Figure 24): δ 156.9, 145.2, 133.7, 128.3, 128.0, 126.5, 118.6, 52.1, 50.2, 47.6, 41.6. Anal. calcd (found) for C$_{19}$H$_{21}$NO$_2$: C, 77.26 (77.30); H, 7.17 (7.15).

Propyl 2,2-diphenyl-4-pentenylcarbamate (9). Colorless solid, 93%. TLC (hexanes–EtOAc = 3:1): $R_f = 0.48$. 1H NMR (Figure 25): δ 7.29-7.26 (m, 4 H), 7.21-7.18 (m, 2 H), 7.15 (d, $J = 7$ Hz, 4 H), 5.51-5.42 (m, 1 H), 5.0-4.95 (m, 2 H), 4.28 (br s, 1 H), 3.93-3.89 (m, 4 H), 2.89 (d, $J = 6.5$ Hz, 2 H), 1.54 (q, $J = 6.5$ Hz, 2 H), 0.87 (t, $J =$
7.5 Hz, 3 H). 13C{1H} NMR (Figure 26): δ 156.5, 145.5, 134.1, 128.2, 128.0, 126.4, 118.1, 66.3, 50.2, 47.4, 41.4, 22.3, 10.0. Anal. calcd (found) for C$_{21}$H$_{32}$NO$_2$: C, 77.98 (77.87); H, 7.79 (7.64).

2-(Benzyloxy)ethyl 2,2-diphenyl-4-pentenylcarbamate (11). Colorless oil, 85%. TLC (hexanes–EtOAc = 3 :1): R_f = 0.19. 1H NMR (Figure 27): δ 7.32-7.24 (m, 9 H), 7.22-7.18 (m, 2 H), 7.15 (d, J = 8.0 Hz, 4 H), 5.48-5.39 (m, 1 H), 4.98-4.92 (m, 2 H), 4.46 (m, 2 H), 4.36 (br s, 1 H), 4.12 (t, J = 5.0 Hz, 2 H), 3.89 (d, J = 6.0 Hz, 2 H), 3.56 (t, J = 4.5 Hz, 2 H), 2.86 (d, J = 6.5 Hz, 2 H). 13C{1H} NMR (Figure 28): δ 156.2, 145.5, 138.3, 134.1, 128.34, 128.26, 128.0, 127.7, 127.6, 126.4, 118.2, 73.0, 68.6, 64.0, 50.1, 47.5, 41.4, 45.5, 134.1, 128.2, 128.0, 126.4, 118.1, 66.3, 50.2, 47.4, 41.4, 22.3, 10.0. Anal. calcd (found) for C$_{27}$H$_{29}$NO$_3$: C, 78.04 (78.13); H, 7.03 (7.11).

2,2,2-Trichloroethyl 2,2-diphenyl-4-pentenylcarbamate (13). Colorless solid, 92%. TLC (hexanes–EtOAc = 3 :1): R_f = 0.65. 1H NMR (Figure 29): δ 7.36–7.33 (m, 4 H), 7.29-7.25 (m, 2 H), 7.21 (d, J = 7.5 Hz, 4 H), 5.49-5.41 (m, 1 H), 5.05-5.01 (m, 2 H), 4.72 (s, 2 H), 4.57 (br m, 1 H), 4.0 (d, J = 6.0 Hz, 2 H), 2.91 (d, J = 7.0 Hz, 2 H). 13C{1H} NMR (Figure 30): δ 154.5, 145.0, 133.5, 128.3, 127.9, 126.6, 118.8, 74.3, 50.3, 47.8, 41.6. Anal. calcd (found) for C$_{20}$H$_{20}$Cl$_3$NO$_2$: C, 58.20 (58.07); H, 4.88 (4.85).

9H-Fluoren-9-yl)methyl (1-allylcyclohexyl)methylcarbamate (15). White solid, 63%. TLC (hexanes–EtOAc = 3 :1): R_f = 0.35. 1H NMR (Figure 31): δ 7.76 (d, J = 7.5 Hz, 2 H), δ 7.59 (d, J = 7.5 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.30 (t, J = 7.5 Hz, 2 H), 5.88-5.79 (m, 1 H), 5.07-5.06 (br m, 1 H), 5.04 (s, 1 H), 4.82 (br s, 1 H), 4.37 (d, J = 6.5 Hz, 2 H), 4.24 (t, J = 5.0 Hz, 2 H), 3.93 (s, 3 H), 3.86 (d, J = 6.5 Hz, 2 H), 3.82 (d, J = 6.5 Hz, 2 H), 3.65 (t, J = 4.5 Hz, 2 H), 3.46 (d, J = 6.5 Hz, 2 H), 3.12 (d, J = 6.5 Hz, 2 H), 2.91 (d, J = 6.5 Hz, 2 H), 2.61 (d, J = 6.5 Hz, 2 H), 2.40 (d, J = 6.5 Hz, 2 H), 2.10 (d, J = 6.5 Hz, 2 H), 1.95 (d, J = 6.5 Hz, 2 H), 1.80 (d, J = 6.5 Hz, 2 H), 1.65 (d, J = 6.5 Hz, 2 H), 1.35 (s, 9 H).
Hz, 2 H), 4.20 (t, $J = 6.5$ Hz, 1 H), 3.07 (d, $J = 6.0$ Hz, 2 H), 2.03 (d, $J = 7.0$ Hz, 2 H), 1.46-1.21 (m, 10 H). 13C{1H} NMR (Figure 32): δ 156.5, 144.2, 141.3, 134.9, 127.6, 127.0, 125.1, 119.9, 117.1, 66.3, 47.4, 40.4, 37.0, 33.2, 26.2, 21.4. Anal. calcd (found) for C$_{25}$H$_{29}$NO$_2$: C, 79.96 (79.88); H, 7.78 (7.71).

1.3.3 Synthesis of Alkenyl Urea Substrates

1-(2,2-Diphenylpent-4-enyl)-3-methylurea (26). Methylisocyanate (110.6 mg, 1.9 mmol) was added to a solution of 38 (0.460 g, 1.9 mmol) in THF (20 mL) at room temperature and the reaction mixture was stirred overnight. The resulting solution was diluted with ether (50 mL), washed sequentially with 1 M HCl (25 mL), saturated NaHCO$_3$ (25 mL), and brine (25 mL). The combined organic extracts were dried (MgSO$_4$) and concentrated in vacuo. The resulting white solid was chromatographed (hexanes–EtOAc = 3:1 \rightarrow 1:1) to give 26 (0.79 g, 80%) as a white solid. TLC (hexanes–EtOAc = 2:1): $R_f = 0.15$. 1H NMR: δ 7.38-7.24 (m, 10 H), 5.57-5.47 (m, 1 H), 5.08-5.02 (m, 2 H), 4.36 (br d, $J = 4.0$ Hz, 1 H), 4.06 (br t, $J = 5.6$ Hz, 1 H), 3.95 (d, $J = 5.6$ Hz, 2 H), 2.95 (d, $J = 6.8$ Hz, 2 H), 2.67 (d, $J = 4.8$ Hz, 3 H). 13C{1H} NMR: δ 158.9, 145.8, 134.2, 128.4, 128.3, 126.6, 118.6, 50.5, 47.3, 41.9, 27.3. IR (neat, cm$^{-1}$): 3339, 1619, 1570, 1252, 1069, 699. HRMS calcd (found) for C$_{19}$H$_{22}$N$_2$O (M$^+$): 294.1732 (294.1736). Anal. calcd (found) for C$_{19}$H$_{22}$N$_2$O: C, 77.52 (77.57); H, 7.53 (7.47).
1-(2,2-Diphenylpent-4- enyl)-3-phenylurea (18), 1-(2,2- diphenylpent-4- enyl)-3-(4-iodophenyl)urea (20), 1-(2,2- diphenylpent-4- enyl)-3-(4-nitrophenyl)urea (22), 1-benzyl- 3-(2,2-diphenylpent-4-enyl)urea (1a), and 1-butyl-3-(2,2- diphenylpent-4-enyl)urea (24) were synthesized employing a procedure similar to that used to synthesize 26.

1-(2,2-Diphenylpent-4-enyl)-3-phenylurea (18). White solid, 80%. TLC (hexane-EtOAc = 3:1): $R_f = 0.40$. 1H NMR: δ 8.00 (s, 1 H), 7.39-7.15 (m, 14 H), 6.89-6.85 (m, 1 H), 5.58-5.48 (m, 1 H), 5.06 (s, 1 H), 4.99-4.87 (m, 2H), 4.03 (d, $J = 6.4$ Hz, 2 H), 2.93 (d, $J = 8.0$ Hz, 2 H). 13C{1H} NMR: δ 155.0, 146.1, 140.6, 134.4, 128.5, 128.0, 127.9, 126.1, 121.3, 117.9, 117.5, 50.2, 46.0, 41.4. IR (neat, cm$^{-1}$): 3324, 1629, 1568, 1252, 1081, 1037, 698. HRMS calcd (found) for C$_{24}$H$_{24}$N$_2$O (M^+): 356.1889 (356.1887). Anal. calcd (found) for C$_{24}$H$_{24}$N$_2$O: C, 80.87 (80.79); H, 6.79 (6.65).

1-(2,2-Diphenylpent-4-enyl)-3-(4-iodophenyl)urea (20). White solid, 85%. TLC (Hexane-EtOAc = 3:1): $R_f = 0.45$. 1H NMR: δ 8.06 (br s, 1 H), 7.51-7.48 (m, 2 H), 7.31-7.18 (m, 13 H), 5.57-5.47 (m, 1 H), 5.08 (br t, $J = 5.6$ Hz, 1 H), 4.98-4.87 (m, 2 H), 4.02 (d, $J = 5.6$ Hz, 2 H), 2.93 (d, $J = 7.2$ Hz, 2 H). 13C{1H} NMR: δ 154.7, 146.0, 140.7, 137.4, 134.4, 128.0, 128.0, 126.1, 120.0, 117.5, 82.8, 50.2, 46.0, 41.4. IR (neat, cm$^{-1}$): 3324, 1644, 1602, 1486, 1309, 1231, 698. HRMS calcd (found) for C$_{24}$H$_{23}$IN$_2$O (M^+): 482.0855 (482.0860). Anal. calcd (found) for C$_{22}$H$_{28}$N$_2$O: C, 59.76 (59.88); H, 4.81 (4.76).

1-(2,2-Diphenylpent-4-enyl)-3-(4-nitrophenyl)urea (22). Light yellow solid, 78%. TLC (Hexane-EtOAc = 3:1): $R_f = 0.30$. 1H NMR: δ 8.63 (s, 1 H), 8.11-8.08 (m, 2 H),
7.62-7.60 (m, 2H), 7.32-7.19 (m, 10 H), 5.56-5.46 (m, 1 H), 5.32 (s, 1 H), 5.00-4.89 (m, 2 H), 4.06 (d, $J = 6.0$ Hz, 2 H), 2.94 (d, $J = 7.2$ Hz, 2 H). 13C-1H NMR: δ 154.3, 146.9, 145.8, 141.3, 134.3, 128.1, 128.0, 126.2, 124.8, 117.7, 117.0, 50.1, 46.0, 41.4. IR (neat, cm$^{-1}$): 3672, 2985, 2902, 1406, 1229, 1136, 893, 697. HRMS calcd (found) for C$_{24}$H$_{23}$N$_3$O$_3$ (M$^+$): 401.1739 (401.1746). Anal. calcd (found) for C$_{24}$H$_{23}$N$_3$O$_3$: C, 71.80 (71.94); H, 5.77 (5.74).

1-Benzyl-3-(2,2-diphenylpent-4-enyl)urea (1a). White solid, 89%. TLC (hexane-EtOAc = 3:1): $R_f = 0.30$. 1H NMR: δ 7.33-7.21 (m, 15 H), 5.99 (br s, 1 H), 5.60-5.51 (m, 1 H), 5.01-4.89 (m, 3 H), 4.39 (d, $J = 6.5$ Hz, 1 H), 4.29 (d, $J = 6.0$ Hz, 1 H), 4.02 (d, $J = 6$ Hz, 2 H), 2.95 (d, $J = 7.5$ Hz, 2 H). 13C-1H NMR: δ 158.2, 145.7, 139.6, 139.1, 134.1, 128.8, 128.7, 128.4, 128.2, 127.5, 127.4, 127.3, 126.6, 118.6, 50.4, 47.2, 44.7, 44.5, 41.9. IR (neat, cm$^{-1}$): 3324, 1629, 1568, 1252, 1081, 1056, 698. HRMS calcd (found) for C$_{25}$H$_{26}$N$_2$O (M$^+$): 370.2045 (370.2038). Anal. calcd (found) for C$_{25}$H$_{26}$N$_2$O: C, 81.05 (79.95); H, 7.07 (6.98).

1-Butyl-3-(2,2-diphenylpent-4-enyl)urea (2a). White solid, 74%. TLC (hexanes–EtOAc = 1:3): $R_f = 0.24$. 1H NMR: δ 7.29-7.15 (m, 10 H), 5.57-5.47 (m, 2 H), 4.95-4.83 (m, 2 H), 4.65 (br s, 1 H), 3.93 (d, $J = 6.4$ Hz, 2 H), 3.05-3.00 (m, 2 H), 2.89 (d, $J = 7.6$ Hz, 2 H), 1.36-1.19 (m, 4 H), 0.84 (t, $J = 7.6$ Hz, 3 H). 13C-1H NMR: δ 157.9, 146.3, 134.7, 128.0, 127.9, 125.9, 117.3, 50.3, 46.2, 41.4, 39.3, 32.5, 19.7, 13.2. IR (neat, cm$^{-1}$): 3341, 1632, 1565, 1253, 1047, 699. HRMS calcd (found) for C$_{22}$H$_{28}$N$_2$O (M$^+$): 336.2202 (336.2211). Anal. calcd (found) for C$_{22}$H$_{28}$N$_2$O: C, 78.53 (78.56); H, 8.39 (8.48).
1.3.4 Synthesis of N-(2-allylphenyl)acetamide (28)

To 2-iodobenzenamine (2 g, 9.1 mmol) in acetic anhydride (16 mL) was added three drops of concentrated H$_2$SO$_4$. The resulting mixture was stirred at room temperature for 5 min and then quenched with water and extracted with DCM (3 × 30 mL). The combined organic extracts were washed sequentially with H$_2$O (2 × 40 mL) and brine and then dried (MgSO$_4$). The solvent was removed in vacuo and the crude product was crystallized in EtOH to produce N-(2-iodophenyl)acetamide (39) as a white powder (2.0 g, 85 %). 1H NMR: δ 8.20 (d, $J = 8.0$ Hz, 1 H), 7.80 (d, $J = 8.0$ Hz, 1 H), 7.42 (bs, 1 H), 7.34 (t, $J = 7.5$ Hz, 1 H), 6.84 (t, $J = 7.5$ Hz, 1 H), 2.24 (s, 3 H).

In a reflux condenser equipped two-necked round-bottomed flask, 39 (778 mg, 3.0 mmol), CsF (904 mg, 6.0 mmol), and Pd(PPh$_3$)$_4$ (207 mg, 0.18 mmol) in THF (20 mL) was stirred at room temperature for 30 min. A solution of allylboronic acid pinacol ester (1 g, 6.0 mmol) in THF (10 mL) was added to this suspension and the resulting mixture was refluxed at 70 °C for 24 h. After the reaction time, the reaction mixture was washed with water and brine and extracted with DCM (3 × 30 mL). The combined organic extracts was dried (MgSO$_4$) and concentrated in vacuo. The resulting mixture was chromatographed (hexanes–EtOAc = 5:1→1:1→1:2) to give N-(2-allylphenyl)acetamide (28) as a white solid (385 mg, 74 %). TLC (hexanes–EtOAc = 1:1): R_f = 0.38. 1H NMR (Figure 33): δ 7.82 (d, $J = 8.0$ Hz, 1 H), 7.32-7.24 (m, 1 H), 7.18 (d, $J = 6.0$ Hz, 1 H),
7.11 (t, $J = 7.6$ Hz, 1 H), 6.02-5.92 (m, 1 H), 5.23 (dd, $J = 1.6, 10.0$ Hz, 1 H), 5.10 (dd, $J = 1.6, 17.2$ Hz, 1 H), 6.84 (t, $J = 7.5$ Hz, 1 H), 6.77 (d, $J = 6.0$ Hz, 2 H), 2.15 (s, 3 H).

1.3.5 Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Alkenyl Carbamates

Benzyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (6) A suspension of (S)-[(L8)(AuCl)$_2$] (3.2 mg, 2.0×10^{-3} mmol) and AgBF$_4$ (0.8 mg, 4.0×10^{-3} mmol) in methanol (0.5 mL) was stirred for 15 min. To the reaction mixture was added 5 (30.0 mg, 0.081 mmol), and the reaction mixture was stirred at 23 °C for 48 h. The crude reaction mixture was chromatographed (hexanes–EtOAc = 3:1) on a silica gel column to give benzyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (6) (27.1 mg, 90%) as a colorless oil. TLC (hexanes–EtOAc = 3:1): $R_f = 0.50$. 1H NMR (Figure 34, 1:1 ratio of rotamers):

δ 7.44-7.17 (m, 15 H), [5.33 (d, $J = 12.5$ Hz), 5.11 (d, $J = 12.0$ Hz), 1:1, 1 H], [5.20 (abq, $J = 13.0$ Hz), 1:1, 1 H], [4.76 (dd, $J = 2.0, 12.0$ Hz), 4.60 (dd, $J = 1.5, 12.0$ Hz), 1:1, 1 H], 3.84-3.68 (m, 2 H), 2.88-2.83 (m, 1 H), 2.38-2.27 (m, 1 H), [1.38 (d, $J = 6.0$ Hz), 1.31 (d, $J = 6.0$ Hz), 1:1, 3 H]. 1C{1H} NMR (Figure 35, 1:1 ratio of rotamers): δ [155.4, 154.6, (1:1)], [145.63, 145.60, (1:1)], [145.0, 144.9, (1:1)], [137.0,136.9, (1:1)], [128.5, 128.51, (1:1)], 128.48, 128.43, 128.39, 127.99, [127.96, 127.75, (1:1)], 127.49, [126.74, 126.72, (1:1)], [126.46, 126.40, (1:1)], 126.33, [126.26, 126.23, (1:1)], [66.7, 66.6, (1:1)], 55.8, [52.78, 52.71, (1:1)], [52.6, 52.2, (1:1)], [46.8, 45.9, (1:1)], [21.1, 20.0, (1:1)]. IR (neat, cm$^{-1}$): 3061.5, 3029.1, 2960.6, 2928.0, 2979.7, 1700.3, 1597.8, 1498.2, 1447.3, 1410.4, 1367.4, 1324.1, 1261.9, 1261.2, 1163.1, 1133.6, 1095.5, 1021.2, 797.8, 768.4, 752.8,
698.3. HRMS calcd (found) for C_{25}H_{25}NO_{2} (M\'): 372.1958 (372.1957). Enantiopurity (72% ee) was determined by HPLC analysis (85:15 hexanes/isopropanol, 0.5 mL/min; Figure 6).

All remaining intramolecular hydroamination reactions of alkenyl carbamates were performed employing a procedure analogous to that used to synthesize 6 utilizing the catalyst mixture and conditions outlined in Table 3.

(9H-fluoren-9-yl)methyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (2b and 2c). White solid, 92% (2b), 63% (2c). TLC (hexanes–EtOAc = 3 :1): R_f = 0.43.

1H NMR (Figure 36, 1:1 ratio of rotamers): \(\delta\) 7.81 (d, \(J = 7.5\) Hz, 1 H), 7.75 (dd, \(J = 3.5, 5.0\) Hz, 1 H), [7.65 (d, \(J = 7.5\) Hz), 7.62 (d, \(J = 7.0\) Hz), 1:1, 1 H], [7.56 (d, \(J = 8.0\) Hz), 7.44-7.15 (m), 15 H], [4.71 (dd, \(J = 2, 11.5\) Hz), 4.59 (dd, \(J = 6.5, 10.5\) Hz), 1:1, 1H], 4.50-4.39 (m, 2 H), [4.32 (t, \(J = 6.0\) Hz), 4.27 (t, \(J = 6.5\) Hz), 1:1, 1 H], [3.83-3.79 (m), 3.73-3.61 (m), 2H], 2.85 (dd, \(J = 6.5, 12.5\) Hz, 1H), 2.32-2.24 (m, 1 H), [1.35 (d, \(J = 6.0\) Hz), 1.15 (d, \(J = 6.0\) Hz), 1:1, 3 H] 13C\{1H\} NMR (Figure 37, 1:1 ratio of rotamers): \(\delta\) [155.6, 154.7, (1:1)], [146.0, 145.9, (1:1)], [145.4, 145.2, (1:1)], [144.5, 144.4, (1:1)], 144.3, [141.64, 141.56, (1:1)], [128.84, 128.81, (1:1)], 128.7, [127.89, 127.86, (1:1)], [127.80, 127.75, (1:1)], 127.33, 127.27, 127.18, 127.0, [126.75, 126.72, (1:1)], 126.63, 126.61, 126.59, 126.55, 125.23, 125.14, 125.09, 120.19, [120.10, 120.08, (1:1)], [67.19, 67.16, (1:1)], 56.1, [53.0, 52.5, (1:1)], [47.65, 47.60, (1:1)], [47.05, 46.19, (1:1)], [21.08, 20.27, (1:1)]. IR (neat, cm\(^{-1}\)): 3062.8, 2924.3, 2853.2, 1698.8, 1598.6, 1449.3, 1413.1,
1351.5, 1323.3, 1200.0, 1163.0, 1135.5, 1097.6, 1021.3, 993.8, 740.5, 737.1, 700.3. HRMS calcd (found) for C$_{32}$H$_{29}$NO$_2$ (M$^+$): 460.2271 (460.2268). Anal. calcd (found) for C$_{32}$H$_{29}$NO$_2$: C, 83.63 (83.56); H, 6.36 (6.32). Enantiopurity [78% ee (2b), 84% ee (2c)] was determined by HPLC analysis (90:10 hexanes/isopropanol, 0.5 mL/min; Figure 7 and 8, respectively).

Methyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (8a and 8b). Colorless oil, 93% (8a), 65% (8b). TLC (hexanes–EtOAc = 3:1): $R_f = 0.45$. 1H NMR (Figure 38, 1:1 ratio of rotamers): 7.31-7.15 (m, 10 H), [4.70 (d, $J = 11.5$ Hz), 4.51(d, $J = 12.0$ Hz), 1:1, 1 H], 3.76-3.67 (m, 4 H), 2.87-2.81 (m, 1 H), 2.34-2.25 (m, 1 H), [1.34 (d, $J = 6.0$ Hz), 1.28 (d, $J = 6.5$ Hz), 1:1, 3 H]. 13C {1H} NMR (Figure 39, 1:1 ratio of rotamers): δ [156.0, 155.2, (1:1)], [145.8, 145.7, (1:1)], [145.3, 145.1, (1:1)], [128.52, 128.46, (1:1)], 126.7, 126.44, 126.41, 126.4, [126.3, 126.2, (1:1)], [55.93, 55.85, (1:1)], [52.7, 52.1, (1:1)], [52.6, 52.5, (1:1)], [52.3, 52.2, (1:1)], [46.8, 46.0, (1:1)], [20.9, 20.0, (1:1)]. IR (neat, cm$^{-1}$): 3058.2, 3025.6, 2955.8, 2926.9, 2877.7, 1699.1, 1598.1, 1495.2, 1447.2, 1385.7, 1270.8, 1203.6, 1164.0, 1138.8, 1100.7, 1066.4, 1033.8, 771.2, 753.5, 700.1. HRMS calcd (found) for C$_{19}$H$_{21}$NO$_2$ (M$^+$): 296.1645 (296.1639). Anal. calcd (found) for C$_{19}$H$_{21}$NO$_2$: C, 77.26 (77.34); H, 7.17 (7.20). Enantiopurity [76% ee (8a), 82% ee (8b)] was determined by HPLC analysis (90:10 hexanes/isopropanol, 0.5 mL/min; Figure 9 and 10, respectively).

Propyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (10). Colorless oil, 93%. TLC (hexanes–EtOAc = 3:1): $R_f = 0.48$. 1H NMR (Figure 40, 1:1 ratio of rotamers): δ 7.33-7.14 (m, 10 H), [4.69 (d, $J = 11.5$ Hz), 4.55 (d, $J = 11.5$ Hz), 1:1, 1H], 4.11-3.96
(m, 2 H), 3.68-3.59 (m, 2 H), 2.87-2.84 (m, 1 H), 2.31-2.21 (m, 1 H), [1.68 (q, J = 7.5 Hz), 1.60 (q, J = 7.5 Hz), 1:1, 2 H], 1.27 (d, J = 6.0 Hz, 3 H), [0.98 (t, J = 7.5 Hz), 0.89 (t, J = 7.5 Hz), 1:1, 3 H]. 13C/1H NMR (Figure 41, 1:1 ratio of rotamers): δ [155.9, 155.1, (1:1)], 146.4, [145.8, 145.7, (1:1)], [128.85, 128.80, (1:1)], 127.1, 126.83, 126.76, 126.65, 126.57, [66.9, 66.8, (1:1)], [56.02, 55.96, (1:1)], 53.2, [53.0, 52.5, (1:1)], [47.0, 46.1, (1:1)], [23.0, 22.8, (1:1)], [21.2, 20.2, (1:1)], 10.6. IR (neat, cm$^{-1}$): 3058.6, 3028.8, 2964.2, 2927.9, 2875.9, 1694.1, 1598.1, 1448.9, 1413.3, 1383.5, 1288.3, 1199.3, 1163.0, 1097.7, 1033.8, 771.8, 752.3, 697.8. HRMS calcd (found) for C$_{21}$H$_{25}$NO$_2$ (M$^+$): 324.1958 (324.1955). Anal. calcd (found) for C$_{21}$H$_{25}$NO$_2$: C, 77.98 (77.96); H, 7.79 (7.71). Enantiopurity (77% ee) was determined by HPLC analysis (90:10 hexanes/isopropanol, 0.5 mL/min; Figure 11).

2-(Benzyloxy)ethyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (12). Colorless oil, 85%. TLC (hexanes–EtOAc = 3:1): R_f = 0.19. 1H NMR (Figure 42, 1:1 ratio of rotamers): δ 7.38-7.14 (m, 15 H), [4.69 (d, J = 11.5 Hz), 4.59-4.57 (m), 1:1, 1 H], [4.59 (s), 4.48 (s), 1:1, 2 H], 4.33-4.16 (m, 2 H), 3.73-3.62 (m, 4 H), 2.90-2.83 (m, 1 H), 2.31-2.22 (m, 1 H), 1.28 (d, J = 5.5 Hz, 3 H) 13C/1H NMR (Figure 43, 1:1 ratio of rotamers): δ [155.5, 154.8, (1:1)], [146.4, 146.3, (1:1)], [145.7, 145.6, (1:1)], [138.9, 138.8, (1:1)], 128.9, 128.8, [128.7, 128.6. (1:1)], 128.0, [127.91, 127.81, (1:1)], 127.1, 126.8, 126.7, 126.6, 73.3, [69.11, 69.05, (1:1)], [64.5, 64.4, (1:1)], [56.03, 56.0, (1:1)], [53.2, 53.0, (1:1)], [53.1, 52.6, (1:1)], [46.9, 46.1, (1:1)], [21.2, 20.1, (1:1)]. IR (neat, cm$^{-1}$): 3060.2, 3028.7, 2981.1, 2928.8, 2871.5, 1698.4, 1447.2, 1412.8, 1348.4, 1202.2, 1095.5, 1027.8, 789.4, 750.8, 698.2. HRMS calcd (found) for C$_{27}$H$_{29}$NO$_3$ (M$^+$): 416.222
Anal. calcd (found) for C_{27}H_{29}NO_3: C, 78.04 (77.97); H, 7.03 (6.97).
Enantiopurity (75% ee) was determined by HPLC analysis (90:10 hexanes/isopropanol, 0.5 mL/min; Figure 12).

2,2,2-Trichloroethyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (14).
Colorless oil, 63 %. TLC (hexanes–EtOAc = 3:1): R_f = 0.63. ^1H NMR (Figure 44, 1:1 ratio of rotamers): δ 7.34-7.14 (m, 10 H), [5.0 (dd, J = 1.0, 12.0 Hz), 4.60 (dd, J = 1.5, 12.5 Hz), 1:1, 1 H], 4.82-4.69 (m, 2 H), 3.86-3.79 (m, 1 H), [3.77 (d, 12.0 Hz), 3.69 (d, 11.0 Hz), 1:1, 1 H], 2.93-2.87 (m, 1 H), 2.37-2.28 (m, 1 H), [1.40 (d, J = 6.5 Hz), 1.37 (d, 6.0 Hz), 1:1, 3 H]. ^13C{^1H} NMR (Figure 45, 1:1 ratio of rotamers): δ [153.6, 152.5, (1:1)], 145.4, [144.6, 144.5, (1:1)], 128.6, [128.57, 128.55, (1:1)], [126.72, 126.69, (1:1)], [126.62, 126.59, (1:1)], 126.47, 126.43, [74.8, 74.5, (1:1)], 56.1, 56.8, 53.1, 52.7, [46.7, 45.9, (1:1)], [21.0, 19.7, (1:1)]. IR (neat, cm⁻¹): 3059, 3027, 2980, 2926, 1716, 1496, 1447, 1410, 1351, 1264, 1197, 1134, 1065, 822, 756, 700. HRMS calcd (found) for C_{19}H_{21}NO_2 (M⁺): 412.0632 (412.0622). Anal. calcd (found) for C_{19}H_{21}NO_2: C, 77.26 (77.30); H, 7.17 (7.15). Enantiopurity (48% ee) was determined by HPLC analysis (95:5 hexanes/isopropanol, 0.5 mL/min; Figure 13).

9-Fluorenylmethyl 2-methyl-4-cyclohexylpyrrolidine-1-carboxylate (16).
Colorless oil, 58 %. TLC (hexanes–EtOAc = 3:1): R_f = 0.64. ^1H NMR (Figure 46, 1:1 ratio of rotamers): δ 7.76 (d, J = 7.5 Hz, 2 H), 7.76-7.59 (m, 2 H), 7.39-7.38 (m, 2 H), 7.33-7.30 (m, 2 H), 4.50-4.25 (m, 3 H), [3.90 (d, J = 7.0 Hz), 3.70 (d, J = 5.5 Hz), 1:1, 1 H], [3.59 (d, J = 10.5 Hz), 3.52 (d, J = 11.0 Hz), 1:1, 1 H], 3.02-2.95 (m, 1 H), 2.05-1.88 (m, 1 H), 1.54-1.22 (m, 11 H), [1.30 (d, J = 6.0 Hz), 1.05 (d, J = 5.5 Hz), 1:1, 3 H].

(416.2215).
3C{$_1^1$H} NMR (Figure 47, 1:1 ratio of rotamers): δ [155.5, 155.0, (1:1)], [144.3, 144.2, (1:1)], 141.3, 127.5, 127.0, 126.9, 125.1, 124.9, 124.8, 119.9, 66.6, [56.7, 56.4, (1:1)], [52.5, 51.9, (1:1)], [47.5, 47.4, (1:1)], [46.4, 45.7, (1:1)], 41.2, 40.9, 36.6, 34.6, 26.1, 24.7, 23.8, 23.3, 22.9, [21.5, 20.7, (1:1)]. IR (neat, cm$^{-1}$): 2923, 2852, 2781, 1701, 1448, 1408, 1375, 1319, 1261, 1220, 1191, 1137, 1086, 757, 737. Anal. calcd (found) for C$_{25}$H$_{29}$NO$_2$: C, 79.96 (79.92); H, 7.78 (7.66). Enantiopurity (55% ee) was determined by HPLC analysis (99:1 hexanes/isopropanol, 0.5 mL/min; Figure 14).

1.3.5 Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Alkenyl Ureas

N-Methyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (27). A suspension of (S)-[(L8)(AuCl)$_2$] (8.1 mg, 5.0 \times 10$^{-3}$ mmol) and AgBF$_4$ (1.9 mg, 10.0 \times 10$^{-3}$ mmol) in methanol (0.5 mL) was stirred for 15 min. To the reaction mixture was added S9 (40.0 mg, 0.2 mmol), and the reaction mixture was stirred at –20 °C for 48 h. The resulting mixture was concentrated and chromatographed (MeOH-CH$_2$Cl$_2$ = 20:1 \rightarrow 10:1) to give N-methyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (27) (17.5 mg, 88%) as white microcrystals. TLC (MeOH-CH$_2$Cl$_2$ = 1:10): $R_f = 0.65$. 1H NMR (Figure 48): δ 7.31-7.12 (m, 10 H), 4.50 (d, $J = 10.4$ Hz, 1 H), 4.21 (br s, 1 H), 3.67 (d, $J = 10.8$ Hz, 2 H), 2.85 (s, 3 H), 2.80 (ddd, $J = 2.0$, 6.4, 12.4 Hz, 1 H), 2.34 (dd, $J = 8.8$, 12.0 Hz, 1 H), 1.48-1.40 (m, 2 H), 1.35-1.25 (m, 2 H), 1.29 (d, $J = 6.0$ Hz, 3 H). 13C{$_1^1$H} NMR (Figure 49): δ 157.7, 146.0, 145.7, 128.7, 128.6, 127.0, 126.7, 126.5, 56.3, 52.9, 51.9, 47.1, 27.7, 21.1.
IR (neat, cm⁻¹): 3329, 1625, 1537, 1366, 1221, 700. HRMS calcd (found) for C₁₉H₂₃N₂O (MH⁺): 295.1810 (295.1813). Anal. calcd (found) for C₁₉H₂₃N₂O: C, 77.52 (77.52); H, 7.53 (7.44). Enantiopurity was determined by HPLC analysis (85:15 hexanes/isopropanol, 0.5 mL/min): 85% ee (Figure 15).

All remaining intramolecular hydroamination reactions of alkenyl ureas were performed employing a procedure analogous to that used to synthesize 27 utilizing the catalyst mixture and conditions outlined in Table 3.

Phenyl 2-methyl-4,4-diphenyl-pyrrolidine-1-carboxamide (19). White solid, 92%. TLC (Hexane-EtOAc): Rᵣ = 0.40. ¹H NMR (Figure 50): δ 7.41 (d, J = 8.0 Hz, 2 H), 7.32-7.14 (m, 12 H), 7.01 (t, J = 7.0 Hz, 1 H), 6.37 (br s, 1 H), 4.60 (d, J = 11.0 Hz), 3.81-3.75 (m, 2H), 2.89 (ddd, J = 2.0, 7.0, 12.5 Hz, 1 H), 2.36 (dd, J = 9.0, 12.5 Hz, 1 H), 1.33 (d, J = 6.0 Hz, 3 H). ¹³C{¹H} NMR (Figure 51): δ 153.8, 145.8, 145.3, 139.5, 128.8, 128.6, 128.5, 126.8, 126.5, 126.4, 122.7, 119.5, 56.0, 52.9, 52.1, 46.4, 20.6. IR (neat, cm⁻¹): 3324, 1642, 1543, 1484, 1227, 1069, 697. HRMS calcd (found) for C₂₄H₂₅N₂O (MH⁺): 357.1967 (357.1972). Anal. calcd (found) for C₂₄H₂₄N₂O: C, 80.87 (80.71); H, 6.79 (6.65). Enantiopurity was determined by HPLC analysis (92:8 hexanes/isopropanol, 0.5 mL/min): 58% ee (Figure 16).

N-(4-iodophenyl)-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (21). White solid, 70%. TLC (hexane-EtOAc = 3:1): Rᵣ = 0.45. ¹H NMR (Figure 52): δ 7.56-7.54 (m, 2 H), 7.31-7.14 (m, 12 H), 6.31 (br s, 1 H), 4.56 (d, J = 10.5 Hz, 1 H), 3.79-3.74 (m,
2-H), 2.91 (ddd, J = 1.5, 6.5, 12.0 Hz, 1 H), 2.61 (dd, J = 9.0, 12.0 Hz, 1 H), 1.31 (d, J = 6.5 Hz, 3 H). 13C{1H} NMR (Figure 53): δ 154.2, 146.6, 146.0, 141.1, 128.6, 128.5, 128.4, 127.0, 126.7, 126.5, 126.4, 121.8, 119.3, 56.3, 53.3, 46.0, 20.2. IR (neat, cm$^{-1}$): 3325, 1643, 1543, 1485, 1309, 1069, 697. HRMS calcd (found) for C$_{24}$H$_{24}$N$_2$O (M$^+$): 483.0933 (483.0922). Anal. calcd (found) for C$_{24}$H$_{23}$N$_2$O: C, 59.76 (59.68); H, 4.81 (4.67). Enantiopurity was determined by HPLC analysis (80:20 hexanes/isopropanol, 0.5 mL/min): 58 % ee (Figure 17).

2-Methyl-N-(4-nitrophenyl)-4,4-diphenylpyrrolidine-1-carboxamide (23). Light yellow solid, 75%, TLC (Hexane-EtOAc = 3:1): $R_f = 0.30$. 1H NMR (Figure 54): δ 8.12 (d, J = 9.5 Hz, 2 H), 7.60-7.57 (m, 2 H), 7.31-7.13 (m, 10 H), 6.64 (br s, 1 H), 4.58 (br d, J = 8.0 Hz, 1 H), 3.84-3.79 (m, 2 H), 2.94 (dd, J = 6.0, 11.5 Hz, 1 H), 2.37 (dd, J = 9.5, 12.5 Hz, 1 H), 2.03 (d, J = 6.0 Hz, 3 H). 13C{1H} NMR (Figure 55): δ 153.3, 147.5, 146.3, 145.6, 141.8, 128.7, 128.6, 126.9, 126.6, 126.5, 124.8, 118.3, 118.2, 56.3, 53.3, 52.6, 45.7. IR (neat, cm$^{-1}$): 3355, 2969, 1655, 1499, 1326, 1249, 1111, 852, 751, 699. HRMS calcd (found) for C$_{24}$H$_{23}$N$_3$O$_3$ (MH$^+$): 402.1818 (402.1818). Anal. calcd (found) for C$_{24}$H$_{23}$N$_3$O$_3$: C, 71.80 (71.85); H, 5.77 (5.82). Enantiopurity was determined by HPLC analysis (80:20 hexanes/isopropanol, 0.5 mL/min): 76% ee (Figure 18).

N-benzyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (2a). White solid, 81%. TLC (hexane-EtOAc = 3:1): $R_f = 0.30$. 1H NMR (Figure 56): δ 7.33-7.18 (m, 15 H), 4.82 (br t, J = 5.0 Hz, 1 H), 4.59 (d, J = 10.5 Hz, 1 H), 4.42 (d, J = 5.5 Hz, 2 H), 3.69-3.63 (m, 2 H), 2.87 (ddd, J = 2.0, 7.0, 12.5 Hz, 1 H), 2.32 (dd, J = 9.0, 12.0 Hz, 1 H), 1.28 (d, J = 6.0 Hz, 3 H). 13C{1H} NMR (Figure 57): δ 156.7, 146.0, 145.6, 140.5, 47
128.6, 128.53, 128.51, 127.3, 127.0, 126.9, 126.6, 126.5, 126.3, 55.9, 53.0, 51.8, 46.7, 44.3, 20.3. IR (neat, cm\(^{-1}\)): 3339, 1628, 1528, 1342, 1057, 698. HRMS calcd (found) for C\(_{25}\)H\(_{27}\)N\(_2\)O (M\(^{+}\)): 371.2123 (371.2117). Anal. calcd (found) for C\(_{25}\)H\(_{26}\)N\(_2\)O: C, 81.05 (81.10); H, 7.07 (6.97). Enantio purity was determined by HPLC analysis (85:15 hexanes/isopropanol, 0.5 mL/min): 71% ee (Figure 19).

\textbf{N-butyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (25).} White solid, 84%. TLC (hexanes–EtOAc = 1:3): \(R_f = 0.24\). \(^1\)H NMR (Figure 58): \(\delta\) 7.30-7.13 (m, 10 H), 4.52 (d, \(J = 11\) Hz, 1 H), 4.35 (br s, 1 H), 3.66-3.56 (m, 2 H), 3.28-3.15 (m, 2 H), 2.82 (ddd, \(J = 2.0, 6.5, 12\) Hz, 1 H), 2.31 (dd, \(J = 9, 12\), Hz, 1 H), 1.48 (quin, \(J = 6.5\) Hz, 2 H), 1.34 (sex, \(J = 7.5\) Hz, 2 H), 1.25 (d, \(J = 6.5\) Hz, 3 H), 0.93 (t, \(J = 7.5\) Hz, 3 H). \(^{13}\)C\{\(^1\)H\} NMR (Figure 59): \(\delta\) 156.9, 146.2, 145.8, 128.5, 126.9, 126.6, 126.5, 126.3, 55.9, 53.0, 51.7, 46.8, 40.3, 32.7, 20.8, 20.2, 13.8. IR (neat, cm\(^{-1}\)): 3330, 1622, 1535, 1448, 1390, 1049, 699. HRMS calcd (found) for C\(_{22}\)H\(_{29}\)N\(_2\)O (M\(^{+}\)): 337.2280 (337.2276). Anal. calcd (found) for C\(_{22}\)H\(_{29}\)N\(_2\)O: C, 78.53 (78.44); H, 8.39 (8.53). Enantiopurity was determined by HPLC analysis (85:15 hexanes/isopropanol, 0.5 mL/min): 81 % ee (Figure 20).

1.3.6 Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of N-(2-allylphenyl)acetamide (28)

\textbf{1-(2-methylinolin-1-yl)ethanone (29)} A suspension of (S)-[(L8)(AuCl)] (6.9 mg, 4.3 \times 10^{-3}\ mmol) and AgSbF\(_6\) (2.9 mg, 8.6 \times 10^{-3}\ mmol) in dioxane (0.5 mL) was stirred
for 15 min in a heavy-walled pressure tube in a glove box. To the reaction mixture was added 28 (30.0 mg, 0.17 mmol). The pressure tube was caped and took out from a glove box to place in an oil bath. The reaction mixture was stirred at 80 °C for 48 h. The reaction solution was filtered through a silca gel pad eluting with Et₂O/EtOAc (1:1 mixture). The combined solution was evaporated until removing solvents under a reduced pressure to give 29 as a white solid. Conversion (96%) and enantiopurity (38% ee) was determined by HPLC analysis (85:15 hexanes/isopropanol, 0.5 mL/min). ¹H NMR (Figure 60): δ 8.15 (d, J = 7.2 Hz, 1 H), 7.20 (t, J = 8.0 Hz, 2 H), 7.02 (t, J = 7.2 Hz, 1 H), 4.47-4.44 (m, 1 H), 3.41 (dd, J = 9.2, 16.0 Hz, 1 H), 2.66 (d, J = 15.6 Hz, 1 H), 2.28 (s, 3 H), 1.3 (d, J = 6 Hz, 3 H).
1.3.7 Catalyst Synthesis

(S)-Dicyclohexyl(2'-methoxy-1,1'-binaphthyl-2-yloxy)phosphine-(AuCl)$_2$ [(S)-(L1)(AuCl)$_2$] (44). To a solution of (S)-(−)-1,1'-bi(2-naphthol) (2.5 g, 8.73 mmol) and pyridine (3.3 g, 41.90 mmol) in CH$_2$Cl$_2$ (36 mL) was added Tf$_2$O (5.9 g, 20.95 mmol) dropwise at 0 °C and the reaction mixture was stirred at rt for 3 h. The reaction mixture was diluted with Et$_2$O (200 mL), and washed sequentially with 5 % HCl (60 mL),...
saturated NaHCO₃ (60 mL), and brine (60 mL). The organic phase was collected, dried over MgSO₄, and concentrated. The resulting mixture was chromatographed (hexanes–EtOAc = 10:1 → 1:6) to give (S)-1,1'-binaphthyl-2,2'-diyl bis(trifluoromethanesulfonate) (39) as a white solid (4.45 g, 93 %). TLC (hexanes–EtOAc = 4:1): $R_f = 0.54$. 1H NMR: δ 8.15 (d, $J = 9.1$ Hz, 2 H), 8.01 (d, $J = 8.2$ Hz, 2 H), 7.63 (d, $J = 9.1$ Hz, 2 H), 7.58 (m, 2 H), 7.44 (m, 2 H), 7.26 (d, $J = 8.4$ Hz, 2 H).

39 (500 mg, 0.91 mmol), dicyclohexyl phosphine oxide (585 mg, 2.73 mmol), palladium(II) acetate (20 mg, 0.091 mmol), and 1,4-bis(diphenylphosphino)butane (39 mg, 0.091 mmol) in dimethyl sulfoxide (3.0 mL) and toluene (1.5 mL) was stirred for 10 min. To the reaction mixture was added N,N-diisopropylethylamine (705 mg, 5.46 mmol) lastly, and the reaction mixture was placed to an oil bath and stirred at 110 °C for 14 h. volatile material was evaporated under reduced pressure, and the resulting mixture was diluted with EtOAc (10 ml), washed with H_2O (5 mL) and brine (5 mL), dried (MgSO₄) and concentrated. The resulting mixture was chromatographed (hexanes–EtOAc = 2:1 → 1:1) to give (S)-2-(dicyclohexylphosphoryloxy)-1,1'-binaphthyl-2'-yl trifluoromethanesulfonate (40) as a white foam (0.32 g, 57 %). TLC (hexanes–EtOAc = 1:2): $R_f = 0.28$. 1H NMR: δ 8.08-8.03 (m, 2 H), 7.96 (d, $J = 8$ Hz, 2 H), 7.60-7.54 (m, 3 H), 7.48 (t, $J = 7.2$ Hz, 1 H), 7.33 (t, $J = 8.8$ Hz, 1 H), 7.31-7.25 (m, 2 H), 7.15 (d, $J = 8.4$ Hz, 1 H), 2.14-2.06 (m, 1 H), 1.92-1.45 (m, 11 H), 1.29-1.0 (m, 10 H).

To a solution of 40 in 2:1 ratio of 1,4-dioxane and MeOH (4 mL) was added 3M of aqueous NaOH solution (1.9 mL), and the reaction mixture was stirred at room temperature for 14 h. The reaction mixture was acidified (pH = 1) with concentrated HCl,
and extracted with EtOAc. The organic phase was dried (MgSO₄) and concentrated under reduced pressure to produce 2'-hydroxy-1,1'-binaphthyl-2-yl dicyclohexylphosphinate (41) as a pale yellow solid. The crude product was used in the next step without further purification.

To 41 (259 mg, 0.52 mmol) and K₂CO₃ (290 mg, 2.10 mmol) in acetone (3 mL) was added MeI (298 mg, 2.10 mmol). The reaction mixture was stirred at 50 °C for 12 h. The reaction mixture was cooled to room temperature, and filtered through Celite, eluting with Et₂O. The organic phase and ether extracts were combined and concentrated in vacuo. The resulting oil was chromatographed (EtOAc only → EtOAc:MeOH=10:1) on a silica gel column to give 2'-methoxy-1,1'-binaphthyl-2-yl dicyclohexylphosphinate (42) as a white foam (230 mg, 89%). TLC (EtOAc:MeOH = 10:1): R₇ = 0.65. ¹H NMR: δ 8.09-7.99 (m, 2 H), 7.93 (d, J = 8.0 Hz, 1 H), 7.85 (d, J = 8.4 Hz, 1 H), 7.50 (t, J = 6.8 Hz, 1 H), 7.42 (d, J = 8.8 Hz, 1 H), 7.30-7.21 (m, 2 H), 7.16-7.11 (m, 2 H), 6.84 (d, J = 8.0 Hz, 1 H), 3.76 (s, 3 H), 1.66-1.21 (m, 16 H), 1.11-0.98 (m, 6 H).

To a mixture of 42 and Et₃N (1.57g, 15.47 mmol) in toluene (8 mL) was added Cl₃SiH (524 mg, 3.87 mmol) dropwise at 0 °C. The reaction mixture was stirred at 110 °C for 12 h. The reaction mixture was cooled to room temperature, diluted with Et₂O (8 mL), and quenched with saturated NaHCO₃ (0.8 mL). The resulting suspension was filtered through Celite eluting with Et₂O. The combined organic solution was dried over MgSO₄ and concentrated under reduced pressure. The resulting product was chromatographed (EtOAc:hex=1:10 → 1:4) on a silica gel column to give (S)-dicyclohexyl(2'-methoxy-1,1'-binaphthyl-2-yloxy)phosphine (43) as a white foam (142
mg, 64 %). TLC (hexanes–EtOAc = 4:1): \(R_f = 0.63 \). \(^1\)H NMR: \(\delta \) 7.90 (d, \(J = 9.6 \) Hz, 1 H), 7.81 (t, \(J = 8.8 \) Hz, 2 H), 7.74 (d, \(J = 8.4 \) Hz, 1 H), 7.69 (d, \(J = 8.8 \) Hz, 1 H), 7.36-7.29 (m, 2 H), 7.17 (t, \(J = 6.8 \) Hz, 1 H), 7.13-7.03 (m, 3 H), 6.83 (d, \(J = 8.8 \) Hz, 1 H), 3.64 (s, 3 H), 1.78-1.71 (m, 2 H), 1.60-1.39 (m, 11 H), 1.18-0.76 (m, 9 H).

To a solution of sodium tetrachloroaurate(III) dihydrate (116 mg, 0.291 mmol) in H\(_2\)O (2.0 mL) was added 2,2'-Thiodiethanol (107 mg, 0.873 mmol) dropwise slowly, and the reaction mixture was stirred until the solution turned from yellow to colorless at 0 °C. To this reaction mixture was added 43 (140 mg, 0.291 mmol) in CH\(_2\)Cl\(_2\) (3 ml) dropwise, and the reaction mixture was stirred at 0 °C for 1 h. The aqueous layer was extracted with CH\(_2\)Cl\(_2\) and the combined organic extracts were evaporated. The crude product was washed with MeOH and dried under a high vacuum to give [(S)-(L1)(AuCl)\(_2\)] (44) as a white power (168 mg, 81 %). \(^1\)H NMR: \(\delta \) 8.23 (d, \(J = 9.0 \) Hz, 1 H), 8.02 (d, \(J = 8.5 \) Hz, 1 H), 7.94 (t, \(J = 9.0 \) Hz, 2 H), 7.68 (dd, \(J = 6.5 \), 8.5 Hz, 1 H), 7.54 (t, \(J = 7.5 \) Hz, 1 H), 7.44 (d, \(J = 9.5 \) Hz, 1 H), 7.32 (dt, \(J = 1.0 \), 6.5 Hz, 1 H), 7.23-7.24 (m, 1 H), 7.17 (dt, \(J = 1.5 \), 7.0 Hz, 1 H), 7.08 (d, \(J = 8.0 \) Hz, 1 H), 6.72 (d, \(J = 8.5 \) Hz, 1 H), 3.78 (s, 3 H), 2.25-2.19 (m, 2 H), 2.02-2.0 (m, 1 H), 1.82-1.59 (m, 9 H), 1.50-1.08 (m, 10 H). \(^{13}\)C{\(^1\)H} NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity):
\(\delta \) 162.7, 154.7, 144.4, 144.3, 134.3, 134.27, 134.2, 133.9, 133.8, 133.2, 129.2, 128.8, 128.0, 127.9, 127.8, 127.4, 127.2, 127.1, 126.4, 125.1, 124.7, 124.6, 123.6, 119.9, 119.8, 112.7, 55.5, 55.47, 37.5, 37.3, 36.3, 36.0, 31.1, 31.06, 30.7, 30.6, 29.7, 29.6, 26.9, 26.8, 26.73, 26.70, 26.62, 26.60, 26.4, 26.3, 25.7, 25.5. \(^{31}\)P NMR: \(\delta \) 39.6. Anal. calcd (found) for C\(_{33}\)H\(_{37}\)AuClOP: C, 55.59 (55.50); H, 5.23 (5.23).
(2-(Benzhydryloxy)-1,4'-binaphthyl-3'-yl)dicyclohexylphosphine-(AuCl)$_2$ [(S)-(L2)(AuCl)$_2$] (45) and (S)-3'-(dicyclohexylphosphino)-1,4'-binaphthyl-2-ol-(AuCl)$_2$ [(S)-(L3)(AuCl)$_2$] (46) were synthesized employing a procedure similar to that used to synthesize [(S)-(L1)(AuCl)$_2$] (44).

(S)-(2-(Benzhydryloxy)-1,4'-binaphthyl-3'-yl)dicyclohexylphosphine-(AuCl)$_2$ [(S)-(L2)(AuCl)$_2$] (45). White power, 13 %. 1H NMR: δ 8.07 (d, $J = 9.0$ Hz, 1 H), 8.03 (d, $J = 9.0$ Hz, 1 H), 8.01 (d, $J = 8.5$ Hz, 1 H), 7.88 (d, $J = 8.0$ Hz, 1 H), 7.66-7.61 (m, 2 H), 7.36-7.28 (m, 2 H), 7.20-7.16 (m, 3 H), 7.08-7.06 (m, 6 H), 7.03-7.0 (m, 2 H), 6.96-6.95 (m, 2 H), 6.84 (d, $J = 8$ Hz, 1 H), 2.15-2.08 (m, 2 H), 1.89-0.75 (m, 20 H). 13C{$_1^H$} NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 162.7, 153.0, 149.8, 146.1, 144.4, 141.7, 141.6, 130.7, 129.2, 128.8, 128.4, 128.2, 128.15, 127.8, 127.75, 127.4, 127.34, 127.30, 127.2, 126.8, 126.3, 126.2, 126.1, 125.4, 124.9, 124.8, 123.8, 144.4, 121.0, 121.96, 141.7, 141.6, 115.8, 134.3, 134.25, 133.8, 133.7, 81.6, 81.5, 36.7, 36.5, 36.4, 36.3, 30.6, 30.5, 30.1, 29.8, 26.8, 26.7, 26.6, 26.4, 26.3, 26.26, 25.6, 25.4. 31P NMR: δ 39.5. Anal. calcd (found) for C$_{45}$H$_{45}$AuClOP: C, 62.47 (62.49); H, 5.24 (5.22).

(S)-3'-(Dicyclohexylphosphino)-1,4'-binaphthyl-2-ol-(AuCl)$_2$ [(S)-(L3)(AuCl)$_2$] (46). White powder, 13 %. 1H NMR: δ 8.12 (d, $J = 8.8$ Hz, 1 H), 8.09 (d, $J = 8.8$ Hz, 1 H), 7.95 (t, $J = 8.8$ Hz, 2 H), 7.73 (dd, $J = 6.8$, 8.8 Hz, 1 H), 7.59 (t, $J = 7.2$ Hz, 1 H), 7.36-7.31 (m, 2 H), 7.28 (d, $J = 9.2$ Hz, 1 H), 7.21-7.18 (m, 2 H), 6.75 (d, $J = 54
8.4 Hz, 1 H), 4.72 (br s, 1 H), 2.28-2.19 (m, 2 H), 2.08-2.03 (m, 1 H), 1.81-1.62 (m, 9 H), 1.48-1.07 (m, 10 H). 13C ^{1}H NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 162.7, 151.4, 142.3, 142.2, 134.8, 134.4, 134.0, 133.96, 131.7, 129.8, 129.2, 128.8, 128.3, 128.1, 127.7, 127.69, 127.4, 126.9, 126.8, 126.5, 124.8, 124.77, 124.0, 118.1, 117.6, 117.5, 37.4, 37.1, 37.06, 36.8, 31.4, 31.1, 30.0, 29.8, 26.9, 26.6, 25.9, 25.7. 31P NMR: δ 39.9. Anal. calcd (found) for C$_{32}$H$_{35}$AuClOP: C, 54.98 (54.79); H, 5.05 (4.95).

Scheme 6.
(S)-{15-[bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphanyl]-8,10-
dioxatricyclo[9.4.0.02,7]pentadeca-1(11),2,4,6,12,14-hexaen-3-yl]bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphane [(S)-(L4)(AuCl)2] (56). A solution of (S)-(+)-2,2'-bis[di(3,5-di-t-butyl-4-methoxyphenyl)phosphino]-6,6'-dimethoxy-1,1'-biphenyl (47) (500 mg, 0.434 mmol) in CH2Cl2 (5 mL) was cooled to −78 °C and sparged with N2 for 15 min. BBr3 (1.3 mL: 1 M in CH2Cl2, 1.30 mmol) was added dropwise slowly via a syringe to the solution. The reaction mixture was stirred at −78 °C for 1 h and then at room temperature for 20 h. Resulting mixture was cooled to 0 °C, and degassed H2O (3 mL) was added slowly. After removing the aqueous layer, the organic layer was washed sequentially with degassed H2O and brine, and dried (MgSO4). The organic extract was filtered through a pad of neutral Al2O3, and chromatographed (hexanes–EtOAc = 20:1 → 10:1) on a silica gel column to give the product (S)-6,6'-bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphino)biphenyl-2,2'-diol (48) as a light yellow foam (330 mg, 67%). TLC (hexanes–EtOAc = 6:1): Rf = 0.45. 1H NMR: δ 7.36-7.35 (m, 4 H), 7.30-7.27 (m, 2 H), 7.15-7.13 (m, 4 H), 6.85 (d, J = 7.0 Hz, 2 H), 6.74 (d, J = 8.0 Hz, 2 H), 3.91 (bs, 2 H), 3.74 (s, 6 H), 3.69 (s, 6 H), 1.39 (s, 36 H), 1.35 (s, 36 H). 31P NMR: δ −14.8.

To a solution of 48 (100 mg, 0.089 mmol) in MeOH (3 mL) cooled to 0 °C was added H2O2 (40 µL, 30 wt. % in H2O) dropwise. The reaction mixture was stirred at room temperature for 3 h. After the reaction time, the reaction mixture was poured into water (10 mL) to generate a precipitate, and the white precipitate was filtered, washed with water, and dried under a high vacuum to give 6,6'-bis(bis(3,5-di-tert-butyl-4-
methoxyphenyl)phosphoryl)biphenyl-2,2'-diol (49) as a white powder (85 mg, 83 %). TLC (hexanes–EtOAc = 1:2): \(R_f = 0.30 \). \(^{31}\)P NMR: \(\delta = 27.9 \).

To 49 (66 mg, 0.057 mmol) and \(\text{K}_2\)CO\(_3\) (39 mg, 0.28 mmol) in DMF (2 ml) was added \(\text{CH}_2\)I\(_2\) (8 mg, 0.03 mmol; adding 0.1 ml of 0.3 M \(\text{CH}_2\)I\(_2\) stock solution in DMF) dropwise. The reaction mixture was stirred at rt for 1 h, and additional \(\text{CH}_2\)I\(_2\) (8 mg, 0.03 mmol; adding 0.1 ml of 0.3 M \(\text{CH}_2\)I\(_2\) stock solution in DMF) was added to the reaction mixture. The reaction mixture was stirred at room temperature for 24h and at 60 °C for 48 h. After cooling to room temperature, the reaction mixture was diluted with \(\text{Et}_2\)O (5 mL). Water (3 mL) was added to the mixture and extracted with \(\text{Et}_2\)O (5 mL × 3). The combined organic extracts were dried (MgSO\(_4\)) and evaporated under a vacuum. Chromatography of the resulting mixture gave 50 as a white foam (28 mg, 42 %). TLC (hexanes–EtOAc = 1:2): \(R_f = 0.46 \). \(^1\)H NMR: \(\delta = 7.76 \) (d, \(J = 12 \) Hz, 4 H), 7.19-7.15 (m, 4 H), 7.01-6.95 (m, 6 H), 5.30 (s, 2 H), 3.68 (s, 6 H), 3.57 (s, 6 H), 1.31 (s, 36 H), 1.21 (s, 36 H). \(^{31}\)P NMR: \(\delta = 28.0 \).

To a mixture of 50 (28 mg, 0.024 mmol) and \(\text{Et}_3\)N (194 mg, 1.92 mmol) in toluene (1.5 mL) was added \(\text{Cl}_3\)SiH (65 mg, 0.48 mmol) at 0 °C. The reaction mixture was stirred at 110 °C for 40 h. The reaction mixture was cooled to room temperature, diluted with \(\text{Et}_2\)O (4 mL), and quenched with a small amount of saturated NaHCO\(_3\) (0.2 mL). The resulting suspension was filtered through a pad of Celite and washed with \(\text{Et}_2\)O. The combined organic solution was concentrated and chromatographed (hexanes–EtOAc = 10:1) give 53 (13 mg, 48 %) as a white solid. TLC (hexanes–EtOAc = 6:1): \(R_f = 0.59 \). \(^1\)H NMR: \(\delta = 7.57 \) (s, 4 H), 7.20 (t, \(J = 7.6 \) Hz), 7.0 (d, \(J = 7.6 \) Hz, 2 H), 6.95 (d, \(J = 7.6 \) Hz, 2
H), 6.73 (s, 4 H), 5.31 (s, 2 H), 3.70 (s, 6 H), 3.58 (s, 6 H), 1.33 (s, 36 H), 1.23 (s, 36 H).

31P NMR: δ -15.0.

To a solution of sodium tetrachloroaurate(III) dihydrate (9 mg, 0.023 mmol) in H$_2$O (0.25 mL) was added 2,2'-thiodiethanol (8 mg, 0.068 mmol) dropwise slowly, and the reaction mixture was stirred 0 °C until the solution turned from yellow to colorless. To this reaction mixture was added a solution of 53 (13 mg, 0.011 mmol) in CH$_2$Cl$_2$ (0.5 mL) dropwise, and the reaction mixture was stirred at 0 °C for 1 h. The aqueous layer was extracted with CH$_2$Cl$_2$ and the combined organic extracts were evaporated. The crude product was washed with MeOH and dried to give (S)-C(1)-(3,5-di-tert-butyl-4-methoxyphenyl)tunephos-(AuCl)$_2$ [[(S)-(L4)(AuCl)$_2$] as a white power (13 mg, 71 %).

1H NMR: δ 7.77 (br s, 4 H), 7.30-7.21 (m, 4 H), 6.95 (br d, J = 11.5 Hz, 4 H), 6.71 (d, J = 7.5 Hz, 2 H), 5.01 (s, 2 H), 3.76 (s, 6 H), 3.61 (s, 6 H), 1.41 (s, 36 H), 1.20 (s, 36 H).

13C{1H} NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 162.7, 153.0, 144.5, 144.44, 144.39, 143.6, 143.5, 143.4, 134.8, 134.0, 133.5, 131.6, 129.9, 121.8, 100.4, 64.6, 64.4, 36.2, 35.7, 31.9, 31.5. 31P NMR: δ 34.23.

Anal. calcd (found) for C$_{73}$H$_{100}$Au$_2$Cl$_2$O$_6$P$_2$: C, 54.79 (54.69); H, 6.30 (6.34).

(S)-{17-[Bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphanyl]-8,12-dioxatricyclo[11.4.0.02,7]heptadeca- 1(13),2,4,6,14,16-hexaen-3-yl]bis(3,5-di-tert- butyl-4-methoxyphenyl)phosphane [(S)-(L5)(AuCl)$_2$] (57) and (S)-{19-[bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphanyl]-8,14- dioxatricyclo[13.4.0.02,7]nonadeca- 1(15),2,4,6,16,18-hexaen-3-yl]bis(3,5-di-tert- butyl-4-methoxyphenyl)phosphane [(S)-(L6)(AuCl)$_2$] (58)
were synthesized employing a procedure similar to that used to synthesize [(S)-(L4)(AuCl)2] (56).

(S)-{17-[Bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphanyl]-8,12-dioxatricyclo[11.4.0.02,7]heptadeca-1(13),2,4,6,14,16-hexaen-3-yl]bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphane [(S)-(L5)(AuCl)2] (57). white power, 26 %. 1H NMR: δ 7.69 (d, J = 12.5 Hz, 4 H), 7.34 (t, J = 8.5 Hz, 2 H), 7.19-7.15 (m, 6 H), 6.70 (d, J = 8.0 Hz, 2 H), 3.83-3.78 (m, 2 H), 3.84 (s, 3 H), 3.754 (s, 3 H), 3.752 (s, 3 H), 3.70-3.66 (m, 2 H), 3.634 (s, 3 H), 3.632 (s, 3 H), 1.48-1.45 (m, 2 H), 1.41 (s, 36 H), 1.26 (s, 36 H). 13C{^1}H NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 161.7, 161.5, 157.6, 157.5, 157.47, 143.1, 143.05, 143.0, 142.2, 142.17, 142.12, 133.3, 133.3, 133.2, 132.2, 131.7, 131.2, 129.9, 129.0, 128.3, 127.6, 122.3, 121.7, 120.7, 120.2, 71.2, 63.5, 63.4, 35.1, 34.7, 30.9, 30.7, 28.7. 31P NMR: δ 30.33.

(S)-{19-[Bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphanyl]-8,14-dioxatricyclo[13.4.0.02,7]nonadeca-1(15),2,4,6,18-hexaen-3-yl]bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphane [(S)-(L6)(AuCl)2] (58). white power, 15 %. 1H NMR: δ 7.52-7.47 (m, 6 H), 7.23 (d, J = 13.6, 4 H), 7.03 (dd, J = 8.0, 10.4 Hz, 2 H), 6.81 (d, J = 8 Hz, 2 H), 3.81-3.76 (m, 2 H), 3.75 (s, 3 H), 3.74 (s, 3 H), 3.652 (s, 3 H), 3.652 (s, 3 H), 3.33-3.27 (m, 2 H), 1.39 (s, 36 H), 1.29 (s, 36 H), 1.27-1.24 (m, 4 H), 0.90-0.82 (m, 2 H). 13C{^1}H NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 161.7, 162.5, 162.2, 158.2, 149.1, 143.8, 143.4, 143.3, 143.4, 134.2, 134.1, 133.9, 129.2, 129.1, 127.7, 122.2, 121.8, 117.1, 67.9, 64.6,
64.5, 36.0, 35.8, 31.92, 31.87, 25.7, 21.6. 31P NMR: δ 26.1. Anal. calcd (found) for C$_{77}$H$_{108}$Au$_2$Cl$_2$O$_6$P$_2$: C, 55.83 (55.79); H, 6.57 (6.47).

(S)-(6,6'-Diethoxybiphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine)-(AuCl)$_2$ [(S)-(L9)(AuCl)$_2$] (66). To a suspension 49 (85 mg, 0.0735 mmol) and K$_2$CO$_3$ (122 mg, 0.883 mmol) in acetone (3 ml) was added EtI (137.7 mg, 0.883 mmol). The reaction mixture was stirred at 50 °C for 36 h. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite, eluting with Et$_2$O. The combined organic extracts were evaporated and chromatographed (hexanes–EtOAc = 8:1 → 5:1) to give (6,6'-diethoxybiphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide) (59) (53 mg, 60 %) as a colorless oil. TLC (hexanes–EtOAc = 1:2): R_f = 0.49. %. 1H NMR: δ 7.61-7.48 (m, 8 H), 7.24-7.19 (m, 2 H), 6.89-6.82 (m, 4 H), 3.81-3.66 (m, 2 H), 3.65 (s, 6 H), 3.64 (s, 6 H), 3.50-3.39 (m, 2 H), 1.33 (s, 36 H), 1.24 (s, 36 H), 0.65 (t, J = 6.8 Hz, 6 H). 31P NMR: δ 28.3.

To a mixture of 59 and Et$_3$N (354.2 mg, 3.50 mmol) in toluene (2 mL) was added Cl$_3$SiH (118.4 mg, 0.874 mmol) at 0 °C. The reaction mixture was stirred at 110 °C for 40 h. The reaction mixture was cooled to room temperature, diluted with Et$_2$O (4 mL), and quenched with a small amount of saturated NaHCO$_3$ (0.2 mL). The resulting suspension was filtered through a pad of Celite and extracted with Et$_2$O. The combined organic extracts were concentrated and chromatographed (hexanes–EtOAc = 15:1) to give (6,6'-diethoxybiphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine) (62) (35.3 mg, 68 %) as a white solid. TLC (hexanes–EtOAc = 7:1): R_f = 0.4. 1H NMR: δ 7.26-7.10 (m, 10 H), 6.88 (d, J = 7.6 Hz, 2 H), 6.70 (d, J =
8.0 Hz, 2 H), 3.65-4.63 (m, 2 H), 3.63 (s, 6 H), 3.61 (s, 6 H), 3.40-3.33 (m, 2 H), 1.32 (s, 36 H), 1.23 (s, 36 H), 0.66 (t, J = 6.8 Hz, 6 H). 31P NMR: δ = 13.8.

(S)-(6,6'-Diethoxybiphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine)-(AuCl)$_2$ [(S)-(L9)(AuCl)$_2$] (66) was synthesized from 62 employing a procedure similar to that used to synthesize 56 from 53. White power (33.2 mg, 68 %). 1H NMR: δ 7.61 (dt, J = 2.4, 8.0 Hz, 2 H), 7.48 (d, J = 13.6 Hz, 4 H), 7.01-7.03 (m, 6 H), 6.93 (d, J = 8.0 Hz, 2 H), 3.70 (s, 12 H), 3.60-3.51 (m, 2 H), 3.14 (s, 36 H), 1.33 (s, 36 H), 1.32 (s, 36 H), 0.44 (t, J = 6.8 Hz, 6 H). 13C{1H} NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 162.4, 162.3, 162.0, 161.99, 158.3, 158.2, 144.3, 144.2, 144.1, 144.0, 133.5, 133.3, 132.4, 132.2, 129.6, 129.4, 129.0, 127.8, 127.7, 124.8, 124.1, 124.0, 123.4, 114.3, 64.4, 62.9, 36.0, 35.9, 31.9, 31.8. 31P NMR: δ 21.64. Anal. calcd (found) for C$_{76}$H$_{108}$Au$_2$Cl$_2$O$_6$P$_2$: C, 55.51 (55.54); H, 6.62 (6.69).

(S)-6,6'-Bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphino)biphenyl-2,2'-diol-(AuCl)$_2$ [(S)-(L7)(AuCl)$_2$] (65), (S)-(6,6'-diisopropoxybiphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine)-(AuCl)$_2$ [(S)-(L10)(AuCl)$_2$] (67), and (S)-(6,6'-bis(benzyloxy)biphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine)-(AuCl)$_2$ [(S)-(L11)(AuCl)$_2$] (68) were synthesized employing a procedure similar to that used to synthesize [(S)-(L9)(AuCl)$_2$].
(S)-6,6'-Bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphino)biphenyl-2,2'-diol- (AuCl)$_2$ [(S)-(L7)(AuCl)$_2$] (65). Light yellow powder, 49 %. 1H NMR: δ 7.66 (d, J = 13.2 Hz, 4 H), 7.44 (dt, J = 1.6, 7.6 Hz, 2 H), 7.14 (dd, J = 8.0, 11.2 Hz, 2 H), 6.74 (d, J = 8 Hz, 2 H), 3.76 (s, 6 H), 3.66 (s, 6 H), 1.40 (s, 36 H), 1.28 (s, 36 H). 13C{1H} NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 163.1, 163.0, 155.8, 155.7, 155.5, 145.0, 144.93, 144.89, 144.4, 144.3, 144.26, 134.8, 134.64, 134.56, 134.2, 133.6, 133.4, 131.1, 130.9, 128.1, 123.9, 123.3, 121.9, 120.1, 119.6, 64.6, 64.5, 36.1, 35.9, 31.8, 31.7. 31P NMR: δ 28.32. Anal. calcd (found) for C$_{72}$H$_{100}$Au$_2$Cl$_2$O$_6$P$_2$: C, 54.44 (54.36); H, 6.35 (6.25).

(5S)-(6,6'-Diisopropoxybiphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine)-(AuCl)$_2$ [(5S)-(L10)(AuCl)$_2$] (67). White powder, 8 %. 1H NMR: δ 7.62 (dt, J = 2.5, 8.0 Hz, 2 H), 7.50 (d, J = 13.0 Hz, 4 H), 7.06 (dd, J = 7.5, 10 Hz, 2 H), 7.0 (d, J = 13.5 Hz, 4 H), 6.97 (d, J = 8.5 Hz, 2 H), 4.11 (m, 2 H), 3.72 (s, 6 H), 3.69 (s, 6 H), 1.34 (s, 36 H), 1.32 (s, 36 H), 0.74 (d, J = 6 Hz, 6 H), 0.34 (d, J = 6.5 Hz, 6 H). 13C{1H} NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 162.5, 157.8, 157.7, 144.7, 144.6, 144.4, 144.3, 133.9, 133.7, 132.3, 132.2, 129.5, 129.4, 128.3, 125.5, 125.0, 124.3, 116.2, 70.2, 64.7, 36.3, 36.2, 32.2, 32.1, 22.1, 21.1. 31P NMR: δ 20.92.

(5S)-(6,6'-Bis(benzyloxy)biphenyl-2,2'-diyl)bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine)-(AuCl)$_2$ [(5S)-(L11)(AuCl)$_2$] (68). White powder, 19 %. 1H NMR: δ 7.49 (dt, J = 2.0, 8.0 Hz, 2 H), 7.39 (d, J = 13.6 Hz, 4 H), 7.19 (d, J = 14 Hz, 4
H), 7.14-7.05 (m, 6 H), 7.0 (dd, J = 7.6, 10.8 Hz, 2 H), 6.89 (d, J = 7.2 Hz, 4 H), 6.78 (d, J = 8.4 Hz, 2 H), 4.34 (d, J = 15.2 Hz, 2 H), 3.73 (s, 6 H), 3.66 (d, J = 15.2 Hz, 2 H), 3.62 (s, 6 H), 1.34 (s, 36 H), 1.27 (s, 36 H). 13C-1H NMR (carbon–phosphorous couplings are not taken into consideration due to the complexity): δ 162.4, 162.2, 161.3, 144.4, 144.3, 144.2, 144.1, 137.0, 133.8, 133.4, 133.3, 128.4, 127.1, 124.8, 115.22, 115.19, 68.0, 64.5, 36.0, 35.9, 31.8. 31P NMR: δ 22.36.
Figure 3. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 72% ee) benzyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (6).
Figure 4. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 78% ee) (9H-fluoren-9-yl)methyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (2b).
Figure 5. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 84% ee) (9H-fluoren-9-yl)methyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (2c).
Figure 6. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 76% ee) 2-methyl-N,4,4-triphenylpyrrolidine-1-carboxamide (8).
Figure 7. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 82% ee) 2-methyl-N,4,4-triphenylpyrrolidine-1-carboxamide (8b).
Figure 8. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 77% ee) propyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (10).
Figure 9. Chiral HPLC traces (90:10 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 75% ee) 2-(benzylxoy)ethyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (12).
Figure 10. Chiral HPLC traces (95:5 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 48% ee) 2,2,2-trichloroethyl 2-methyl-4,4-diphenylpyrrolidine-1-carboxylate (14).
Figure 11. Chiral HPLC traces (99:1 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 55% ee) 9-fluorenylmethyl 2-methyl-4-cyclohexylpyrrolidine-1-carboxylate (16).
Figure 12. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 85% ee) N-methyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (27).
Figure 13. Chiral HPLC traces (92:8 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 58 % ee) phenyl 2-methyl-4,4-diphenyl-pyrrolidine-1-carboxamide (19).
Figure 14. Chiral HPLC traces (80:20 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 58% ee) \(N\)-(4-iodophenyl)-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (21).
Figure 15. Chiral HPLC traces (80:20 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 76% ee) 2-methyl-N-(4-nitrophenyl)-4,4-diphenylpyrrolidine-1-carboxamide (23).
Figure 16. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 72% ee) N-benzyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (2a).
Figure 17. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 81% ee) \(N \)-butyl-2-methyl-4,4-diphenylpyrrolidine-1-carboxamide (25).
Figure 18. Chiral HPLC traces (85:15 hexanes/isopropanol, 0.5 mL/min) of racemic (left trace) and enantiomerically enriched (right trace, 38% ee) 1-(2-methylindolin-1-yl)ethanone (29).
Figure 19. 1H NMR spectrum of 5 in CDCl3
Figure 20. 13C-{1H} NMR spectrum of 5 in CDCl$_3$.
Figure 21. 1H NMR spectrum of 1b in CDCl$_3$.
Figure 22. 13C{H} NMR spectrum of 1b in CDCl$_3$.

exp6 CARBON

Sample: FERROUS

date: Jun 21 2012
solvent: CDCl$_3$
file: exp
ACQUISITION: temp 25.0
sw 31444.5 gain not used
at 1.642 spin not used
sp 65226 hat 0.092
fh 17600 psw 23.199
be 4 alfa 10.096
ai 1.100 flags
sn 1a=07 li 4
c 652 in
TRAMITTER: dp y

C13 hs nz

afsq 125.794 processing
ter 191.2 lb 1.90
tpw 60 lafizd -1
pw 11.155 on not used

DISPLAY: dooovser

de ep -1896.3
dof 0 wp 31445.4
dp 5 33523.3
decwai w rfp 9859.0
dpx 26 cp -79.8
dnf 10400 yp -49.2

plot 250

ws 0 1259
th 97
ai gad ph
Figure 23. 1H NMR spectrum of 7 in CDCl$_3$.
Figure 24. 13C{1H} NMR spectrum of 7 in CDCl$_3$.
Figure 25. 1H NMR spectrum of 9 in CDCl$_3$.
Figure 26. 13C{1H} NMR spectrum of 9 in CDCl$_3$.
Figure 27. 1H NMR spectrum of 11 in CDCl$_3$.

Data collected on: Feb 7 2011
Figure 28. 13C{1H} NMR spectrum of 11 in CDCl$_3$.
Figure 29. 1H NMR spectrum of 13 in CDCl$_3$.
Figure 30. 13C{H} NMR spectrum of 13 in CDCl$_3$.
Figure 31. 1H NMR spectrum of 15 in CDCl$_3$.
Figure 32. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of 15 in CDCl$_3$.
Figure 33. 1H NMR spectrum of 28 in CDCl$_3$.
Figure 34. 1H NMR spectrum of 6 in CDCl$_3$.
Figure 35. 13C {1H} NMR spectrum of 6 in CDCl$_3$.
Figure 36. 1H NMR spectrum of 2b in CDCl$_3$.
Figure 37. $^{13}\text{C}^1\text{H}$ NMR spectrum of 2b in CDCl$_3$.
Figure 38. 1H NMR spectrum of 8 in CDCl$_3$.
Figure 39. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 8 in CDCl$_3$.

Figure 40. 1H NMR spectrum of 10 in CD$_2$Cl$_2$.
Figure 41. $^{13}\text{C} \{^1\text{H}\}$ NMR spectrum of 10 in CDCl$_3$.
Figure 42. 1H NMR spectrum of 12 in CD$_2$Cl$_2$.
Figure 43. 13C{1H} NMR spectrum of 12 in CDCl$_2$.
Figure 44. 1H NMR spectrum of 14 in CDCl$_3$.
Figure 45. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 14 in CDCl$_3$.
Figure 46. 1H NMR spectrum of 16 in CDCl$_3$.
Figure 47. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 16 in CDCl$_3$.
Figure 48. 1H NMR spectrum of 27 in CDCl$_3$.
Figure 49. 13C$\{^1$H$\}$ NMR spectrum of 27 in CDCl$_3$.
Figure 50. 1H NMR spectrum of 19 in CD$_2$Cl$_2$.
Figure S28. 13C$\{^1\text{H}\}$ NMR spectrum of Phenyl 2-methyl-4,4-diphenyl-pyrrolidine-1-carboxamide in CD$_2$Cl$_2$

![NMR Spectrum](image)

Figure 51. 13C$\{^1\text{H}\}$ NMR spectrum of 19 in CD$_2$Cl$_2$
Figure 52. 1H NMR spectrum of 21 in CD$_2$Cl$_2$.
Figure 53. $^{13}\text{C}^{1\text{H}}$ NMR spectrum of 21 in (CD$_3$)$_2$CO.
Figure 54. 1H NMR spectrum of 23 in CD$_2$Cl$_2$.

Figure showing the 1H NMR spectrum of compound 23 in CD$_2$Cl$_2$. The spectrum displays various peaks at different chemical shifts, indicating the presence of multiple protons in the compound.
Figure 55. $^{13}\text{C}^{1}\text{H}$ NMR spectrum of 23 in (CD$_3$)$_2$CO.
Figure 56. 1H NMR spectrum of 2a in CD$_2$Cl$_2$.
Figure 57. $^{13}\text{C}^{1}\text{H}$ NMR spectrum of 2a in CD$_2$Cl$_2$.
Figure 58. 1H NMR spectrum of 25 in CD$_2$Cl$_2$.
Figure 59. 13C{1H} NMR spectrum of 25 in CD$_2$Cl$_2$.
Figure 60. 1H NMR spectrum of 28 in CDCl$_3$
Chapter 2

Gold(I)-Catalyzed Enantioselective
Intermolecular Hydroamination of Unactivated
Alkenes

Portions of this chapter have been published: Zhang, Z.; Lee, S. D.; Widenhoefer, R. A.

Journal of the American Chemical Society 2009, 131, 537
2.1 Introduction

Despite the advances regarding the enantioselective intramolecular hydroamination of unactivated alkenes, only two examples (including the work described herein) of intermolecular enantioselective hydroamination of unactivated alkenes have been reported.76,89 This is because the intermolecular hydroamination of unactivated alkenes has a higher activation barrier and slower reaction rate than does intramolecular hydroamination. In addition, intermolecular hydroamination has a large negative entropy of activation relative to the intramolecular process, rendering the intermolecular transformation unfavorable at high temperatures. For these reasons, intermolecular hydroamination typically requires highly active catalysts and/or forcing conditions to achieve satisfactory rates and product yields. As a result, most of the successful reports in the area of enantioselective intermolecular hydroamination of alkenes have employed activated alkenes such as styrene,43,44 norbornene,45,46,90 conjugated dienes,48 and Michael acceptors,91,92 to compensate for the high reaction barrier while avoiding forcing conditions to attain a high level of stereoselectivity.

Intermolecular enantioselective hydroamination of activated alkenes. Hartwig has reported the enantioselective intermolecular hydroamination of vinylarenes at ambient temperature. For example, reaction of aniline with 4-(trifluoromethyl)styrene catalyzed by $[((R)\text{-BINAP})\text{Pd(O}_2\text{CF}_3)_2]$ at 25 °C produced N-(1-(4-(trifluoromethyl)phenyl)ethyl)benzenamine in 80 % yield with 81 % ee (eq 2.2).43 They proposed a reaction pathway involving outer-sphere attack of the amine on a Pd(II)
coordinated alkene, followed by protonolysis of the resulting Pd–C bond. Hartwig and coworkers has also developed an iridium-catalyzed method for intermolecular enantioselective hydroamination of norbornenes with arylamines.\(^{43}\) They found that inclusion of potassium bis(trimethylsilyl)amide (KHMDS) dramatically increased turnover numbers and enantioselectivity. They also found that employment of the sterically hindered SEGPHOS ligand DTBM-SEGPHOS enhanced yield while maintaining high enantioselectivity. For example, reaction of the norbornene derivative 1 with \(m\)-tolylamine catalyzed by a mixture of [Ir(cyclooctene)Cl]\(_2\) and (\(R\))-DTBM-SEGPHOS gave amine product 2 in 90 % yield with 99 % ee (eq 2.3).

\[
\text{NH}_2 + \begin{array}{c} \text{F}_3\text{C} \end{array} \begin{array}{c} \text{C} \end{array} \begin{array}{c} \text{C} \end{array} \begin{array}{c} \text{C} \end{array} \text{NHPh} \quad \text{10 mol \% - [(R)-BINAP]Pd(OTf)_2} \quad 25 \, ^\circ\text{C, 72 h} \quad \text{NHPh} \quad \text{80 \% yield} \quad 81 \% \text{ee} \quad (\text{eq. 2.2})
\]

\((R)\)-BINAP
Very recently, enantioselective intermolecular hydroamination of noborbornene derivatives with aryl carboxamides and sulfonamides has been reported. For example, reaction of norbornene and 4-(trifluoromethyl)benzamide catalyzed by a mixture of [Ir(cyclooctene)Cl]$_2$ and (S)-DTBM-SEGPHOS at 120 °C formed the hydroamination product 3 in 85 % yield and 93 % ee (eq 2.4). Palladium complexes containing the Trost ligand are effective catalysts for the intermolecular enantioselective hydroamination of dienes with aniline derivatives. For example, reaction of 1,3-cyclohexadiene with ethyl 4-aminobenzoate catalyzed by a mixture of [Pd(π-allyl)Cl]$_2$ and Trost ligand at room temperature formed the N-(cyclohex-2-en-1-yl)aniline derivative 4 in 83 % yield with 95 % ee (eq 2.5).
Intermolecular enantioselective hydroamination of unactivated alkenes. Recently, group 4 metal complexes have been shown to catalyze the enantioselective intermolecular hydroamination of unactivated alkenes. The Hultzsch group employed a binaphtholate yttrium complex as a catalyst for the intermolecular enantioselective hydroamination of unactivated 1-alkenes in good yields and modest enantioselectivity. For example, reaction of benzylamine with 1-pentene catalyzed by 5 mol % of...
binaphtholate complex 6 in benzene-d_6 at 150 °C for 72 h formed N-benzylpentan-2-amine (5) in 70 % yield with 61 % ee (eq 2.6).\(^5\)

\[
\begin{align*}
n-C_3H_7 \quad + \quad PhNH_2 \xrightarrow{5 \text{ molen} \cdot 6} \quad & n-C_3H_7 \quad HNPh \\
[\text{[d6]benzene, 150 °C, 72 h}] \quad & 5 \text{ mol \% - 6} \\
\end{align*}
\]

(eq 2.6)

70 % yield
61 % ee

Gold-catalyzed intermolecular alkene hydroamination. Widenhoefer and coworkers have recently reported the gold(I)-catalyzed intermolecular hydroamination of unactivated 1-alkenes with imidazolidin-2-ones and related nucleophiles. The transformation was characterized by high yield and high Markovnikov regioselectivity. As an example, reaction of 1-methyl-2-imidazolidinone (7) and 1-octene catalyzed by a 1:1 mixture of Au[P(tBu)$_2$-o-biphenyl]Cl (8) and AgSbF$_6$ at 100 °C for 24 hours formed 1-methyl-3-(2-octanyl)-2-imidazolidinone (9) in 96 % yield as a single regioisomer (Eq. 2.7).\(^7\) Encouraged by this result, we aimed to establish an effective gold-catalyzed
method for the enantioselective intermolecular hydroamination of unactivated alkenes. Here we describe experiments toward this objective.

\[
\text{Me}^\text{\textbullet\textbullet}\text{N}^\text{\textbullet\textbullet}\text{NH} + \text{1-octene} \xrightarrow{8 \text{ (5 mol %)} \ AgSbF_6 \text{ (5 mol %)}} \text{Me}^\text{\textbullet\textbullet}\text{N}^\text{\textbullet\textbullet}\text{N}^\text{\textbullet\textbullet}\text{Me}^\text{\textbullet\textbullet}\text{Me}^\text{\textbullet\textbullet}\text{Me}^\text{\textbullet\textbullet} \ (\text{eq 2.7})
\]

dioxane, 100 °C, 24 h 96 %

2.2 Results and Discussion

1.2.1 Optimization and Substrate Scope

Based on the previous result depicted in eq 2.7, we targeted the reaction of 1-methyl-2-imidazolidinone (7) and 1-octene for gold-catalyzed enantioselective intermolecular hydroamination. In addition, the chiral bis(gold) complex \([\text{(S)-L8}](\text{AuCl})_2 \text{ [(S)-L8 = (S)-3,5-t-Bu-4-MeO-MeOBIPHEP]}\) which contained a sterically hindered axially chiral bis(phosphine) ligand was targeted as the catalyzed because \([\text{(S)-L8}](\text{AuCl})_2\) has been applied successfully in a number of enantioselective transformations.68,77-79 In an initial experiment, reaction of 7 and 1-octene (15 equiv) with a catalytic 1:1 mixture of \([\text{(S)-(L8)}](\text{AuCl})_2\) and AgSbF6 in dioxane at 80 °C for 24 hours formed 9 with 45 % ee (eq. 2.8). We were unable to determine an accurate conversion value for this and related experiments because silica gel filtration, which was required to remove gold prior to HPLC analysis also removed the polar nucleophile 7.
Nevertheless, based on the encouraging enantioselectivity of this experiment, further experiments were performed to improve the enantioselectivity of intermolecular hydroamination.

Varying the silver salt used in the hydroamination of 1-octene with 7 (Table 1, Entries 1-7) showed that AgOTf gave the highest enantioselectivity (62 %) among the silver salts tested (Table 4, entry 4). Based on this result, we employed AgOTf as a cocatalyst and examined the effect of solvent on enantioselectivity of the gold-catalyzed hydroamination of 1-octene with 7 (Table 4, entries 8-14). Concurrently, we lowered the reaction temperature from 80 °C to 60 °C and reduced the alkene loading from 15 equiv to 6 equiv under these conditions. From these experiments, we identified toluene as the most effective solvent in terms of reaction enantioselectivity (54 % ee, Table 4, entry 10). Interestingly, the enantioselectivity of gold-catalyzed hydroamination in dioxane with AgOTf under these conditions (48 % ee, Table 4, entry 11) was lower than the enantioselectivity observed in dioxane with AgOTf with the initial conditions (62 % ee,
Table 4, entry 4). Increasing the concentration of 1-octene improved the enantioselectivity of the gold-catalyzed hydroamination of 1-octene with 7 (Table 4, entries 11 and 16). Not surprisingly, the reaction of 15 equiv 1-octene and 7 in toluene showed improved enantioselectivity of 66 % relative to the 54 % ee obtained by employing 6 equiv of 1-octene (Table 4, entries 10 and 15).

Table 4. Effect of silver salt and solvent on the gold(I)-catalyzed enantioselective hydroamination of 1-Octene with 7.

<table>
<thead>
<tr>
<th>entry</th>
<th>X</th>
<th>solvent</th>
<th>1-octene amt</th>
<th>temp(°C)</th>
<th>ee(%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BF₄</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>80</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>OTs</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>PF₆</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>OTf</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>ClO₄</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>AsF₆</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>80</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>SbF₆</td>
<td>dioxane</td>
<td>6 eq.</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>OTf</td>
<td>MeOH</td>
<td>6 eq.</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>OTf</td>
<td>DMSO</td>
<td>6 eq.</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>OTf</td>
<td>toluene</td>
<td>6 eq.</td>
<td>60</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>OTf</td>
<td>dioxane</td>
<td>6 eq.</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>OTf</td>
<td>CH₃NO₂</td>
<td>6 eq.</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>OTf</td>
<td>MeCN</td>
<td>6 eq.</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>OTf</td>
<td>THF</td>
<td>6 eq.</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>OTf</td>
<td>toluene</td>
<td>15 eq.</td>
<td>60</td>
<td>66</td>
</tr>
<tr>
<td>16</td>
<td>OTf</td>
<td>dioxane</td>
<td>15 eq.</td>
<td>60</td>
<td>61</td>
</tr>
</tbody>
</table>

a Enantiopurity determined by HPLC analysis on a chiral stationary phase.
Employing AgOTf as a co-catalyst, the effect of ligand and solvent on the gold-catalyzed enantioselective intermolecular hydroamination of 1-octene with 7 was further investigated. While the reactions of 7 and 1-octene employing (S)-DTBM-SEGPHOS ligand 12 (Figure 61) as a chiral ligand produced modest enantioselectivity (50% ee in toluene, 56% ee in dioxane; Table 5, entries 1 and 2), reactions using (S)-DM-SEGPHOS ligand 13, which has the same dioxole biaryl framework as 12, showed no reaction and/or very poor enantioselectivity (Table 5, entries 3 and 4). Gold-catalyzed hydroamination of 1-octene with 7 employing ligand 11, which possessed a dimethyl amine substituent on the aryl group, did not form 9 (Table 5, entries 5 and 6). Gold-catalyzed hydroamination of 1-octene with 7 employing ligand 10, which contained P-bound isopropyl groups, gave enantioselectivity up to 70 % ee (Table 5, entries 7-10). In addition, increasing the amount of 1-octene to 30 equiv from 15 equiv and changing the solvent to m-xylene from toluene further improved the enantioselectivity (Table 5, entries 9-12). While increasing the reaction temperature showed almost no effect on enantioselectivity of hydroamination (Table 5, entries 12, 13, and 15, and 14 and 16), increasing concentration of 1-octene led to higher enantioselectivity (Table 5, entries 3 and 5).
| Structure | R = \[\begin{array}{c} \text{MeO} \\
| \text{MeO} \\
| \text{PR}_2 \\
| \text{PR}_2 \\n| \end{array} \] | Ligand Name |
|-----------|----------------|
| \(-\frac{3}{2} \text{CH}_3 \) | \(\text{(S)}-\text{iPr-} \text{MeOBIPHEP} \) | \(\text{L}8 \) |
| \(-\frac{3}{2} \text{NCH}_3 \text{CH}_3 \text{NCH}_3 \text{CH}_3 \) | \(\text{(S)}-\text{3,5-iPr-} \text{MeO-} \text{MeOBIPHEP} \) | \(\text{L}10 \) |
| \(-\frac{3}{2} \text{CH}_3 \) | \(\text{(S)}-\text{DTB-SEGPHOS} \) | \(\text{L}12 \) |
| \(-\frac{3}{2} \text{CH}_3 \) | \(\text{(S)}-\text{DM-SEGPHOS} \) | \(\text{L}13 \) |

Figure 61. Chiral bisphosphine ligands utilized for the gold-catalyzed intermolecular enantioselective hydroamination of 1-alkenes.
Table 5. Effect of ligand and solvent on the gold(I)-catalyzed enantioselective hydroamination of 1-octene with 7.

\[
\begin{align*}
\text{Me} & \quad \text{N} & \quad \text{N} & \quad \text{Me} \\
\text{O} & \quad \text{Me} & \quad \text{N} & \quad \text{N} & \quad \text{Me} \\
\text{7} & \quad \text{1-octene} & \quad \text{L(AuCl)}_2 (2.5 \text{ mol %}) & \quad \text{AgOTf (5 mol %)} & \quad \text{temp., solvent, 48 h} \\
\text{Me} & \quad \text{N} & \quad \text{N} & \quad \text{Me} \\
\text{O} & \quad \text{Me} & \quad \text{N} & \quad \text{N} & \quad \text{Me} \\
\text{9} & \quad \text{L(AuCl)}_2 (2.5 \text{ mol %}) & \quad \text{AgOTf (5 mol %)} & \quad \text{temp., solvent, 48 h} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>L</th>
<th>solvent</th>
<th>temp.(°C)</th>
<th>1-octene amt</th>
<th>ee(%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>toluene</td>
<td>60</td>
<td>15 eq.</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>dioxane</td>
<td>60</td>
<td>15 eq.</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>toluene</td>
<td>60</td>
<td>15 eq.</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>dioxane</td>
<td>60</td>
<td>15 eq.</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>toluene</td>
<td>60</td>
<td>15 eq.</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>dioxane</td>
<td>60</td>
<td>15 eq.</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>toluene</td>
<td>60</td>
<td>15 eq.</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>dioxane</td>
<td>60</td>
<td>30 eq.</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>toluene</td>
<td>60</td>
<td>30 eq.</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>m-xylene</td>
<td>60</td>
<td>30 eq.</td>
<td>70</td>
</tr>
<tr>
<td>11</td>
<td>L8</td>
<td>toluene</td>
<td>60</td>
<td>30 eq.</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>L8</td>
<td>m-xylene</td>
<td>60</td>
<td>30 eq.</td>
<td>74</td>
</tr>
<tr>
<td>13</td>
<td>L8</td>
<td>m-xylene</td>
<td>100</td>
<td>30 eq.</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>L8</td>
<td>m-xylene</td>
<td>100</td>
<td>60 eq.</td>
<td>76</td>
</tr>
<tr>
<td>15</td>
<td>L8</td>
<td>m-xylene</td>
<td>120</td>
<td>30 eq.</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>L8</td>
<td>m-xylene</td>
<td>120</td>
<td>60 eq.</td>
<td>75</td>
</tr>
</tbody>
</table>

aee values determined by HPLC analysis on a chiral stationary phase. entry 12: 38 % isolated yield, entries 13-16: 100 % conversion (determined by 1H NMR analysis of the crude reaction mixture)
In a preparative-scale experiment employing the optimized reaction conditions, reaction of 7 and 1-octene (60 equiv) catalyzed by [(S)-L8](AuCl)$_2$ (2.5 mol %) and AgOTf (5 mol %) in m-xylene at 100 °C for 48 h led to isolation of 9 in 86% yield with 76% ee (Table 6, entry 1). This catalyst system was effective for the addition of 1-alkyl or 1-aryl-imidazolidin-2-ones to unactivated and unfunctionalized 1-alkenes in good yield and with modest enantioselectivity (Table 6). Increasing the length of the alkyl chain on alkene substrates had a small effect on enantioselectivity of intermolecular hydroamination but deteriorated the reaction yield (Table 6, entries 1, 5 and 6). Alkyl substituted imidazolidin-2-ones gave better enantioselectivity than did aryl substituted imidazolidin-2-ones, and sterically hindered t-butyl substituted cyclic urea 21 produced the highest enantioselectivity of 78% (Table 6, entry 4).
Table 6. Enatioselective intermolecular hydroamination of 1-alkenes with imidazolidin-2-ones catalyzed by a mixture of [(S)-L8](AuCl)₂ (2.5 mol %) and AgOTf (5 mol %) in m-xylene at 100 °C for 48 h.

<table>
<thead>
<tr>
<th>entry</th>
<th>cyclic urea</th>
<th>alkeneᵃ</th>
<th>product</th>
<th>yield(%)ᵇ ee(%)ᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R = Me</td>
<td>n = 5</td>
<td>9</td>
<td>86 76</td>
</tr>
<tr>
<td>2</td>
<td>R = Ph</td>
<td>n = 5</td>
<td>14</td>
<td>80 71</td>
</tr>
<tr>
<td>3</td>
<td>R = 4-FC₆H₄</td>
<td>n = 5</td>
<td>15</td>
<td>81 74</td>
</tr>
<tr>
<td>4</td>
<td>R = t-Bu (21)</td>
<td>n = 5</td>
<td>16</td>
<td>89 78</td>
</tr>
<tr>
<td>5</td>
<td>R = Me</td>
<td>n = 7</td>
<td>17</td>
<td>83 73</td>
</tr>
<tr>
<td>6</td>
<td>R = Me</td>
<td>n = 9</td>
<td>18</td>
<td>76 75</td>
</tr>
</tbody>
</table>

ᵃAmount of alkene : 60 eq. ᵃᵇisolated yield of >95% purity. ᵇ enantiopurity determined by HPLC analysis on a chiral stationary phase. ᵇᵈAmount of alkene : 20 eq. ᵇᵉconversion.

Unfortunately, functionalized alkenes or nucleophiles other than imidazolidin-2-one failed to undergo effective gold-catalyzed intermolecular hydroamination employing these conditions (Figure 63 and Table 6, entry 7). The failures of hydroamination with functionalized alkenes (24 and 25) was attributed to solvent effect as the large excess of polar 1-alkene leads to significant perturbation of the solvent system. There is often a pronounced dependence on the basicity of the nucleophile in the late transition metal catalyzed intermolecular hydroamination of alkenes, which typically require weakly basic...
amine derivatives as nucleophiles.93,94 The pK\textsubscript{a} of the conjugate acid of imidazolidin-2-one is \sim14.2, which is higher than that of the conjugate acid of 1-(4-methoxyphenyl)imidazolidine-2,4-dione 23 (pK\textsubscript{a} = \sim9.1) and oxazolidin-2-one 22 (pK\textsubscript{a} = \sim13.0) and is similar to that of the conjugate acid of 1-methylimidazolidine-2-thione 26 (pK\textsubscript{a} = \sim14.4). This observation suggests that the inability of nucleophiles 22, 23, and 26 to undergo gold-catalyzed intermolecular hydroamination under our optimized conditions is not readily explained by the normal pK\textsubscript{a} dependence of transition metal-catalyzed hydroamination. Also, sterically hindered 1- t-butyl imidazolidin-2-one (21) underwent facile gold-catalyzed hydroamination with 1-octene (Table 6, entry 4), indicating that the effect of steric hindrance at this site is minimal and, therefore, does not explain the lack of reactivity of 23.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure62.png}
\caption{Substrate combinations that failed to undergo gold-catalyzed enantioslective intermolecular hydroamination under our optimized conditions.}
\end{figure}
2.2.2 Mechanism

As described in Chapter 1 for the gold-catalyzed intramolecular hydroamination of unactivated alkenes, gold-catalyzed intermolecular hydroamination of alkenes is thought to proceed via outer-sphere attack of the amine nucleophile on a coordinated alkene, followed by protolytic cleavage of the Au–C bond to produce the alkylamine product (Scheme 2.1). We observed that excess alkene was essential to achieve high reactivity, which can be explained based on the mechanism. Increasing the concentration of alkene relative to amine would favor formation of the Au(I)-alkene complex (I) rather than the Au(I)-amine complex (II) preventing catalyst poisoning by the amine substrate.91-93 As a result, higher yield of hydroamination product can be expected by employing excess alkene. However, it remains unclear what influence the excess alkene has on the improved enantioselectivity observed under these conditions.
Scheme 2.1

2.3 Experimental Section

2.3.1 General Methods

Reactions were performed under a nitrogen atmosphere employing standard Schlenk and/or drybox techniques unless specified otherwise. Catalytic reactions were performed in sealed heavy-walled pressure tubes under an atmosphere of dry nitrogen unless noted otherwise. NMR spectra were obtained on Varian spectrometers operating at 400 MHz for 1H NMR and 101 MHz for 13C NMR in CDCl$_3$ at 25 °C unless noted
otherwise. IR spectra were obtained on a Nicolet Avatar 360-FT IR spectrometer. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatography equipped with a 15 m or 25 m polydimethylsiloxane capillary column and FID detector. Chiral HPLC was performed on a Hewlett-Packard chromatograph equipped with a 0.46 cm × 25 cm Chiralpak AD-H column. Column chromatography was performed employing 230-400 mesh silica gel (Silicycle). Thin layer chromatography (TLC) was performed on silica gel 60 F\textsubscript{254} (EMD Chemicals Inc.). All solvents were purchased from Aldrich or Acros in anhydrous form and used as received. All reagents were purchased from major suppliers and used as received.

2.3.2 Gold(I)-Catalyzed Enantioselective Intermolecular Hydroamination of 1-Alkenes.

1-Methyl-3-(octan-2-yl)imidazolidin-2-one (9; Table 6, entry 1). A suspension of 7 (20 mg, 0.20 mmol), 1-octene (1.3 g, 12 mmol), [(S)-L\textsubscript{8}](AuCl)\textsubscript{2} (8.0 mg, 5.0 × 10-3 mmol), and AgOTf (2.6 mg, 1.0 × 10-2 mmol) in m-xylene (0.5 mL) was stirred at 100 °C for 48 h. The crude mixture was filtered through a plug of silica gel, concentrated, and chromatographed (hexanes–EtOAc = 5:1 → 1:1) to give 9 (37 mg, 86%) as a colorless oil. The enantiopurity of 9 (76% ee) was determined by HPLC analysis employing a chiral solid support (95:5 hexanes/isopropanol, 0.5 mL/min; Figure 20).
All remaining enantiomerically enriched cyclic ureas were synthesized employing a procedure similar to that used to synthesize enantiomerically enriched 9.

1-(Octan-2-yl)-3-phenylimidazolidin-2-one (14; Table 6, entry 2). Colorless oil, 80% yield. TLC (hexanes–EtOAc = 5:1): $R_f = 0.43$. 1H NMR: δ 7.57-7.55 (m, 2 H), 7.34-7.30 (m, 2 H), 7.01 (t, J = 7.6 Hz, 1 H), 4.08 (qt, J = 6.4, 8.8 Hz, 1 H), 3.82-3.78 (m, 2 H), 3.50-3.33 (m, 2 H), 1.52-1.21 (m, 10 H), 1.15 (d, J = 7.2 Hz, 3 H), 0.87 (t, J = 7.2 Hz, 3 H). 13C{1H} NMR: δ 157.38, 140.76, 128.70, 122.0, 117.17, 47.67, 42.53, 36.37, 34.0, 31.73, 29.12, 26.46, 22.59, 17.87, 14.05. IR (neat, cm$^{-1}$): 2924, 2855, 1697, 1510, 1482, 1456, 1417, 1391, 1259, 1145, 1095, 752. HRMS calcd (found) for C$_{17}$H$_{26}$N$_2$O (M$^+$): 274.2045 (274.2050). Enantiopurity (71% ee) was determined by HPLC analysis (99:1 hexanes/isopropanol, 0.5 mL/min; Figure 21).

1-(4-Fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one (15; Table 6, entry 3). Colorless oil, 81% yield. TLC (hexanes–EtOAc = 5:1): $R_f = 0.37$. 1H NMR: δ 7.45-7.41 (m, 2 H), 6.97-6.92 (m, 2 H), 4.06 (qt, J = 7.2, 8.4 Hz, 1 H), 3.73-3.68 (m, 2 H), 3.38-3.26 (m, 2 H), 1.49-1.33 (m, 2 H), 1.32-1.14 (m, 8 H), 1.08 (d, J = 6.8 Hz, 3 H), 0.80 (t, J = 6.4 Hz, 3 H). 13C{1H} NMR: δ 159.4, 157.4, 136.9, 118.8, 118.7, 115.4, 115.1, 47.8, 42.8, 36.4, 34.0, 31.7, 29.1, 26.5, 22.6, 17.8, 14.0. IR (neat, cm$^{-1}$): 2926, 2856, 1693, 1510, 1482, 1424, 1392, 1259, 1224, 1160, 1144, 828, 750. HRMS calcd (found) for C$_{17}$H$_{25}$FN$_2$O (M$^+$): 292.1951 (292.1954). Enantiopurity (74% ee) was determined by HPLC analysis (95:5 hexanes/isopropanol, 0.5 mL/min; Figure 22).
1-\textit{tert}-Butyl-3-(octan-2-yl)imidazolidin-2-one (16; Table 6, entry 4). Colorless oil, 89% yield. TLC (hexanes–EtOAc = 2:1): \(R_t = 0.70 \). \(^1\)H NMR: \(\delta \ 3.90 \) (sextet, \(J = 6.8 \) Hz, 1 H), 3.30-3.21 (m, 2 H), 3.14-3.03 (m, 2H), 1.33 (s, 9 H), 1.32-1.19 (m, 10 H), 1.04 (d, \(J = 6.8 \) Hz, 3 H), 0.85 (t, \(J = 7.2 \) Hz, 3 H). \(^{13}\)C\{\(^1\)H\} NMR: \(\delta \ 161.4, 53.09, 47.44, 41.16, 36.92, 34.28, 29.4, 27.6, 26.7, 22.8, 17.8, 14.3 \). IR (neat, cm\(^{-1}\)): 2958, 2925, 2855, 1683, 1482, 1455, 1414, 1392, 1361, 1267, 1249, 1227, 1144, 1102, 765, 745. HRMS calcd (found) for C\(_{15}\)H\(_{30}\)N\(_2\)O (M\(^+\)): 254.2358 (254.2357). Enantiopurity (78% ee) was determined by HPLC analysis (97:3 hexanes/isopropanol, 0.5 mL/min; Figure 23).

1-(Decan-2-yl)-3-methylimidazolidin-2-one (17; Table 6, entry 5). Colorless oil. 83% yield. TLC (hexanes–EtOAc = 1:1): \(R_t = 0.33 \). \(^1\)H NMR: \(\delta \ 3.92 \) (qt, \(J = 6.4, 8.8 \) Hz, 1 H), 3.24-3.10 (m, 4 H), 2.73 (s, 3 H), 1.45-1.33 (m, 2 H), 1.32-1.17 (m, 12 H), 1.03 (d, \(J = 6.8 \) Hz, 3 H), 0.83 (t, \(J = 7.2 \) Hz, 3 H). \(^{13}\)C\{\(^1\)H\} NMR: \(\delta \ 161.9, 48.3, 46.0, 37.5, 34.6, 32.4, 32.0, 30.0, 29.9, 29.8, 27.0, 23.1, 18.3, 14.6 \). IR (neat, cm\(^{-1}\)): 2923, 2853, 1690, 1493, 1433, 1401, 1277, 1253, 1048, 760. HRMS calcd (found) for C\(_{14}\)H\(_{28}\)N\(_2\)O (M\(^+\)): 240.2202 (240.2207). Enantiopurity (73% ee) was determined by HPLC analysis (98:2 hexanes/isopropanol, 0.5 mL/min; Figure 24).

1-(Dodecan-2-yl)-3-methylimidazolidin-2-one (18; Table 6, entry 6). Colorless oil, 76% yield. TLC (hexanes–EtOAc = 1:1): \(R_f = 0.36 \). \(^1\)H NMR: \(\delta \ 3.87 \) (qt, \(J = 7, 8.5 \) Hz, 1 H), 3.21-3.08 (m, 4 H), 2.71 (s, 3 H), 1.39-1.27 (m, 2 H), 1.26-1.13 (m, 16 H), 1.05 (d, \(J = 7.0 \) Hz, 3 H), 0.81 (t, \(J = 7.0 \) Hz, 3 H). \(^{13}\)C\{\(^1\)H\} NMR: \(\delta \ 161.7, 48.0, 45.8, 37.3, 34.28, 32.0, 29.4, 27.6, 26.7, 22.8, 17.8, 14.3 \).
34.3, 32.1, 31.8, 29.8, 29.8, 29.8, 29.6, 26.7, 22.9, 18.0, 14.3. IR (neat, cm⁻¹): 2922, 2852, 2922, 2852, 1693, 1493, 1433, 1401, 1277, 1254, 1046, 760. HRMS calcd (found) for C₁₆H₃₂N₂O (M⁺): 268.2515 (268.2511). Enantiopurity (75% ee) was determined by HPLC analysis (97:3 hexanes/isopropanol, 0.5 mL/min; Figure 25).

2.3.3 Control Reactions

(1) Silver/ligand only. A suspension of 7 (20.0 mg, 0.20 mmol), 1-octene (1.92 mL, 12.0 mmol), AgOTf (5.1 mg, 0.020 mmol), and (S)-L₈ (23.0 mg, 0.020 mmol) in m-xylene (0.5 mL) in a pressure tube was stirred at 100 °C for 48 h. The crude mixture was then filtered through a silica gel plug and concentrated. NMR analysis of the crude reaction mixture revealed no detectable formation of 9.

(2) HOTf/ligand only. A suspension of 7 (20.0 mg, 0.20 mmol), 1-octene (1.92 mL, 12.0 mmol), HOTf (3.0 mg, 0.020 mmol), and (S)-L₈ (23.0 mg, 0.020 mmol) in m-xylene (0.5 mL) in a pressure tube was stirred at 100 °C for 48 h. The crude mixture was then filtered through a silica gel plug and concentrated. NMR analysis of the crude reaction mixture revealed no detectable formation of 9.
Figure 63. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 76 % ee) methyl-3-(octan-2-yl)imidazolidin-2-one (9).

Figure 64. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 71 % ee) 1-(octan-2-yl)-3-phenylimidazolidin-2-one (14).
Figure 65. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 74 % ee) 1-(4-fluorophenyl)-3-(octan-2-yl)imidazolidin-2-one (15).

Figure 66. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 78 % ee) 1-tert-butyl-3-(octan-2-yl)imidazolidin-2-one (16).
Figure 67. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 73 % ee) 1-(decan-2-yl)-3-methylimidazolidin-2-one (17).

Figure 68. Chiral HPLC traces of racemic (left trace) and enantiomerically enriched (right trace, 75 % ee) 1-(dodecan-2-yl)-3-methylimidazolidin-2-one (18).
Chapter 3

Synthesis and Application of Polymer Embedded Bis(phosphine) Ligands for Mechanocatalysis

Polymerization reactions to produce PS-1a, PS-2a, SAN-1a, and SAN-2a from XII and operation of the rheometer for reactions listed in Table 8 were performed by Zachary S. Kean from Craig group at Duke University.
3.1 Introduction

3.1.1 Mechanocatalysis

Utilization of mechanical forces to engineer synthetic pathways is an intriguing approach as it offers altered reaction pathways that are not accessible thermally. Some groups have utilized mechanical forces to activate catalytic complexes, called mechanocatalysis. Mechanical forces can be effectively applied to catalysts when polymeric substituents are tethered to the catalysts, and the mechanical forces are transmitted in a directional fashion via the polymer chain. The first example of mechanocatalysis was reported by Klibanov et al., where they used a nylon-fiber bound enzyme to apply mechanical forces (stretch or unstretch) and observed changes in activity of the enzymes. Recently, Sijbesma has reported mechanocatalysis via sonochemical activation of latent coordination complexes. In this system, applied ultrasound generates shear forces from collapsing cavitation bubbles in solution, breaking a metal-ligand bond and activating the catalyst. The polymeric coordination complexes of bis N-heterocyclic carbenes becomes activated via force induced ligand displacement, resulting in active catalysis for ring closing metathesis or transesterification. This is a well regarded example for on-off switching of catalyst activity by a mechanical force that is potentially applicable to many practical uses such as mechanical signal sensors and self-healing materials (Figure 70).
Figure 69. Examples of mechanocatalysis.
3.1.2 Asymmetric Allylic Alkylation and Dihedral Angle Effect

The formation of carbon-carbon bonds through palladium catalysis is widely used in organic synthesis. Among the many palladium catalyzed C-C bond forming reactions, asymmetric allylic alkylation (AAA) is one of the most widely used reactions for introducing asymmetry in organic molecules.100-107 AAA employs various activated allylic electrophiles with different leaving groups such as carboxylate or carbonate, and is compatible with a wide range of carbon and heteroatom nucleophiles. Also, this reaction generally shows a high level of stereoselectivity. The reaction mechanism of allylic alkylation is depicted Scheme 3.1. The allylic electrophile undergoes oxidative addition to a Pd(0) complex with expulsion of the leaving group (X⁻) to and generating a cationic \(\pi\)-allyl complex (Scheme 3.1, I). Outer-sphere attack of a nucleophile on the \(\pi\)-allyl moiety and subsequent decomplexation forms the alkylated nucleophile with regeneration of the Pd(0) catalyst.
Scheme 3.1. Proposed mechanism for palladium catalyzed allylic alkylation.

To achieve high reactivity and stereoselectivity in metal catalyzed transformations, many new types of ligands with varied electronic and steric properties have been introduced. Among the many ligand types, axially chiral atropisomeric biaryl bisphosphines such as BINAP, BIPHEP, and MeOBIPHEP are one of the most effective ligand types in many asymmetric catalytic reactions. For chiral atropisomeric bisphosphines, the asymmetric spatial environment can be rationalized by the concept of “quadrants”, where the steric hindrance around the metal is created by the phosphorus substituents in pseudoequatorial positions (Figure 71). The dihedral angle (θ) of the biaryl backbone is geometrically related to the bite angle (β), which determines the proximity of the pseudoequatorial aryl groups and the chelating substrate around the metal. Based on this model, the smaller dihedral angle would provide the higher interaction between ligand and substrate, and vice versa.
Figure 70. Schematic representation of MeO-BIPHEP for quadrants rule and relationship between dihedral and bite angle.

Zhang et. al. reported an interesting correlation study between ligand dihedral angle and enantioselectivity in the Pd catalyzed AAA reaction. For the correlation study, they synthesized a series of tunable phosphine ligands (Tunephos), which have variable number of carbon atoms as a linker to connect 6,6’-positions of biaryl backbone. As the number of carbon atoms in the linker increased, the dihedral angle of the ligand increased (Figure 71). They chose the AAA reaction of 1,3-diphenylpropenyl acetate with dimethyl malonate to form (E)-dimethyl 2-(1,3-diphenylallyl)malonate. Under the condition of 2.5 mol % [Pd(allyl)Cl]$_2$, 5 mol % ligand, N,O-bis(trimethylsilyl)acetamide (BSA), and catalytic amounts of KOAc (5 mol %) in THF, (E)-dimethyl 2-(1,3-diphenylallyl)malonate was produced in good yield with up to 95 % (Table 7). Interestingly, AAA reaction with larger dihedral angle C6-Tunephos ligand afforded the
The highest enantioselectivity of 95% ee (Table 7, entry 6). This study demonstrated a clear relationship between dihedral angle and enantioselectivity in palladium-catalyzed AAA.

![Figure 71. Dihedral angle of axially chiral bisphosphine ligands.](image)

<table>
<thead>
<tr>
<th>ligand</th>
<th>(R)-BINAP</th>
<th>(R)-MeO-MIPHEP</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>dihedral angle (deg.)</td>
<td>87</td>
<td>87</td>
<td>60</td>
<td>74</td>
<td>77</td>
<td>88</td>
<td>94</td>
<td>106</td>
</tr>
</tbody>
</table>
Table 6. Effect of ligand dihedral angle on the yield and enantioselectivity the palladium-catalyzed AAA reaction of 1,3-diphenylpropenyl acetate with dimethyl malonate to form (E)-dimethyl 2-(1,3-diphenylallyl)malonate employing Cn-Tunephos ligands.

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>yield(%)(^a)</th>
<th>ee(%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1-Tunephos</td>
<td>89</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>C2-Tunephos</td>
<td>86</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>C3-Tunephos</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>C4-Tunephos</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>C5-Tunephos</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>C6-Tunephos</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yield. \(^b\) Determined by chiral HPLC.

3.1.3 Project Goals

Chiral atropisomeric biaryl bisphosphines are effective ligands in many asymmetric catalytic reactions, and extensive studies on modifying these ligands have been performed to achieve high levels of reactivity and stereoselectivity in asymmetric catalytic reactions for decades. However, since subtle changes in ligand properties such
as the electronic, steric, and geometric character of the ligand can produce large variations in reactivity and enantioselectivity, searching for an optimal ligand for a particular reaction demands great amount of time and effort.

Our approach for designing a mechanocatalytic chiral bisphosphine ligand involves introducing a chiral bisphosphine ligand into a polymeric substituent so that mechanical forces can be applied to a geometry sensitive catalyst via the polymer chain. More specifically, we aim to generate tension on a polymer-embedded ligand in a cup in bob rheometer. By doing this, the polymer-embedded ligand would deform to increase its dihedral angle (θ), which would be evidenced by a change in enantioselectivity in a palladium-catalyzed AAA reaction. This process is coined as “fluxional mechanocatalysis”, where the outcome is influenced by the stress state of the catalyst (Figure 73). Our primary goal is to demonstrate proof of concept for fluxional mechanocatalysis by introducing polymer embedded ligands to Pd-catalyzed AAA system, and after successful realization of the first goal, we will expand our fluxional mechanocatalysis to another systems.
3.2 Results and Discussion

3.2.1 Synthesis of Polymer-Embedded Ligands for Fluxional Mechanocatalysis

For an effective generation of the mechanical force, a high molecular weight polymer needs to be tethered to the catalyst. Our basic strategy to generate polymer tethered chiral catalysts was to synthesize a ligand possessing a controlled radical polymerization initiator, so that a polymer could be grown from the ligand through various polymerization reactions. Initial attempts were made to generate a radical initiator, benzyl bromide, directly on a biaryl backbone (Scheme. 3.2). To this end, copper catalyzed Ullmann homocoupling reaction of 2-iodo-3-nitrotoluene gave biaryl compound II. Reduction of the aromatic nitro groups using Pd/C generated the biaryl...
amine complex III that was converted via a Sandmeyer reaction to form IV via nucleophilic displacement of diazonium ion intermediate with iodide. Treatment of IV with n-BuLi and diphenylphosphinic chloride produced the bis(phosphine oxide) compound V. Unfortunately, attempts to generate the brominated product under various reaction conditions utilizing N-bromosuccinimide (NBS) or 1,3-dibromo-5,5-dimethylhydantoin and 2,2'-azobis(2-methylpropionitrile) (AIBN) or benzoyl peroxide in CCl$_4$ at various reaction temperatures did not yield the desired halogenated product, but rather produced decomposed products of mono-aryl moieties and some unidentified side products.

Scheme 3.2. Reaction scheme for the generation of a radical initiator on a biaryl bisphosphine ligand.

Another approach was made to introduce a different radical initiator, 2-bromo-isobutyryl moiety, onto a biaryl backbone (Scheme 3.3). Demethylation of (S)-MeO-
BIPHEP using BBr$_3$ and following esterification with 2-bromo-isobutyryl bromide produced the coupled product VII. However, during the subsequent polymerization to produce the polymer-embedded ligand, the undesirable phosphine oxide species VIII was produced in addition to the desired bis(phosphine) species. Unfortunately, attempts to reduce the phosphine oxide to phosphine failed, presumably due to the cleavage of the ester bond between the aryl ring and radical initiator under reducing conditions.

Scheme 3.3. Reaction scheme for the synthesis of polyacrylate-embedded bis(phosphine) ligand.

Taking into account the need to reduce the phosphine oxide after polymerization, our next approach to the synthesis of a polymer-embedded bis(phosphine) ligand aimed
to introduce (1-bromoethyl)benzene as a radical initiator via an ether linkage and to employ either polystyrene (PS) or styrene acrylonitile (SAN) as a polymer (Scheme 3.4). To this end, demethylation of the methoxy groups of \((S)\)-MeO-BIPHEP using tribromoborane generated the bis(phenol) VI, followed by oxidation with hydrogen peroxide in methanol to give IX. Alkylation of IX with 1-(4-(bromomethyl)phenyl)ethanone (S1) in the presence of potassium carbonate in refluxing acetone formed bis(ether) X. Reduction of the aromatic ester with sodium borohydride formed bis(benzylic alcohol) complex XI followed by bromination acetyl bromide to form XII with the desired radical initiator of 1-phenyl ethylbromide on the biaryl backbone. Copper catalyzed polymerization\(^{108}\) of XII produced the polystyrene-embedded bis(phosphine oxide) ligands PS-1a and PS-2a (method A) or the styrene acrylonitrile-embedded bis(phosphine oxide) ligands SAN-1a and SAN-2a (method B). Treatment of polymer-embedded ligands PS-1a, PS-2a, SAN-1a, and SAN-2a with trichlorosilane of in the presence of triethylamine led to reduction of the phosphine oxide to generate the desired polymer-embedded bis(phosphine) ligands PS-1 and PS-2, and SAN-1 and SAN-2, respectively. Initially however, we observed that this reduction protocol generated a cross-linked polymer, which became a gel type compound. We reasoned that the production of the cross-linked polymer was caused by radical formation under the elevated temperatures used for the reduction. Adding a catalytic amount of the radical inhibitor, 2,6-Di-tert-butyl-4-methylphenol (BHT) to the reduction sequence allowed us to obtain soluble polymer after reduction, and polymer-embedded ligands (PS-1 and PS-2, and SAN-1 and SAN-2) for fluxional mechanocatalysis were attained.
Scheme 3.4. Scheme for the synthesis of polymer-embedded ligands PS-1, PS-2, SAN-1, and SAN-2.
3.2.2 Pd-Catalyzed Asymmetric Allylic Alkylation under a Shear Force

A correlation study between ligand dihedral angle and enantioselectivity in Pd-catalyzed asymmetric allylic alkylation (AAA) was reported, showing that increasing ligand dihedral angle resulted in increasing enantioselectivity. Based on the results, we chose the Pd-catalyzed AAA reaction of 1,3-diphenylpropenyl acetate with dimethyl malonate to form \((E)\)-dimethyl 2-(1,3-diphenylallyl)malonate in an effort to demonstrate fluxional mechanocatalysis. Our first task was to determine if the large molecular weight of polymer-tethered ligand would function as a ligand in palladium-catalyzed AAA. However, prior to the application of polymer-embedded ligand to AAA, we performed reaction optimization of the palladium-catalyzed AAA of 1,3-diphenylpropenyl acetate with dimethyl malonate employing \((S)\)-MeO-BIPHEP as the ligand (Table 8), which has the same biaryl backbone and the polymer-embedded bis(phosphine) ligands PS-1, PS-2, SAN-1, and SAN-2. Among the reagents, combination of tris(dibenzylideneacetone)dipalladium \([\text{dba)}_2\text{Pd}_2]\) and \(N,O\)-Bis(trimethylsilyl)acetamide (BSA) showed moderate reactivity (78%) and enantioselectivity (71 % ee) (Table 8, entry 2). Employing these conditions, we evaluated the AAA reaction of 1,3-diphenylpropenyl acetate with dimethyl malonate employing \(\text{dba)}_2\text{Pd}_2\) and BSA with ligand PS-1 to gauge the efficacy of the polymer-embedded ligand. Indeed, the polystyrene-embedded ligand PS-1 produced \((E)\)-dimethyl 2-(1,3-diphenylallyl)malonate in 65% yield with 57% ee (eq 3.1). However, further examination revealed the background reaction, presumably catalyzed by unligated \(\text{dba)}_2\text{Pd}_2\) that decreased the enantiopurity of the product over time from 86% ee at 4 h to 50% ee at 28 h. For consistent results, another Pd source was
necessary, and among the Pd sources tested, \([\text{Pd(allyl)}\text{Cl}]_2\) functioned as an effective palladium source with no detectable background reaction, good reactivity, and high enantioselectivity in AAA.

Table 7. Effect of reaction conditions on the AAA reaction 1,3-diphenylpropenyl acetate with dimethyl malonate employing (S)-MeO-BIPHEP as the ligand.

\[
\begin{align*}
\text{Ph} & \overset{\text{OAc}}{\longrightarrow} + \text{H}_3\text{CO}_2\text{C} & \overset{\text{CO}_2\text{CH}_3}{\longrightarrow} & \text{Ph} & \overset{\text{H}_3\text{CO}_2\text{C} & \overset{\text{CO}_2\text{CH}_3}{\longrightarrow} & \text{Ph} \\
\text{Ph} & \overset{\text{OAc}}{\longrightarrow} & \text{H}_3\text{CO}_2\text{C} & \overset{\text{CO}_2\text{CH}_3}{\longrightarrow} & \text{Ph} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>Pd</th>
<th>yield (%)(^a)</th>
<th>ee (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[\text{Pd(allyl)}\text{Cl}]_2</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>(\text{dba})_3\text{Pd}</td>
<td>78</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>(\text{dba})_2\text{Pd}</td>
<td>84</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>\text{Pd(OAc)}_2</td>
<td>82</td>
<td>35</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yield. \(^b\) Enantiopurity determined by HPLC analysis on a chiral stationary phase.

Another important factor for realization of fluxional mechanocatalysis was the solubility of the polymer-embedded ligand in the reaction medium. Solubility test of the
polymer-embedded ligands showed an amount of the ligand corresponding 1.7 mol % catalyst loading was completely dissolved in 1 mL of CH₂Cl₂. Considering the results of our optimization studies, we employed the following reaction conditions for mechanocatalytic palladium-catalyzed AAA: 1,3-diphenylallyl acetate (0.2 mmol), dimethyl malonate (3 equiv), BSA (3 equiv), polymer-embedded ligand (1.7 mol %), and [Pd(allyl)Cl]₂ (0.85 mol %) in 1 mL of CH₂Cl₂ at room temperature for 18 h. Employing these reaction conditions, control AAA reactions with polymer-embedded ligands in a normal reaction vessel were performed prior to application of shear force in a rheometer (Table 8, entries 1-3). Different types and molecular weights of polymer-embedded ligands underwent successful AAA in moderate conversion with high enantioselectivity indicating the reaction condition was feasible for next step to apply steady shear flow in a cup and bob rheometer (Figure 74).
Figure 73. Illustration of applied steady shear flow to a sample of polymer in the 0.25 mm gap (left) and a cup and bob rheometer (right).

\begin{align*}
P_e &= \frac{6\pi a^3}{k_B T} \sigma = \frac{6\pi a^3}{k_B T} \dot{\gamma} \eta \quad \text{(eq 3.2)} \\
a & : \text{radius of the polymer} \\
\sigma & : \text{shear stress} \\
\eta & : \text{viscosity} \\
\dot{\gamma} & : \text{shear rate}
\end{align*}

Applied force onto the polymer-embedded ligand was estimated using Péclet number \(P_e \), which is a dimensionless quantity that gauges whether solution flow or Brownian fluctuations dominate the behavior of an object in solution. For example, if \(P_e > 1 \), shear flow dominates and if \(P_e < 1 \), Brownian motion dominates. Based on the equation 3.2,
increasing polymer MW (polymer radius), shear rate, and/or viscosity will create $P_e > 1$ environment and polymer chain deformation and stretching may occur. We set our first AAA reaction under a shear stress using **SAN-2** ligand at 6000 s$^{-1}$ of shear rate, and the reaction showed 51% conversion and 91% ee, which was similar to that obtained with the control reaction in the absence of sheer (Table 9, entries 1 and 4), leading us to assume there was no effective polymer chain deformation and stretching under the reaction condition. Other trials were made by adding different amount of polystyrene additive to change the viscosity of the reaction medium. However, increasing viscosity did not provide observable changes in enantioselectivity (Table 9, entries 5-7). At this point, we suspected degradation of the polymer chain under a high shear stress, resulting in the ineffective transmission of shear stress. Checking the molecular weight of the polymer and polydispersity index (PDI) value after the reactions, however, showed the same values as intact ligands, indicating no degradation of the polymer chains occurred under the levels of the shear stress.
Table 8. AAA reactions under shear stress.

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>conv.(%)a</th>
<th>ee (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAN-2</td>
<td>53</td>
<td>92</td>
</tr>
<tr>
<td>2c</td>
<td>SAN-1</td>
<td>53</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>PS-2</td>
<td>62</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>shear rate (sec⁻¹)</th>
<th>conv.(%)a</th>
<th>ee (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SAN-2</td>
<td>6000</td>
<td>51</td>
<td>91</td>
</tr>
<tr>
<td>5c</td>
<td>SAN-1</td>
<td>6000</td>
<td>51</td>
<td>92</td>
</tr>
<tr>
<td>6d</td>
<td>SAN-1</td>
<td>6000</td>
<td>46</td>
<td>92</td>
</tr>
<tr>
<td>7e</td>
<td>SAN-1</td>
<td>6000</td>
<td>45</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>PS-2</td>
<td>6000</td>
<td>58</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>PS-2</td>
<td>2000</td>
<td>61</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>PS-2</td>
<td>3000</td>
<td>64</td>
<td>89</td>
</tr>
</tbody>
</table>

entry 1-3: control reactions in a vial, entry 4-10: a shear force applied in a rheometer. aconversion determined by GC. bEnantiopurity determined by HPLC on a chiral stationary phase. cadding 300mg of polystyrene. dadding 600mg of polystyrene. eadding 1g of polystyrene.

We further tested reactions at varying shear rate with PS-2 ligand, and the results showed identical enantioselectivity to the corresponding control reaction (Table 8, entries 3 and 8-10). Close examinations revealed that high viscosity of the reaction solution at high shear rate of the rheometer necessitates high level of torque, which exceeded the instrumental torque limit, resulting in instability of the spinning of the rheometer and disruption of the constant applied shear force. We tried a series of experiments by setting different reaction conditions (shear rate and viscosity) to avoid exceeding a torque limit of the rheometer, and at the same time acquiring % ee change. However, it turned out that a high shear stress demanded a change the geometry of the polymer-embedded ligand, and the high shear stress can only be achieved through a combination of when high
viscosity and high shear rate, which caused a high level of torque that exceeded the instrumental limit (eq 3.3).

\[\sigma = \eta \dot{\gamma} \]

\[M = k\eta \]

\(\sigma \): shear stress
\(\eta \): viscosity
\(\dot{\gamma} \): shear rate
\(M \): torque

(eq 3.3)

3.2.3 Future Directions.

Another approach to realize fluxional mechanocatalysis will involve incorporating similar polymer-embedded bis(phosphine) ligands such as PS-1, PS-2, SAN-2, and SAN-2 as crosslinkers in elastomeric materials. This should allow us to apply consistent stress to the system, as well as tune the amount of stress localized at the ligand crosslink points by choosing co-crosslinkers with long spacer lengths.109 Additionally, we can embed spiropyran crosslinkers as a colorimetric stress sensor to ensure we are applying sufficient force to cause bond deformation. Synthesis of a gel-type cross-linked polymer possessing proper physical properties for an applied mechanical force would be a key step for the success of this approach.
3.3 Experimental Section

3.3.1 General Methods

Reactions were performed under a nitrogen atmosphere employing standard Schlenk and/or drybox techniques unless specified otherwise. NMR spectra were obtained on Varian spectrometers operating at 400 MHz for \(^1\)H NMR, 100 MHz for \(^{13}\)C and 160 MHz for \(^{31}\)P NMR for in CDCl\(_3\) at 25 °C unless noted otherwise. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatography equipped with a 25 m polydimethylsiloxane capillary column and FID detector. Chiral HPLC was performed on a Shimadzu LC-2010A chromatograph equipped with a 0.46 cm × 25 cm Chiralpak AD-H column. Gel permeation chromatography (GPC) was performed on two in series columns (Agilent Technology PL gel 10\(^4\)Å, 10\(^3\)Å) with THF as the mobile phase at 0.5 mL min\(^{-1}\). An Anton Paar Physica MCR 301 rheometer was used for applying a shear stress. Column chromatography was performed employing 230-400 mesh silica gel (Silicycle). Thin layer chromatography (TLC) was performed on silica gel 60 F\(_{254}\) (EMD Chemicals Inc.). Room temperature is 23 °C. All solvents were purchased from Aldrich or Acros in anhydrous form and used as received. All reagents were purchased from major suppliers and used as received.
3.3.2 Ligand Synthesis

\textit{(6,6'-Dimethylbiphenyl-2,2'-diyl)bis(diphenylphosphineoxide)} (Scheme 3.2, V). To 2-iodo-3-nitrotoluene (5.0 g, 19 mmol) in DMF (30 mL) was added copper (2.0 g, 31.3 mmol) and the reaction mixture was refluxed at 180 °C for 3 h. The hot mixture was filtered through a Celite pad and eluted with Et\textsubscript{2}O (60 mL). The combined Et\textsubscript{2}O and DMF extracts were evaporated under reduced pressure until only DMF remained. The resulting DMF suspension was poured into water (200 mL) and the resulting milky precipitate coagulated on standing overnight. The resulting solid was recrystallized from EtOH to produce 2,2'-dimethyl-6,6'-dinitrobiphenyl (II) as a yellow powder (1.88 g, 73 %). TLC (hexanes–EtOAc = 1:1): $R_f = 0.68$. 1H NMR: δ 7.99 (d, $J = 8.4$ Hz, 2 H), 7.58 (d, $J = 7.6$ Hz, 2 H), 7.46 (t, $J = 8.0$ Hz, 2 H), 1.98 (s, 6 H).

2,2'-Dimethyl-6,6'-dinitrobiphenyl (1.8 g, 6.6 mmol) and Pd/C (100 mg, 5 wt. %) in MeOH (30 mL) was stirred under H\textsubscript{2} (1 atm) at room temperature for 6 h. The reaction mixture was filtered through a Celite pad and the filtrate was evaporated to produce 6,6'-dimethylbiphenyl-2,2'-diamine (III) as a yellow powder (1.35 g, 96 %). TLC (hexanes–EtOAc = 1:1): $R_f = 0.58$. 1H NMR: δ 7.10 (t, $J = 8.0$ Hz, 2 H), 6.73 (d, $J = 7.8$ Hz, 2 H), 6.64 (d, $J = 8.0$ Hz, 2 H), 3.51 (bs, 2 H), 3.51 (bs, 2 H), 3.51 (bs, 2 H), 2.0 (s, 6 H).

Concentrated HCl (17 mL) was added slowly to 6,6'-dimethylbiphenyl-2,2'-diamine (1.18 g, 5.56 mmol) in an ice bath. To this mixture was added a solution of NaNO\textsubscript{2} (920 mg, 13.3 mmol) in deionized water (5 mL) at ~10 °C and this mixture was stirred for 30 min. The resulting dark solution was poured into a solution of KI (3.7 g, 22.2 mmol) in deionized water (16 mL). NaHSO\textsubscript{3} solution (20 mL) was added to this...
reaction mixture, and resulting solid was filtered and washed with water (40 mL x 5) to give 2,2'-diiodo-6,6'-dimethylbiphenyl (IV) as a light brown powder (1.85 g, 77%). TLC (hexanes only): $R_f = 0.38$. 1H NMR: δ 7.80 (d, $J = 8.0$ Hz, 2 H), 7.26 (t, $J = 8.0$ Hz, 2 H), 7.0 (d, $J = 8.0$ Hz, 2 H), 2.01 (s, 6 H).

To 2,2'-diiodo-6,6'-dimethylbiphenyl (1.5 g, 3.46 mmol) in THF (17 mL) was added n-BuLi (3.3 mL, 2.5 M in hexane) at –78 °C and the reaction mixture was stirred for 1 h. To the reaction mixture was added a solution of diphenylphosphinic chloride (1.64 g, 6.92 mmol) in THF (8.5 mL) dropwise and the reaction mixture was slowly warmed to room temperature and stirred for 12 h. The resulting mixture was quenched with EtOH (10 mL) and the solvent was evaporated under vacuum. The resulting mixture was dissolved in CH$_2$Cl$_2$ to form a white precipitate that was filtered and discarded. The filtrate was concentrated and chromatographed on silica gel to give V as a white solid (620 mg, 31%). TLC (CH$_2$Cl$_2$–MeOH = 10:1): $R_f = 0.47$. 1H NMR: δ 7.84–7.09 (m, 26 H), 1.41 (s, 6 H). 31P NMR: δ 30.68.

(S)-6,6'-Bis(diphenylphosphino)biphenyl-2,2'-diylbis(2-bromo-2-methylpropanoate) (Scheme 3.3, VII). A solution of (S)-MeO-BIPHEP (500 mg, 0.434 mmol) in CH$_2$Cl$_2$ (5 mL) was cooled at –78 °C and sparged with N$_2$ for 15 min. BBr$_3$ (1.3 mL: 1 M in CH$_2$Cl$_2$, 1.30 mmol) was added dropwise slowly via a syringe to the solution. The reaction mixture was stirred at –78 °C for 1 h, and at room temperature for 20 h. The reaction mixture was warmed to 0 °C, and degassed H$_2$O (3 mL) was added slowly. After removing the aqueous layer, the organic layer was washed sequentially with degassed H$_2$O and brine, and dried over MgSO$_4$. The combined organic extracts were
filtered through a pad of neutral Al₂O₃, and chromatographed on silica gel to give (S)-6,6′-bis(diphenylphosphino)biphenyl-2,2′-dol (VI) as a light yellow foam (343 mg, 72%). TLC (hexanes–EtOAc = 3 :1): \(R_f = 0.28 \). \(^1\)H NMR: \(\delta \) 7.34-7.15 (m, 22 H), 6.80-6.76 (m, 4 H), 4.26 (bs, 2 H). \(^{31}\)P NMR: \(\delta \) −13.81.

To (S)-6,6′-bis(diphenylphosphino)biphenyl-2,2′-dol (VI) (50 mg, 0.090 mmol), triethyl amine (27 mg, 0.270 mmol), and 4-dimethylaminopyridine (2.2 mg, 0.018 mmol) in CH₂Cl₂ (3 mL) was added dropwise 2-bromo-2-methylpropanoyl bromide (50 mg, 0.216 mmol) at 0 °C and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was cooled to 0 °C and deionized water (6 mL) was added dropwise with vigorous stirring for 15 min. The mixture was extracted with CH₂Cl₂ and the organic extract was concentrateed and chromatographed on silica gel to give (S)-6,6′-bis(diphenylphosphino)biphenyl-2,2′-diyl bis(2-bromo-2-methylpropanoate) (VII) as a white foam (41 mg, 56%). TLC (hexanes–EtOAc = 5 :1): \(R_f = 0.60 \). \(^1\)H NMR: \(\delta \) 7.33-7.23 (m, 11 H), 7.15-7.03 (m, 15 H), 1.58 (s, 6 H), 1.16 (s, 6 H). \(^{31}\)P NMR: \(\delta \) −15.62. HRMS calcld (found) for C₄₄H₃₈Br₂O₄P₂ (M⁺): 851.0685 (851.0680).

1-(4-(Bromomethyl)phenyl)ethanone (Scheme 3.4, S1). To a solution of 1-p-tolylethanone in CH₃CN (40 mL) was added N-bromosuccinimide (7.3 g, 41.0 mmol) and 2,2′-azobis(2-methylpropionitrile) (615 mg, 3.75 mmol) and the reaction mixture was stirred for 2 h at 90 °C. The solvent was evaporated under a reduced pressure and toluene (50 mL) was added to the residue. The solution was filtered, and the filtrate was concentrated and chromatographed on silica gel to give 1-(4-(bromomethyl)phenyl)ethanone as a colorless oil (5.4 g, 68%). TLC (hexanes–EtOAc = 170
7 :1): $R_f = 0.21$. 1H NMR: δ 7.90 (d, $J = 7.8$ Hz, 2 H) 11 H), 7.46 (d, $J = 7.6$ Hz, 2 H), 4.48 (s, 2 H), 2.57 (s, 2 H).

((S)-6,6'-Bis(4-(1-bromoethyl)benzylxylobiphenyl-2,2'-diyl)bis(diphenylphosphineoxide) (Scheme 3.4, XII). To a solution of (S)-6,6'-bis(diphenylphosphino)biphenyl-2,2'-diol (VI) (517 mg, 0.932 mmol) in MeOH (10 mL) cooled to 0 °C was added H$_2$O$_2$ (140 µL, 30 wt. % in H$_2$O) dropwise. The reaction mixture was stirred at room temperature for 3 h. After the reaction time, the reaction mixture was poured into H$_2$O (40 mL) and the resulting white precipitate was filtered, washed with H$_2$O, and dried under a high vacuum to give 6,6'-bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphoryl)biphenyl-2,2'-diol (IX) as a white powder (522 mg, 95 %). 31P NMR: δ 32.24.

To 6,6'-Bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphoryl)biphenyl-2,2'-diol (IX) (300 mg, 0.512 mmol) and K$_2$CO$_3$ (566 mg, 4.096 mmol) in acetone (12 mL) was added 1-(4-(bromomethyl)phenyl)ethanone (S1) and the reaction mixture was refluxed at 60 °C for 20 h. After the reaction time, the reaction mixture was cooled to room temperature and deionized water (15 mL) was added dropwise. After 5 min of stirring, additional deionized water (30 mL) was added to the reaction mixture. The reaction mixture was extracted with Et$_2$O (60 mL) and the aqueous phase extracted with CH$_2$Cl$_2$ (60 mL). The combined organic extracts were concentrated and chromatographed on silica gel to give (S)-1,1'-(4,4'-(6,6'-bis(diphenylphosphoryl)biphenyl-2,2'-diyl)bis(oxy)bis(methylene)bis(4,1-phenylene))diethanone (X) as a white foam (296 mg, 68 %). TLC (CH$_2$Cl$_2$–MeOH = 16:1): $R_f = 0.32$. 1H NMR : δ 7.65-7.56 (m, 8 H), 7.54-
7.49 (m, 4 H), 7.40-7.36 (m, 2 H), 7.30-7.22 (m, 8 H), 7.15-7.11 (m, 4 H), 6.89-6.83 (m, 8 H), 4.76 (d, J = 14.0 Hz, 2 H), 4.45 (d, J = 14.0 Hz, 2 H), 2.47 (s, 6 H).

31P NMR: δ 29.21.

To $^{(S)}$-1,1'-(4,4'-(6,6'-bis(diphenylphosphoryl)biphenyl-2,2'-diyl)bis(oxy)bis(methylene)bis(4,1-phenylene))diethanol (X) (180 mg, 0.212 mmol) in EtOH (4 mL) was added NaBH$_4$ (16 mg, 0.424 mmol) in EtOH (4 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and at room temperature for 3 h. After the reaction time, saturated NH$_4$Cl solution (10 mL) was added, and the reaction mixture was extracted with CH$_2$Cl$_2$ (30 mL). The extract was washed with deionized water (10 mL) and the organic phase was dried over MgSO$_4$. The solvent was evaporated under vacuum to produce 1,1'-(4,4'-(6,6'-bis(diphenylphosphoryl)biphenyl-2,2'-diyl)bis(oxy)bis(methylene)bis(4,1-phenylene))diethanol (XI) as a white foam (180 mg, 99%). (CH$_2$Cl$_2$–MeOH = 16:1): $R_f = 0.18$.

To 1,1'-(4,4'-(6,6'-bis(diphenylphosphoryl)biphenyl-2,2'-diyl)bis(oxy)bis(methylene)bis(4,1-phenylene))diethanol (XI) (180 mg, 0.211 mmol) was added acetyl bromide (1.0 g, 6.8 mmol) at 0 °C. The reaction mixture was vigorously stirred at 0 °C for 10 min, and then slowly warmed to room temperature and stirred for 40 min. Excess acetyl bromide was evaporated under vacuum and the resulting light yellow foam was dissolved in CH$_2$Cl$_2$ (15 mL). The resulting solution was cooled at 0 °C, and deionized water (10 mL) was added dropwise. The resulting mixture was extracted with CH$_2$Cl$_2$ and the organic phase was dried over MgSO$_4$. The solution was concentrated and chromatographed on silica gel to give ((S)-6,6'-bis(4-(1-bromoethyl)benzyloxy)biphenyl-
2,2'-diyl)bis(diphenylphosphineoxide) (XII) as a white foam (139 mg, 67%). \((\text{CH}_2\text{Cl}_2-\text{MeOH} = 16:1)\): \(R_f = 0.45\). \(^1\text{H}\) NMR: \(\delta 7.66-7.53 (m, 4 \text{ H}), 7.51-7.41 (m, 4 \text{ H}), 7.42-7.39 (m, 2 \text{ H}), 7.33-7.29 (m, 6 \text{ H}), 7.27-7.23 (m, 2 \text{ H}), 7.23-7.12 (m, 8 \text{ H}), 6.88-6.80 (m, 8 \text{ H}), 5.13 (q, \text{J} = 6.8, 14.0 \text{ Hz}, 2 \text{ H}), 4.72 (d, \text{J} = 13.2 \text{ Hz}, 2 \text{ H}), 4.42 (d, \text{J} = 13.6 \text{ Hz}, 2 \text{ H}), 1.97 (t, \text{J} = 6.8 \text{ Hz}, 6 \text{ H}). \(^{31}\text{P}\) NMR: \(\delta 29.94\). HRMS calcd (found) for \(\text{C}_{54}\text{H}_{46}\text{Br}_2\text{O}_4\text{P}_2 (M^+)\): 979.1311 (979.1310).

SAN-2 (Scheme 3.4). XII (68 mg, 0.070 mmol), styrene (9.6 mL, 84 mmol), acrylonitrile (3.2 mL, 49 mmol), and anisole (3.1 mL) were combined in a 25 mL pear shaped Schlenk flask with a stirbar. \(\text{CuCl}_2\) (0.0042 mmol) and \(\text{Me}_6\text{TREN}\) (0.0042 mmol) were added as a 200 \(\mu\)L portion of a stock solution in Anisole (4.2 mL) and DMF (0.8 mL). The reaction flask was subjected to 5 freeze-pump-thaw cycles and backfilled with Argon at room temperature. \(\text{Sn(EH)}_2\) (0.070 mmol) and \(\text{Me}_6\text{TREN}\) (0.070 mmol) were added as 500 \(\mu\)L of a degassed stock solution in Anisole, turning the reaction mixture from a pale green to yellow. The reaction mixture was heated at 80 \(^\circ\text{C}\) for 21 hours at which time the solution was purged with air to terminate the reaction. Upon cooling, the solution was diluted with DCM and twice precipitated from DCM into MeOH, filtered and dried under vacuum overnight to yield 4.6 g of SAN-2a as a white power \((M_n = 104 \text{ kDa}, \text{PDI} = 1.17)\).

To a mixture of SAN-2a (1.5 g, \(14.42 \times 10^{-3}\) mmol), \(\text{Et}_3\text{N}\) (525 mg, 5.19 mmol) and butylated hydroxytoluene (BHT) (32 mg, 0.144 mmol) in mixture of toluene (40 mL) and \(\text{CH}_3\text{CN}\) (25 mL) was added \(\text{Cl}_3\text{SiH}\) (156 mg, 1.154 mmol) at 0 \(^\circ\text{C}\). The reaction mixture was stirred at 100 \(^\circ\text{C}\) for 64 h. The reaction mixture was cooled to room
temperature and diluted with Et₂O (60 mL). The resulting suspension was filtered through a fritted glass funnel. The filtrate was added dropwise to MeOH (600 mL) to generate a white precipitate. The collected precipitate was washed with MeOH and dried under a high vacuum to produce SAN-2 as a white solid (1.42 g, 95 %). \(M_n = 104 \text{ kDa}, \ PDI = 1.17 \). \(^{31} \text{P NMR (CD}_2\text{Cl}_2): \delta -13.69. \)

SAN-1 was synthesized employing a procedure similar to that used to synthesize SAN-2.

PS-2 (Scheme 3.4). XII (30 mg, 0.031 mmol), styrene (17.5 mL, 153 mmol), and anisole (13.1 mL) were combined in a 25 mL pear shaped Schlenk flask with a stir bar. CuBr (0.0015 mmol) and Me₆TREN (0.0015 mmol) were added as a 200 \(\mu \)L portion of a stock solution in Anisole (4.2 mL) and DMF (0.8 mL). The reaction flask was subjected to 5 freeze-pump-thaw cycles and backfilled with Argon at room temperature. Sn(EH)₂ (0.061 mmol) and Me₆TREN (0.061 mmol) were added as 500 \(\mu \)L of a degassed stock solution in anisole, turning the reaction mixture from a pale green to yellow. The reaction mixture was heated at 110 °C for 36 hours at which time the solution was purged with air to terminate the reaction. Upon cooling, the solution was diluted with CH₂Cl₂ and twice precipitated from CH₂Cl₂ into MeOH, filtered and dried under vacuum overnight to yield 6.0 g of PS-2a as a white power (\(M_n = 120 \text{ kDa}, \ PDI = 1.59 \)).

To a mixture of PS-2a (6 g, 50.0 \(\times \) 10⁻³ mmol), Et₃N (1.82 g, 12.0 mmol) and BHT (110 mg, 0.50 mmol) in mixture of toluene (200 mL) was added Cl₃SiH (1.63 g, 12.0 mmol) at 0 °C. The reaction mixture was stirred at 100 °C for 64 h. The reaction mixture was cooled to room temperature. The resulting suspension was filtered through a
fritted glass funnel. The filtrate was added dropwise to MeOH (800 mL) to generate a white precipitate. The collected precipitate was washed with MeOH and dried under a high vacuum to produce **PS-2** as a white solid (5.10 g, 85 %). $M_n = 120$ kDa, PDI = 1.59.

31P NMR (CD$_2$Cl$_2$): δ –13.99.

PS-1 was synthesized employing a procedure similar to that used to synthesize **PS-2**.

3.3.3 Asymmetric Allylic Alkylation

3.3.3.1 Asymmetric Allylic Alkylation using (S)-MeO-BIPHEP

Dimethyl 2-(1,3-diphenylallyl)malonate (Table 7, entry 1). The mixture of (S)-MeO-BIPHEP (5.8 mg, 0.01 mmol) and allylpalladium(II) chloride dimer (1.8 mg, 50 x 10^{-3} mmol) in CH$_2$Cl$_2$ (1 ml) was stirred for 1h at room temperature in a glove box. *trans*-1,3-diphenylallyl acetate (50 mg, 0.2 mmol) was added to the reaction mixture and the resulting solution was stirred for 5 min. Dimethyl malonate (79 mg, 0.6 mmol) and N, O-bis(trimethylsilyl)acetamide (122 mg, 0.6 mmol) were then added to the resulting solution and stirred for 18 h. The reaction mixture was diluted with Et$_2$O and washed sequentially with saturated NH$_4$Cl, saturated NaHCO$_3$, and brine. The combined organic extracts were dried over MgSO$_4$, filtered, and concentrated *in vacuo*. The resulting product was chromatographed on a silica gel column to give dimethyl 2-(1,3-diphenylallyl)malonate as a colorless oil (59 mg, 91 %). TLC (hexanes–EtOAc = 3:1): R_f = 0.53. 1H NMR: δ 7.38-7.22 (m, 10 H), 6.53 (d, $J = 15.0$ Hz, 1 H), 6.38 (dd, $J = 10.0$, 1 H).
15.0 Hz, 1 H), 4.31 (dd, J = 8.0, 10.0 Hz, 1 H), 4.0 (d, J = 10.5 Hz, 1 H), 3.74 (s, 3 H), 3.55 (s, 3 H). 13C1H NMR: δ 168.2, 167.7, 140.0, 136.8, 131.8, 129.0, 128.7, 128.4, 127.8, 127.5, 127.1, 126.3, 57.6, 52.6, 52.4, 49.2. Enantiopurity (92% ee) was determined by HPLC analysis (98:2 hexanes/isopropanol, 1.0 mL/min).

3.3.3.2 Asymmetric Allylic Alkylation using Polymer-Embedded Ligands

Dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 8). The mixture of polymer-embedded ligand PS-2 (408 mg, 3.4 x 10\(^{-3}\) mmol) and allylpalladium(II) chloride dimer (0.6 mg, 1.7 x 10\(^{-3}\) mmol; 0.1 mL of a 17 x 10\(^{-3}\) M stock solution in CH\(_2\)Cl\(_2\)) in CH\(_2\)Cl\(_2\) (1 ml) was stirred for 1 h at room temperature. trans-1,3-diphenylallyl acetate (50 mg, 0.2 mmol) was added to the reaction mixture and stirred for 5 min, and then dimethyl malonate (79 mg, 0.6 mmol) and N, O-bis(trimethylsilyl)acetamide (122 mg, 0.6 mmol) were added to the reaction mixture. The reaction mixture was transferred to a rheometer via syringe, and the solution was maintained at a shear rate of 6000 sec\(^{-1}\) for 18 h. The resulting mixture was added dropwise to hexane (10 mL) and the resulting suspension was filtered through a silica gel pad eluting with Et\(_2\)O/EtOAc (1:1). The combined organic extracts were evaporated under reduced pressure. The resulting oily residue was dissolved in 3 mL of hexane/isopropanol (10:1) and the solution was filtered through a syringe filter (PTFE 0.45 μm). The resulting solution was analyzed by GC and HPLC: 58% conversion (GC), 89% ee (98:2 hexanes/isopropanol, 1.0 mL/min, Figure 42).
The AAA reactions listed in Table 8 (entries 4-7 and 9, 10) were performed employing a similar procedure utilizing the conditions outlined in Table 8. Control reactions (Table 8, entries 1-3) were performed in a vial without applying a shear employing a procedure similar to that used to produce dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 8) utilizing the conditions outlined in Table 8.
Figure 74. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of racemic dimethyl 2-(1,3-diphenylallyl)malonate.
Figure 75. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (eq 3.1), 57 % ee.
Figure 76. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 1), 92 % ee.
Figure 77. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 2), 92 % ee.
Figure 78. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 3), 89 % ee.
Figure 79. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 4), 91% ee.
Figure 80. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 5), 92 % ee.
Figure 81. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enantiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 6), 92 % ee.
Figure 82. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 7), 92 % ee.
Figure 83. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 8), 89 % ee.
Figure 84. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 9), 89 % ee.
Figure 85. Chiral HPLC traces (98:2 hexanes/isopropanol, 1.0 mL/min) of enatiomerically enriched dimethyl 2-(1,3-diphenylallyl)malonate (Table 8, entry 10), 89 % ee.
References

(57) Yu, X.; Marks, T. J. Organometallics 2006, 26, 365.

Biography

Date of Birth
May 24, 1976.

Place of Birth
Seoul, South Korea

Education

2007-2012 Ph.D., Organometallic Chemistry
Department of Chemistry, Duke University, Durham, NC, USA
Advisor: Professor Ross A. Widenhoefer
Thesis: Gold(I)-Catalyzed Enantioselective Hydroamination of Unactivated Alkenes

2003-2005 M.S., Organic Chemistry
Department of Chemistry, Seoul National University, Seoul, South Korea
Advisor: Professor Junghun Suh
Thesis: Peptide-Cleaving Catalyst Selective for Peptide Deformylase

1995-2003 B.S., Chemistry
Department of Applied Chemistry, Kyung Hee University, South Korea
Advisor: Professor Young-Sook Paik
Thesis: Synthesis of Blue Pigment from Geniposide of Gardenia Fructus

Publications

Presentations

