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Abstract 

The cell division cycle is the process in which the entirety of a cell’s 

contents is duplicated completely and then equally segregated into two identical 

daughter cells. The order of the steps in the cell cycle must be followed with 

fidelity to guarantee two viable cells. Understanding the regulatory mechanisms 

that control cell-cycle events remains to be a fundamental question in cell 

biology. In this dissertation, I explore the mechanisms that coordinate and 

regulate cell-cycle progression in the budding yeast, Saccharomyces cerevisiae. 

Cell-cycle events have been shown to be triggered by oscillations in the 

activity of cyclin dependent kinases (CDKs) when bound to cyclins. However, 

several studies have shown that some cell-cycle events, such as periodic 

transcription, can continue in the absence of CDK activity. How are periodic 

transcription and other cell-cycle events coupled to each other during a wild-type 

cell cycle? Currently, two models of cell-cycle regulation have been proposed. 

One model hypothesizes that oscillations in CDK activity controls the timing of 

cell-cycle events, including periodic transcription. The second model proposes 

that a transcription factor (TF) network oscillator controls the timing of cell-cycle 

events, via proper timing of gene expression, including cyclins. By measuring 

global gene expression dynamics in cells with persistent CDK activity, I show that 

periodic transcription continues. This result fits with the second model of cell-

cycle regulation. Further, I show that during a wild-type cell cycle, checkpoints 
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are responsible for arresting the bulk of periodic transcription. This finding adds a 

new layer of regulation to the second model, providing a mechanism that 

coordinates cell-cycle events with a TF network oscillator. Taken together, these 

data provide further insight into the regulation of the cell cycle. 
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Chapter 1 Introduction 

 

Cellular division cycles serve as a fundamental biological process that 

underlies reproduction, development, evolution, and cancer. A complex number 

of steps must be completed with fidelity and in the correct order to ensure two 

exact copies of the same cell. Multiple layers of regulation play a role in 

successful cellular divisions. In this dissertation, I will explore the mechanisms 

that serve the basis of cell-cycle regulation and present evidence of how these 

regulatory modules are coupled to each other.  

1.1 The cell cycle is a series of temporally ordere d events 

Successful cellular division requires complete duplication of genetic 

material followed by their equal segregation into two cell bodies, resulting in two 

identical daughter cells. Here, order is critical: duplication must be completed 

before division events commence. By observing cells during this process, the cell 

cycle has been divided into four phases - Gap 1 (G1), Synthesis (S), Gap 2 (G2), 

and Mitosis (M) - that describe the chronological order of different events 

observed in normal cycling cells. DNA duplication occurs during S phase. In 

addition to replicating chromosomes, the centrosome is also duplicated and the 

daughter centrosomes separated in order to form the mitotic spindle that is 

responsible for separating sister chromatids into two separate nuclei. 
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Subsequent sister chromatid segregation is initiated during M phase, or mitosis. 

G1 and G2 are referred to as ‘gap’ phases as they separate the visibly 

observable events of S- and M- phase.  

Although no overt changes or events are occurring during G1 and G2, 

cells are actively interacting with their extracellular and intracellular environments 

to ensure that conditions are appropriate for cellular division events. During G1, 

cells are not committed to undergoing cellular division. Rather, at this point in a 

cell’s life, a choice between fates is possible and is dependent on the 

extracellular environment. When nutrients and space are in abundance, cells 

initiate entry into the cell cycle. However, when nutrients and space are in short 

supply, cells do not divide and may enter quiescent phase, also referred to as G0 

phase. Alternatively, budding yeast cells can also initiate other cell-fate 

programs, such as pseudohyphal growth and meiosis. The quiescent phase is 

reversible; cells can re-enter G1 phase and commit to a cellular division when 

conditions change. When a favorable environment for cellular division is sensed, 

cells commit to the cell cycle by transitioning from G1 phase to S phase. This 

transition is referred to as Start in the budding yeast, Saccharomyces cerevisiae, 

and the Restriction Point in metazoan cells. G2 serves as a time to ensure that 

DNA replication has been completed with fidelity and that the spindle is correctly 

formed. 
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1.2 Identifying the biochemical regulators of cell- cycle 
progression 

The order of events is very well conserved in unperturbed cells performing 

multiple rounds of cellular divisions. Each cell-cycle event – such as DNA 

replication, centrosome duplication, and chromosome segregation – is a complex 

process that requires the coordination of many different proteins acting together 

to complete the task at hand. These complicated mechanisms must be initiated 

precisely in the context of the cell cycle. How is it that DNA replication always 

initiates only once per cycle and always before mitosis? Mammalian cell fusion 

studies have shown that S-phase nuclei are able to trigger DNA replication in G1 

nuclei, suggesting the presence of some factor that activates DNA replication [1]. 

However, inhibitory factors also exist that prevent late events from occurring prior 

to early events. G2 nuclei fused with either S phase nuclei or G1 nuclei wait to 

undergo mitosis until DNA replication is completed in the S-phase or G1 nuclei 

[1]. What are these cellular components and how do they function to activate or 

inhibit cell-cycle events?  

1.3 Cyclins and Cyclin dependent kinases  

A series of studies in early developing marine embryos began to elucidate 

the factors involved in regulating cell-cycle events. Maturation promoting factor 

(MPF) was determined to be responsible for driving rapid duplication and division 

cycles in early embryos; MPF was subsequently determined to be composed of 
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cyclin and cyclin-dependent kinase (CDK) [2, 3]. Cyclins bind to and activate 

CDKs that modulate the activity of proteins involved in the cell cycle by 

phosphorylation (reviewed in [4, 5]). In early developing embryos, cyclin protein 

synthesis is periodic with respect to the cell cycle, progressively increasing 

during S phase and DNA replication until cyclin protein is abruptly destroyed just 

prior to mitosis and chromosome segregation [6]. What causes periodic cyclin 

protein levels in these embryos? Cyclin/CDK activates its own inhibitor, an E3 

ubiquitin ligase called the anaphase-promoting complex (APC) [7, 8]. This 

biochemical negative feedback loop between cyclin/CDK and the APC 

constitutes the cell-cycle oscillator in early developing marine embryos.  

 In somatic metazoan cells, oscillations in cyclin/CDK activity are 

also found to initiate different cell-cycle events. The same APC-mediated 

negative feedback loop identified in embryos is thought to act as the cell-cycle 

oscillator in these somatic cells as well. However, this model becomes more 

complicated as multiple cyclins and CDKs act at different times during the 

somatic cell cycle [9-11]. The cyclin originally identified in embryos is referred to 

as cyclin B, and the original CDK identified is now called Cdk1 and is responsible 

for activating mitosis. Cyclin D complexed with Cdk4/6 controls cell cycle entry at 

the Restriction Point while cyclins A and E activate Cdk2 to initiate DNA 

replication in somatic metazoan cells (reviewed in [4, 5]). 
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Concurrent with the above-described studies, genetic approaches to 

elucidating the mechanism of cell-cycle control were carried out in the budding 

yeast, Saccharomyces cerevisiae [12-16], and the fission yeast, 

Schizosaccharomyces pombe [17]. Genes homologous to cyclins and CDK in 

budding and fission yeasts were identified. A single CDK was identified in each of 

these microorganisms, Cdc28 in budding yeast and cdc2 in fission yeast. Studies 

show that both possess kinase activity [18, 19], are homologous to each other 

[20, 21], and complement each other [22]. Further, human CDC2 cDNA is able to 

a complement cdc2 fission yeast deletion mutant, suggesting that CDK is 

strongly conserved across species [23]. A total of nine cyclins have been 

identified to play a role in activating Cdc28 in budding yeast (Figure 1.1).  

�

Figure 1.1: Timing of cyclin/CDK activity in Saccharomyces cerevisiae. Different 
cyclins are expressed throughout the cell cycle to trigger different events. Each set of 

cyclins is shown in different colors. 

Three G1 cyclins, Cln1, Cln2 and Cln3, regulate passage through Start and G1 

entry, thus committing the cell to a new division cycle. The six cyclins that are 

homologous to metazoan cyclin B, Clb1, Clb2, Clb3, Clb4, Clb5 and Clb6 
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(referred to as B-type cyclins), regulate the cell-cycle events initiated after Start. 

Clb5 and Clb6 trigger DNA replication, while Clb1-4 play roles in chromosome 

segregation (reviewed in [4, 5]). Additionally, the APC has also been identified in 

budding yeast [24, 25]. The conservation of the components and function, tt has 

been proposed that the same biochemical oscillator described in marine embryos 

also regulates cell-cycle progression in yeast cells (reviewed in [26]).�

1.4 Saccharomyces cerevisiae as a model system for studying 
the cell cycle 

As such, this high level of conservation of cell-cycle regulatory 

components makes the budding yeast, Saccharomyces cerevisiae an ideal 

model system to study the cell cycle. Additionally, cell-cycle phases in budding 

yeast can be inferred by changes in cell morphology that are easily observed by 

light microscopy (Figure 1.2).  

�

Figure 1.2: Budding yeast as a model system for studying the cell cycle. Top: 
The timing of cell-cycle events. Bottom: The phenotype of budding yeast as it 

progresses through the cell cycle. Black lines, DNA; Green dots, spindle pole bodies 
(SPBs) 
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Just prior to Start, the budding yeast cell produces a projection called a bud that 

is destined to become the daughter cell, where approximately half of the cellular 

contents are transferred during mitosis. This bud continues to grow as the cell 

progresses through the cell cycle. Thus, unbudded cells are in G1, and cells that 

have formed a bud have entered the cell cycle, where the size of the bud is an 

indicator of cell-cycle phase; small budded cells are likely to be in S-phase while 

large budded cells are undergoing mitosis (Figure 1.2). 

Budding yeast has been used as a model system to understand how 

cyclin/CDK activity during the cell cycle is responsible for triggering DNA 

replication, centrosome duplication (referred to as spindle pole bodies in budding 

yeast), and mitosis, in addition to many other events. Cyclin/CDKs phosphorylate 

proteins to modulate their activity, both positively in order to promote their 

activity, and negatively to inhibit their activity. For instance, S-phase cyclins 

activate DNA replication, but also inhibit the re-initiation of DNA replication until 

the following cell cycle begins [27]. Cyclins function in a similar manner to 

prevent multiple rounds of centrosome duplication [28, 29].  

1.5 Checkpoints act as a control module to couple c ell-cycle 
events to each other 

Perhaps the most critical aspect of cell-cycle control is ensuring that 

different events occur in the proper temporal order. Different cyclin/CDK activities 

are responsible for triggering events throughout the cell cycle. What happens 
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when an event early in the cycle cannot be completed in time before later events 

are normally initiated? Some mechanism must be responsible for ensuring that 

late cell-cycle events are not triggered until early cell-cycle events are completed 

with fidelity. Checkpoints are signaling pathways that monitor the progression 

through different events (reviewed in [30]. Checkpoint signaling pathways utilize 

three main classes of proteins: sensors, transducers, and effectors. Once a 

perturbation is identified, a sensor protein is activated and goes on to trigger 

transducer proteins that carry the signal to effector proteins. The effector proteins 

are responsible for inducing the cell-cycle arrest. Once the perturbation is 

relieved, the sensor protein is no longer active, resulting in the transducer and 

effector proteins to no longer affect cell-cycle progression.  

A different checkpoint-signaling pathway monitors each cell-cycle event to 

maintain the proper order of events. The morphogenesis checkpoint monitors 

bud emergence, and inhibits mitosis until the bud can be formed (reviewed in 

[31]). The DNA damage checkpoint can arrest cell-cycle progression any time 

single- or double-stranded breaks are sensed (reviewed in [32, 33]). The DNA 

replication checkpoint ensures that DNA is fully replicated during S-phase prior to 

initiating mitosis (reviewed in [32, 33]. Finally, the spindle assembly checkpoint 

prevents chromosome segregation if the orientation of the microtubules extended 

from the mitotic spindle are not attached to the sister chromatids properly 

(reviewed in [34]). In this way, two layers of regulation have been shown to play a 
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role in ensuring that during each cell cycle, all events are completed with fidelity 

and in the proper order. 

1.5.1 The DNA replication checkpoint signaling path way 

The DNA replication checkpoint is thought to sense stalled replication 

forks during the replication process [35] (reviewed in [36]). In fact, many of the 

components of the replication machinery also function to signal when DNA 

replication is stalled [37-40]. Once these proteins are activated, they pass this 

signal to the sensor protein Mec1, a kinase, that signals to downstream 

transducers and effectors [41, 42]. Mec1 phosphorylates and activates another 

kinase, Rad53, which functions as both a transducer and effector [43]. Rad53 

plays many roles during the DNA replication checkpoint. 

First, and most importantly, Rad53 phosphorylates and inhibits Cdc20, the 

activating subunit of the APC [44]. By inhibiting APCCdc20 activity, many proteins 

are stabilized for the duration that the DNA replication checkpoint is active. 

Stabilization of APC target Pds1, also known as securin, prevents chromosome 

segregation by inhibiting the protein separase, Esp1 [45, 46]. In addition to Pds1, 

mitotic cyclin Clb2 is also a target of the APC and is stabilized during the 

checkpoint [47, 48]. As a result, Clb2/CDK activity is persistent throughout the 

DNA replication checkpoint [47, 48]. Previous studies have shown that 

overexpression of a hyper-stable Clb2 in normally cycling cells arrests cell-cycle 
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progression, indicating another mechanism that may aid in the checkpoint-

induced arrest [49]. 

A second role for Rad53 is to aid in overcoming the replicative stress 

faced by the cells. Often the DNA replication is induced when nucleotide pools 

are depleted. Rad53 works to help increase the availability of free nucleotides by 

activating the checkpoint kinase and effector Dun1 [50]. Dun1 kinase functions to 

activate the enzyme ribonucleotide reductase, the rate-limiting step in producing 

new pools of dNTPs. Dun1 acts to increase pools of dNTPs in two ways. First, 

Dun1 activates ribonucleotide reductase by inhibiting its inhibitor, Sml1 [51, 52]. 

Second, Dun1 phosphorylates and inactivates the transcriptional repressor Rfx1 

that is responsible for repressing RNR3 gene expression [53-56]. In addition to 

RNR3, Dun1 has been shown to induce the expression of a number of other 

genes (reviewed in [57-59]. Thus, the DNA replication checkpoint arrests cell-

cycle progression, aids in overcoming replicative stress, and induces a 

checkpoint-specific transcriptional response. 

1.5.2 The spindle assembly checkpoint signaling pat hway 

The spindle assembly checkpoint monitors spindle attachment to sister 

chromatids and ensures a bipolar orientation so that the resulting daughter cells 

receive one copy of each chromosome. Similarly to the DNA replication 

checkpoint, the mechanism of preventing sister chromatid segregation is based 

on inactivating Cdc20 (reviewed in [34]). This inhibition is not achieved by 
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phosphorylation, but rather by physical interactions between Cdc20 and 

checkpoint proteins. There are a number of proteins that have been shown to 

physically interact with Cdc20, and it is as yet unclear the exact order of signaling 

and binding that leads to APC inactivation [60-63]. These checkpoint proteins 

include Mps1, Mad1, Mad2, Mad3, Bub1, and Bub3. These proteins are 

concentrated at kinetochores, where they are able to trigger the spindle 

assembly checkpoint. 

Unlike, the DNA replication checkpoint, no checkpoint-specific 

transcriptional response has been found to be activated along with the spindle 

assembly checkpoint. Thus, it appears that the main action of the spindle 

assembly checkpoint is to delay the onset of mitosis until proper spindle-

kinetochore attachment is achieved. 

1.6 Cell-cycle regulated transcription 

The cyclin/CDK complex was the first cell-cycle regulator shown to have 

oscillatory activity that can direct event timing, but it is not the only mechanism of 

cell-cycle control. Another phenomenon that has been observed during the cell 

cycle in both budding yeast and mammalian cells is periodic transcription, in 

which genes are expressed during only one phase of the cell cycle. How many 

genes are regulated at the transcriptional level during the cell cycle? As all other 

cell-cycle events are controlled by cyclin/CDK activity, is periodic transcription 

also regulated similarly?  
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1.6.1 Identifying periodic transcripts using Northe rn blots 

With the advent of modern molecular biology, measuring mRNA levels in 

cells became a regular test to address whether genes are regulated at the 

transcriptional level. For genes involved in the cell cycle, understanding gene 

regulation at the transcriptional level requires measuring mRNA in populations of 

cells that have been synchronized to one phase of the cell cycle and 

subsequently released to determine how gene transcript levels changes or does 

not change. Histones were the first genes identified that are expressed 

periodically during the cell cycle [64]. Classifying histone gene expression as cell-

cycle regulated was done by correlating the timing of histone mRNA expression 

with the timing of DNA replication over the course of several cell cycles [64]. 

Over the following decade, ten more genes involved in cell-cycle events were 

also identified as being expressed in a periodic manner – HO [65], CDC21 [66], 

CDC9 [67], RAD6 [68], SWI5 [69], CDC8 [70], POL1 [71], DBF4 [72], PRI1 [73], 

and DBF2 [74]. For each of these periodic genes, the definition of periodic is 

anchored to the correlation of gene expression with an observable cell-cycle 

event that is known to occur only once per cycle. The periodic expression of 

these genes was discovered while investigating the function of each gene during 

cell-cycle events. Is periodic expression of cell-cycle genes a global phenomenon 

or specific to just a small set of genes? The approach to address this question is 
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to survey transcript dynamics on a large scale in synchronous populations of 

cells.  

Northern blots are best used to measure mRNA expression dynamics on 

an individual gene basis. However, attempting to determine the extent to which 

genes are periodically expressed during the cell cycle requires the ability to 

screen through all genes in the genome. To address the question posed above 

using northern blots, Price and colleagues designed a screen-based approach to 

identify cell-cycle regulated transcripts in a high-throughput manner [75]. In this 

study, genes were first screened for potential periodic transcriptional dynamics in 

populations of cells synchronized to different cell-cycle phases. Transcripts found 

to be expressed at only one phase of the cell cycle were then measured in wild-

type synchronous populations of cells over time. This method identified at least 

20 additional periodic genes and further estimated that up to 250 of the 6,000 

budding yeast genes are cell-cycle regulated based on these findings [75]. This 

study revealed a large number of potential transcriptionally-regulated genes 

during the cell cycle. However, due to the limitations of northern blotting, 

discussed further in a later section, it is evident that more than 250 genes are 

periodically expressed.  

Outside of this screen-based approach, further single gene studies 

identified additional periodic genes that are expressed concurrently with cell-

cycle events. In total, approximately 100 periodically expressed budding yeast 
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genes were identified. However, a technology that is able to measure gene 

expression dynamics at a genome-wide level was necessary not only to quantify 

the proportion of genes that is periodically transcribed but also to understand 

how cell-cycle regulated transcription is coordinated with cell-cycle progression.  

1.6.2 Identifying periodic transcripts using gene e xpression 
microarrays 

The gene expression microarray is one method developed to measure 

mRNA levels of many genes in an organism [76]. This experimental approach 

serves as a useful tool for identifying cell-cycle regulated genes. Several 

genome-wide studies have been reported that focused on identifying periodic 

genes with respect to the cell cycle in synchronized populations of budding yeast 

cells using microarrays. This approach requires multiple microarrays to measure 

global mRNA levels at multiple time points in the synchronous population of cells. 

Cho and colleagues identified 416 genes as being cell-cycle regulated at the 

transcriptional level by visual inspection of transcript abundance over time [77]. 

This study used two different temperature-sensitive mutants to generate 

synchronous populations of cells at different phases of the cell cycle – the cdc28-

13 allele arrests cells in G1 while the cdc15-2 allele arrests cells in late M phase. 

Spellman and colleagues identified 800 genes that demonstrate oscillations in 

gene expression during the cell cycle using quantitative methods including a 

Fourier transform and Pearson correlation [78]. These two quantifications are 
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then combined into an aggregate CDC score that ranks the genes based on 

periodicity [78]. To further demonstrate that the expression dynamics are a 

general phenotype of cycling cells, this group used three synchronization 

methods to measure global gene expression dynamics and to identify periodic 

transcripts: alpha factor to synchronize cells in late G1, cdc15-2 to synchronize 

cells in late M phase, and centrifugal elutriation to synchronize cells in early G1.  

Pramila and colleagues found 991 cell-cycle regulated transcripts using a 

permutation-based method developed by Ulrik de Lichtenberg and colleagues 

[79, 80]. This approach quantifies periodicity using a Fourier transform and 

amplitude using peak-to-trough ratios. These two scores are combined into 

statistical p-values with random permutations of the datasets and then integrated 

to rank the genes by periodicity. This study synchronized cells in late G1 with 

alpha factor and performed two biological replicates. Orlando and colleagues 

identified 1275 periodically expressed genes also using a permutation-based 

method [79, 81]. This study isolated small, unbudded cells in early G1 using 

centrifugal elutriation and also measured gene expression dynamics in two 

biological replicates. Between the three studies using quantitative methods to 

identify periodic genes, 440 cell-cycle regulated genes are shared [78, 80, 81]. 

Even though each study identifies slightly different sets of periodic genes, it is 

clear that many more genes are regulated at the transcriptional level during the 

cell cycle than previously thought. Differences between identified periodic gene 
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lists from each study result from a combination of experimental design and 

quantitative analysis. Further discussion of these differences is addressed in a 

later section.  

Is the phenomenon of cell-cycle regulated transcription specific only to 

budding yeast? Additional studies in fission yeast and human cells have 

measured gene expression dynamics in synchronized cells to determine the 

scope of periodic transcription in these organisms. In fission yeast, three 

genome-wide studies identified a limited number of periodic genes [82-84]. 

Unlike budding yeast, fewer genes were classified as cell-cycle regulated; less 

than 800 genes were identified by each study. This result may be due to the 

synchronization methods used by each group.  Similar to budding yeast, the 

agreement of each study is very low, with only 171 genes shared between all 

analyses [82-84]. Two studies in human cell lines have classified fewer than 

1,000 periodic genes [85, 86]. The low numbers of periodic genes may be due to 

the larger genome size, undetected alternative splicing of introns, or the difficulty 

involved in synchronizing fission yeast or human cell lines. While budding yeast 

has the largest number of identified periodic genes, cell-cycle regulated 

transcription is also clearly observed in fission yeast and human cell lines, 

suggesting that this phenomenon is conserved between organisms.  With 

improved experimental approach and mRNA measuring technology, the 



�

���

characterization of periodic gene expression will become more tractable in other 

model systems. 

Two questions arise from these striking findings: (1) what is the 

significance of cell-cycle regulated transcription and (2) what mechanisms 

coordinate this large transcriptional program with cell-cycle progression? 

1.7 Significance of cell-cycle regulated transcript ion 

Many hypotheses have been posed to explain the importance of cell-cycle 

regulated transcription. All of these explanations can be generalized into four 

categories. While all are plausible reasons for regulating gene expression timing 

during the cell cycle, it is not currently possible to discriminate between the 

multiple hypotheses. Moreover, each potential hypothesis is not mutually 

exclusive and may be true for only a subset of cell-cycle regulated transcription.  

The first explanation postulates that cell-cycle regulated transcription is a 

mechanism to expend energy resources efficiently, as transcription and 

translation are energetically expensive. This concept is often referred to as “just 

in time” transcription, in which gene products that function at a specific cell-cycle 

interval are expressed only when needed (reviewed in [87-89]). A variation on 

this first explanation has been referred to as the “Sleeping Beauty” situation, 

which takes into account the full lifetime of a cell or tissue, rather than the 

completion of a single cell cycle ([78], reviewed in [90]). Whether it is a single 

budding yeast or a population of cells that form tissues in an organism, active 
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cellular division occurs during only a portion of a cell’s overall life cycle. 

Microorganisms are subject to environmental constraints and will divide when 

conditions permit it but not when the local environment (nutrients, temperature, 

growth factor signaling, etc) is not amenable to cell division. Therefore, much of 

the life of a single cell is spent outside the cell cycle, in a state of rest or 

quiescence. During embryotic development, cells divide multiple times to give 

rise to tissues that result in a multicellular organism. However, after tissue 

development, most cells no longer receive the signal to divide and instead carry 

out functions specific to each tissue type. While these cells are no longer 

dividing, there is no need to expend energy expressing genes required for cell-

cycle progression. However, once a signal is received to initiate cellular division, 

the cells are poised to complete cell-cycle events with the proper genes 

expressed at the correct time. 

A second explanation for the function of periodic transcription relates to 

proper timing of cell-cycle regulators involved in triggering subsequent events. 

Activators of gene expression need to be “ON” at discrete times, in the absence 

of repressors directing expression to be “OFF.” Otherwise, expression would not 

occur at all. Examples include cyclins, inhibitors of cyclins, and other genes that 

trigger events to initiate at the proper time (reviewed in [87, 88]). This concept 

can be made clear by constitutively expressing a hyper-stable version of the S-

phase and mitotic cyclin inhibitor, Sic1. If Sic1 is always expressed and inhibits 
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S-phase and mitotic cyclins, cells would be blocked from initiating DNA 

replication or mitosis, which results in the arresting of cell-cycle progression [91]. 

Sic1 must be expressed only after mitosis and during the subsequent G1 phase 

to prevent early activation of DNA replication or mitotic events [92, 93]. In 

addition to transcriptional control of Sic1, post-translational control also exists to 

inactivate and degrade Sic1 at the proper time [91, 94]. Thus, periodic 

transcription plays an important role in regulating the timing and coordination of 

cell-cycle events. 

A third proposal for the importance of cell-cycle regulated transcription 

centers on building a required structure only once per cell cycle (reviewed in [87, 

89]). For example, proteins required for DNA replication are loaded onto DNA in 

different stages. The components of the replication complex are periodically 

transcribed themselves, lending to the temporal events that are required for DNA 

replication. A pre-initiation complex first binds to DNA replication origins and is 

only activated when elements are phosphorylated by S-phase cyclin/CDK. Other 

components required for replication are then synthesized, recruited to origins, 

and replicate DNA (reviewed in [95]). Further, mitotic cyclin/CDK activity inhibits 

the reformation of pre-initiation complexes until the following cell cycle [27]. This 

mechanism ensures that the complex required to trigger DNA replication is only 

built once and thus acts as a layer of control to prevent re-replication.  
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A fourth reason for periodic transcription centers on renewing pools of 

unmodified protein. Gene products that are post-translationally modified may no 

longer be active or be responsive to additional signaling. Therefore, periodic 

transcription provides a pool of unmodified product that is able to carry out cell-

cycle events (reviewed in [90]). For example, Swi6, a component of transcription 

factor complexes SBF and MBF, is phosphorylated in S phase after Start to 

localize it to the cytoplasm [96]. Periodic transcription of SWI6 may provide a 

new pool of Swi6 protein to induce transcription at Start. Four varying, but valid 

hypotheses exist to explain the phenomenon of cell-cycle regulated transcription. 

The underlying requirement for proper expression timing during the cell cycle has 

led to the development of a complicated program for cell-cycle transcription 

control. Understanding how periodic transcription is regulated and coordinated 

with other cell-cycle events may lead to insight into the importance of such a 

substantial periodic transcriptional program.  

1.8 Regulators of cell-cycle regulated transcriptio n and the role of 
CDKs 

How is a large and continuous transcriptional program regulated such that 

it is coordinated with other cell-cycle events? As more and more transcripts were 

identified as periodic during the cell cycle, focus turned to the regulators that 

activated or inhibited gene expression – transcription factors (TFs). To identify 

the regulators that control activation or repression of periodic transcription in 
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budding yeast, researchers utilized genetic tools and sequence information. Not 

surprisingly, a number of TFs were found to regulate sets of periodic genes 

throughout the cell cycle (reviewed in [88-90, 97]). A list of some known TFs 

involved in cell-cycle regulated transcription are listed in Table 1.1 with relevant 

information about when each TF is activated and regulation by cyclin/CDKs. 

���������� Transcription factors that are known to play a role in activating or 
repressing periodic transcription during the cell cycle.�

TF Phase Function Representative 
Target 

CDK 
target? 

CDK 
regulation 

SBF G1/S activator CLN1 Yes [98] Inhibitory 

MBF G1/S activator POL1 Yes [99] Unknown 

Yhp1 G1/S repressor CLN3 No N/A 

Yox1 G1/S repressor SWI4 No N/A 

Nrm1 G1/S 
co-

repressor N/A 
Yes 
[100] Unknown 

Hcm1 S activator NDD1 No N/A 

SFF G2/M activator CLB2 
Yes 
[101, 
102] 

Activating 

Ace2 M/G1 activator NIS1 Yes 
[103] Inhibitory 

Swi5 M/G1 activator SIC1 Yes 
[104] Inhibitory 

�
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The TFs identified possess three striking qualities that suggest potential 

modes of regulation for the periodic transcription program. First, many of the TFs 

that play a role in controlling cell-cycle regulated transcription are themselves 

periodically transcribed (reviewed in [97]). For TFs that act in complexes, at least 

one TF is periodically expressed. This observation suggests that a portion of 

genes may be cell-cycle regulated due to the periodic expression of their 

regulators. Second, cyclin/CDK activity has been found to affect the activity of 

many of these transcription factors. In these cases, cyclins that are expressed 

during any of these phases has the capacity to affect TF activity (Table 1.1). 

Additionally, this regulation can be either be activating or inhibitory depending on 

the TF (Table 1.1). These findings across multiple TFs imply that cell-cycle 

regulated gene expression is also modulated by cyclin/CDK activity. Finally, 

genome-wide binding data have shown that these TFs also bind in the promoter 

of other TFs shown to regulate periodic gene expression [105-107]. Taken 

together, these results demonstrated that the TF controlling the last wave of 

periodic transcription also activates the first TF in the cycle. A TF network, 

modulated by cyclin/CDK activity, was proposed to account for the periodic 

nature of the TFs themselves and the entire periodic transcription program ([107], 

reviewed in [88, 90, 97]). Models for how the TF network is integrated with 

cyclin/CDK activity and cell-cycle events will be discussed below. 



�

���

1.8.1 Transcriptional regulators that control perio dic transcription 

Which TFs are included in this TF network and how is a transcriptional 

signal transmitted through the cell cycle? Concurrent with passage through Start 

and the commitment to the cell cycle, the heterodimeric TFs SBF and MBF 

activate a large program of periodic genes involved in budding, centrosome 

duplication, and DNA replication.  SBF and MBF share a trans-activating subunit, 

Swi6 [108], and a distinct DNA binding subunit, Swi4 and Mbp1, respectively 

[109, 110], that activate genes in the above-mentioned processes. Canonical 

SBF targets are involved in budding and centrosome duplication while MBF 

targets play a role in DNA replication; however, the extent of functional overlap  

between SBF and MBF remains unclear [111-113], as swi4 and mbp1 single 

mutants are viable while swi4 mbp1 double mutants are not [110]. Activation of 

SBF and MBF centers on a positive feedback loop with G1 cyclin/CDK activity 

and co-repressor Whi5 [114-117] (Figure 1.3). Cln3/CDK phosphorylates Whi5 

that inhibits binding and nuclear localization (Figure 1.3). Cln1 and Cln2 

synthesis is activated by SBF and further inhibits Whi5 repression (Figure 1.3). 

While G1 cyclins are involved in activation, a series of transcriptional repressors 

and B-type cyclins inactivate SBF and MBF activity. Swi4 periodic gene 

expression is repressed by SBF targets YHP1 and YOX1 [118] and SBF 

transcriptional activity is repressed by Clb2 [98] (Figure 1.3).  The transcriptional 

activity of MBF is modulated by its target and co-repressor NRM1 [119] (Figure 
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1.3). In addition to cyclin/CDK regulation, effectors of the DNA replication 

checkpoint affect the activity of both SBF and MBF. Rad53 has been shown to 

phosphorylate Swi6 in order to down regulate CLN1 and CLN2 gene expression 

[120, 121]. Rad53 also has been shown to phosphorylate Nrm1, inhibiting it from 

binding and repressing MBF activity, resulting in persistent expression of MBF  

�

Figure 1.3: A transcription factor network. A number of transcriptional regulators 
have been shown to affect sets of co-expressed periodic genes. These transcription 

factors are regulated by one another and by post-transcriptional modifications. All nodes 
are placed on timeline based on peak time of gene expression in wild-type cells. Green 

nodes: transcriptional activators; Red nodes: transcriptional repressors; Blue nodes: 
Post-transcriptional modifiers, cyclins and E3 ubiquitin ligases. Black edges represent 

the upstream transcription factor binding to the promoter of the downstream node. Blue 
edges represent post-transcriptional modifications that alter the activity of the 

transcription factor 
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targets during the DNA replication checkpoint [122]. Regulation of SBF and MBF 

is very extensive, as this represents the commitment to the cell cycle. 

SBF and MBF transmit a transcriptional signal to activator Hcm1 [113] that 

is responsible for expression of genes required for chromosome segregation, 

centrosome dynamics, and budding during late S-phase [80] (Figure 1.3). HCM1 

is periodically transcribed, and its protein levels are also periodic, closely 

mirroring the behavior of HCM1 mRNA [80]. Moreover, Hcm1 activates the 

synthesis of the SBF co-repressor WHI5 and Swi-five factor (SFF) subunit NDD1 

[80] (Figure 1.3). SFF, a TF complex composed of Fkh1, Fkh2, Ndd1, and Mcm1 

[123-127], activates a set of periodic genes referred to as the “CLB2 cluster” 

during G2/M phase ([78, 128], reviewed in [88, 90, 97]). SFF activity is modulated 

through a positive feedback loop with the B-type cyclin Clb2 [98]. SFF activates 

CLB2 gene expression [128], which in turn binds CDK and further stimulates 

components of SFF to increase its transcriptional activity [101, 102, 129] (Figure 

1.3). SFF transmits the periodic transcriptional signal by the activating TFs ACE2 

and SWI5 [128] (Figure 1.3). Ace2 and Swi5 are redundant with each other and 

activate periodic transcripts involved in the transition between late M phase and 

the beginning of early G1 of the subsequent cell cycle, such as cell separation. 

While Ace2 and Swi5 are activated during G2/M, their activity is inhibited by 

Clb2/CDK-dependent cytoplasmic sequestration [103, 104] (Figure 1.3). After 

mitosis and the removal of Clb2, Swi5 and Ace2 have been shown to bind to the 
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promoter of CLN3 and to activate CLN3 expression in the next cell cycle [130]. 

Much of the periodic transcriptional program may be explained by the periodic 

activity of different cell-cycle TFs. While these TFs are themselves periodically 

expressed, it is clear that their activity is modulated by cyclin/CDK post-

translationally.   

1.9 Regulation of periodic transcription: evidence of a 
transcription factor network 

Based on the studies described above, it appears that periodic 

transcription is regulated during the cell cycle by cyclin/CDK activity through 

periodically expressed TFs. This mode of regulation is similar to cyclin/CDKs 

alone initiating other cell-cycle events like budding, centrosome duplication, DNA 

replication, and chromosome  segregation. Could periodic transcription perhaps 

be just another cell-cycle event that is modulated by oscillations in cyclin/CDK 

activity?  

A series of studies have been carried out to determine the contribution of 

cyclin/CDK activity on periodic gene expression during the cell cycle. The first 

study to address this question measured the effect of S-phase and mitotic 

cyclin/CDKs on periodic transcription by deleting all six of these cyclins 

(clb1,2,3,4,5,6) in budding yeast. These cells are kept alive by the inducible 

overexpression of Clb1; in the absence of Clb1, they arrest due to the absence of 

all S-phase and mitotic cyclin/CDK activity which results in their inability to initiate 
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DNA replication, centrosome duplication or mitosis. However, the arrested cells 

continue to carry out G1 events, including budding and G1-specific transcription 

[131]. What happens to the rest of the periodic transcriptional program in these 

cells? In a synchronous population of early G1 cells lacking all S-phase and 

mitotic cyclins (synchronized by centrifugal elutriation), global gene expression 

dynamics were measured by microarray. Strikingly, compared to the expression 

dynamics of genes normally periodic in wild-type cells, 70% of genes remain 

periodic in the absence of both S-phase and mitotic cyclins and in the absence of 

cell-cycle progression with a period very similar to normally-cycling cells [81]. 

Regardless of the effect cyclin/CDK activity is known to have on periodic 

transcription, an independent mechanism has the potential to drive a large scale 

periodic gene expression program. 

What kind of mechanism is able to maintain cell-cycle regulated 

transcription in the absence of any S-phase or mitotic cyclins? Included in the 

70% of genes that remain periodic in these cells are many of the TFs involved in 

modulating periodic transcription throughout the cell cycle [81]. Using these 

periodic TFs and binding information, Orlando and colleagues were able to 

construct a TF network that is capable of oscillating in silico in the absence of S-

phase and mitotic cyclin/CDK activity [81]. This finding led to the proposal that a 

TF network is capable of functioning as an independent oscillator to modulate 

periodic transcription ([81], reviewed in [89]). In normally-cycling cells, however, 



�

���

the cyclin/CDK oscillator and the TF network oscillator are coupled to each other, 

as cyclins are targets of the TF network and cyclins, when complexed with CDKs, 

alter the activity of TFs in the network (Table 1.1). Further, it was proposed that 

this TF network may function as an underlying oscillator responsible for the 

timing of cell-cycle events, as the TF network is capable of keeping periodic 

transcription oscillating at a near wild-type period in the absence of cyclin/CDK 

influence [81]. This proposed model is not substantially different from the 

cyclin/CDK-centered model of cell-cycle regulated transcription based on 

previous results. However, rather than cyclin/CDKs acting as the primary 

regulator of the periodic transcription program, the TF network itself is capable of 

promoting oscillations in gene expression during the cell cycle. 

1.10 Regulation of TF network: alternative models 

The observation that periodic transcription can continue in the absence of 

oscillations in cyclin/CDK activity or of cell-cycle progression is not novel. Other 

CDK autonomous oscillations have been observed in other cyclin mutants, 

including budding, centrosome duplication, DNA replication, and Cdc14 nucleolar 

release [28, 81, 131-133]. Each of these autonomous oscillations follows its own 

period that is not necessarily synchronized with a wild-type period. However, 

during a normal cell cycle, all of these events are coordinated with each other in 

the correct order and with a period that fits with the period of cellular divisions. In 

cycling cells, what mechanism is responsible for coordinating all of these 
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autonomous oscillators? A model has been proposed in which oscillations in 

cyclin/CDKs act as a master oscillator that entrains all other oscillations to the 

period of the cyclin/CDK oscillator (Figure 1.4; [132], reviewed in [134]). This 

model is rooted in principles developed in the field of physics and describes how 

synchrony of oscillations is possible in a concept known as phase locking [135, 

136]. In this model, a single oscillator is dominant to other oscillations, forcing 

other oscillators to alter the period of oscillations to match the main oscillator. In 

the case of independent cell-cycle oscillators, this model proposes that the 

cyclin/CDK oscillator functions as the master oscillator, phase locking the other 

oscillators – budding, DNA replication, centrosome duplication, TF network, and 

Cdc14 nucleolar release (Figure 1.4). This results in all events occurring once 

per cell cycle at an observed period dictated by oscillations in cyclin/CDK activity. 

This model was proposed because these independent oscillations are only 

reveled in the absence of cyclin/CDK oscillations [28, 81, 131-134]. This model is 

also very similar to what has previously been proposed, but adds on the layer of 

how cell-cycle events, including periodic transcription via a TF network, are 

coupled with each other with the same period.  
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Figure 1.4: Alternative models of cell-cycle regulation. (a) One model proposes 
that oscillations in cyclin/CDK activity control the timing of cell-cycle events, including 
events with potential autonomous oscillations. (b) A second model proposes that a 

transcription factor network is responsible for the timing of cell-cycle events by regulating 
the synthesis of periodic genes, cyclins included. 

Given this model, questions arise on how the TF network is controlled by 

oscillations in cyclin/CDK activity. Studies leading to the discovery of an 

autonomous TF network oscillator showed that oscillations in cell-cycle regulated 

transcription continue in the absence of all S-phase and mitotic cyclins [81]. Yet, 

these cells maintain oscillations in G1 cyclin/CDK activity [81, 131]. Could 

oscillations in G1 cyclin/CDK activity be the driver of cell-cycle regulated 

transcription in these cells? Previous work has suggested that oscillations in G1 

cyclin/CDK activity are responsible for phase locking cells in the commitment 

period of the cell cycle [137]. In this study, extrinsic periodic pulses of CLN2 

expression were reported to synchronize the cell-cycle period of a population of 

cycling cells [137]. However, a later study showed that, in the absence of all S-

phase and mitotic cyclins and constitutive expression of hyper-stable Cln2, 

periodic budding continues with a similar period to cells only lacking S-phase and 
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mitotic cyclins [133]. This finding suggests that the TF network is capable of 

maintaining oscillations in the absence of oscillations in G1 cyclin/CDK activity 

and that cells only require the Cln2/CDK activity to initiate budding [133]. Thus, 

although pulses of extrinsic CLN2 gene expression is capable of gating cell-cycle 

progression, it is not necessary for other autonomous oscillations, including 

budding and periodic transcription. 

What contribution do G1 cyclins actually make to regulating periodic 

transcription? To address this question, global gene expression dynamics were 

measured by microarray in budding yeast cells lacking a functional CDK using 

the temperature-sensitive cdc28-4 allele. Surprisingly, approximately 66% of 

genes maintain periodicity in the absence of all CDK activity, further suggesting 

that the bulk of periodic transcription does not require oscillations in cyclin/CDK 

activity [133]. A TF network could be built with similar structure to TF networks 

previously constructed and was shown to have capacity to oscillate in silico [133]. 

These observed oscillations occur in the absence of CDK activity. What, then is 

the role of the TF network in cell-cycle progression? A series of experiments 

were executed to address this question.  

First, it was proposed previously that a TF network may function as an 

underlying oscillator [81], which controls the proper timing and ordering of cell-

cycle events by regulating periodic transcription. If a TF network is the underlying 

cell-cycle oscillator, changes in expression of the network TFs should change the 
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period of oscillations. To test this hypothesis, network TFs were perturbed by 

constitutively overexpressing transcriptional activators or by deleting genes 

encoding transcriptional repressors in budding yeast upon inhibition of all S-

phase and mitotic cyclins. The period of the resulting budding cycles was 

subsequently measured. The budding cycles are used as a proxy for the function 

of periodic transcription and the TF network, as budding and periodic 

transcription both continue in cells lacking all S-phase and mitotic cyclin/CDK 

activity. In these cells, perturbation of different network TFs altered budding 

periods, resulting in up to 20% longer or shorter periods compared to cells with 

unperturbed network TFs [133]. This result suggests that a TF network does 

function as an oscillator that plays a role in controlling the timing of budding 

oscillations and periodic transcription. 

What then, is the role of cyclin/CDK activity in regulating the timing of cell-

cycle events and oscillations? Historical models of cell-cycle regulation postulate 

that oscillations in cyclin/CDK activity are responsible for the timing of periodic 

events, including DNA replication, centrosome duplication, and chromosome 

segregation (reviewed in [26]). As this model was first discovered in early 

developing embryos and then found to remain conserved in yeast and somatic 

cells, cell-cycle regulation has centered on fluctuations in cyclin/CDK activity. 

Oscillations in periodic transcription persist in cells lacking either S-phase and 

mitotic cyclin/CDK activity or all cyclin/CDK activity, yet critically, cell-cycle 
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progression is arrested [81, 133]. In yeast and somatic cells, several experiments 

have shown that cyclin/CDKs have the capacity to alter TF activity. What is the 

effect that cyclin/CDK feedback acting on TF activity has on transcriptional 

oscillations? Comparing transcriptional dynamics reveals that the overall 

amplitude of periodic gene expression dynamics decreases as cyclin/CDK 

activity is removed [133]. Additionally, the period of transcriptional oscillations 

also increase with decreasing cyclin/CDK activity [133]. These observations 

suggest that cyclin/CDK activity plays an important role in regulating the 

amplitude and period of transcriptional oscillations. In addition to cyclin/CDK 

feedback on the TF network, cyclins themselves are periodically transcribed 

(reviewed in [88-90, 97]). Yet in the absence of CDK activity, cell-cycle 

progression is halted. A study showed that in the absence of all S-phase and 

mitotic cyclins, except for a single S-phase cyclin, periodic cycles of DNA 

replication occur together with transcriptional activation of the S-phase cyclin 

[133]. This observation implies that cyclin/CDK activity also acts as an effector of 

the TF network oscillator.  

This set of experimental results has led to a new model of cell-cycle 

regulation (Figure 1.4b). A TF network acts as an oscillator that drives the timing 

of periodic transcription, including cyclins. Cyclins (in complex with CDKs) then 

feedback onto the TF network via phosphorylation to contribute robust 

transcriptional oscillations. Phosphorylation of a TF is capable of enhancing or 
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reducing transactivation of the TF’s target genes, thus “fine tuning” the TF 

network output during the cell cycle. Additionally, cyclin/CDKs also act as 

effectors of the TF network to trigger cell-cycle events in the proper order (Figure 

1.4b). This model is different from previous cell-cycle models in that a TF 

network, rather than cyclin/CDK activity, acts as the oscillator that keeps the 

timing and ordering of cell-cycle progression. Although the mechanism by which 

the timing of cell-cycle oscillations is different, the process by which cell-cycle 

events are triggered by cyclin/CDKs is not different. The activation of different 

events in the proper order is dependent both on transcriptional oscillations and 

cyclin/CDK activity.  

While these two models seem very different from each other, they are built 

around the same results (Figure 1.4). Autonomous transcriptional oscillations are 

only revealed in the absence of cyclin/CDK activity, although they still occur in 

normally-cycling cells. Even when perturbing core network TFs, we observe 

these autonomous oscillations in the absence of S-phase and mitotic cyclin/CDK 

activity. Much work remains for investigators to do in order to distinguish between 

these two models. For example, an improved understanding of how a TF network 

oscillator and its component TFs are regulated during the cell cycle. Additionally, 

it remains to be determined how a TF network oscillator is coupled to other cell-

cycle events and cyclin/CDK activity. 
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1.11 Concluding remarks 

While these two different models seem very different from each other, they 

are built around the same results. Autonomous transcriptional oscillations are 

only revealed in the absence of cyclin/CDK activity. Even when perturbing core 

network TFs, we observe these autonomous oscillations in the absence of S-

phase and mitotic cyclin/CDK activity. Several goals remain to distinguish 

between these two models: to better understand how a TF network oscillator and 

its component TFs are regulated during the cell cycle, and to delineate how a TF 

network oscillator is coupled to other control modules, like cyclin/CDK activity 

and cell-cycle events.  

1.11.1 Dissertation outline 

This dissertation is composed of four chapters. In chapter 2, I will 

investigate the two alternative models of cell-cycle regulation, focusing on how a 

transcription factor network is coupled to cell-cycle progression. Specifically, I will 

study the roles of CDKs and checkpoints in controlling transcriptional oscillations. 

Chapter 3 details the computational approaches needed to address the 

questions posed in Chapter 2, including preprocessing global mRNA 

measurements and post-processing analytical methods that strive to define the 

genes that comprise cell-cycle regulated transcription. In chapter 4, I will 

summarize my work presented in Chapters 2 and 3, and discuss open questions 

and future work. 
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Chapter 2 The roles of CDKs and checkpoints in 
regulating transcriptional oscillations 

 

During normal cell division cycles, periodic events are synchronized. 

However, in some physiological or experimental conditions, events become 

uncoupled and autonomous oscillations are revealed. For example, several cell 

types undergo endocycles, where periodic activation of S-phase is triggered in 

mitotically-arrested cells. Similarly, we have demonstrated that the cell-cycle 

transcriptional program in budding yeast has intrinsic oscillatory capabilities, and 

periodic activation of the program continues in cells depleted for CDK activity. It 

has been proposed that CDKs comprise the master regulator ensuring that 

mechanisms with autonomous periodic potential remain coupled during normal 

cell-cycle progression. Here we show that CDKs do not entrain the autonomous 

transcriptional program to cell-cycle progression. We also find that activated 

checkpoint pathways halt the transcriptional oscillator, blocking the periodic 

activation of cell-cycle regulated genes during a cell-cycle arrest. These findings 

suggest that checkpoint mechanisms do not act solely to block cell-cycle events, 

but also to maintain synchrony between the progression of the cell cycle, and the 

autonomous transcriptional program.  



�

���

2.1 Introduction 

Successful cell divisions depend on proper temporal ordering of periodic 

cell-cycle events, including DNA replication and segregation. The central 

oscillator driving periodic events in early embryos is based on the activity of the 

cyclin/CDK complex [6, 138, 139]. Contemporary models of cell-cycle control in 

yeast and metazoan cells also center on fluctuations in mitotic CDK activity, but 

include additional cyclins, feedback loops, and transcription [5]. However, we 

have challenged these models by demonstrating that cell-cycle events, including 

budding, centrosome duplication, DNA replication, and periodic transcription 

continue, even when budding yeast cells were arrested in G1 by depletion of 

CDK activity [81, 131, 133]. An autonomously oscillating transcription factor 

network was proposed to function independently of CDKs and cell-cycle 

progression to control the periodic transcriptional program[81, 89, 133]. However, 

transcriptional network oscillations are coupled to oscillations in CDK, as cyclins 

are periodically transcribed and CDKs, in turn, affect the activity of network 

transcription factors[81, 89, 133]. A recent study has shown that when cell-cycle 

progression is arrested in M phase with varying levels of mitotic cyclin Clb2, 

autonomous oscillations in Cdc14 nucleolar release are observed[132], leading 

to the proposal that CDK functions as a master cell-cycle oscillator that couples 

other observed autonomous oscillations in order to ensure synchronous 

activation of cell-cycle events [132, 134]. This model is consistent with previous 
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findings, as autonomous transcriptional network oscillations may only be 

revealed in the absence of CDK oscillations (CDK “off”). What role, if any, does 

CDK play in regulating the timing of autonomous transcriptional network 

oscillations? 

Mitotic cyclin, Clb2, when bound to CDK is known to both activate and 

inhibit several waves of transcription (Figure 2.1). First, Clb2/CDK is involved in a 

positive feedback loop with SFF to further activate its own synthesis (Figure 2.1) 

[101, 102, 129]. 

�

Figure 2.1: Clb2/CDK activity alters the activity of transcription factors during the 
cell cycle. 

Further, Clb2/CDK activity inhibits G1/S transcription by repressing SBF 

activity[98] and inhibits M/G1 transcription by sequestering redundant 

transcription factors Swi5 and Ace2 in the nucleus (Figure 2.1) [103, 104]. In the 

absence of S-phase and mitotic cyclin/CDK activity, the positive feedback and 

repression is lost in addition to a cell-cycle arrest in G1, but periodic transcription 

continues[81, 133]. What is the effect of persistent mitotic cyclin/CDK activity on 

periodic transcription and the autonomous transcription factor network? 

Degradation of Clb2 during mitosis triggers chromosome segregation at the 
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metaphase-to-anaphase transition[140, 141]. How does a cell-cycle arrest in 

G2/M with persistent mitotic cyclin/CDK activity (CDK “on”) in Saccharomyces 

cerevisiae affect periodic transcription and the autonomous transcription factor 

network? Compared to cells lacking CDK activity (clb1,2,3,4,5,6; CDK “off”), 

substantive change in the dynamics of periodic transcription is expected in cells 

arrested with the CDK oscillation is locked in the “on” state. 

2.2 Transcriptional oscillations are maintained wit h persistent 
mitotic cyclin/CDK activity 

2.2.1 CDK “on” cells arrest with a single bud, a sh ort spindle, and 
persistent Clb2 protein levels 

To arrest yeast cells with the CDK oscillation locked in the “on” state, we 

used a strain in which the anaphase promoting complex (APC) activator, is 

conditionally expressed from a modified GAL1 promoter (PGALL-CDC20) in a 

cdc20�  background[130]. When cells are shifted from galactose medium to 

glucose medium, Cdc20 is rapidly depleted, arresting cells at the metapahase-to-

anaphase transition with persistent levels of Clb2 protein (Figure 2.2) and 

Clb2/CDK activity[140, 141]. A synchronous population of PGALL-CDC20 cdc20�  

cells in early G1 was collected by centrifugal elutriation, suspended in dextrose 

growth medium, and then aliquots of cells were collected at 20-minute intervals 

for 300 or 360 minutes (two experimental replicates). Genome-wide transcript 

levels were then assayed at each time point by microarray. Cell-cycle  
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Figure 2.2: Clb2 protein dynamics in GALL-CDC20 and wild-type cells. 
Dynamics of Clb2 protein levels were measured in GALL-CDC20 and wild-type cells by 
tagging Clb2 with an HA tag. Quantified levels of Clb2 protein normalized to PSTAIRE 
and log2-transformed relative to the mean (a). Solid line, wild-type cells; dashed line, 

GALL-CDC20 cells. Representative blot of three replicate experiments of Clb2-HA levels 
in wild-type or GALL-CDC20 cells (b).  

progression and subsequent arrest was monitored by budding and spindle length 

to ensure a cell-cycle arrest (Figure 2.3). Results from two independent 

replicates were highly reproducible, with an r2 value of 0.98 (Figure 2.4). 
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Figure 2.3: Cell-cycle arrest phenotype of PGALL-CDC20 cells. Dynamics of 
budding (solid line) and short spindle formation (dashed line) in G1-synchronized PGALL-
CDC20 cells released into dextrose-containing medium (a). These cells terminally arrest 
with a large bud (left, right panel) and short spindle (middle, right panel) Bar is 5� m (b). 
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Figure 2.4: Reproducibility of CDK “on” repliates. For each probe, the absolute 
mean expression value/1000 was calculated and plotted (arbitrary units) for each 

replicate. Coloring of each dot indicates the density of points surrounding the probe in a 
square with length 500 centered on that point. These data were fitted to a linear model 

(black line) and the corresponding r2 value is given. 

2.2.2 TFs targeted by CDK activity affect their tar gets’ gene 
expression in a predictable manner 

As expected, the dynamic transcript behaviors of SBF-, SFF-, Swi5-, and 

Ace2-regulated genes in CDK “on” cells, CDK “off” cells, and wild-type cells are 

consistent with the known regulatory interactions between network transcription 

factors and Clb2/Cdk1 (Figure 2.5). Transcripts from SBF-regulated G1/S genes 

are repressed after the first cycle of expression in CDK “on” cells and are 

expressed at elevated levels, but continue to oscillate, in CDK “off” cells (Figure 

2.5a). Many transcripts from G2/M genes regulated by SFF are expressed at 

persistent levels in CDK “on” cells, likely due to positive feedback with Clb2[102] 

(Figure 2.5b). The positive feedback between Clb2/CDK and SFF results in  



�

���

�

Figure 2.5: Persistent Clb2/CDK activity affects known CDK-regulated genes. 
Absolute mRNA levels (dChip-normalized Affymetrix intensity units/1000) are shown for 
periodic genes in CDK-on (red), CDK-off (green), and wild-type (blue) cells. CLN2, SBF 

target (a), SWI5, SFF target (b), and SIC1, Ace2/Swi5 target (c). 
 

persistent expression, but not at elevated levels compared to normally-cycling 

cells. This suggests the possibility of some other unknown mechanism that 

modulates the positive feedback loop. M/G1 genes regulated by the transcription 

factors Ace2 and Swi5 are not expressed in CDK “on” cells because Clb2-

dependent phosphorylation of Swi5 and Ace2 sequesters the transcription factors 

in the cytoplasm[103, 104] (Figure 2.5c). While we find that Clb2/CDK activity 

does regulate the gene expression dynamics of expected periodic genes, what 

effect does this have on the global periodic transcription program and the 

autonomous transcription factor network? 
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2.2.3 Methods in identifying periodic genes in wild -type cells 

We ran the wild-type gene expression dynamics through the 

deLichtenberg algorithm using the average cell-cycle period. At a p-value cutoff 

of p �  0.2, we identified 1912 wild-type periodic genes. Of the 1275 periodic 

genes from Orlando et al[81], 1010 genes were also classified as oscillating at 

the average cell-cycle period. In addition to a large overlap with Orlando et al[81], 

the averaged cell-cycle period adds 902 periodic genes. 

Additionally, periodicity of wild-type gene expression dynamics was scored 

using the Lomb-Scargle algorithm across a range of periods from 50 minutes to 

300 minutes [142-144]. We chose a period of 97 minutes with a ten-minute 

window around that average cell-cycle period, and a p-value cutoff of p �  0.5. 

This results in 991 periodic genes in wild-type cells.  

Using genes only identified as periodic in both the deLichtenberg and 

Lomb-Scargle analyses, we generated a high-confidence wild-type periodic gene 

list. This results in a wild-type periodic gene list containing 856 genes (Figure 

2.6). 
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Figure 2.6: Wild-type restrictive periodic gene list.  Venn diagram of the resulting 
periodic gene lists from the deLichtenberg algorithm at the CLOCCS average cell-cycle 
period and the Lomb-Scargle algorithm at a 10 minute period range centered around the 

CLOCCS average cell-cycle period and a p �  0.5 cutoff (a).  Heat maps showing the 
mRNA levels of genes that are periodic only in deLichtenberg (b), that are periodic in 

both lists (c), and that are periodic only in Lomb-Scargle (d).  Each heat map displays a 
different set of genes.  Transcript levels are depicted as log2-fold change relative to the 

mean expression 
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2.2.4 Methods in identifying periodic genes in CDK “on” cells 

In previous studies, we have used Pearson correlation as a basis to 

identify wild-type cell-cycle regulated genes that maintain periodicity in cells 

depleted for CDK activity (clb1,2,3,4,5,6 and cdc28-4)[81, 133]. While Pearson 

correlation has successfully identified genes that look the same across two 

experimental conditions, this method does not directly address what genes in 

these conditions are periodic. Additionally, Pearson correlation methods score 

gene expression dynamics as similar even if only one cycle of periodic 

expression agrees and the remaining dynamics do not match. Utilizing this 

approach may lead to incorrect classification of genes that remain periodic in 

CDK “on” (Cdc20-depleted) cells. 

To identify oscillating gene expression dynamics in non-wild-type cells, 

each non-wild-type replicate was run through Lomb-Scargle at the same period 

range as wild-type [142-144]. We did not use deLichtenberg to analyze these 

data sets due to the permutation-based method to score periodicity and 

amplitude. This method makes comparing outputs difficult to do since permuting 

the data will be different with every experiment.  

Cells arrested with persistent mitotic CDK activity do not display any 

observable periodic oscillations (PGALL-CDC20; Figure 2.3). To generating a 

periodic gene list for these datasets, a ten-minute period range centered on 148 

minutes was selected. Lomb-Scargle classifies the largest number of genes at 
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this period and p-value cutoff. To be consistent with the period range chosen for 

the wild-type gene lists, a ten-minute period range with a p-value cutoff of p �  0.5 

was selected to generate a periodic gene list.  

2.2.5 A TF network maintains oscillations in CDK “o n” cells 

Surprisingly, a large number of transcripts continued to oscillate in CDK 

“on” (Cdc20-depeleted) cells (Figure 2.7a). Starting with a high confidence set of 

856 genes shown to be periodic in wild-type cells (Figure 2.6), we found that 206 

cell-cycle-regulated transcripts continued to oscillate with dynamics similar to 

wild-type cells (Figure 2.7c). Furthermore, of the 206 transcripts that oscillate in 

CDK “on” cells, approximately 40% also oscillate in CDK “off” cells (Figure 2.7a 

and b). Strikingly, MCMC analyses[133] indicate the period of oscillations is 

nearly identical between the CDK “on” cells and the CDK “off” cells (Figure 

2.7d,e, and f, red and green lines). Taken together, these results indicate that the 

global oscillatory functions of the transcription factor network are largely 

unaffected by the state of the CDK activity.  

These observations suggest that while arresting cell-cycle progression 

with stable mitotic CDK activity affects periodic transcription locally, the 

transcription factor network oscillator still functions to maintain a global pattern of 

the periodic transcription program. How does the transcription factor network 

continue in cells with persistent B-cyclin/CDK activity regardless of CDK 

influence at several cell-cycle regulated transcription factors? Although SBF- 
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Figure 2.7: Dynamics of periodic transcripts in arrested cells with CDK-on, CDK-
off, and cycling wild-type cells.  Heat map shows mRNA levels of genes in cells arrested 

with CDK-on (cdc 20 mutant) (a). Heat maps show behaviors of the same genes in 
arrested cells with CDK-off (cyclin mutant cells (b), and in normally cycling wild-type (c) 

cells.  The same order of genes is found in all conditions (Supplementary Table 2).  
Transcript levels are depicted as log2-fold change relative to the mean expression.  

Individual gene expression profiles of RFA2 (d), PDS5 (e), and SPH1 (f).  Blue, wild-
type; green, clb1,2,3,4,5,6; red, PGALL-CDC20.  

mediated transcription is inhibited in the CDK “on” cells, oscillation appears to 

continue through a parallel branch of then network containing the related 

transcription factor complex, MBF. While SBF activity is inhibited by Clb2, MBF is 
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not. Rather, MBF-mediated transcription is normally inactivated through a 

negative feedback loop with its own target, Nrm1[119]. MBF and SBF have 

distinct but overlapping sets of target genes, and genetic studies indicate they 

are functionally redundant[111-113]. In cells Cdc20-depleted cells, we find that 

targets of all transcription factors of the network oscillator[81, 133] except for 

SBF, Ace2, and Swi5 maintain oscillatory behavior. Thus, the oscillatory function 

of the network is likely supported by redundant sets of transcription factors. 

Consistent with this finding, it has been shown that the perturbation of several 

transcription factors within the network oscillator does not abrogate 

transcriptional oscillations[133].  

2.3 Role of checkpoints in coupling a TF network to  cell-cycle 
events 

Thus far, we have shown that a transcription factor network oscillator can 

be uncoupled from cell-cycle progression and CDK oscillations (Fig. 2.7) [81, 

133]. How then is synchrony maintained between transcription factor network 

oscillations and cell-cycle progression? In normally cycling cells, checkpoint 

pathways monitor cell-cycle progression to ensure that events are completed 

with the proper temporal order [30]. In response to perturbation of cell-cycle 

events, a checkpoint pathway is activated and subsequently halts cell-cycle 

progression and blocks CDK oscillations until events are completed with fidelity. 
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Thus, we hypothesize that checkpoints are likely candidates for synchronizing 

the transcription factor network oscillator with cell-cycle progression. 

2.3.1 Two cell-cycle checkpoints arrest cell-cycle progression by 
inhibiting chromosome segregation 

To determine whether cell-cycle checkpoints can control the dynamics of the 

transcription factor network oscillator, we measured global transcript dynamics in 

synchronized populations of cells arresting at either the DNA replication 

checkpoint or spindle assembly checkpoint. The DNA replication checkpoint was 

triggered using a temperature sensitive allele of thymidylate kinase gene,cdc8, 

and the spindle checkpoint was triggered by constitutive over-expression of a 

mutant allele of the kinetochore protein, CSE4 (PGAL1-cse4-353 [145]). 

Checkpoint-mediated cell-cycle arrest was monitored by measuring budding 

index, and either DNA content or spindle length (Figure 2.8). Genome-wide 

transcript levels were measured by microarray. Results from two independent 

replicates were highly reproducible for the DNA replication and spindle assembly 

checkpoints, with an r2 value of 0.994 and 0.933, respectively (Figure 2.9). 
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Figure 2.8: Cell-cycle arrest phenotype of checkpoint-arrested cells. Dynamics of 
budding in G1-synchronized cdc8ts cells released into the restrictive temperature (30°) 

(a).  DNA content of cdc8ts cells (b).  Dynamics of budding (solid) and short spindle 
formation (dashed) of GAL-cse4-353 cells released into galactose medium to trigger the 
spindle assembly checkpoint (c).  These cells terminally arrest with a large bud (left, right 

panel) and short spindle (middle, right panel) (d). 
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Figure 2.9: Reproducibility of cdc8ts and GAL-cse4-353 replicates.  The 
reproducibility of cdc8ts (a) and GAL-cse4-353 (b) replicate experiments.  For each 

probe, the absolute mean expression value/1000 was calculated and plotted (arbitrary 
units) for each replicate.  Coloring of each dot indicates the density of points surrounding 
the probe in a square with length 500 centered on that point.  These data were fitted to a 

linear model (black line) and the corresponding r2 value is given. 
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2.3.2 Cell-cycle checkpoints halt the periodic tran scription program 

Transcript dynamics for the vast majority of the genes in high-confidence 

periodic gene set (856 genes) came to a halt after the activation of both 

checkpoints (Figure 2.10b and c).  

�

Figure 2.10: Dynamics of periodic transcripts during the DNA replication and 
spindle assembly checkpoints.  Heat maps showing mRNA levels of all wild-type 

periodic genes in cycling wild-type cells (a), in DNA replication checkpoint arrested 
(cdc8ts) cells (b) and spindle assembly checkpoint arrested (GAL1-cse4-353) cells(c). 

The same order of genes is found in all conditions (Supplementary Table 1). Transcript 
levels are depicted as log2-fold change relative to the mean expression.  Black arrow 

indicates time at which 50% of population is budded.  Budding indices of wild-type (d), 
cdc8ts (e), and GAL1-cse4-353 cells (f).  Black line, % budded; red line, 50% one bud. 

�
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Although clustering analyses did reveal approximately 15 genes that appear to 

continue to oscillate in both experimental replicates (Figure 2.11 and Figure 12). 

By visual inspection, we identified two clusters in the DNA replication checkpoint 

(clusters 7 and 18, Figure 2.11) and 2 clusters in the spindle assembly 

checkpoint (clusters 6 and 14, Figure 2.12) that may exhibit periodic behaviors. 

Upon visual inspection of the individual genes included in these clusters, only 

approximately 34 genes remain periodic during the DNA replication checkpoint 

and 18 genes remain periodic during the spindle assembly checkpoint. 

Previous genomic studies utilizing non-synchronized cells identified only a 

handful of transcripts that appeared to be regulated by the DNA replication or 

damage checkpoints [59], yet we observe that nearly the entire cell-cycle-

regulated transcriptional program appears to be controlled by the DNA replication 

checkpoint. Our ability to identify these broad changes in transcriptional 

behaviors likely reflects the use of synchronous populations of cells and high-

density sampling of the time-series. A recent study using synchronous cells and 

lower density sampling also indicated that the expression of large clusters of cell-

cycle regulated genes would be controlled by the DNA replication 

checkpoint[122]. Furthermore, our observations reveal that the spindle 

checkpoint also controls cell-cycle regulated gene expression, and utilizes 

pathways distinct from the DNA replication checkpoint (Figure 2.10). 
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Figure 2.11 Distinguishing different gene expression dynamics during the DNA 
replication checkpoint.  Wild-type periodic genes were clustered by affinity propagation 
using the first DNA replication checkpoint replicate (cdc8ts) expression dynamics.  Heat 

maps showing the mRNA levels of clusters in wild-type (left) and in DNA replication 
checkpoint-arrested cells (middle,right). Ordering is the same across conditions and 
replicates.  Transcript levels are depicted as log2-fold change relative to the mean 

expression.  Up to five over-represented transcription factors for each cluster are shown. 
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Figure 2.12: Distinguishing different gene expression dynamics during the 
spindle assembly checkpoint.  Wild-type periodic genes  were clustered by affinity 

propagation using the second spindle assembly checkpoint replicate (PGAL1-10-cse4-353) 
expression dynamics.  Heat maps showing the mRNA levels of clusters in wild-type (left) 
and in spindle assembly checkpoint-arrested cells (middle,right). Ordering is the same 
across conditions and replicates.  Transcript levels are depicted as log2-fold change 
relative to the mean expression.  Up to five over-represented transcription factors for 

each cluster are shown. 
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2.3.3 Cell-cycle checkpoints arrest periodic transc ription by affecting 
network TFs 

Clues to the mechanisms by which checkpoints control the transcriptional 

network are evident when examining specific regulons of co-regulated genes. For 

example, periodic genes regulated by the transcription factor complex MBF are 

persistently expressed during the DNA replication checkpoint while these same 

genes are only expressed for one cycle and subsequently repressed during the 

spindle assembly checkpoint (Figure 2.13b, and 2.11-12). Persistent expression 

of MBF targets during the DNA replication checkpoint is consistent with the 

behavior of MBF targets in Schizosaccharomyces pombe[146]. Further studies in 

S. pombe indicate checkpoint control of MBF activity is mediated by Rad53-

dependent regulation of the MBF activator Cdc10[146] and the co-repressor 

Nrm1[147] . Recent reports indicate Rad53 inactivates Nrm1 as part of the DNA 

replication checkpoint in S. cerevisiae [122]. Down-regulation of SBF targets in 

both DNA replication checkpoint- and spindle assembly checkpoint-arrested cells 

suggests that stabilization of Clb2 by inhibition of APC is responsible for control  
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Figure 2.13: Complex regulation of transcriptional oscillator during cell-cycle 
checkpoints.  Absolute mRNA levels (dChip-normalized Affymetrix intensity units/1000) 

are shown for periodic genes in normally-cycling (blue), DNA replication checkpoint-
arrested (red), and spindle assembly checkpoint-arrested (black) cells (a-d).  mRNA 

curves from cdc8ts  and PGAL1-10-cse4-353 cells were aligned by 50% budding.  CLN2, 
SBF target (a), RNR1, MBF target (b), CLB2, SFF target (c), and SIC1, Ace2/Swi5 target 

(d).  Model proposing potential interactions between checkpoint-specific effectors and 
the transcriptional oscillator that may also function to arrest cell-cycle regulated 

transcription (e). 

of this regulon (Figure 2.13a, and Figure 2.11-12). Similar transcript dynamics 

are observed for the two checkpoints in both the SFF- and Swi5/Ace2-regulated 

clusters (Figure 2.13c,d, and Figure 2.11-12). These observations suggest that 
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effector pathways distinct for each checkpoint are responsible for regulating the 

transcription factors within the network oscillator. Rad53, Cdc20, and Dun1 are 

effector proteins known to control transcription in response to activation of the 

DNA replication checkpoint (Fig. 2.13e). However, for the spindle assembly 

checkpoint, it is unclear which effector pathways, in addition to Cdc20, may be 

controlling the transcription network oscillator (Fig. 2.13e). Identifying the 

checkpoint effector pathways and their cognate targets in the transcription 

network oscillator will be the next step towards understanding how checkpoint 

pathways arrest the periodic activation of cell-cycle transcription. Taken together, 

our findings indicate that checkpoint pathways regulate the transcription network 

in order to maintain synchrony between cell-cycle progression and the 

transcription network oscillator. 

2.4 Discussion 

The historic model for cell-cycle regulation is centered on two regulatory 

modules: (1) the CDK oscillator driving events and some periodic transcription 

and (2) checkpoints arresting events and the CDK oscillator. However, recent 

studies have proposed a third regulatory module, a transcription factor network, 

that functions as a the underlying oscillator driving the timing of cell-cycle events 

with CDK activity serving as an effector of the network[133]. Here, we connect 

the checkpoint regulatory module to the transcription factor network oscillator 
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module and provide a mechanism by which the autonomous transcription factor 

network oscillator can be coordinated with cell-cycle progression. 

2.5 Experimental details 

2.5.1 Strains and synchronization 

Wild-type and all mutant strains of S. cerevisiae are derivatives of BF264-

15Dau and were constructed by standard yeast methods. A description of all 

yeast strains and plasmids used in this study are outlined in Table 1. Standard 

growth conditions were used. Cell synchronization methods were previously 

described[81, 133].  

 

Table 2.1 Strain list 

Strain  Relevant Genotype  Reference  

15Da- MATa; bar1;ade1;his2;leu2-3112;trp1-1;ura3� 3 this lab 

SBY1621 MATa; bar1;cdc20::LEU2;Pgall-CDC20::ADE2;CFP-
TUB1::URA3 

[130] 

SBY353 MATa; BAR1;cdc8ts this lab 

SBY1592 MATa;Pgal-cse4-353::TRP1;CFP-TUB1::URA3 [145] 

SBY1621 MATa;bar1;cdc20::LEU2;Pgall-CDC20::ADE2;CFP-
TUB1::URA3;CLB2-HA:kanMX6 

this lab 

SBY1258 MATa;bar1;CLB2-HA:kanMX6 this lab 
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2.5.2 RNA isolation and microarray analysis 

For all global gene expression studies, total RNA was isolated at time 

intervals by methods described previously[131]. RNA was purified and 

concentrated using the RNAeasy MinElute Cleanup Kit (QIAGEN). mRNA 

amplification and fluorescent labeling was done using either the GeneChip One 

Cycle Labeling (Affymetrix) or the Ambion MessageAmp Premier kit (Ambion 

Biosystems). Labeled cDNA was hybridized to Yeast 2.0 Expression arrays 

(Affymetrix) and image collection was carried out by the Duke Microarray Core 

Facility (http://microarray.genome.duke.edu/) using standard Affymetrix 

protocols. 

CEL files from the Affymetrix Yeast 2.0 oligonucleotide arrays generated 

from this study (cdc20� ;PGALL-CDC20, cdc8ts, and PGAL-cse4-353) and those 

from previous studies (wild-type and clb1,2,3,4,5,6)[81] were normalized and 

summarized using a modified version of the dChip[148] method from the affy  

package (v. 1.32.1) in Bioconductor[149] within the R statistical programming 

environment[143]. The probes specific to S. pombe were removed using the 

s_cerevisiae.msk file from Affymetrix before normalizing the CEL files. The new 

command used to normalize and summarize the CEL files was 

expresso2(inputdata, normalize.method= ”invariantse t”, 

bgcorrect.method= ”none”, pmcorrect.method= ”pmonly ”, 

summary.method =”liwong”, verbose= TRUE) . Consistent with the 
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original dChip algorithm, this command outputs a measure of the absolute 

transcript level for each probe in arbitrary units. 

2.5.3 Protein isolation and immunoblotting 

Cell lysates were subjected to SDS-PAGE and immunoblotting with the 

following antibodies. For Clb2 protein measurements (Supplementary Figure 1): 

mouse anti-HA (Roche Diagnostics), mouse anti-PSTAIRE (Abcom, Inc.), and 

IRDye 800 conjugated goat anti-mouse (Li-Cor Biosciences). These membranes 

were analyzed with a Li-Cor Odyssey Infrared Imaging System (Li-Cor 

Biosciences). Signal was quantified using ImageJ1.41o (National Institutes of 

Health, USA) and normalized to anti-PSTAIRE.  

2.5.4 Clustering analysis 

To differentiate between the different gene expression behaviors during 

the checkpoint, the high-confidence wild-type periodic gene list was clustered 

using affinity propagation[150] with the gene expression dynamics for the DNA 

replication checkpoint (cdc8; Figure 2.11) or for the spindle assembly checkpoint 

(PGAL1-10-cse4-353; Figure 2.12). To identify potential transcriptional regulators of 

each cluster of genes, we performed a transcription factor over-representation 

analysis based on the q-value method[148] using the documented binding 

information curated by Yeastract[149]. A transcription factor was called over-
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represented in a cluster if its q-value was less than or equal to 0.01. The top five 

transcription factors are listed next to each cluster (Figure 2.11,12).  

2.6 Chapter 2 collaborator contributions 

Work from these studies was done in collaboration with a number of 

members of the Haase lab and Harer group. The cell-cycle checkpoint 

experiments were carried out with the help of Laura A. Simmons-Kovacs. Data 

analysis was completed with the help of Anastasia Deckard and John Harer. 
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Chapter 3 Computational methods in identifying 
periodic genes  

�

Gene expression microarrays have proven to be very useful in identifying 

genome-wide transcriptional behaviors in a variety of different systems and 

biological mechanisms. These large-scale data sets are so rich with information 

that may address many different questions about biological processes in addition 

to the hypotheses of interest. How, then, do biologists parse out the relevant data 

for a particular hypothesis? The steps taken from raw microarray fluorescence 

information to analyzing the gene expression levels requires computational 

algorithms that are able to deal with these large amounts of data. In this chapter, 

I will discuss pre- and post-processing steps needed in order to ask the 

seemingly very simple question with genome-wide gene expression dynamics: 

What portion of the budding yeast genome is cell-cycle regulated? 

3.1 Introduction 

Gene expression microarrays have demonstrated that a substantial 

portion of the budding yeast genome is periodically transcribed in normally-

cycling cells ([77, 78, 80, 81], reviewed in [87]). In addition to wild-type 

populations of cells, recent work by Orlando and colleagues [81], Simmons 

Kovacs and colleagues [133], and myself (as described in Chapter 2) have 

shown that dynamics of periodic gene expression are maintained in conditions 
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that perturb oscillations in cyclin/CDK activity and that arrest cell-cycle 

progression. What are the steps that need to be taken after you hybridize the 

labeled cDNA to the microarray chips and before you can begin to analyze the 

resulting data? 

3.1.1 Normalization methods 

The first step in processing microarray data is to normalize all relevant 

chips together in order to eliminate non-biological variations in gene expression 

across time points and/or conditions. Labeled cDNA destined for each chip may 

vary in mRNA isolation efficiency, fluorescent labeling, and hybridization, for 

example. Thus, differences in raw values of gene expression of a single gene on 

a single chip and across multiple chips will be a convolution of biological 

differences and technical differences. Many of the methods that have been 

developed to normalize microarrays centers on the design of the actual 

microarray; a single microarray chip will measure the mRNA levels of thousands 

of genes for your system of interest. Specific to Affymetrix oligonucleotide arrays, 

each spot on the array consists of a 25mer probe that is sequence-specific and a 

perfect match (PM) for a portion of the coding sequence of a gene in the 

genome. For each gene, a set of eleven to twenty probes will be spotted on the 

array, covering the span of the coded sequence. A mismatch (MM) probe 

accompanies each PM probe, in which one base in the PM 25mer is changed to 

a different base. The set of probes for each gene are scattered throughout the 
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chip, to prevent from any hybridization biases. How are all of these probes jointly 

measured to give a single gene expression level for each gene being studied? 

The entire process of normalizing microarrays occurs in three main steps: 

(1) background adjustment, (2) normalization, and (3) summarization [151]. A 

number of groups have developed varying methods for each of these steps [151]. 

The normalization method developed by Li and Wong [152, 153] and their 

subsequently developed tool called dChip will be studied in further detail in this 

chapter. More detailed descriptions focused on comparing the performances of 

many of the prominent methods are reviewed elsewhere [151, 154]. Each 

method makes assumptions concerning each of the steps that lead to 

comparable gene expression levels for every gene across microarray chips.  

In the method developed by Li and Wong [152, 153], no background 

adjustment across chips is done. Any issues with differing signal intensities within 

and across chips are handled in the second step, normalization. In the 

normalization step, the chip with the median overall fluorescent intensity is 

selected as a baseline to which all other chips to be normalized. The probes of 

the baseline chip are then compared pairwise to all other chips to define a set of 

invariant probes that share similar intensities [155]. The probes not considered 

invariant are then normalized to fit a curve generated by the invariant set of 

probes. These normalized intensities result in an overall intensity of the non-

baseline chip is altered to match the overall intensity of the baseline chip. This 
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process is completed for every chip in the set to be normalized together, such 

that the overall intensity of every chip is very similar to each other and the 

baseline chip.  

Once all chips have been normalized to each other, the set of probes that 

all refer to the same gene on a single chip must be summarized for a final mRNA 

measurement for that time point or condition. Li and Wong [152, 153] have 

developed a model based expression index, which creates a weighted average 

of the probes in a set. In this approach, those probes within a set that display 

high variability compared to other probes in the same set are down-weighted 

when calculating the mRNA levels for that individual chip. Often when 

summarizing the probe sets, researchers will use the accompanying MM probe to 

identify the binding specificity. Li and Wong [153] originally developed their model 

to take the MM probe into account. However, the MM probe, while different from 

the PM probe, is still specific to only a single type of non-specific labeled cDNA 

that may bind to the PM probe. Any number of sequences could potentially mis-

hybridize. Li and Wong [152] further developed their model to only take into 

account the PM probes in the summarization step. Once normalization and 

summarization are completed, transcript levels of genes can be directly 

compared to each other across time or conditions. 
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3.1.2 Computational algorithms identifying periodic  behaviors  

 With normalized data, researchers can begin the more exciting task of 

addressing the biological questions that propelled the experiments designed to 

measure global gene expression. In studies focused on transcription during the 

cell cycle, observing temporal gene expression dynamics in a synchronous 

population of cells is critical to identifying periodic transcripts. While it is known 

that not all genes are periodically expressed, how do we parse out the genes that 

are cell-cycle regulated? To address this question, computational algorithms that 

rank gene expression dynamics based on the feature of periodicity have been 

developed and implemented [78, 79, 133, 143, 144, 156]. Some of these have 

been used in previous studies to identify periodic genes in wild-type cells [78, 80, 

81], while I have used a combination of algorithms as described in Chapter 2. 

The overlap between the resulting periodic gene lists is surprisingly low [81], and 

may be explained by a variety of factors, including experimental design and 

analytical tools. Here I will discuss the differences and similarities between a 

number of these algorithms.  

While experimental design may play a role in affecting the gene 

expression dynamics, differences between computational algorithms and 

significance cutoffs play a large role in the differences observed between periodic 

gene lists. Inherent to these computational methods is the definition of 

periodicity. This definition that is built into the algorithm is very important and can 
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have a profound effect on what genes are identified as periodic. Periodicity can 

be generally described as an event that occurs at regular intervals. To extend 

this characterization to cell-cycle oscillations, periodic events occur once per 

cycle at the same point during cellular division. For instance, budding yeast cells 

undergo budding just prior to the G1-to-S transition while initiating DNA 

replication during S-phase. These events are periodic relative to the cell cycle. 

How can we define cell-cycle regulated transcription? Studies have shown that 

many genes are expressed in a periodic manner throughout the entire duration of 

a single cell cycle [78, 80, 81, 133]. Thus, all oscillations in gene expression 

cannot be defined as transpiring during only one phase of the cell cycle. Rather, 

each periodic gene is reliably expressed at a particular time based on when its 

transcription is activated. How one defines periodicity will affect which genes are 

identified as periodic.  

Two features play prominent roles in describing periodicity for each 

computational method that vary in importance of that definition. The first feature 

addresses the oscillatory nature of gene expression dynamics. Whether by visual 

inspection or by some mathematical equation, a necessary component of any of 

these analyses requires identifying genes that are expressed once per cell cycle 

across multiple cycles. The second feature addresses the dynamic range of the 

queried genes. This attribute is much more subjective in nature, as it is unclear 

what minimum dynamic range is above stochastic noise within a cell. With all 
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computational algorithms, the measurement of periodicity for each gene is given 

as a ranked list from most periodic to least periodic with some associated score. 

Differences in how these two features are defined and weighted can affect the 

final output of the algorithms. It is important to have an understanding of how you 

want to define periodic genes and select a computational algorithm that best 

matches your assumptions. 

Three different algorithms have been developed in varying fields of study 

to measure periodic behaviors that I have used to identify periodic genes: de 

Lichtenberg [79], Lomb Scargle [143, 144], and JTK_CYCLE [156]. Only de 

Lichtenberg ranks periodicity of gene expression dynamics based on both a 

periodicity score and an amplitude (referred to as regulation) score at a given 

period. The periodicity score is rooted in a Fourier transform. The regulation 

score measures the peak-to-trough of the gene expression profile. This algorithm 

is a permutation-based method that assigns scores based on randomized input 

data. While this method is advantageous in terms of testing the null hypothesis 

that a transcript’s mRNA levels are not periodic at a given period, the resulting 

score will be vary each time the same dataset is run because the permutations 

will be different every time. Additionally, randomization of the data is also 

affected when using different sets of genes as different data points can be used 

for generating permutations. Thus, comparing the periodic gene lists from two 

different conditions and/or two different sets of genes is difficult when using de 
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Lichtenberg as the scores were calculated using different sets of randomized 

data. 

Lomb Scargle and JTK_CYCLE do not take amplitude of gene expression 

into account when calculating a periodicity score and ranking for each gene 

expression profile. It is unclear what threshold of amplitude constitutes a 

significant change in gene expression, thus either a tolerant cutoff or no cutoff 

using amplitude may be most appropriate, depending on the initial hypotheses 

and questions. Lomb Scargle uses a Fourier transform, similar to de Lichtenberg, 

at a range of periods given by the user to calculate a periodicity score [142]. 

Based on this score and the number of time points, a p-value is calculated. As 

the number of time points increases, the p-value will become smaller. 

JTK_CYCLE calculates a periodicity score by comparing the directionality of 

mRNA levels of two points from an entire gene expression profile and then 

compares that output to sinusoid curves across different periods [156]. Similarly 

to Lomb Scargle, a p-value is calculated by taking into account the number of 

time points queried, and will become smaller as more data is tested. The concept 

that the amount of data affects the confidence of the periodicity score is logical. 

However, it suggests that the cutoff determined to distinguish between periodic 

and non-periodic dynamics is arbitrary. In addition to the different definitions of 

periodicity built into each algorithm, some of the variability in periodic gene lists 

previously identified may also be due to the chosen significance threshold 
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chosen by each group. In this chapter, I will address the differences and 

similarities between these three different computational algorithms and the 

analytical tools I have used to choose a meaningful cutoff for identifying cell-cycle 

regulated genes. 

3.2 Normalizing temporal gene expression microarray s using 
dChip 

 Many of the common normalization methods used for microarray chips 

have been translated into packages available through Bioconductor on R [157]. 

Specifically for Affymetrix microarray chips, the affy package has been developed 

to run the method developed by Li and Wong [152, 153] in addition to MAS5, 

RMA, and GCRMA [155]. After importing all chips that will be analyzed for a 

study, a single command will run all three steps of background correction, chip 

normalization, and probe summarization. To normalize using dChip, the 

command is expresso(inputdata, normalize.method= 

“invariantset”, bg.correct=FALSE, pmcorrect.method=  

“pmonly”, summary.method= “liwong”) . This command results in no 

background correction, normalizing chips to a baseline with an invariant set, and 

summarizing the probes using the model based expression index taking only the 

PM probes into account. The components of the command can be changed to 

normalize chips using other methods.  
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3.2.1 Gene expression in Cdc20-depleted cells is lo wer than other 
conditions 

Upon first normalizing chips with mRNA related to cells depleted for 

Cdc20 (PGALL-CDC20; CDK “on”) with chips for normally-cycling cells, CDK “off” 

(clb1,2,3,4,5,6) cells, the DNA replication checkpoint (cdc8ts), and the spindle 

assembly checkpoint (PGAL1-cse4-353), periodic genes appeared to be more 

lowly expressed than other conditions (Figure 3.1a-c).  

�

Figure 3.1: Absolute gene expression levels are depressed in CDK “on” cells 
compared to other experimental conditions. Gene expression curves for wild-type (blue), 

clb1,2,3,4,5,6 (green), and PGALL-CDC20 (red) cells. Periodic genes: CLN1 (a), POL1 
(b), and NDD1 (c). Housekeeping genes: ACT1 (d), CUP5 (e), and CCW12 (f). mRNA 

levels are displays in absolute value, with arbitrary values associated x1000. 

Normalization is meant to remove any differences between conditions and time 

points that are non-biological in nature. Is the lower expression observed in 

periodic genes a result of biology or an artifact of normalization?  
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Gene expression dynamics of housekeeping genes should be 

constitutively expressed during the cell cycle and should be maintained at the 

same levels across all conditions. Comparing several housekeeping genes 

reveals that gene expression levels are depressed in CDK “on” cells, similar to 

what is observed for periodic genes (Figure 3.1d-f). This suggests that the lower 

gene expression in “CDK” on cells compared to other experimental conditions 

may be due to some artifact from the normalization process. 

 To further address the potential for depressed gene expression 

globally in CDK “on” cells, I compared the mean expression for each gene 

pairwise between different experimental conditions. This analysis can be further 

studied by fitting the data points to a linear model to calculate an r2 value that 

falls between zero and one. Values close to one indicate that the conditions are 

similar; whereas values close to zero indicate that the two conditions are not 

similar. Gene expression levels appear to be very similar in normally-cycling and 

CDK “off” cells (Figure 3.1). Consistent with this observation, mean expression of 

transcripts are very similar with r2=0.968 (Figure 3.2a). Gene expression appears 

lower in CDK “on” cells compared to both normally-cycling and CDK “off” cells 

(Figure 3.1). Also consistent with the gene expression dynamics, genes tend to 

be more highly expressed genome-wide in normally-cycling cells (Figure 3.2b) 

and CDK “off” cells (Figure 3.2c). Although the r2 values are not significantly 

smaller than comparing normally-cycling cells and CDK “off” cells, the mean  
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Figure 3.2: Global gene expression is lowered in CDK “on” cells compared to 
other experimental conditions. Plots comparing the mean expression of each gene 
between two experimental conditions: normally-cycling cells compared to CDK “off” 

(clb1,2,3,4,5,6) (a), CDK “on” (PGALL-CDC20) versus normally-cycling cells (b), and CDK 
“on” (PGALL-CDC20) versus CDK “off” (clb1,2,3,4,5,6) (c). A linear model is fit to the data 

and an r2 value is calculated and displayed in the plot along with the best fit line. 

expression of many genes is skewed to these conditions as seen by more data 

points above the best fit line (Figure 3.2).  

These observations suggest that gene expression is globally depressed in 

the CDK “on” experimental condition. If the lowered gene expression levels were 

specific to a set of genes, such as only periodic genes, this observation may 

suggest that some biological factor causes the differences in gene expression 

measurements. However, the observed global differences suggest an issue with 

the normalization process. 

As described previously, the normalization method developed by Li and 

Wong [152, 153] and implemented in R [155] consists of two steps: normalization 

of the chips followed by summarization of the probe sets. To normalize the chips 

together, the chip with the median overall intensity is selected as a baseline and 

an invariant set of probes are chosen to correct for differences in intensity 

between chips. Either or both of these steps could be compromised, which may 

lead to what appears to be lowered gene expression levels in CDK “on” cells. 
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3.2.2 Incorrect choice of baseline chip affects res ulting global gene 
expression measurements 

Regardless of the order in which chips are entered into the normalization 

program in R, the baseline chip should always be calculated by measuring the 

overall fluorescent intensity of each chip. The chips should be ranked based on 

these measurements and the baseline chip should always be the same. To test 

this assumption, I took the same chips to be normalized together, but shuffled the 

order in which I input the chips. Table 3.1 describes the orders of the chips input 

into the normalization algorithm.  

Table 3.1 Orders of chips input for normalizations 

Input order  Normalizat ion 1  Normalization 2  

1 Wild-type replicate 1 Wild-type replicate 1 

2 Wild-type replicate 2 Wild-type replicate 2 

3 CDK “off” replicate 1 CDK “on” replicate 1 

4 CDK “off” replicate 2 CDK “on” replicate 2 

5 CDK “on” replicate 1 CDK “off” replicate 1 

6 CDK “on” replicate 2 CDK “off” replicate 2 

 

The true chip with the median overall intensity is from the second wild-type 

replicate that contains measurements for cells 126 minutes after release into the 

experiment. However, when comparing the two orders of chips used for 
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normalization, this chip was not identified for either of the orders. Rather, for 

normalization order 1 (Table 3.1), the chip for the second replicate of CDK “on” 

cells 40 minutes after release into the experiment was labeled the median 

intensity chip. A different baseline chip was also selected for the second order 

tested (Table 3.1): the chip for the second replicate of CDK “off” cells 30 minutes 

after initiating the experiment. Why is the incorrect baseline chip being selected 

in both orders used to normalize the data together?  

In both cases, the only element differing between the two normalizations is 

the order of the chips. Further inspection of the orders demonstrates that the 

chosen baseline chips for each respective order is the chip that halfway through 

the list. This finding suggests that the code in R implemented to rank the chips 

based on overall intensity contains a bug of some kind. In fact, a bug in the code 

fails to reorder the chips based on overall fluorescent intensity and uses the 

order input by the user as the ranked list to choose the baseline chip. Altering the 

code to reflect the correct ranking of chips results in the correct and true baseline 

chip for both orders listed in Table 3.1. Since discovering this bug, it has since 

been fixed in the affy package and will choose the correct baseline chip 

regardless of the order in which you input your arrays to be normalized. 
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3.2.3 Masking Schizosaccharomyces pombe probes is best practice 
for characterizing an invariant set of probes for n ormalization 

 Another aspect of normalization not taken into account in the 

preprocessing steps coded in the affy package through Bioconductor on R is the 

makeup of the Affymetrix Yeast 2.0 oligonucleotide arrays. The microarrays used 

in the experiments described in Chapter 2, and previously [81, 133], used these 

chips and do not contain probes only specific to Saccharomyces cerevisiae. 

Probes specific for Schizosaccharomyces pombe can also be found on these 

chips. Thus, there may be some, but likely very little, cross-hybridization of 

mRNA isolated from budding yeast to probes meant for fission yeast. Most cross-

hybridization likely stems from genes that are strongly conserved across these 

two species, including housekeeping genes.  

How could the fission yeast-specific probes affect normalization of mRNA 

measurements for budding yeast experiments? During the chip normalization 

process, a set of invariant probes is chosen that are similar in spot intensity in 

both the baseline chip and the chip being normalized. It could be assumed that 

the amount of cross-hybridization to S. pombe probes is uniform across all chips 

being normalized. This may lead to a large number of probes specific for fission 

yeast in the invariant set for the normalization step. This result may affect the 

outcome of the actual normalizations and the subsequent summarization steps.  
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To test this hypothesis, I normalized chips from the experimental conditions and 

the order listed in Table 3.1 for order 1 either with the S. pombe probes removed 

before normalization or without removing the S. pombe probes. If the fission 

yeast probes do not have an effect on the outcome of the normalization, then a 

comparison of the two methods by fitting to a linear model should yield an r2 

value of one. However, if the probes meant for fission yeast does affect the 

normalization outcome, an r2 value less than one would be calculated. I find that 

when comparing the same dataset with and without fission yeast probes, the r2 

value is very close to one, but not quite (Figure 3.3). This is the case for all 

experimental conditions normalized: normally-cycling cells (Figure 3.3a), CDK 

“off” cells (Figure 3.3b), and CDK “on” cells (Figure 3.3c). The resulting fits from 

this analysis suggest that while probes specific for S. pombe do affect the 

resulting gene expression levels, the effect is very small. Thus, while removing 

fission yeast probes may not be necessary, it is best practice for accurate mRNA 

measurements for experiments done in budding yeast. 
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Figure 3.3:  Removing probes specific to Schizzosaccharomyces pombe affects 
the resulting gene expression measurements during normalization. Plots comparing the 
mean expression of each gene between two normalization approaches: with and without 
fission yeast-specific  probes in normally-cycling cells (a), CDK “off” cells (clb1,2,3,4,5,6) 

(b), and CDK “on” cells (PGALL-CDC20) (c). A linear model is fit to the data and an r2 
value is calculated and displayed in the plot along with the best fit line. 

 

3.2.4 Different baseline chips do not affect the lo g-fold change in 
expression, only absolute values 

 A major advantage to the method developed by Li and Wong [152, 153] 

and the implementation in the affy package [155] is the ability to calculate 

absolute values with some associated arbitrary unit. While it does not reflect the 

number of individual mRNAs of each expressed gene, it does allow for 

comparisons of levels of genes across time within and across experimental 

conditions. The issues identified in the above sections suggests that differences 

in gene expression levels at the absolute level may not have been due to 

biological mechanisms, but rather due to the normalization algorithm itself.  

Another way to visualize data is to look at fold changes of the gene 

expression dynamics of a transcript and compare it to other transcripts in the 

same experimental condition or to the same transcript across multiple 

experimental conditions. Do the normalization-specific differences affect both the 

absolute value and fold change of gene expression dynamics? To address this 

question, the gene expression dynamics of the genes in Figure 3.1 were 

converted to log2(expression/mean) for each gene and experimental condition. I 
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find that although gene expression levels appear depressed in CDK “on” cells 

compared to both normally-cycling and CDK “off” cells (Figure 3.1), the fold 

changes are very similar between all three conditions (Figure 3.4).  

�

Figure 3.4: Fold changes in gene expression levels are the same across 
experimental conditions. Gene expression curves for wild-type (blue), clb1,2,3,4,5,6 

(green), and PGALL-CDC20 (red) cells. Periodic genes: CLN1 (a), POL1 (b), and NDD1 
(c). Housekeeping genes: ACT1 (d), CUP5 (e), and CCW12 (f). mRNA levels are 

displays in log2fold dynamics. 

 

Further, comparing two different normalizations – with or without the correct 

baseline chip selected – shows that although the absolute values vary, the fold 

changes remain the same in both normalization processes (Figure 3.5).  
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Figure 3.5: Fold changes in gene expression levels are the same across varying 
normalization parameters. Gene expression curves for the transcript CLN1 in wild-type 
(a), clb1,2,3,4,5,6 (b), and PGALL-CDC20 (c) cells. Black, incorrect baseline chip; gray, 

correct baseline chip. Left column displays mRNA levels in absolute values with arbitrary 
values associated x1000. Right column displays mRNA levels in log2fold dynamics. 

These results suggest that the problems identified the normalization process 

mostly affects the absolute gene expression calculations. Thus, if normalization 

is not done properly, incorrect conclusions can be made about differences in 

gene expression levels across time and experimental conditions. However, 

findings based solely based on the behavior of the gene regardless of relative 

mRNA levels will not change based on the normalization methods chosen. 
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3.3 Identifying cell-cycle regulated genes using pe riodic-
detecting algorithms 

Regardless of the many studies to classify cell-cycle regulated 

transcription in budding yeast [77, 78, 80, 81], the question of what portion of the 

genome is periodic remains a contentious question in the field. Comparing three 

periodic gene lists [78, 80, 81], Orlando and colleagues only found 440 genes 

shared among all studies. Much of the discrepancy observed between the 

different studies relates to the computational approaches to identifying periodic 

genes. In this section, I will go into detail describing some of the issues to take 

into consideration when identifying periodic genes using three exemplar 

algorithms – de Lichtenberg [79], Lomb Scargle [143, 144], and JTK_CYCLE 

[156]. I will also outline analytical tools that can be used in addressing each 

issue. 

3.3.1 Selecting a period to query for periodic tran scripts affects the 
resulting gene list 

 Inherent in studying periodic behaviors is the idea of searching for a set of 

genes that oscillate at a particular period. Specific for the cell cycle, periodic 

genes are expressed only once per cellular division. How do we calculate the 

cell-cycle period in normally-cycling cells? In the Haase lab, we use a statistical 

model referred to as CLOCCS that takes takes budding indices from synchrony-

release experiments of wild-type cells and, with a set of assumptions, will infer a 
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number of parameters [158]. These parameters include mother cell-cycle period, 

the amount of extra time daughter cells remain in G1, and the amount of 

synchrony of the population [158]. These learned parameters can then be used 

to query periodic genes at specific periods. 

Orlando and colleagues used the mother cell-cycle period to identify cell-

cycle regulated genes using the de Lichtenberg algorithm [79] (Table 3.2).  

Table 3.2: Summary of CLOCCS parameters for wild-type cells and the 
calculated average cell-cycle period 

Wild -type 
Replicate Mother Period Daughter G1 Average Period 

1 ����  ����  ����  
2 85 35.1 ����	  

 

Using a p-value cutoff of p �  0.2, 1275 periodic genes were identified [81]. The 

population of cells used for the experiment was synchronized to early G1 using 

centrifugal elutriation. In wild-type cycling cells, the population is a 

heterogeneous mix of both mother and daughter cells. In a synchronous 

population of cells, the first cycle may be close to the mother cell-cycle period but 

will be a convolution of two different periods after one round of division. To 

address this potential issue, I calculated an average cell-cycle period using the 

following equation: (mother period) + (mother period+daughter-specific G1)/2. 

This results in average cell-cycle periods that are longer than the mother 

period used to measure periodicity (Table 3.2). Using the de Lichtenberg 
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algorithm again and a p-value cutoff of p �  0.2, I identified 1912 cell-cycle 

regulated genes at the longer, average period.  

 What are the differences between the two periodic gene lists 

generated by de Lichtenberg at the two periods queried? After comparing the 

genes that fell below the threshold, 1010 genes are classified as periodic in both 

resulting lists (Figure 3.6a,c). This result suggests that periodic genes may be 

scored as periodic over a range of periods. The average cell-cycle period adds 

nearly 1,000 periodic genes in addition to the shared periodic genes. These 

genes appear periodic and are expressed at all phases of the cell cycle (Figure 

3.6b). Only a small set of genes were identified as periodic only by the mother 

cell-cycle period (Figure 3.6d). Using the average cell-cycle period has yielded 

the largest periodic gene list in any study, suggesting that up to 30% of the yeast 

genome may be periodically expressed in cycling cells. 
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Figure 3.6: Comparing periodic gene lists from de Lichtenberg using two 
different periods. Venn diagram depicting the overlap between the periodic gene lists 
that were generated by de Lichtenberg at the mother cell-cycle period or the average 

cell-cycle period for wild-type cells (a).  Heat maps showing the mRNA levels of genes 
that are periodic only at the average cell-cycle period (b), that are periodic at both 

periods (c), and that are periodic only at the mother cell-cycle period (d).  Each heat 
map displays a different set of genes.  Transcript levels are depicted as log2-fold change 

relative to the mean expression.   
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How do varied periods affect the output of other algorithms? Lomb Scargle 

and JTK_CYCLE do not require a single period input to measure periodicity, but 

rather query a range of periods given by the user [142, 156]. For both algorithms, 

periods spanning from 50 minutes to 200 minutes were queried. Testing the 

effect of varying periods can be easily done as a p-value for each period in the 

range is calculated. At a number of different p-value cutoffs, the peak number of 

genes classified as periodic falls at the average cell-cycle period and falls off with 

some normal distribution (Figure 3.7).  

�

Figure 3.7: Size of gene list varies across periods and p-value cutoffs for 
periodic-detecting algorithms. Histograms depicting the number of genes included in 

wild-type periodic gene lists in replicate 1 (left) and replicate 2 (right) for Lomb Scargle 
(a) and JTK_CYCLE (b). 

The number of genes begins to increase again as the large periods are queried, 

which is due to the queried period being longer than the experimental time 
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course. How do the calculated p-values change over the course of the period 

range? At the periods close to the average cell-cycle period, p-values associated 

to periodic genes become small and are larger as the queried period increases in 

distance from the average period (Figure 3.8a,b).  

�

Figure 3.8: Periodograms of periodic and non-periodic genes from Lomb 
Scargle. Plots of calculated p-values across a range of periods queried for wild-type 

replicate 1 by Lomb Scargle. Periodic genes: CLN1 (a), CLB2 (b). Non-periodic genes: 
ACT1 (c), CCW12 (d). 

However, genes that are not periodic do not demonstrate this behavior (Figure 

3.8c,d). This result suggests that within some period range and p-value cutoff, 

the resulting periodic gene lists will not vary much. 

3.3.2 Different factors can affect periodicity scor es and p-values 

After the periodicity scores are calculated, these scores can then be 

transformed into p-values. For all three algorithms, different factors can be varied 
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that will change the resulting p-values. de Lichtenberg calculates an amplitude 

score, referred to as a regulation score, in addition to the periodicity score. 

Further, this algorithm can take multiple experiments into account when 

calculating the final score. The final score de Lichtenberg calculates can change 

depending on the weight given to the two scores: periodicity and regulation. If 

periodicity is more important, it is weighted such that even if a gene does not 

show high amplitude, it may still receive a good overall score. The opposite is 

true if the regulation score is weighted more heavily. Thus, depending on the 

importance given to each measurement, the final ranking of genes and 

associated scores will vary. 

As mentioned previously, Lomb Scargle and JTK_CYCLE do not take 

amplitude into account when calculating a final p-value. Rather, the p-value is 

calculated by taking into account the periodicity score and the number of time 

points queried [142, 156]. The logic here follows that as more time points are 

included and the gene expression profile receives a high periodicity score, the 

more confident the algorithm is in its periodicity score. Comparing resulting p-

values from normally-cycling cells with 13 time points or fit to a cubic spline to 

increase the number of time points to 50 time points shows that the dynamic 

range of both the periodicity scores and the resulting p-values are very different 

(Figure 3.9). This suggests that choosing a significant p-value cutoff for Lomb 

Scargle and JTK_CYCLE may not need to fall below traditional cutoffs. 
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Figure 3.9: Splining data for more time points affects both the periodicity score 
and the p-value. Plots of periodicity scores across a range of periods queried for wild-

type replicate 1 by Lomb Scargle for non-splined data (a) and splined data with 50 time 
points (c). Plots of calculated p-values across a range of periods queried for wild-type 

replicate 1 by Lomb Scargle for non-splined data (b) and splined data (d). 

3.3.3 Choosing a threshold to establish a set of ce ll-cycle regulated 
genes 

The output of a period-detecting algorithm is a list of ranked genes from 

most periodic to least periodic that have some associated score. There is no one 

threshold to use to delineate between periodic and non-periodic behaviors. 

Whatever cutoff is chosen, non-periodic genes may lie above the cutoff while 

periodic genes lie below the cutoff. Additionally, the algorithms do not relate that 

information. It is up to the researcher to choose some cutoff that best represents 

the global behavior queried in the experimental condition and the algorithmic 

parameters. In the above section, it was described that the p-values can change 
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depending on weighting parameters or number of time points. Thus, even 

choosing some ‘significant’ p-value can also be an arbitrary manner in which 

thresholds are selected. Given the amount of uncertainty, is there a way to 

choose a threshold and period range that will best represent the biology? 

One analytical tool to help in selecting an appropriate p-value cutoff and period 

range for identifying cell-cycle regulated genes is to compare the inclusion of a 

test set of known periodic genes in gene lists generated using different p-value 

cutoffs and period ranges. When developing their permutation-based model, de 

Lichtenberg and colleages [79] built a list of known periodic genes to determine 

how well the algorithm performed. This same type of analysis can be extended to 

choosing a set of cell-cycle regulated genes. To compare to the de Lichtenberg 

test gene list, gene lists were created from varying p-value cutoffs and period 

ranges from both Lomb Scargle and JTK_CYCLE. Comparing these to the de 

Lichtenberg test set shows that more of the test genes are included in the 

periodic gene lists as both the p-value cutoffs become more lax and the period 

range is expanded (Figure 3.10a,b). In the field of cell-cycle regulated 

transcription, an outstanding question is learning the transcription factors (TFs) 

that play a role in regulating periodic transcription. Are the TFs known to affect 

cell-cycle regulated transcription included in these gene lists created? To 

address this question, an additional test set was constructed to include many 

cell-cycle TFs in addition to other non-transcriptional cell-cycle regulators. Similar 
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to the de Lichtenberg test set, the TF test set had more genes included as the p-

value cutoffs and the period ranges grew larger (Figure 3.10c,d). This analysis 

suggests that choosing a threshold at which to delineate between periodic and 

non-periodic is an arbitrary task that can be aided with previous biological 

knowledge. 

 

�

Figure 3.10: Comparing test periodic sets to gene lists generated by Lomb-
Scargle and JTK_CYCLE.  Number of genes from deLichtenberg test set (a) or 

transcription factor test set (b) found in Lomb-Scarge periodic gene lists varying in p-
value cutoff and period range. Blue, 87.2-106.3 minutes; green, 91.9-103 minutes; 

orange, 94.4-100 minutes; red, 97 minutes.  Number of genes from deLichtenberg test 
set (c) or transcription factor test set (d) found in JTK_CYCLE periodic gene lists varying 

in p-value cutoff and period range. Blue, 82-114 minutes; orange, 98 minutes. 
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3.3.4 Different periodic algorithms score periodici ty differently 

As discussed previously, a major effort to understand cell-cycle regulated 

transcription entails identifying the portion of the genome that is periodically 

expressed. Previous studies have attempted to define the genes that oscillate 

during the cell cycle, but comparing them to each other shows that there is very 

little overlap with each other. This outcome is mostly due to the differences in the 

definition of periodicity. Each group used different criteria to characterize the 

elements of a periodic gene. What are the specific differences between the 

resulting periodic gene lists from varying algorithms and what are the 

assumptions built into the algorithms that produces those disparities? 

After choosing a cutoff and period range, how similar are the periodic 

gene lists generated by de Lichtenberg, Lomb Scargle, and JTK_CYCLE? Table 

3.3 lists the thresholds chosen for each gene list and the period ranges that were 

chosen with the help of the test periodic gene lists (Figure 3.10). 

Table 3.3:  Chosen period ranges and p-value cutoffs for de Lichtenberg, Lomb 
Scargle, and JTK_CYCLE. 

Algorithm  Period Range  p-value cutoff  

de Lichtenberg 
��
������
���  0.2 

Lomb Scargle �� ��������  0.5 

JTK_CYCLE ������  0.5 
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 In total, 458 genes are shared between all three algorithms (Figure 3.11). While 

this represents approximately 50% of the genes, this leaves a number of genes 

that are specific to one or two of the algorithms.  

 To understand the differences between the algorithms, further studying 

the non-overlapping periodic genes provide the best information. Lomb Scargle 

and JTK_CYCLE show a large amount of overlap (Figure 3.11a), so these two 

algorithms will be compared together as a unit to de Lichtenberg. The de 

Lichtenberg algorithm classifies periodic genes that are much higher in amplitude 

compared to Lomb Scargle and JTK_CYCLE (Figure 3.11b,d). The lower 

amplitude observed in Lomb Scargle and JTK_CYCLE is due to no weight on 

amplitude when calculating periodicity, while de Lichtenberg does take amplitude 

into account. Another result of the amplitude score for the de Lichtenberg-only 

periodic gene list is a set of genes that peak once at the beginning of the time 

course and is not expressed subsequently (Figure 3.12a). Even if the amplitude 

score is down-weighted in importance compared to the periodicity score, genes 

with very large amplitude changes will overwhelm the scoring and fall within the 

threshold for choosing a periodic gene list. These genes are excluded from Lomb 

Scargle and JTK_CYCLE outputs. Another set of genes included in the de 

Lichtenberg periodic gene list and excluded from the other two algorithms are 

genes expressed in late M phase to early G1. These genes are very periodic, 

however, they are likely scored poorly as less than 1.5 cycles are measured 
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Figure 3.11: Consensus of deLichtenberg, Lomb-Scargle, and JTK_CYCLE.  Venn 
diagram of the resulting periodic gene lists from deLichtenberg (blue), Lomb-Scargle 

(orange), and JTK_CYCLE (green) (a).  Heat maps showing the mRNA levels of genes 
that are periodic in all gene lists (b), that are periodic in deLichtenberg and do not 

overlap with all gene lists (c), that are periodic in Lomb-Scargle and do not overlap with 
all gene lists (d), and that are periodic in JTK_CYCLE and do not overlap with all gene 

lists (e).  Each heat map displays a different set of genes.  Transcript levels are depicted 
as log2-fold change relative to the mean expression. 
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(Figure 3.12b). Upon further inspection of the scoring outputs for this set of 

genes in all three algorithms, Lomb Scarge and JTK_CYCLE do not assign 

favorable p-values (Figure 3.12c,d). However, de Lichtenberg ranks these genes’ 

periodicity score very low and their amplitude score very high (Figure 3.12e). 

This result suggests that regardless of the algorithm, M/G1 genes do not receive 

good periodicity scores due to the lack of data. 

�

Figure 3.12: Differences between de Lichtenberg, Lomb Scargle, and 
JTK_CYCLE outputs. Gene expression curves in wild-type cells for LAP4 (a) and CTS1 
(b). mRNA levels are displays in absolute value, with arbitrary values associated x1000. 
Plot showing the p-values from Lomb Scargle associated with CTS1 gene expression 
dynamics (c). Ranking of CTS1 periodicity and amplitude scores among all budding 

yeast genes calculated by de Lichtenberg for wild-type replicate 1 (d). 

This analysis shows that no algorithm is perfect and using some 

combination of these, and other, algorithms may allow for a more comprehensive 
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or restrictive periodic gene list. The best choice of algorithm is highly dependent 

on the biological question being asked and the approach being taken. 

3.4 Discussion 

While normalization and identifying cell-cycle regulated transcripts seems 

like a very straightforward task, there are many details that, if overlooked, can 

result in improper interpretation of data. In this chapter, I detail the work done to 

attempt to better understand the normalization processes and the algorithms 

used to rank genes based on periodicity.  

3.4.1 Normalization is an important preprocessing s tep in data 
analysis 

 Many normalization processes have been proposed and studied for 

normalizing Affymetrix oligonucleotide arrays. While each is different from each 

other, the principle is the same: to remove any non-biological differences. The 

goal of normalization is to make mRNA measurements comparable across time 

points and experimental conditions. Normalization methods have been converted 

into code that is implemented through packages on different coding platforms 

[155]. While this is very helpful for biologists who may not understand how to 

implement an algorithm, the danger is turning normalization into a black box that 

takes your data and spits out results that are trusted immediately for interpreting 

biological mechanisms. In this chapter, I describe just one issue that was 

discovered by wondering why only one condition showed lower global mRNA 
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levels compared to other experimental conditions. It is important to have a 

working knowledge of the algorithms chosen for both pre- and post-processing 

steps. 

3.4.2 Defining cell-cycle regulated transcription 

 While great efforts have been made to define cell-cycle regulated 

transcription, very little overlap exists between the different resulting gene lists. 

With careful analysis, I have been able to detail how and why three different 

algorithms produce such different results. Not only can periodic gene lists be 

affected by the queried period (Figures 3.6, 3.7, and 3.8), but also by the 

threshold chosen (Figures 3.10, 3.11, and 3.12). Perhaps different threshold 

cutoffs would make different gene lists more similar. However, the takeaway from 

these analyses is that there is not the periodic gene list, but several different 

periodic gene lists that depend on biological question, algorithm choice(s), and 

selected thresholds. 

3.5 Future Directions 

In this chapter, I discuss the differences between different periodic-

detecting algorithms. Future work must be continued to further develop and 

understand the methods used to identify periodic genes. 
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3.5.1 Are p-values the most efficient way to choose  cutoffs? 

While calculating p-values is a very useful tool to measure the significance 

of differences between conditions and other biological measurements, are p-

values the best mechanism to calculate a cutoff for distinguishing between 

periodic and non-periodic behaviors? As discussed in section 3.3.2, p-values can 

be calculated differently when parameters are varied. The connotation of some 

‘significant’ p-value loses meaning when the parameters can be changed just by 

different weighting or by splining data. The user makes these changes and thus 

different users will have different outputs depending on stringency of parameters. 

For each of the algorithms, is there a better way to define periodic transcription? 

Further work and analyses must be done to eliminate the need for p-values or to 

streamline the ways we choose p-values without allowing for so much variability. 

3.5.2 How are biological replicates used to better inform periodic 
gene lists? 

 Of the three periodicity-detecting algorithms, de Lichtenberg is the only 

one capable of integrating scores for multiple biological replicates. Replicates are 

a very useful tool in any experiment, lending confirmation, or not, of observations 

found in one or the other replicate. Currently, biological replicates are run through 

Lomb Scargle and JTK_CYCLE separately with the exact same parameters. How 

the outputs from the replicates are integrated has not yet been established. One 

method that I have implemented is taking only genes that fall within the threshold 
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parameters in both replicates. This ensures that genes identified from either 

algorithm are more likely to be truly periodic. Rather than simply taking an 

intersection of gene lists, is there a more principled method to integrate the 

scores from each biological replicate? Perhaps using the same principles used in 

de Lichtenberg will provide some insight into some practices that best utilizes all 

data available to address cell-cycle regulated transcription. 

3.6 Experimental Details 

3.6.1 Normalization methods 

CEL files from the Affymetrix Yeast 2.0 oligonucleotide arrays generated 

for wild-type, CDK “off” (clb1,2,3,4,5,6) and CDK “on” (cdc20� ;PGALL-CDC20) 

were normalized and summarized using a modified version of the dChip[148] 

method from the affy  package (v. 1.32.1) in Bioconductor [155, 157] within the 

R statistical programming environment. The probes specific to S. pombe were 

removed using the s_cerevisiae.msk file from Affymetrix before normalizing the 

CEL files. 

3.7 Chapter 3 collaborator contributions 

Much of the analysis done in this chapter were completed in collaboration 

with other members of the Haase lab and collaborating groups at Duke 

University. The analysis done to identify the bug in the dChip code in the affy 

package was completed with Michael Mayhew. Analysis done to compare 
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different periodicity-detecting algorithms was done in close collaboration with 

Anastasia Deckard and John Harer. 
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Chapter 4 Discussion and Future Directions 

�

In this dissertation, I have addressed questions focused on better 

understanding how a transcription factor (TF) network and the periodic 

transcriptional program are coupled to other events with the proper timing during 

the cell cycle. Two alternative models have been proposed to explain how a TF 

network is regulated to couple the timing of its oscillations with cell-cycle events 

in wild-type cells. The first model proposes that oscillations in cyclin/CDK activity 

entrain a TF network, in addition to other events, to maintain a proper period 

(Figure 1.1b) [132] (reviewed in [134]). The second model suggests that a TF 

network serves as the underlying cell-cycle oscillator that is responsible for the 

timing of cell-cycle events by regulating the timing of cyclin synthesis and other 

periodic genes (Figure 1.1c) [133]. Both of these models were built around the 

same data, yet two very different models could explain previous findings. The 

data presented in this dissertation distinguishes between these two models and 

suggests that the second model fits all current observations. Further, we have 

added an extra layer of control with the discovery that cell-cycle checkpoints 

have the ability to arrest transcriptional oscillations. In this chapter, I will discuss 

the significance of these findings, and the future work needed to further elucidate 

the regulatory modules that control the TF network oscillator. 
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4.1 A transcription factor network does not need to  be regulated 
by CDK activity 

Previous work has shown that in the absence of cyclin/CDK activity, 

transcriptional oscillations continue [81, 133]. A transcription factor network was 

proposed to control periodic transcription and to act as the cell-cycle oscillator 

that keeps the time of events [81, 133]. Further experiments have shown that 

perturbations to the TF network via over-expression or deletion of network TFs 

can alter the period of cell-cycle oscillations in the absence of S-phase and 

mitotic cyclins [81, 133]. This finding suggests that a TF network is, in fact, a part 

of the underlying cell-cycle oscillator. These data fit a model in which at TF 

network acts as an oscillator and controls temporal order via periodic 

transcription, including cyclins (Figure 1.4b) [133]. However, a TF network cannot 

trigger cell-cycle events; cyclins, when bound to CDK, are capable of triggering 

these events at the proper time (Figure 1.4b). In addition, cyclin/CDK activity is 

known to affect the activity of many of the network TFs, resulting in feedback 

onto the function of the TF network oscillator. 

This same set of data has been interpreted in a different way, with a CDK-

centric perspective. In addition to CDK-independent transcriptional oscillations, 

other CDK-autonomous cell-cycle oscillations have been observed, sometimes 

with non-wild-type periods [28, 81, 131, 132]. How then are all of these 

autonomous oscillations coupled to each other during a wild-type cell cycle? The 
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importance of oscillations in cyclin/CDK activity in triggering cell-cycle events is 

very well studied in all organisms. A recent study proposed that cyclin/CDKs are 

important for entraining these autonomous cell-cycle oscillations such that they 

occur not only with the correct period, but also at the correct time [132] (reviewed 

in [134]. Given this model, the only situation in which these autonomous 

oscillations can be observed is in the absence oscillations in cyclin/CDK.  

In chapter 2, I address these two models and design an experiment to 

delineate between them. If autonomous transcriptional oscillations can only be 

revealed in the absence of cyclin/CDK activity, than a substantially different 

transcriptional response should be observed when cyclin/CDK activity is 

persistent. However, if the first model is correct, then at least some portion of 

transcriptional oscillations should continue. In fact, we see that when mitotic 

cyclin Clb2 is stabilized, transcriptional oscillations can be observed (Figure 2.7). 

This result fits best with the TF network oscillator model. However, we do know 

that TFs known to be regulated by Clb2/CDK are affected, as gene expression of 

their targets lose periodicity (Figure 2.5).  

 A most striking finding from this experiment is that the period of 

transcriptional oscillations in CDK “on” cells is exactly the same as those in CDK 

“off” cells (lacking S-phase and mitotic cyclins). This result suggests that 

regardless of the state of cyclin/CDK levels, a TF network continues to oscillate 

at the same period. This data does not completely fit with recent observations; as 
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more cyclin/CDK activity is removed from cells, the period of transcriptional 

oscillations lengthens [133]. This suggests that cyclin/CDKs have the ability to 

fine tune TF network oscillations. How does the absence of S-phase and mitotic 

cyclin/CDK activity and persistent mitotic cyclin/CDK activity result in the same 

period of transcriptional oscillations?  

 One possible explanation for this puzzling observation is that while 

persistent Clb2/CDK activity does have known effects on the TF network 

oscillator, the TFs that are not regulated by Clb2/CDK are in a similar cellular 

state compared to cells lacking S-phase and mitotic cyclin/CDK activity. 

Regardless of whether cyclin/CDK activity is oscillating, absent, or persistent, 

only a subset of TFs is affected by this activity. It could be that a sufficient 

number of TFs that act throughout the cell cycle are capable of generating 

transcriptional oscillations. This could explain why a similar period is observed in 

two very opposite conditions. 

 Another potential explanation for this finding is centered on the concept of 

positive feedback. Two positive feedback loops between network TFs and 

cyclin/CDK activity exist. The first positive feedback loop is built between the 

G1/S TF SBF (SCB Binding Factor) and G1 cyclins Cln1 and Cln2. SBF is kept 

inactive by co-repressor Whi5 until Cln3/CDK phosphorylates Whi5 to sequester 

the protein to the cytoplasm. As SBF is able to promote transcription, it activates 

CLN1 and CLN2 gene expression. Cln1/CDK and Cln2/CDK further inactivate 
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Whi5, leading to increased expression of CLN1 and CLN2 [159]. SBF activity is 

then inhibited by Clb2 later in the cell cycle [98]. The second positive feedback 

loop is between SFF (Swi Five Factor) and mitotic cyclin Clb2 [98]. Un-modified 

SFF has very little activity and activates transcription poorly if not activated. SFF 

activates expression of CLB2 that when translated and bound to CDK, 

phosphorylates and further activates components of SFF [101, 102, 127]. One 

hypothesis drawn from studies eliminating cyclin/CDK activity states that the 

period of transcriptional oscillations increases as positive feedback loops are 

removed from the cells [133]. In cells with persistent Clb2/CDK activity, the SFF 

positive feedback loop is maintained while the SBF positive feedback loop is 

inhibited. This is the opposite case in cells lacking S-phase and mitotic cyclins, 

which maintain the SBF positive feedback while losing the SFF positive 

feedback. Perhaps both positive feedback loops are able to maintain 

transcriptional oscillations at the same period. This may explain why the period is 

the same in these two conditions, and the period is extended even further when 

both of these positive feedback loops are eliminated [133]. 

 This novel experimental design has led to a deeper understanding of how 

a TF network functions to maintain transcriptional oscillations and of the 

relationship between cyclin/CDK activity and a TF network oscillator. 



�

��
�

4.1.1 A new perspective on TF network structure and  oscillations 

The data presented in this dissertation challenges many of the 

preconceptions concerning the relationship between cyclin/CDK activity and a TF 

network oscillator. For many years, it has been proposed that a TF network could 

support oscillations, but its activity is regulated primarily through cyclin/CDK-

mediated phosphorylation (reviewed in [5, 88, 90, 97]). Given the amount of 

cyclin/CDK feedback, it could be expected that when cell-cycle progression is 

arrested with persistent Clb2/CDK activity, transcriptional oscillations should also 

be arrested. After all, Clb2/CDK activity inhibits SBF, Ace2, and Swi5 (Figure 2.1 

and 2.5) [98, 103, 104]. This should be sufficient to arrest transcription at G1/S 

and at M/G1. These are critical transitions for cells, as one represents 

commitment to the cell cycle and the other represents the transition from the end 

of one cell cycle into another cell cycle, conditions permitting. How could a 

transcriptional signal be passed along that could maintain oscillations? 

While SBF gene expression is inhibited in these cells, MBF gene 

expression is largely unaffected (Figure 2.1, 2.2). This bifurcation in 

transcriptional activation at Start may be sufficient to trigger and maintain 

periodic transcription (Figure 1.3). Persistent Clb2/CDK activity also inhibits Ace2 

and Swi5 activity via cytoplasmic sequestration [103, 104]. How is a signal 

passed from the end of one transcriptional cycle into the beginning of the next 

cycle in the absence of Ace2 and Swi5? Previous studies have shown that cells 
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are viable in the absence of both Ace2 and Swi5 [160], suggesting the presence 

of some yet unknown TF that plays a role in controlling periodic transcription at 

this transition. There is still much work left to understand the elements of the TF 

network that plays a role in propagating oscillations and periodic transcription. 

However, this experimental condition reveals novel ways to think about how a TF 

network functions to maintain periodic transcription. 

4.2 A new mechanism of regulating a TF network osci llator 

Previous work and studies completed in this dissertation have shown that 

regardless of how cell-cycle progression and oscillations in cyclin/CDK activity 

are arrested, transcriptional oscillations are maintained (Chapter 2) [81, 133]. 

The model proposing that a TF network acts as the cell-cycle oscillator that 

controls the timing of events fits with this data. However, if a TF network is in fact 

responsible for regulating cell-cycle events, shouldn’t the TF network be tied to 

cell-cycle progression?  

In all of the described experimental conditions, cell-cycle progression is 

halted while periodic transcription continues, suggesting that the TF network is 

maintaining oscillations. All of these experimental conditions used mutants to 

eliminate oscillations in cyclin/CDK activity, and as a result arrests cell-cycle 

events as well. In wild-type cells, cell-cycle events can be disrupted by 

environmental insults and intracellular perturbations. To maintain proper temporal 

order of events, signaling pathways called checkpoints monitor progress of 
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events and arrest later events if an earlier event is unable to be completed. How 

does the TF network and periodic transcription behave in response to 

checkpoints arresting cell-cycle progression and oscillations in cyclin/CDK 

activity? 

When the DNA replication checkpoint or spindle assembly checkpoint is 

triggered, the bulk of periodic transcription is arrested (Figure 2.10). This finding 

suggests that the TF network is also arrested and leads to a new control module 

that is able to regulate the function of the TF network oscillator during the cell 

cycle (Figure 4.1).  

�

Figure 4.1: Checkpoints add another regulatory component to regulating a 
transcription factor network. 
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For the first time, cell-cycle progression, cyclin/CDK activity, and the TF network 

oscillator are coupled together. This result is remarkable as no study has 

demonstrated such a large transcriptional response to cell-cycle checkpoints. A 

number of genes have been found to be expressed during the DNA replication 

checkpoint [122], but it was proposed that this transcriptional response is meant 

to aid in overcoming replicative stress, not coupling periodic transcription to cell-

cycle progression. Even more remarkably, no study has ever shown that the 

spindle assembly checkpoint triggers a transcriptional response. Given this 

striking transcriptional arrest, understanding the mechanism by which these two 

different checkpoints inhibit TF network oscillations my lead to understanding 

how the TF network functions during in normally cycling cells. 

4.2.1 Potential checkpoint effectors that regulate TF network 
oscillations 

The DNA replication checkpoint and spindle assembly checkpoint both 

arrest cell-cycle progression by inhibiting chromosome segregation. This action is 

prevented by inhibiting Cdc20, an activator of the E3 ubiquitin ligase APC [43, 

60-63, 140]. Inhibiting APCCdc20 activity stabilizes securin (Pds1 in budding yeast) 

by inhibiting separase (Esp1 in budding yeast) [140]. This results in maintained 

cohesion complexes around sister chromatids, preventing premature 

segregation. Another result of this mechanism is stabilizing other APCCdc20 

targets. The most obvious APC target that is affected is Clb2 (Figure 2.13). 
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Clb2/CDK can phosphorylate and activate APC, and with some delay, APC 

ubiquitinates and marks Clb2 for destruction [140]. This negative feedback loop 

serves as the basis for cell-cycle oscillations in early developing embryos. With 

Cdc20 inhibited during both of these checkpoints, Clb2 becomes stabilized and 

Clb2/CDK activity is persistent [47, 48]. This outcome is the same as the 

experiment I designed to test the effect of persistent mitotic cyclin/CDK activity 

on periodic transcription.  

While only arresting cell-cycle progression by inhibiting APCCdc20 results in 

continued transcriptional oscillations (Figure 2.2), arresting cells with checkpoints 

halts the bulk of periodic transcription (Figure 2.3). This result suggests that 

checkpoint-specific effectors play some role in arresting TF network oscillations 

and periodic transcription. What effectors could these be? And how do they 

impinge on the activity of network TFs? 

The checkpoint kinases Rad53 and Dun1 are responsible for activating 

the transcriptional response during the DNA replication checkpoint (reviewed in 

[59]). While Dun1 has not been shown to affect any network TFs, it is possible 

that Dun1 not only triggers a transcriptional response unique to the DNA 

replication checkpoint, but also affects periodic transcription. Further, Rad53 has 

been shown to phosphorylate and alter the activity of several network TFs. 

Rad53 has been shown to phosphorylate and inactivate Swi6, a component of 

both SBF and MBF [96, 121]. Additionally, Rad53 inhibits Nrm1, a target and co-
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repressor of MBF [122]. It is possible that by inhibiting transcriptional oscillations 

at MBF via Nrm1 and SBF via Swi6 and Clb2/CDK is sufficient to arrest 

downstream periodic transcription. Further experiments that perturb individual 

checkpoint kinases while a checkpoint is triggered will help to elucidate the 

contribution of each effector. 

As mentioned above, no transcriptional changes in response to the 

spindle assembly checkpoint has yet to be reported outside of the work 

presented in this dissertation. Outside of the transcriptional changes observed 

due to Clb2 stabilization, it is unknown what checkpoint effectors in this signaling 

pathway could play a role in regulating the TF network oscillator. There are a 

number of candidates, including the many kinases that may affect network TFs. 

Using a candidate approach and an unbiased genetic screen may be one 

method to identify potential regulators. Better understanding how both of these 

checkpoints regulate the activity of the TF network oscillator may lead to an even 

better understanding of the topology of the network and how it can be regulated 

during the cell cycle. 

4.3 Clarifying transcriptional regulation at Start 

The massive amount of data generated to address the question of how 

cell-cycle regulated transcription is controlled during the cell-cycle provides much 

more information than what this single question uses. These datasets are so rich 

with extra information about the biology of the cell cycle and how different groups 
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of genes are regulated under a variety of conditions. Prior to these genomics 

studies, it was proposed that a TF network could support periodic transcription 

using genome-wide binding information [107]. However, physical binding does 

not confirm a functional effect on gene expression. Perhaps one of the most well-

studied clusters of genes are those activated at Start. Redundant TF complexes 

SBF and MBF regulate these G1/S genes. SBF and MBF are heterodimers 

composed of a DNA binding protein, Swi4 and Mbp1, respectively and a cofactor, 

Swi6 that is a component of both complexes. Each have very similar consensus 

binding sequences. Genetic studies demonstrate that cells are viable in swi4 and 

mbp1 single mutants, but inviable when both are deleted [110], suggesting that 

SBF and MBF are highly redundant with each other.  

 Several genome-wide binding studies have attempted to elucidate the 

overlapping and exclusive SBF and MBF targets [106, 112, 113, 161]. While all 

of these studies propose that each TF complex does have a set of unique 

targets, agreement from these studies is very low. Further, more targeted studies 

using ChIP-PCR have shown that the overlap of shared targets may be much 

more extensive than once believed [111]. Can a functional genomics approach 

utilizing the datasets already generated, aid in clarifying the targets of SBF and 

MBF? 

 The experimental conditions used to probe the function of the TF network 

and the periodic transcriptional response may provide an opportunity to delineate 
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SBF targets, MBF targets, and shared targets. This can be done due to the 

different mechanisms utilized to inactivate SBF and MBF activity during the cell 

cycle. As mentioned above, SBF is inactivated via Clb2/CDK [98], while MBF is 

inactivated via a negative feedback loop with its own target Nrm1 [119]. In the 

absence of S-phase and mitotic cyclins (CDK “off”; clb1,2,3,4,5,6), canonical SBF 

targets have elevated gene expression levels as Clb2/CDK cannot inhibit SBF 

activity. However, since MBF is not regulated by S-phase or mitotic cyclins, its 

targets’ gene expression dynamics are not affected in these cells (Figure 4.2). 

Similarly, in cells with persistent mitotic cyclin/CDK activity (CDK “on”; PGALL-

CDC20), SBF targets are inhibited after one cycle of expression while canonical 

MBF target gene expression is unaffected for the same reasons as in CDK “off” 

cells (Figure 4.2). A third experimental condition in which SBF and MBF target 

transcript dynamics differ is during the DNA replication checkpoint. As described 

above, this checkpoint arrests cell-cycle progression with persistent Clb2/CDK 

activity [47, 48], resulting in only one cycle of gene expression for SBF targets 

(Figure 4.2). This checkpoint also inactivates Nrm1 via Rad53-dependent 

phosphorylation [122], leading to persistent MBF activity and MBF target gene 

expression (Figure 4.2). These differences in regulation may lead to a better 

understanding of how this cluster of genes is activated by two redundant TF 

complexes. 
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Figure 4.2: SBF and MBF targets are regulated differently during different 
experimental conditions. Absolute mRNA levels (dChip-normalized Affymetrix intensity 
units/1000) are shown for SBF target, CLN1 (left) and MBF target, POL1 (right) across 

different experimental conditions. 

 While this functional genomics approach seems very straightforward, 

complex combinatorial control could demonstrate that the transcriptional control 

at Start is much more complicated than anticipated. A recent study has shown 
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that a number of genes are activated by SBF, but inhibited by MBF [162]. 

Complex logic like this example may not be the only instance of how G1/S genes 

are controlled using combinatorial logics. Other factors might also play a role. For 

example, the number of binding sites or the order of the binding sites could affect 

which TF complex plays a dominant role in activating or repressing target gene 

expression. To tackle this interesting question, a computational approach should 

be taken to use all of the bioinformatics resources available to sort out groups of 

similarly controlled genes within the larger umbrella of SBF- and MBF-mediated 

gene expression. 

4.4 Concluding remarks 

In this dissertation, I have probed the mechanisms that play a role in 

regulating the TF network oscillator during the cell-cycle. I have shown that 

Clb2/CDK activity does in fact play a major role in regulating the transcriptional 

output of many network TFs. However, I have also shown that this regulation is 

not sufficient to arrest the TF network oscillator. These data are consistent with a 

new model of cell-cycle regulation centered on this TF network oscillator. I have 

further shown how periodic transcription is coupled to other cell-cycle events and 

control modules during a wild-type cell cycle. While there are many open 

questions that have come out of this work, it has contributed to a better 

understanding of how the cell cycle is regulated by multiple layers of control 
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modules and will hopefully contribute to new and exciting perspectives in the cell-

cycle field. 
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