Acoustic Radiation Force Impulse Imaging of Radiofrequency Ablation Lesions for
Cardiac Ablation Procedures

by

Stephanie Ann Eyerly

Department of Biomedical Engineering
Duke University

Date:_______________________
Approved:

Patrick D. Wolf, Supervisor

Tristram D. Bahnson

Mark L. Palmeri

Loren W. Nolte

Gregg E. Trahey

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Biomedical Engineering
in the Graduate School of Duke University

2013
ABSTRACT

Acoustic Radiation Force Impulse Imaging of Radiofrequency Ablation Lesions for Cardiac Ablation Procedures

by

Stephanie Ann Eyerly

Department of Biomedical Engineering
Duke University

Date: ______________________
Approved:

Patrick D. Wolf, Supervisor

Tristram D. Bahnson

Mark L. Palmeri

Loren W. Nolte

Gregg E. Trahey

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Engineering in the Graduate School of Duke University

2013
Abstract

This dissertation investigates the use of intraprocedure acoustic radiation force impulse (ARFI) imaging for visualization of radiofrequency ablation (RFA) lesions during cardiac transcatheater ablation (TCA) procedures. Tens of thousands of TCA procedures are performed annually to treat atrial fibrillation (AF) and other cardiac arrhythmias. Despite the use of sophisticated electroanatomical mapping (EAM) techniques to validate the modification of the electrical substrate, post-procedure arrhythmia recurrence is common due to incomplete lesion delivery and electrical conduction through lesion line discontinuities. The clinical demand for an imaging modality that can visually confirm the presence and completeness of RFA lesion lines motivated this research.

ARFI imaging is an ultrasound-based technique that transmits radiation force impulses to locally displace tissue and uses the tissue deformation response to generate images of relative tissue stiffness. RF-induced heating causes irreversible tissue necrosis and contractile protein denaturation that increases the stiffness of the ablated region. Preliminary in vitro and in vivo feasibility studies determined RF ablated myocardium appears stiffer in ARFI images.
This thesis describes results for ARFI imaging of RFA lesions for three research milestones: 1) an in vivo experimental verification model, 2) a clinically translative animal study, and 3) a preliminary clinical feasibility trial in human patients. In all studies, 2-D ARFI images were acquired in normal sinus rhythm and during diastole to maximize the stiffness contrast between the ablated and unablated myocardium and to minimize the bulk cardiac motion during the acquisition time.

The first in vivo experiment confirmed there was a significant decrease in the measured ARFI-induced displacement at ablation sites during and after focal RFA; the displacements in the lesion border zone and the detected lesion area stabilized over the first several minutes post-ablation. The implications of these results for ARFI imaging methods and the clinical relevance of the findings are discussed.

The second and third research chapters of this thesis describe the system integration and implementation of a multi-modality intracardiac ARFI imaging-EAM system for intraprocedure lesion evaluation. EAM was used to guide the 2-D ARFI imaging plane to targeted ablation sites in the canine right atrium (RA); the presence of EAM lesions markers and conduction disturbances in the local activation time (LAT) maps were used to find the sensitivity and specificity of predicting the presence of RFA lesion with ARFI imaging. The contrast and contrast-to-noise ratio between RFA lesion and unablated myocardium were calculated for ARFI and conventional ICE images. The opportunities and potential developments for clinical translation are discussed.

v
The last research chapter in this thesis describes a feasibility study of intracardiac ARFI imaging of RFA lesions in clinical patients. ARFI images of clinically relevant ablation sites were acquired, and this pilot study determined ARFI-induced displacements in human myocardium decreased at targeted ablation sites after RF-delivery. The challenges and successes of this pilot study are discussed.

This work provides evidence that intraprocedure ARFI imaging is a promising technology for the visualization of RFA lesions during cardiac TCA procedures. The clinical significance of this research is discussed, as well as challenges and considerations for future iterations of this technology aiming for clinical translation.
Contents

Abstract .. iv
Contents... vii
List of Tables .. xiii
List of Figures ... xiv
List of Abbreviations .. xx
List of Symbols ... xxiii
Acknowledgments .. xxv
Chapter 1: Introduction .. 1
Chapter 2: Background .. 6
 2.1 Management and Treatment of Atrial Fibrillation ... 6
 2.1.1 Mechanism and Prevalence of Atrial Fibrillation ... 6
 2.1.2 Treatment of Atrial Fibrillation .. 8
 2.2 Radiofrequency Ablation ... 10
 2.2.1 Biophysics of Radiofrequency Ablation .. 10
 2.2.2 Physiology of Radiofrequency Ablation Lesions ... 12
 2.3 Imaging and Guidance in Cardiac Ablation Procedures ... 17
 2.3.1 Fluoroscopy .. 17
 2.3.2 Intracardiac Echocardiography (ICE) ... 17
 2.3.3 Electroanatomical Mapping Systems .. 18
 2.3.4 MRI for Substrate Characterization and RFA Assessment.. 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Acoustic Radiation Force Impulse (ARFI) Imaging</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Acoustic Radiation Force</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2</td>
<td>ARFI Imaging</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Cardiac Motion and ARFI imaging</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Image Quality</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Preliminary Work on ARFI Imaging of RFA Lesions</td>
<td>24</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>In vivo Feasibility</td>
<td>24</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>In vitro Lesion Assessment</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Methods</td>
<td>30</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Animal Experimental Protocol</td>
<td>30</td>
</tr>
<tr>
<td>3.2.2</td>
<td>ARFI Imaging Methods and Image Processing</td>
<td>32</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Temporal Image Registration and ARFI Image Normalization</td>
<td>35</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Contrast Analysis and Temporal Stability of Normalized Displacements</td>
<td>37</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Temporal Stability of Lesion Width and Area</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Temporal Stability and Image Contrast Analysis</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Temporal Stability of Lesion Width and Area</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion and Conclusions</td>
<td>46</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Implications for Clinical Lesion Assessment</td>
<td>47</td>
</tr>
</tbody>
</table>
3.4.1.1 Edema at the RFA site ...47
3.4.1.1 Necrosis at the Lesion Boundary ..48
3.4.2 Study Design and Limitations ...50
3.5 Acknowledgements ...51

Chapter 4: Integration of ARFI Imaging and Electroanatomical Mapping for Intraprocedure Intracardiac Radiofrequency Ablation Lesion Assessment52

4.1 Introduction ...52
4.2 Methods ...54

4.2.1 Multi-Modality Imaging System ..54
4.2.1.1 ARFI Imaging Sequences and Image Processing54
4.2.1.2 Hardware and Software Integration ...58
4.2.1.3 Imaging System Implementation and Equipment Setup59
4.2.2 Integrated System Verification ...64
4.2.3 ARFI Imaging of Linear RFA ..64
4.2.3.1 ARFI Image Review for the Presence of RFA Lesion65
4.2.3.2 Contrast Performance Analysis of ARFI-induced Displacements in Unablated vs. Ablated Myocardium ..66
4.2.3.3 Bulk Motion Artifacts ..67

4.3 Results ...69
4.3.1 Integrated System Verification ..69
4.3.2 Identification of RFA Sites with ARFI Imaging73
4.3.3 Contrast of the ARFI-induced Displacements in RFA Lesion75

4.4 Discussion and Conclusions ..77
6.2 Methods .. 99
 6.2.1 Clinical Tool for ARFI Imaging .. 99
 6.2.2 ARFI Image Processing .. 102
 6.2.3 Clinical Imaging Procedure ... 103
 6.2.4 Statistical Analysis ... 104
6.3 Results ... 105
6.4 Discussion and Conclusions ... 108
 6.4.1 Clinical Experience Observations .. 109
 6.4.2 Study Limitations ... 111
6.5 Acknowledgements .. 112
Chapter 7: Conclusions and Future Work ... 113
 7.1 Conclusions .. 113
 7.1.1 Factors for Clinical Translation ... 115
 7.1.2 Significance for Procedure Safety .. 116
 7.2 Continuing Efforts and Future Work .. 117
 7.2.1 Development of a Clinically Approved ARFI Imaging-EAM System 117
 7.2.2 Development of 3-D ARFI Imaging ... 119
 7.2.3 Optimization of Intracardiac ARFI Imaging Sequences and Displacement
 Motion Filtering ... 119
 7.2.4 Correlation of ARFI Images to Tissue Histology, Ablation Temperature, and
 Electrical Viability ... 120
 7.2.5 ARFI imaging During Atrial Fibrillation ... 121
 7.2.6 Evaluation of Other Ablation Modalities with ARFI imaging 122
Appendix A: Introduction to CARTO... 123
 A.1 Magnetic Tracking... 123
 A.2 CARTO Maps.. 124
 A.3 Magnetic vs. Electric Impedance-Based Mapping Systems 127
Appendix B: Image Review Considerations .. 128
References ... 129
Biography ... 152
List of Tables

Table 1: Thermal-material properties of cardiac tissue. ... 12
Table 2: Thermal-profusion properties of blood ... 12
Table 3: ARFI imaging parameters for the VF10-5 linear transducer ... 33
Table 4: Registration analysis of B-mode images .. 40
Table 5: Normalized displacement stabilization times and contrast analysis of ARFI and B-mode images of RFA lesions .. 45
Table 6: 2-D ICE-based ARFI imaging parameters ... 55
Table 7: ARFI imaging based confirmation of RFA lesion sites in EAM (4-mm RFA marker diameter). .. 73
Table 8: Mean and standard deviations of the ARFI image ROI displacements and contrast analysis for ROI in unablated and ablated myocardium ... 77
Table 9: ARFI image assessment for RFA treatment .. 92
Table 10: ARFI image assessment for contiguous RFA .. 92
Table 11: Summary of statistical analysis for tables 9 and 10 .. 92
Table 12: ARFI imaging parameters for S2000 clinical studies ... 101
Table 13: Statistical summary of measured ARFI-induced displacements in a 1x1 mm region of myocardium below the ACC point before and after RFA ... 108
List of Figures

Figure 1: Anatomy of a radiofrequency ablation lesion (RFAL). The radiofrequency ablation catheter (RFAC) is introduced to the right atrium (RA) through the inferior vena cava (IVC). The electrode tip is brought in contact with the endocardial (endo) surface. As the RFAL forms, there are three distinct ablation zones: (1) thermocoagulated core caused by direct resistive heating, (2) irreversibly ablated zone caused by passive thermal heating, and (3) reversibly injured myocytes in hyperthermic “border zone” (~2 mm). Myocardium more than 8 mm from the edge of the lesion (4) is unaffected by the RFA. Adapted from:...15

Figure 2: Timeline of edema and chronic RFA lesions development..................................16

Figure 3: ARFI images of a right ventricular epicardial RFA lesion through the cardiac cycle. A non-irrigated electrode tip ablated the epicardial surface (EPI = epicardium, ENDO = endocardium) for 7 sec at 20 W. A) ARFI images acquired at different times during the cardiac cycle: (1) and (4) during diastole, (2) during systole, and (3) during end-systole. ARFI images were acquired with a linear transthoracic probe vacuum suctioned to the RV epicardium. Color bar units are maximum displacement away from the transducer in microns. Within the lesion the ARFI induced displacement is low (blue) throughout the cycle. The normal myocardium cycles between high displacement (red) during diastole and low displacement (blue) during systole. B) ARFI acquisition times corresponding to the ECG...26

Figure 4: ARFI imaging determined lesion boundaries. The maximum ARFI-induced displacement (left) and depth normalized (center) image were overlaid onto the photograph of the lesion cross-section. The lesion boundary traces were determined by a manual (black) and automatic (blue: optimal, and green: standardized) segmentation of the digital image...27

Figure 5: ARFI images acquired during an in vitro RFA. (A) The pre-RFA image shows high ARFI-induced displacement throughout the myocardium. During RFA a growing region of increased stiffness appeared (B-D). The plane of the RFA catheter is into the page and the effective depth of field (1.5 cm focus) is between 1.0 and 2.25 cm. (G) The mean and standard deviation of the ARFI displacements measured outside the lesion remained constant during RFA but decreased inside the lesion. (H) The tissue was sliced in the approximate imaging plane and stained with triphenyltetrazolium chloride (TTC) to confirm a lesion was created...28
Figure 6: Open chest in vivo ARFI imaging experimental setup. The VF10-5 ultrasound transducer (UT) was held by a vacuum-coupling apparatus (VA) and positioned directly onto the right ventricular free wall (RVFW) using an adjustable stabilization arm (SA). The ablation catheter (AC) was introduced to the heart through the inferior vena cava (IVC) and brought in contact with the RVFW endocardium directly under the UT. The RFA lesion (L) formed in the ARFI imaging plane.

Figure 7: ARFI-induced displacement curve for a single pixel in the myocardium. Eight scan-lines were acquired before the excitation to determine the baseline position. The motion filter function (blue) was extrapolated from the pre-excitation data, and subtracted from the raw displacements (triangles) to calculate the motion filtered displacement profile (circles). Fifteen scan-lines were acquired after the ARFI-excitation to monitor the axial tissue displacement. Total tracking time for a single line was ~2.75 ms. The maximum displacement over the tracking time (magenta star) was the pixel value in the 2-D ARFI image.

Figure 8: Block diagram of B-mode image spatial registration.

Figure 9: B-mode (left column), ARFI (center column), and pathology (right column) images for RFA lesions formation (lesion C). Before ablation, the normalized ARFI-induced displacements are homogeneous in the myocardium (red). During RFA, a semi-circular region of lower displacement (blue) grows from the ablation catheter contact point on the endocardium. The lesion size did not change significantly during the monitoring time-course and is comparable to the morphology in the TTC stained tissue pathology image at the approximate imaging plane.

Figure 10: B-mode (left column), ARFI (center column), and pathology (right column) images for RFA lesions formation (lesion A). Before ablation, the normalized ARFI-induced displacements are homogeneous in the myocardium (red). During RFA, a semi-circular region of lower displacement (blue) grows from the ablation catheter contact point on the endocardium (slightly out of plane immediately after RFA). The lesion size did not change significantly during the monitoring time-course and is comparable to the morphology in the TTC stained tissue pathology image at the approximate imaging plane.

Figure 11: Means of the normalized displacement for the ROI inside the lesion (left), in the lesion border zone (center), and outside the lesion (right) and exponential stabilization curve fits (solid lines). Inside the lesion the normalized displacements reach maximum stiffness within the first two minutes post ablation. In the lesion border zone, the normalized displacements stabilized over the first several minutes post
ablation. While showing variability over a narrow range, there was no significant change in the normalized displacements outside the lesion.

Figure 12: Reference B-mode (right column) and ARFI images (center column) of RV endocardial RFA lesions (lesion groups A, B, C, E, and G). White boxes outline 1x1 mm ROI inside the lesion, in the lesion border zone, and outside the lesion. The displacements at the axial depth delineated by the horizontal white line are plotted for each ARFI image through the time-course (30 second wide bars) to observe the spatial stability of the lesion (right column). The black region represents the temporal gaps or the lateral translation of each ARFI image based on the registration analysis. The ablation occurred between 0 and 60 seconds (white vertical lines). The lesion widths appear consistent through the time-course.

Figure 13: Time-course of RFA lesion area as detected by ARFI imaging. RF-energy delivery commenced at 0 sec and was terminated after 60 sec (black vertical line). Exponential stabilization curve fits are plotted as solid lines.

Figure 14: ARFI-induced displacement curve for a single pixel location in the myocardium imaged with an ICE transducer. In the ICE imaging sequences, 10 priming pulses were delivered to linearize the transducer kick-back. As a result, the catheter is recovering towards the myocardium during the eight pre-excitation scan-lines. This motion was removed from the raw displacements (triangles) using the quadratic motion function (blue) extrapolated from the pre-track data to create a profile of only the ARFI-induced displacement (circles). Nine scan-lines were collected to monitor the post-excitation tissue displacement. Total tracking time for a single line was ~1 ms. The maximum displacement over the tracking time (magenta star) was the pixel value in the 2-D ARFI image.

Figure 15: Custom cable for transferring intracardiac (IC) EG recorded by the reference catheter (R1-R8) and mapping catheter (M1-M4) from the CARTO system to the bioamp data acquisition system.

Figure 16: Custom cable to for input of pseudo-ECG from data acquisition system to the S2000 ultrasound scanner.

Figure 17: Custom cable to for input of pseudo-EG synchronization signal from data acquisition system to the CARTO.

Figure 18: Diagram of ARFI imaging-EAM equipment and cable connections.
Figure 19: Motion artifact in B-mode image (RF data). The ARFI lines were acquired at the spatially interleaved locations dictated by the order of the blue numbers. A total of 42 lines were acquired across the FOV (before scan conversion). There is a discontinuity at the myocardial surface in the center of the field of view (white line) that shows the tissue had moved between the acquisition of the center line acquired at the beginning of the sequence and the line to the left that was acquired at the end of the sequence.

Figure 20: CARTO maps (left) and ARFI images (center) of a single RFA lesion in the right atrium (RA) before and after radiofrequency ablation (RFA). Post ablation the ARFI image shows a decrease in the relative ARFI-induced displacement (µm) where the imaging plane transects the RFA lesion site (red sphere) in the CARTO map. An image of the tissue pathology (right) confirmed the presence of a transmural lesion.

Figure 21: CARTO maps (right column) and ARFI images (center column) of single RFA lesion in the right ventricle (RV) before and after ablation. Post ablation the ARFI image shows a decrease in the relative ARFI-induced displacement (µm) where the imaging plane transects the RFA lesions site (red sphere) in the CARTO map. An image of the RV epicardial surface (right column) confirms the RFA lesion was not transmural.

Figure 22: CARTO maps (right column) and ARFI images (center column) of a unablated gap between lesions before and after ablation. Before RFA (top row) the myocardium exhibits homogeneous ARFI-induced displacements (µm). After the delivery of two parallel RFA lines (middle row), ARFI imaging displayed a relatively soft region of unablated myocardium at the gap between the RFA lesions markers (red spheres) in the CARTO map. The relative stiffness increases when additional RFA is delivered at this gap. An image of the endocardial tissue pathology (right column) confirms a solid ablation line and the approximate imaging plane (IP) location.

Figure 23: ARFI images before RFA (row A), after the delivery of a non-contiguous ablation line (row B), and after a complete linear ablation (row C) in a canine right atrium. The ARFI imaging plane was steered to transect the RFA lesion sites geometry (red spheres, 4-mm diameter) that are marked in the EAM (column 1). Conventional B-mode images look similar pre and post ablation. The ARFI images (column 3) exhibit low ARFI-induced displacement at the RFA ablation sites. The regions of interest for unablated and ablated myocardium are outlined in white. Color scale units are micrometers axial displacement away from the transducer.

Figure 24: Boxplot of maximum ARFI-induced displacements for ROI in unablated and ablated canine myocardium (n = 219 images). The center line represents the median ARFI-induced displacement measurement. The top and bottom edges of the box (shown...
in blue) are the 75th and 25th percent quartiles. The top and bottom whisker edges are the extreme values (covering 99.3% of the data), and the individually plotted crosses (shown in red) are statistical outliers.

Figure 25: An example of three ARFI image-LAT map pairs. Row 1) acquired before RFA, row 2) acquired after intentionally creating a 1 cm conductive gap, and row 3) acquired after closure of the 1 cm gap. Column A) LAT maps showing the imaging fan position in the canine RA and the location of delivered RFA lesions (red spherical markers). Column B) conventional B-mode images acquired at the location indicated on the LAT maps. There is no lesion visible in the B-mode images. Column C) Maximum ARFI-induced displacement images. The color bar units are microns of tissue displacement away from the transducer. RFA lesions sites are visible as regions of lower relative displacement (stiffer tissue), represented by the blue-green-yellow portion of the color bar.

Figure 26: Conventional (1) B-mode and (2) ARFI image at the tricuspid annulus. The ARFI image shows an area of relatively high displacements at the annulus indicating a likely unablated region. ARFI image color bar units are microns displacement away from the transducer. B) LAT map surrounding a line of RFA lesions in the right atrium, red spheres indicate RFA delivery sites C) Pathology photograph of the RA endocardial surface confirming continuous line of RFA lesions (LRFA). A small unablated gap is visible at the tricuspid annulus (TA), indicated by the black arrow.

Figure 27: Screen shots of the clinical ARFI imaging tool software. The ARFI imaging focal depth, field of view, and fan steering angle were user selected using the scanner control panel. The ARFI image was displayed within seconds of the acquisition in split screen mode (top) or color overlay mode (bottom).

Figure 28: ARFI-induced displacement curve for a single pixel location in unablated myocardium. In the clinical ARFI imaging sequences, no priming pulses were transmitted. The raw displacements (triangles) were motion filtered using a quadratic motion function (blue) interpolated from the pre-track points and the last four post-track points. This function was subtracted from the raw displacement to recover the ARFI-induced displacement profile (circles). Ten scan-lines were collected to monitor the post-excitation tissue displacement. Total tracking time for a single line was ~1.5 ms. The maximum displacement through time was the pixel value in the 2-D ARFI image.

Figure 29: ARFI images of sequential RF ablations along the LA roof. Two-dimensional ICE images of the ablation catheter contact (ACC, row A) and corresponding ARFI
images of the transmural RFA lesions (RFA, row B) show there is an increase in the myocardium stiffness immediately following 60 second ablation of the unablated (UA) myocardium... 106

Figure 30: ARFI images of RFA at the posterior left pulmonary vein antrum. The RFA lesion (RFA) displacements in the ARFI images (row B) exhibited relatively high stiffness at the ablation catheter contact (ACC) point in the ICE image (row A) after a 60 second ablation as compared to the unablated (UA) myocardium. The AFRI images were acquired immediately following RFA (B1) and 12 seconds (B2) and 19 seconds (B3) after the initial image... 107

Figure 31: ARFI images of RFA at ligament of Marshall (LoM). There is a decrease in the ARFI-induced displacement at the ablation catheter contact (ACC) site shown in the live ICE image (B) after a 60 second ablation. The unablated (UA) myocardium to the left and below the lesion suggests transmurality was not achieved.. 107

Figure 32: ARFI imaging with an integrated SC2000-CARTO3 imaging system. Panel A depicts an EAM geometry merged with a registered MRI image (CARTO 3™/CARTOMerge™). The ICE catheter and the 2-D ICE imaging plan are projected in EAM, and points of RFA are denoted by red spheres. Panel B and C are the ICE and ARFI images corresponding to the projected imaging plane in A. The arrow in all panels denotes a point of interest where the measured ARFI-induced displacements suggested an unablated gap between RFA lesions... 118

Figure 33. CARTO XP™ right atrium (RA) geometry showing RFA markers and the orientation of the ICE imaging fan in the geometry (CARTOSound™). 125

Figure 34. CARTO local activation time (LAT) maps of a canine right atrium (RA) before (left), after incomplete linear RFA (center), and after complete linear ablation (right). The heart was paced from the coronary sinus (CS). Color scale represents activation time, where red is the earliest activation time and magenta is the latest. White arrow indicates direction of electrical propagation. Red spheres indicate RFA treatment locations. The white spheres outline the tricuspid annulus. ... 126
List of Abbreviations

2-D two-dimensional
3-D three-dimensional
AF atrial fibrillation
ARFI acoustic radiation force impulse
AV atrioventricular
CS coronary sinus
CCC cross-correlation coefficient
COM communication unit (CARTO XP™ EP Navigation System)
CT computed tomography
CXCC complex correlation coefficient
DOF depth of field
DUI diagnostic user interface
EAM electroanatomical mapping
ECG electrocardiogram
EP electrophysiology
Endo endocardium
Epi epicardium
FOV field of view
ICE intracardiac echocardiography
IQ quadrature demodulated
IVC inferior vena cava
LA left atrium
LAT local activation time
LoM ligament of Marshall
LV left ventricle
NPV negative predictive value
NSR normal sinus rhythm
PPV positive predictive value
PRF pulse repetition frequency
PUI patient interface unit (CARTO XP™ EP Navigation System)
PV pulmonary veins
PVI pulmonary vein isolation
RA right atrium
RF radiofrequency
RFA radiofrequency ablation
RFAC radiofrequency ablation catheter
RFAL radiofrequency ablation lesion
RFG radiofrequency generator
ROC receiver operating characteristic
RQ registration qualifier
RV right ventricle
SA sinoatrial
SVC superior vena cava
TA tricuspid annulus
TCA transcatheter ablation
TTC triphenyltetrazolium chloride
List of Symbols

\(J \) \hspace{1cm} \text{current density, units A/m}^2

\(r \) \hspace{1cm} \text{radius distance from source, units m}

\(I_0 \) \hspace{1cm} \text{current source strength, units A}

\(h \) \hspace{1cm} \text{heat production per unit volume, units W/m}^3

\(\rho_R \) \hspace{1cm} \text{resistivity of tissue, units m/S}

\(\sigma_t \) \hspace{1cm} \text{conductance of tissue, units S/m at } \degree C

\(T_t \) \hspace{1cm} \text{temperature of tissue, units } ^\circ C/s

\(t \) \hspace{1cm} \text{time, units s}

\(\rho_t \) \hspace{1cm} \text{density of tissue, units kg/m}^3

\(c_t \) \hspace{1cm} \text{specific heat of tissue, units kJ/kg\cdot\text{C}°}

\(Q_m \) \hspace{1cm} \text{volumetric heat transfer generated by metabolic processes, units W/m}^3

\(Q_r \) \hspace{1cm} \text{volumetric heat transfer generated by RF current power dissipation, units W/m}^3

\(Q_b \) \hspace{1cm} \text{volumetric heat loss from blood profusion, units W/m}^3

\(c_b \) \hspace{1cm} \text{specific heat of blood, units kJ/kg\cdot\text{C}°}

\(W_b \) \hspace{1cm} \text{blood profusion per unit volume, units kg/m}^3\cdot\text{s}

\(T_b \) \hspace{1cm} \text{temperature of blood in the human body, units } \degree C

\(\Omega \) \hspace{1cm} \text{thermal damage, unit-less}

\(\Delta E \) \hspace{1cm} \text{activation energy, units J/mol}
\(R \) ideal gas constant, units J/mol·K

\(A \) frequency factor, units 1/s

\(F \) acoustic radiation force, units kg/s\(^2\)·cm\(^2\)

\(W_{\text{absorb}} \) power absorbed by the tissue at a given spatial location, units W/100·cm\(^3\)

\(c \) speed of sound in the tissue, units m/s

\(\alpha \) attenuation, absorption coefficient tissue, units dB/cm/MHz

\(I \) temporal average intensity, units W/cm\(^2\)

\(\mu_o \) mean, outside lesion

\(\mu_l \) mean, inside lesion

\(\sigma_o^2 \) variance, outside lesion

\(\sigma_l^2 \) variance, inside lesion

\(d_{\text{final}} \) final displacement

\(d_{\text{initial}} \) initial displacement, \((t = 0 \text{ s})\)

\(\tau \) stabilization time constant, units 1/s
Acknowledgments

I feel as though I began this project with some of the most arduous tasks already complete, like a jigsaw puzzle where the pieces were already turned right-side up and separated by edge pieces and color groupings. My responsibility became carefully assembling the pieces while having the privilege of witnessing the big picture appear.

To the past and present members of the Nightingale, Trahey, and Wolf labs: I cannot thank you enough for your insight and guidance. Specifically to Stephen Hsu, who had the tedious and frustrating task of teaching me everything I would need to know about ultrasound and computer programming and for essentially holding my hand through the assembly of the puzzle edge. To David Bradway and Doug Dumont, your good humor and willingness to help put the trickiest pieces together was never failing and tremendously appreciated. To Josh Doherty, Peter Hollender, and Stephen Rosenzweig, your sequencing and scanner trouble shooting expertise were instrumental in the completion of the puzzle. To Maryam Jahromi and Young Kim, your enthusiasm, ideas, and readiness to lend a hand were always welcome and helpful.

To members of the BME faculty and staff, specifically Ellen Dixon-Tulloch, Matt Brown, Kathy Barbour, Joyce Franklin, Susan Story-Hill, and Ned Danieley: your patience and instant forgiveness of my blunders kept my research and graduate career on track.
To all the members of my dissertation committee: our discussions and brainstorm sessions have evolved and shaped this research and dissertation into something I can be proud of.

I would like to extend special thanks to Dr. Tristram Bahnson and Dr. Gregg Trahey: your vision and passion for this research was always motivating and gave me a renewed sense of purpose after each meeting and discussion.

To my advisor Dr. Patrick Wolf: I cannot thank you enough for your guidance, patience, and support. Your reminders and encouragement to focus on building the big picture and to “tell the story” of the research has made me a better scientist and engineer.

To the friends who contributed their moral and emotional support inside the department and out: I could not have done it without you. In Durham I have made lifelong friends that have become family.

To my Dad, Mom, and sister Becca: what can I say I have the best family in the world. That goes for Dr. Stuart Webb, too. I feel lucky and am thankful every day that I have you all behind me.
Chapter 1: Introduction

Normal sinus rhythm (NSR) is the intrinsic electrical activation of the healthy human heart that coordinates the mechanical contraction of the four cardiac chambers. In NSR, each heart beat is initiated by the depolarization of the sinoatrial (SA) node, a specialized group of pacemaker cells located in the roof of the right atrium (RA). The SA node depolarization starts a conduction wavefront that spreads uniformly through the RA and along specialized conduction tracts to the atrioventricular (AV) node; the wavefront spreads synchronously into the left atrium (LA) through a specialized conduction tract known as Bachmann’s bundle. The AV node delays the excitation wavefront while the atria contract, then proceeds to depolarize the right ventricle (RV) and left ventricle (LV) along the bundle of His and the Purkinje fiber network.

Cardiac arrhythmias are characterized by disturbances in the NSR of the heart; heart rhythm disturbances can cause abnormal heart rates and asynchronous cardiac contraction. Atrial fibrillation (AF) is a cardiac arrhythmia characterized by rapid and dyssynchronous beating of the atria. It is typically caused by multiple re-entering electrical wavefronts wandering chaotically through the atrial tissue. The disorganized atrial conduction pattern causes rapid and irregular ventricular beats, which significantly increase cardiac related morbidity and mortality over time.
AF is the most commonly diagnosed arrhythmia in clinical practice. Over 3 million people in the United States are diagnosed with AF annually, and diagnoses are expected to more than double over the next 40 years.1-3 Radiofrequency (RF) transcatheter cardiac ablation (TCA) is a curative treatment for AF.4, 5 TCA aims to restore the normal rhythm of the heart by directly destroying or electrically isolating abnormally conducting myocardium with lines of radiofrequency ablation (RFA) lesions. To eliminate the arrhythmia RFA lesions must fully ablate the target ablation site and extend the full depth of the myocardium (transmurality), and RFA lesion lines must not contain conductive gaps between lesions that can propagate electrical wavefronts.6-8

The biophysics and pathophysiology of RFA lesion formation has been comprehensively studied, but the efficacy of predicting lesion size using delivery parameters such as RF duration, current, and impedance is unreliable because convective cooling at the ablation site and inconsistent electrode-endocardium contact in the beating heart significantly affects lesion formation.9-16 Without a reliable method to assess lesion presence, size, and transmurality, post-TCA arrhythmia recurrence is common and a significant number of patients (10-30\%) require additional ablation procedures.4, 17-21 Furthermore, electrical reconnection across discontinuous lesion lines has been found in many patients with arrhythmia recurrence.21 Ideally, direct visualization of the ablated region immediately following RF-delivery would provide
feedback of RFA lesion presence and transmurality as well as lesion line continuity during the initial clinical procedure.

Acoustic radiation force impulse (ARFI) imaging is an ultrasound-based elasticity imaging technique that creates two-dimensional (2-D) images of relative tissue stiffness.22 ARFI imaging uses ultrasonic radiation force impulses to mechanically displace tissue and conventional ultrasound methods to monitor the tissue response. The axial tissue displacement magnitude (~10 μm) is calculated using correlation based time-delay or phase-shift estimator methods.23, 24 The magnitude of the measured tissue displacement is inversely proportional to the tissue stiffness, and a 2-D image of the ARFI-induced tissue displacement characterizes relative tissue stiffness.23, 25, 26

RF-induced tissue heating causes irreversible denaturation and coagulation of intracellular and contractile proteins; changes in tissue viscoelasticity have been correlated with the thermal denaturation of myocardial proteins.27-30 Preliminary work has shown ARFI imaging provides accurate visualization of RFA lesions \textit{in vitro} based on the stiffness changes caused by RF ablation.31, 32

The central hypothesis of this research was: ARFI imaging can be used for intraprocedure visualization of acute RFA lesions during transcatheter ablation procedures. Evidence to support this hypothesis was investigated in four experimental aims. In the first aim, an experiment was performed to show that \textit{in vivo} ARFI imaging could visualize relative tissue stiffness changes during and immediately after RFA, and
to show that ARFI determined lesion stiffness and detected lesion area were temporally and spatially stable over an acute monitoring period. The second aim addressed the problem of finding lesions in the beating heart using 2-D intracardiac ARFI imaging, which has a limited frame rate (< 1 Hz when diastolic-gated) and narrow field of view (FOV). An experiment was conducted to test the accuracy of identifying RFA lesion sites with an integrated ARFI imaging-electroanatomical mapping system. The third aim was used to verify the presence of conduction disturbances at RFA lesion sites identified with ARFI imaging during TCA. This experiment sought to confirm that ARFI imaging determined lesion assessment was consistent with EAM local activation time (LAT) mapping, which is the clinical gold-standard used to determine the presence of lesions. In the fourth aim, ARFI images were used to show local myocardial stiffness changes at targeted RF ablation sites in human patients. These studies were the ‘first in human’ experiments to demonstrate these changes. The discoveries and challenges encountered when translating this technology to pre-clinical and clinical models are addressed from a physiological, imaging implementation, and procedural method standpoint.

This thesis is organized as follows: chapter 2 provides background information about the mechanism and treatment of AF, including information about TCA and the biophysics and pathophysiology of RFA. The fundamental concepts behind ARFI imaging are also described in this chapter. Chapter 3 presents an experimental method
for ARFI imaging of RFA-induced myocardial stiffness changes during lesion formation and the acute stability of the measured ARFI-induced displacements in living myocardium. Chapter 4 describes the integration and testing of an intracardiac ARFI imaging-EAM system, as well as the accuracy of evaluating RFA lesions with this multimodality system during TCA in an animal model. In chapter 5, the integrated ARFI imaging-EAM system was used to evaluate the accuracy of identifying electrical conduction disturbances in canine atria with intraprocedure ARFI imaging of RFA lesions. Chapter 6 presents and describes preliminary intracardiac ARFI images of clinically targeted RFA ablation sites in a pilot group of clinical ablation patients. Chapter 7 presents the final conclusions and clinical implications of this thesis and discusses future directions for this research.
Chapter 2: Background

2.1 Management and Treatment of Atrial Fibrillation

2.1.1 Mechanism and Prevalence of Atrial Fibrillation

Atrial fibrillation (AF) is characterized by rapid (>350 beats per minute) and irregular atrial conduction. An important component of AF initiation and persistence is functional re-entry involving multiple wavelets. Conduction re-entry occurs when a propagating wavelet re-excites an area that had previously been activated by another present wavelet, creating a sustained conduction rotor. Two types of re-entry initiation mechanisms can cause AF: 1) focal electrical triggers, typically from the muscle tissue surrounding and adjacent to the pulmonary veins (PV) or 2) an atrial substrate susceptible to the development of conduction re-entry rotors.

For case 1, an electrical depolarization not initiated by the sinus node (ectopic beat) activates the atrium before the normal sinus beat. A re-entry rotor can occur when this “early” wavefront encounters partially or completely refractory myocardium. Cells capable of “abnormal automaticity” have been discovered in the myocardial tissue around the PV in the left atrium (LA), and spontaneous firing of these abnormal cells produce focal triggers that can initiate AF. Other potential AF foci can be found at
multiple sites in the atria, including the tissue at the Ligament of Marshall (LoM) and along the posterior left atrium (LA).4, 42

In case 2, the reentrant circuit is caused by the presence of two distinct conduction pathways in the myocardium: a path of normal propagation and a second path of “slow” conduction often caused by structural (scar or fibrosis) or functional block in the atrial substrate.36 Conduction re-entry occurs when impulses traversing the area of slow conduction take long enough to propagate that the myocardium of the normal pathway has recovered; the slow activation wavefront can then re-enter previously the excited myocardium creating a conduction rotor.4, 34-36, 43, 44

AF is primarily proliferated and sustained by the following mechanisms: 1) rapid activation of the atrium due to functional re-entry that produces heterogeneous conduction delays and independent re-entry wavelets in other regions of the atrial and 2) chronic rapid atrial activation that causes alterations of the atrial refractory periods due to changes in the cellular excitability via calcium overload and transcriptional regulation. 4, 34, 35, 45, 46

AF affects approximately 1% of the general population and increases to 8-10% in individuals over 80 years old.1 Diagnoses of AF are increasing annually, and more than 3 million people in the United States are expected to be diagnosed in the next year alone.1, 3 Patients with AF often see decreased quality of life and may experience symptoms such as severe shortness of breath, chest pain, fainting, weakness, and/or
heart palpitations.47 Patients with a history of AF also have an increased risk of heart failure and stroke.42, 48, 49

\textbf{2.1.2 Treatment of Atrial Fibrillation}

The first line therapy for AF is rhythm management with pharmaceuticals.4 Unfortunately, a high number of patients (approximately 43\%) see no positive response to initial drug therapy.4, 50, 51 Anti-arrhythmic drugs may also become less effective over time and can cause harmful side effects.50

An alternative to drug related treatment of AF is catheter-based surgical intervention, or transcatheter cardiac ablation (TCA). TCA uses an intracardiac catheter-electrode to create focal or continuous lines of transmural lesions to 1) directly ablate abnormally automatic tissue, 2) electrically isolate tissue with abnormal automaticity, or 3) modify potential re-entry circuits by ablating areas of slow conduction. The successful isolation or elimination of these areas restores NSR in many patients. Approximately one-third of AF patients are candidates for TCA and tens of thousands of procedures are performed each year.4, 18, 52

As mentioned previously, the PV muscle sleeve and surrounding myocardium are frequent locations of arrhythmia genesis; therefore, the most common TCA technique for treating AF is LA pulmonary vein isolation (PVI). Circumferential PVI techniques aim to completely encircle and electrically isolate the PV with continuous lesion lines to prevent ectopic beats from conducting into the atria.4, 38, 53, 54 Segmental
PVI is another approach where discrete electrical connections between the PV muscle and atrium are directly targeted to electrically isolate the PV without a complete circumferential ablation.55 For patients with advanced AF or AF triggering mechanisms not associated with the PV, additional focal ablation is done at other sites thought to participate in the genesis of the AF. Arrhythmogenic substrate is found using local atrial electrograms (EG), and transseptal puncture (TSP) techniques are used to introduce the ablation and EG sensing catheters into the LA.4, 41, 56

The published success rates for TCA are typically between 60-90\% for both paroxysmal (intermittent) and persistent AF; treatment is often less successful for patients with persistent AF or that show evidence of a diffuse atrial myopathy (measurable deterioration of the muscle tissue and function) than for patients with paroxysmal AF or no evidence of atrial myopathy.4, 17, 57 Incomplete ablation (gaps in isolation lines, non-transmural lesions) with electrical reconnection or failure to target critical triggers or drivers of AF is the primary cause of the limited treatment success rate.4, 21 Recurrence of the arrhythmia after unsuccessful procedures requires additional TCA procedures.4, 17, 21

Overall, TCA procedures are effective, minimally invasive, and have low morbidity and mortality rates, but often require multiple procedures to stop the arrhythmia.4, 52
2.2 Radiofrequency Ablation

2.2.1 Biophysics of Radiofrequency Ablation

RF-induced tissue heating causes tissue thermocoagulation necrosis and is produced by applying an alternating current between the catheter tip electrode and a dispersive ground electrode adhered to the patient’s skin. As the RF current passes through the resistive myocardium, heat is generated in the region surrounding the electrode where the current density is the highest. This local heating creates a permanent lesion of myocyte necrosis.

Assuming the electrode tip can be modeled as a spherical point source, the current density at the electrode tip can be described using a quasi-static approach: the current density \(J \) (units A/m\(^2\)) a distance of radius \(r \) from the source is equal to the total current source strength \(I_0 \) (units A) divided by the spherical surface area \((4\pi r^2\), units m\(^2\)). This relationship is presented in equation 1. The resistive heating of tissue from applied currents can be described with Joule’s first law of heating, which states the heat production per unit volume \(h \) (units W/m\(^3\)) is proportional to the current density squared times the tissue resistivity \(\rho_R \) (units m/S; reciprocal of tissue conductance, \(\sigma_t = 0.50 \) S/m at 37°C). This relationship is shown in equation 2.

\[
J = \frac{I_0}{4\pi r^2} \quad (1)
\]

\[
h \propto \frac{\rho_R I_0^2}{16\pi^2 r^4} \quad (2)
\]
This relationship shows the direct resistive heating decreases significantly over a short distance (proportional to $1/r^4$). Therefore, only the ~ 2 mm of tissue nearest the electrode tip experiences direct heating, and larger lesion formation is the result of passive thermal conduction. RF-induced hyperthermia in the passively heated region of the lesion is governed by the bioheat transfer equation (equation 3).^{43, 58, 61, 62}

\[
\frac{\partial T_t}{\partial t} = \frac{1}{\rho_t c_t} [\nabla \cdot (k_t \nabla T) + Q_m + Q_i + Q_h] \quad (3)
\]

The first heat source term quantifies the heat transfer from passive thermal conduction, where the rate of change in local tissue temperature (units °C/s) is equal to the heat transfer densities (units W/m3) of the heat flow sources (RF) divided by the tissue density (units kg/m3) and specific heat (units kJ/kg·°C). Terms Q_m, Q_i, and Q_h represent the volumetric heat transfer generated by cellular metabolic processes, the RF current power dissipation, and the heat loss from blood profusion, respectively. Metabolic heat generation is considered negligible ($Q_m = 0$) compared to the electrical heating. Direct heating of the tissue due to current power dissipation is also considered negligible ($Q_i = 0$) because the tissue heating more than ~ 2 mm from the source is primarily due to passive heat conduction.^{43, 63, 64} Heat losses from blood profusion (Q_h) can be quantified using equation 4 where c_b is the specific heat of the blood (units kJ/kg·°C), W_b is blood profusion per unit volume (units kg/m3·s), and T_b is the blood temperature in the human
body (C˚)59. The thermo-material constants for cardiac tissue and blood are assumed to be uniform and are presented in tables 1 and 259, 61, 62, 65, 66.

\[
Q_h = c_b W_b (T_b - T)
\]

(4)

Table 1: Thermal-material properties of cardiac tissue.

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>(\rho_t)</td>
<td>1.06x10-3</td>
<td>kg/m3</td>
</tr>
<tr>
<td>Specific heat</td>
<td>(c_t)</td>
<td>3.7</td>
<td>kJ/kg·˚C</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>(k_t)</td>
<td>0.59</td>
<td>W/m·˚C</td>
</tr>
<tr>
<td>Conductance</td>
<td>(\sigma_t)</td>
<td>0.50</td>
<td>S/m at 37C˚</td>
</tr>
</tbody>
</table>

Table 2: Thermal-profusion properties of blood.

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood profusion</td>
<td>(W_b)</td>
<td>5</td>
<td>kg/m3·s</td>
</tr>
<tr>
<td>Specific heat</td>
<td>(c_b)</td>
<td>3.6</td>
<td>kJ/kg·˚C</td>
</tr>
<tr>
<td>Temperature</td>
<td>(T_b)</td>
<td>37</td>
<td>°C</td>
</tr>
</tbody>
</table>

While mathematical models can provide a basic understanding of the biophysics of RFA lesions formation, many variable factors such as catheter-tissue contact and convective flow at the endocardial surface also significantly affect lesion formation10, 12, 13, 67, 68.

2.2.2 Physiology of Radiofrequency Ablation Lesions

When myocardium is heated to temperatures greater than 48˚C tissue desiccation and cellular protein denaturation and thermocoagulation occurs, resulting in the
eradication of local electrical conduction and mechanical contraction. The duration of the hyperthermia also affects the extent of myocyte necrosis. The amount of thermal damage incurred by myocytes as a function of temperature and time can be quantified by the time integral of the Arrhenius relationship (equation 5). In this relationship, Ω is a unitless quantifier of cellular thermal damage and is a function of temperature (T, °K), time (t, seconds), and the ideal gas constant ($R = 8.315$ J/mol·K), as well as material properties for cardiac tissue including the activation energy for irreversible damage ($\Delta E = 5.87 \times 10^5$ J/mol) and a kinetics frequency factor that accounts for morphological changes in the extracellular connective tissue caused by the thermal coagulation of the proteins ($A = 2.39 \times 10^{92}$ s$^{-1}$).

$$\Omega = A \int_0^t e^{-\Delta E / RT} dt$$

Irreversible injury to both myocyte organelles and contractile proteins occurs when Ω is greater than 1. At this critical value the survival probability of a single myocyte is 63%, or for a cellular volume where 63% of cells have become necrotic.

Changes in viscoelasticity have been correlated with the degree of protein coagulation during tissue heating, and the ablated region becomes stiffer as the extracellular (collagen and elastin fibrils) and contractile (actin and myosin in myofilaments) proteins irreversibly denature. Irreversible loss of
electrophysiological function is seen in the directly heated lesion core and the passively heated zone of complete thermocoagulation (figure 1).

The myocardium surrounding the pathological lesion can be temporarily affected by the diffusive hyperthermia immediately following ablation. In this region the effects of tissue heating are reversible and insufficient for complete electrical block \((\Omega \leq 0.5)\). This “border” zone is characterized by reversibly injured or “stunned” myocytes that suffer a temporary loss of cellular excitability and immune-fluid infiltration (edema). Regions of viable myocytes without cellular excitability (less negative resting membrane potential, decrease in the maximum rate of potential change and action potential duration) have been reported to occur within 2 mm of the lesion edge. These effects are transient (~30 to 60-min) and compromise the accuracy of electrophysiology (EP) recordings immediately post ablation. Unrelated to the loss of conductivity, the injured myocytes in the border zone instigate an immune response that causes water and proteins to leak into the interstitial space through gaps in the endothelial cells linings of proximal vessels. Magnetic resonance imaging (MRI) has shown edema fluid swelling at the RFA site stabilizes over the first 10-12 min post-ablation and not all edematous areas become chronic scar. Histological analysis and cellular damage markers confirm edema is present for several days post procedure. Local edema subsides around 4 weeks post ablation, and permanent fibrotic scar is
complete formed several months after the initial ablation.70, 76 Figure 2 is a comprehensive timeline of the physiology of lesion RFA lesion development.

Major complications can be caused by excessive RF-delivery during TCA and are reported in approximately 6\% of RFA treated patients.4, 83, 84 For example, if the tissue is excessively heated (>100˚C) fluid evaporation can cause an interstitial pressure buildup that results in a steam “pop or rupturing of the myocardium. Other serious morbidities caused by excessive RF-delivery include atrial esophageal fistulas, pulmonary vein stenosis, complete AV nodal block, and excessive damage to collateral tissue or coronary vessels.83, 85, 86

Figure 1: Anatomy of a radiofrequency ablation lesion (RFAL). The radiofrequency ablation catheter (RFAC) is introduced to the right atrium (RA) through the inferior vena cava (IVC). The electrode tip is brought in contact with the endocardial (endo) surface. As the RFAL forms, there are three distinct ablation zones: (1) thermocoagulated core caused by direct resistive heating, (2) irreversibly ablated zone caused by passive thermal heating, and (3) reversibly injured myocytes in hyperthermic “border zone” (~2 mm). Myocardium more than 8 mm from the edge of the lesion (4) is unaffected by the RFA. Adapted from: http://www.hrsonline.org/Patient-Resources/Treatment/Catheter-Ablation#axzz2cvB7gaUy
Figure 2: Timeline of edema and chronic RFA lesions development.
2.3 Imaging and Guidance in Cardiac Ablation Procedures

2.3.1 Fluoroscopy

Fluoroscopy is a continuous X-ray imaging technique used to visualize catheter position and orientation in the body with high contrast.41 Unfortunately, fluoroscopy has poor contrast visualization of soft tissues and cannot provide visualization of the cardiac anatomy or RFA lesions.87, 88 Fluoroscopy also exposes the patient and medical personnel to ionizing radiation and should be used sparingly.

2.3.2 Intracardiac Echocardiography (ICE)

Intracardiac echocardiography (ICE), or catheter-based ultrasound, is performed with an 8 or 10 French catheter ultrasound probe and provides real-time visualization of the cardiac anatomy and function from within the cardiac chambers.89-92

ICE is an indispensable tool for guiding safe and accurate transseptal punctures for LA access during PVI procedures; real-time ICE imaging locates the fossa ovalis in the atrial septum and monitors the transseptal needle puncture and sheath introduction across the septum to the LA.56, 89, 92, 93 The sheath is then used to feed procedural catheters (ablation and sensing) to the left side of the heart to perform the PVI. The ICE catheter is also frequently introduced to the LA using a “sheathless” or double transseptal puncture.93, 94 ICE is also used to guide catheter placement and visually confirm RFA catheter-tissue contact for effective RF-delivery.
The real-time visualization and monitoring of potential procedural complications, such as pericardial effusions due to cardiac perforation, thromboembolism formation, atrioesophageal fistulas, or lesion steam pops is also done with ICE.41, 89

While ICE serves a variety of important roles in complex ablation procedures, the acoustic contrast between ablated and unablated tissue is insufficient for lesion characterization.95, 96

2.3.3 Electroanatomical Mapping Systems

EAM systems, such as the CARTO systems (CARTO XPTM and CARTO 3TM; Biosense Webster; Diamond Bar, CA), are the current clinical standard of practice for guiding RFA lesion placement during TCA. EAM systems allow 1) tracking of procedural catheter tips in the heart without fluoroscopy, 2) construction of three-dimensional (3-D) geometric cartoons of the cardiac chamber anatomy, 3) tagging of important procedure locations such as RFA sites, and 4) mapping of local electrical information onto the 3-D geometries for large scale understanding of the arrhythmia substrate and the post RFA chamber conduction.4, 41, 69, 97

The CARTO systems use magnetic tracking to triangulate the 3-D positions of specialized mapping-ablation (NaviStarTM; Biosense Webster, Inc., Diamond Bar, CA) and ultrasound (SoundStarTM; Biosense Webster, Inc., Diamond Bar, CA) catheter tips in the heart to within 1 mm.97
A 3-D cartoon of the cardiac chamber is constructed by maneuvering the mapping catheter to multiple locations along the endocardial walls and plotting the relative tip positions. Important locations, such as RFA delivery positions, are saved and displayed on the 3-D geometry. The mapping catheter electrode-tip also collects local EG and calculates local activation times (LAT) relative to a reference EG or the ECG; the LAT are plotted on the 3-D volume to identify arrhythmogenic pathways and confirm electrical block post ablation. The reference EG is often a separate sensing and pacing catheter that is positioned in the coronary sinus (CS). Additional information about the CARTO XP™ system is provided in appendix A.

Despite these important functions, EAM tracking systems can only indirectly infer RFA treatment from sparse electrical data and cannot provide direct visualization of RFA lesions. The RFA point markers on the 3-D geometry represent RF-delivery locations, but do not characterize lesion size or transmurality.

2.3.4 MRI for Substrate Characterization and RFA Assessment

MRI (primarily T2-weighted and late gadolinium enhanced) is currently being vetted for pre and post-TCA substrate characterization and RFA lesions assessment during TCA.\(^{92, 98-104}\) MRI has proven to be a gold-standard for fibrosis substrate mapping and provides a non-invasive method to visualize ablation lesion patterns.\(^{105-107}\) While a promising pre and post-procedure substrate and lesion assessment tool, MRI has major limitations when translating to an intraprocedure imaging modality, such as the
requirement of non-metallic procedural catheters and lengthy acquisition times. Specialized MRI suites are also expensive to build, equip, and run. In addition, recent studies have shown MRI assessment of atrial RFA lesions has limited accuracy; MRI requires further investigation to prove it has adequate resolution for distinguishing unablated gaps in atrial lesion lines and adequate contrast sensitivity to distinguish transient interstitial edema from tissue necrosis.102, 104, 108

2.4 Acoustic Radiation Force Impulse (ARFI) Imaging

Acoustic radiation force impulse (ARFI) imaging is an ultrasound-based imaging technique that was recently developed at Duke University. This section describes the concepts and methods behind the implementation of ARFI imaging as well as preliminary work for imaging of cardiac RFA lesions.

2.4.1 Acoustic Radiation Force

Acoustic radiation force is a body force generated by a transfer of momentum from an acoustic impulse wave into the target medium.109, 110 At ultrasonic frequencies the acoustic wave propagates as a plane wave and targeted soft tissue medium behaves as an incompressible, linearly viscous fluid.109, 111, 112 The force magnitude generated by the propagating wave is approximated by the following relationship:

$$F = \frac{W_{\text{absorb}}}{c} = \frac{2aI}{c}$$ (6)
F is the acoustic radiation force magnitude (units kg/s2·cm2), W_{abs} is the power absorbed by the tissue at a given spatial location (units W/100·cm3), and c is the speed of sound in the tissue (approximated as 1540 m/s).25,65,110 The absorbed power is equal to twice the attenuation-absorption coefficient of the tissue ($\alpha \approx 0.55$ dB/cm/MHz) times the temporal average intensity I (units W/cm2) at the impulse location.113

In soft tissue the majority of the energy from the ARFI-excitation or “push” is absorbed at the impulse focal region, and this spatially localized (1-8 mm3) energy generates a radiation force that deforms the tissue in the direction of the impulse propagation.22 The magnitude of the deformation is largest at the focal depth and is related to the stiffness of tissue.114,115 The acoustic impulse length required to generate detectable axial displacements (on the order of microns, µm) in soft tissue is typically between 0.30 and 1 ms.116

2.4.2 ARFI Imaging

ARFI imaging is a novel imaging modality that has been refined into a unique clinical tool over the last two decades.26,117 Radiation force elastography methods such as ARFI imaging have been increasingly investigated for the visualization of stiffness changes at RF ablation sites in the liver, kidney, and heart.$^{29,31,32,95,96,118-122}$

ARFI images are formed by applying a coordinated sequence of radiation force impulses to soft tissue and temporally and spatially monitoring the resulting axial deformation with conventional ultrasound scan-lines. The magnitude of the tissue
displacement is calculated using delay estimator methods such as normalized cross-correlation or phase-shift autocorrelation. The measured ARFI-induced displacement is inversely proportional to the tissue stiffness and directly proportional to acoustic attenuation. 2-D ARFI images are formed by spatially distributing the ARFI excitations across a lateral FOV and assigning a color scale to the measured displacements for visualization of the relative tissue stiffness.

ARFI imaging is currently implemented from software-modified diagnostic ultrasound scanners and uses conventional ultrasound transducers for the generation of the radiation force and the tracking of the tissue response. The use of traditional diagnostic equipment also provides the ability to acquire spatially and temporally co-registered traditional B-mode images.

Due to the assortment of ARFI imaging sequences, ultrasound scanners, and transducers used in this thesis, the specific imaging and sequencing parameters for each experiment are described in the methods section of each chapter.

2.4.2.1 Cardiac Motion and ARFI imaging

The maximum LA wall velocity is approximately 3.2 cm/s in the normal human heart. In elderly patients or in patients diagnosed with a cardiac arrhythmia this velocity could be higher. Motion of this magnitude can overwhelm the ARFI-induced displacement magnitude as well as cause decorrelation of the tracking scan-lines, thereby increasing the bias (mean of the displacement error) and jitter (error of the bias,
Specialized processing methods are used for cardiac ARFI imaging to separate the displacements generated by the ARFI-excitation from the bulk physiologic motion. These motion filtering methods estimate the bulk physiological motion by fitting a quadratic curve to the measured displacement profile at each pixel in the image. The estimated motion function is then subtracted from the measured displacements to recover the ARFI-induced displacement.

Two methods for constructing the motion curve fit are used in the thesis: 1) interpolation of the motion function from the pre-excitation position and a post ARFI-excitation position and 2) extrapolation of the motion function using the pre-excitation baseline motion to approximate the motion profile. Basic motion filtering has been shown to reduce motion artifacts to under 1 μm over the cardiac cycle.

2.4.2.2 Image Quality

In this thesis, image quality is quantified by calculating RFA lesion contrast (C) and contrast-to-noise ratio (CNR). C and CNR are calculated using equations 7 and 8, where \(\mu_o \) and \(\mu_L \) are the mean signal inside the lesion and outside the lesion respectively, and \(\sigma_o^2 \) and \(\sigma_L^2 \) are the variances.

\[
C = \frac{\mu_o - \mu_L}{\mu_{UA}} \tag{7}
\]

\[
CNR = \frac{|\mu_o - \mu_L|}{\sqrt{\sigma_o^2 + \sigma_L^2}} \tag{8}
\]
2.4.3 Preliminary Work on ARFI Imaging of RFA Lesions

Several studies investigating the feasibility of cardiac RFA lesion visualization with ARFI imaging have been conducted. This section describes the studies that laid the groundwork for the research presented in this thesis.

2.4.3.1 In vivo Feasibility

Preliminary in vivo feasibility studies were conducted by Fahey et al. in 2005 and Hsu et al. in 2007. Fahey et al. were the first to observe the localized stiffness change caused by cardiac RFA using ARFI imaging. Hsu et al. prepared this technology for potential clinical translation by developing ARFI imaging sequences for an intracardiac ultrasound transducer; in a canine model they observed an increase in tissue stiffness at three endocardial RFA sites, evident by a decrease in the measured ARFI-induced displacement. This work also described the challenges encountered when implementing ARFI imaging from an ICE catheter. It was discovered that the flexible transducer tip experienced a small rebound force from the generation of the ARFI-excitations. It was determined that the radiation force pulses transmit high intensity acoustic waves backwards into the transducer matching layer as well as forward into the tissue. The absorption of this mechanical energy generated a force that bent the flexible imaging catheter in the opposite direction of the ARFI-excitation. This transducer “kick-back” was initially non-linear and tracked in the displacement estimations. They prepared sequences that applied ten “priming pulses” before the 2-D ARFI imaging
sequence so any remaining kick-back motion was linear and could be effectively motion filtered from the ARFI displacement estimations. This priming pulse technique is used in the ICE-based sequences developed for the experiments in this thesis.

It has been shown that diastolic imaging is ideal for ARFI imaging of lesions *in vivo* because the contrast between the stiff RFA lesion and normal tissue decreases when the myocardium stiffens during systole.\(^{95, 96, 133}\) Also, late diastole is the time of least intrinsic motion during the cardiac cycle and reduces the effects of bulk cardiac motion on the tissue displacement measurements. Figure 3A illustrates the relative stiffness difference between systole and diastole around a ventricular epicardial RFA lesion.\(^{133}\) The lesion is visible as a semicircular region of relatively low ARFI-induced displacement (dark blue). The ARFI image contrast between the lesion and unablated myocardium (red) is maximal during diastole (figures 3A-1 and 3A-4).

All ARFI images presented in this thesis were ECG-gated to diastole. The challenges associated with non ECG-gated ARFI image acquisitions, for example during AF, was beyond the scope of this thesis, but is briefly discussed in the future work section of chapter 7.
Figure 3: ARFI images of a right ventricular epicardial RFA lesion through the cardiac cycle. A non-irrigated electrode tip ablated the epicardial surface (EPI = epicardium, ENDO = endocardium) for 7 sec at 20 W. A) ARFI images acquired at different times during the cardiac cycle: (1) and (4) during diastole, (2) during systole, and (3) during end-systole. ARFI images were acquired with a linear transthoracic probe vacuum suctioned to the RV epicardium. Color bar units are maximum displacement away from the transducer in microns. Within the lesion the ARFI induced displacement is low (blue) throughout the cycle. The normal myocardium cycles between high displacement (red) during diastole and low displacement (blue) during systole. B) ARFI acquisition times corresponding to the ECG.
2.4.3.2 *In vitro* Lesion Assessment

The accuracy of determining RFA lesions size with ICE-based ARFI imaging was investigated *in vitro* in earlier work. This study determined that lesion dimensions from ARFI and pathology images were statistically similar and within 1-2 mm.

An example lesion from this study is shown in figure 4. The red spectrum of the ARFI-induced displacement color bar represents normal myocardium, while the region of lower induced displacement is represented by the blue-green portion of the color bar. The determined lesion traces correlate well with the RFA lesion pathology.

![Image](image.png)

Figure 4: ARFI imaging determined lesion boundaries. The maximum ARFI-induced displacement (left) and depth normalized (center) image were overlaid onto the photograph of the lesion cross-section. The lesion boundary traces were determined by a manual (black) and automatic (blue: optimal, and green: standardized) segmentation of the digital image.

Another experiment demonstrated ARFI imaging can visualize the RFA-induced myocardial stiffness increase during lesion formation *in vitro*. Figure 5 shows the relative stiffness change in the myocardium that occurs during RFA.
Figure 5: ARFI images acquired during an *in vitro* RFA. (A) The pre-RFA image shows high ARFI-induced displacement throughout the myocardium. During RFA a growing region of increased stiffness appeared (B-D). The plane of the RFA catheter is into the page and the effective depth of field (1.5 cm focus) is between 1.0 and 2.25 cm. (G) The mean and standard deviation of the ARFI displacements measured outside the lesion remained constant during RFA but decreased inside the lesion. (H) The tissue was sliced in the approximate imaging plane and stained with triphenyltetrazolium chloride (TTC) to confirm a lesion was created.
Chapter 3: Temporal-Spatial Monitoring of Acute Cardiac Radiofrequency Ablation Lesions with ARFI imaging In Vivo

The work described in this chapter will be submitted for publication in the following manuscript:

3.1 Introduction

Previous work has shown ARFI imaging can characterize RFA lesions in vitro, but RF-delivery in living tissue induces transient physiological processes (see section 2.2.2) that may affect the stiffness at the RFA site. Immediate post ablation lesion monitoring with ARFI imaging and could improve our understanding of acute RFA lesion formation and the stability of the tissue necrosis. This chapter investigates the in vivo temporal-spatial stability of acute RFA lesions evaluated with ARFI imaging.

This study utilized a linear array transducer suctioned directly to the cardiac wall to monitor endocardial lesion formation and post ablation lesion stabilization. The aims of this investigation were 1) to evaluate the contrast and stability of the ARFI-induced displacement measurements in regions of interest (ROI) inside the RFA lesion,
in the border zone, and outside the lesion and 2) to characterize any changes in lesion area over a 30 minute monitoring period immediately post ablation.

The chapter is organized as follows: section 3.2 describes the experimental protocol and ARFI imaging methods for repeatable imaging of acute RFA lesions sites. Section 3.3 describes the experimental results, and section 3.4 discusses the implications of these findings for implementation of in vivo ARFI imaging and the relevance to clinical translation.

3.2 Methods

3.2.1 Animal Experimental Protocol

The animal experimental protocol described in this study was approved by the Duke University Animal Care and Use Committee and conformed to the Guide for the Care and Use of Laboratory animals.134

Six canine subjects were anesthetized (pre-anesthesia: intramuscular acepromazine 0.02-0.05 mg/kg followed by interavenous propofol 4-6 mg/kg; general anesthesia: isoflurane gas 1-5% via inhalation), intubated, ventilated, and maintained metabolically stable. A thoracotomy was performed and the pericardium was opened and sutured to form a cradle, exposing the epicardium of the heart. A VF10-5 linear ultrasound transducer (Siemens Healthcare; Issaquah WA) was put into a vacuum-coupling device and positioned over the right ventricular (RV) epicardium using an adjustable stabilization arm mount. The vacuum-coupling device suctioned directly to
the epicardium to maintain the imaging position. The vacuum apparatus also held the transducer ~1 cm from the heart (imaging through an ultrasonically transparent standoff) to position the imaging focus in the center of the myocardium (figure 6).

Figure 6: Open chest in vivo ARFI imaging experimental setup. The VF10-5 ultrasound transducer (UT) was held by a vacuum-coupling apparatus (VA) and positioned directly onto the right ventricular free wall (RVFW) using an adjustable stabilization arm (SA). The ablation catheter (AC) was introduced to the heart through the inferior vena cava (IVC) and brought in contact with the RVFW endocardium directly under the UT. The RFA lesion (L) formed in the ARFI imaging plane.
ARFI images were acquired before, during, and approximately every 30 to 45 seconds for 30 minutes after a 60 second temperature-controlled (65°C) endocardial ablation with the RFA catheter (7 Fr, Celsius™: Biosense Webster, Diamond Bar, CA) in the ARFI imaging FOV. All ARFI acquisitions were ECG-gated to diastole to maximize the stiffness contrast between the RFA lesion and surrounding myocardium, as well as minimize the cardiac motion during the acquisition. Respiration was held during imaging to minimize the effects of respiratory motion on the image plane position.

At the end of the study, the canine was euthanized and the heart was removed. Each lesion (1-3 per canine) was manually cross-sectioned (~1 mm slices) parallel to the approximate imaging plane used during the procedure. The tissue samples were stained with triphenyltetrazolium (TTC) and photographed.

3.2.2 ARFI Imaging Methods and Image Processing

Co-registered ARFI and B-mode imaging was performed with a hardware and software modified Siemens SONOLINE Antares™ ultrasound scanner and an unmodified 192 element VF10-5 linear ultrasound transducer (Siemens Healthcare; Issaquah, WA). Each ARFI image sequence completed in 110 ms, and the raw data was saved as in-phase and quadrature demodulated (IQ) data by the ultrasound scanner.

All images were formed with a center frequency of 8.0 MHz and an ARFI-excitation frequency of 5.7 MHz. The ARFI images were acquired with a focal depth of 1.6 cm or 2.0 cm. For each acquisition, 36 radiation force impulses (53 μs pulse length)
were delivered at equally spaced locations over a 2.14 cm lateral FOV. At each lateral location, eight ultrasound pulses (~10 kHz tracking pulse reputation frequency, PRF) were transmitted before the ARFI-excitation to determine the initial position of the tissue, and fifteen were transmitted after the excitation to monitor the ARFI-induced tissue deformation. Four-to-one parallel-receive imaging (4:1, four echo lines received for each transmit pulse) was used to increase the line density of the ARFI image.\(^\text{135}\) The final ARFI image had a line density of 67 lines per cm. The ARFI imaging parameters are summarized in table 3.

Table 3: ARFI imaging parameters for the VF10-5 linear transducer.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Probe</th>
<th>VF10-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>Array Type</td>
<td></td>
<td>Linear</td>
</tr>
<tr>
<td>Center Frequency [MHz]</td>
<td></td>
<td>5.71</td>
</tr>
<tr>
<td>Scanner</td>
<td>Model (Siemens)</td>
<td>AntaresTM (SONOLINE)</td>
</tr>
<tr>
<td>Data Type</td>
<td></td>
<td>IQ</td>
</tr>
<tr>
<td>B-mode and ARFI Imaging Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmit Frequency [MHz]</td>
<td></td>
<td>5.71</td>
</tr>
<tr>
<td>Tracking Frequency [MHz]</td>
<td></td>
<td>8.00</td>
</tr>
<tr>
<td>Sampling Frequency [MHz]</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Focus [cm]</td>
<td></td>
<td>1.6 or 2.0</td>
</tr>
<tr>
<td>F/#</td>
<td></td>
<td>2.4 or 3.0</td>
</tr>
<tr>
<td>Cycles</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>ARFI-excitation length [µs]</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>ARFI-excitation lateral locations</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Parallel tracking</td>
<td></td>
<td>4:1</td>
</tr>
<tr>
<td>Pre-tracks</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Post-tracks</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Tracking PRF [kHz]</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 7: ARFI-induced displacement curve for a single pixel in the myocardium. Eight scan-lines were acquired before the excitation to determine the baseline position. The motion filter function (blue) was extrapolated from the pre-excitation data, and subtracted from the raw displacements (triangles) to calculate the motion filtered displacement profile (circles). Fifteen scan-lines were acquired after the ARFI-excitation to monitor the axial tissue displacement. Total tracking time for a single line was ~2.75 ms. The maximum displacement over the tracking time (magenta star) was the pixel value in the 2-D ARFI image.

The ARFI-induced axial displacement magnitudes were calculated by correlating each post-excitation track-line with the echo from the last reference line using a phase-shift estimation algorithm (Loupas, axial kernel: 1.5λ, wavelength).23 124 A quadratic extrapolation motion filter technique was used to minimize the effects of bulk axial motion on the estimated displacements.24 136 137 An example of this process for a single pixel location is presented in figure 7.
The quality of the displacement estimation for each pixel-kernel location was quantified by calculating the magnitude of the complex correlation coefficient (\(C_{XCC} \)) calculated during the phase-shift estimation.\(^{117, 136} \) Pixel locations with low \(C_{XCC} \), such as in the blood, exhibited significant decorrelation of the signals between the tracking lines. Any pixel where the median \(C_{XCC} \) through the tracking time was below 0.90 was removed from the final ARFI image. Displacements measured in the blood also had large standard deviations; any pixel with a standard deviation larger than 20 µm was also removed.

3.2.3 Temporal Image Registration and ARFI Image Normalization

The vacuum apparatus and arm mount stabilized the position of the transducer, but the dynamic motion of the heart and lungs inevitably caused small translations of the imaging plane between image acquisitions. A 2-D normalized cross-correlation registration of the B-mode images was performed to compensate for any small axial or lateral translations of the imaging plane through the time-course. The ARFI images were not involved in the registration process.

The image templates for the correlation were automatically chosen as 1 mm above the highest point of the epicardium and 1 mm below the lowest point of the endocardium for all the images in the lesion time-course. The epicardium and endocardium were automatically determined as the edges of the myocardium in the thresholded B-mode image. The applied threshold was the brightness intensity mean in
each image plus 0.8 (epicardium) or 0.45 (endocardium) of the standard deviation. The region containing the myocardium was manually segmented before the thresholding to mask the ablation catheter and far-field cardiac structures. The detected endocardium and epicardium were smoothed using an eight pixel median filter.

Each image was correlated with all the other images from the time-course. The maximum spatial correlation coefficient for the pair was used as a registration qualifier (RQ) to quantify the overall quality of the image registration.

Figure 8: Block diagram of B-mode image spatial registration.
The post ablation image with the highest RQ sum for all image combinations was used as the reference image for the spatial registration (axial and lateral translation) of the other images. Individual images with a RQ lower than 0.65 were discarded from the statistical analysis. The registration process is summarized as a block diagram in figure 8. Occasionally air bubbles would become trapped between the transducer and myocardium; images where an air bubble created noisy artifacts in the myocardium were also removed from analysis.

The maximum ARFI-induced displacements were normalized to minimize the effects of the focal depth of field (DOF) and energy attenuation. The pre-ablation image with the highest RQ sum for all correlation combinations was used for the ARFI image normalization. In this image, the maximum measured ARFI-induced displacements in the myocardium (0.5 mm below the epicardial surface and 0.5 mm above the endocardial surface) were laterally averaged across FOV and plotted as a function of axial depth. A quadratic curve was fit to this plot and the resulting function was used to normalize each displacement pixel as a function of depth.

3.2.4 Contrast Analysis and Temporal Stability of Normalized Displacements

For all post ablation images, the RFA lesion was automatically detected by thresholding (mean normalized displacement in the myocardium minus one third of the standard deviation) the normalized ARFI-induced displacements. A composite lesion for each lesion group was defined by combining pixel locations that were classified as
lesion in at least 75% of the post ablation images. Three 1x1 mm regions of interest (ROI) were automatically defined for each lesion group using the composite lesion: 1) the lesion interior (lesion centroid), 2) the lesion border zone (lesion edge at axial depth of centroid), and 3) 3 mm outside lesion border zone (at axial depth of centroid). A repeated measures analysis of variance (ANOVA) was performed to test the significance of the variance between individual lesion and the effects of RFA (inside vs. outside) on the mean normalized displacement in the ROI.

The means of the ROI in each lesion group were plotted versus time to examine the stability of the normalized measurements. An exponential curve fit (equation 9) was used to find the stabilization time of the normalized ARFI displacements in the lesion interior and border zone ROI, where t (units, seconds) is time, d_{Final} is the final displacement, d_{Initial} is the initial displacement from the last pre-ablation frame ($t = 0$ seconds), and τ (units, 1/seconds) is the stabilization time constant.

$$d(t) = d_{\text{Final}} + (d_{\text{Initial}} - d_{\text{Final}}) e^{-t/\tau} \quad (9)$$

The time to stabilization was approximated as three times the time constant, or when ~95% of the steady-state was reached.

The C and CNR of the RFA lesion were calculated using the maximum ARFI-induced displacements and B-mode signal intensities from the ROI from inside and
outside the lesion. A one-tailed t-test was performed to confirm an improvement in C and CNR in the ARFI images compared to the B-mode images.

3.2.5 Temporal Stability of Lesion Width and Area

The TTC stained lesion cross-section at the approximate imaging location was examined to compare the final lesion morphology and transmurality.

For each lesion, the normalized ARFI-induced displacements across the lateral FOV at the axial depth dictated by the lesion centroid were compiled in an image and plotted through the time-course to visually examine the stability of the lesion width.

The area of the lesion in each ARFI image was determined by thresholding (mean of displacements in border zone ROI) the normalized displacements and finding the filled area around the composite lesion centroid. For lesions at the edge of the FOV, the area calculation was bounded by the maximum lateral shift of the images through the time-course. The detected lesion area was plotted against time, and the approximate stabilization time was calculated using the exponential fit method described in the previous section.

3.3 Results

A total of 12 lesions were made in six canine subjects. Full analysis was completed for seven lesions; the five unreported lesions had a substantial number of frames removed (low RQ) during the registration analysis, and either had no ARFI
images within five minutes of the ablation (three) or no images past 20 minutes (two). The means and ranges of the RQ for the seven reported lesions are shown in table 4.

Figure 9 and 10 show B-mode, ARFI, and pathology images for two lesions before, during and after RFA lesion formation. The ablation catheter remained in place through the time-course (‘stiff’ (blue) region with artifact below). During RFA, the normalized ARFI-induced displacements in the myocardium decreased radially from the ablation catheter contact (ACC) point, forming a stiff semicircular lesion. Post RFA, ARFI imaging showed consistent lesion stiffness and morphology through the time-course. In figure 9, the thermocoagulated core was the stiffer (dark blue) in the ARFI images than the lesion border zone (light blue-yellow), identifiable as the less intensely stained brownish-pink rim around the lesion in the pathology image. All lesions that appeared transmural in the ARFI images were confirmed as transmural in the pathology images.

Table 4: Registration analysis of B-mode images.

<table>
<thead>
<tr>
<th>Lesion</th>
<th>N</th>
<th>Mean RQ</th>
<th>RQ Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>34</td>
<td>0.88±0.06</td>
<td>0.741 – 0.976</td>
</tr>
<tr>
<td>B</td>
<td>48</td>
<td>0.83±0.09</td>
<td>0.662 – 0.952</td>
</tr>
<tr>
<td>C</td>
<td>33</td>
<td>0.81±0.12</td>
<td>0.656 – 0.980</td>
</tr>
<tr>
<td>D</td>
<td>46</td>
<td>0.85±0.11</td>
<td>0.657 – 0.978</td>
</tr>
<tr>
<td>E</td>
<td>48</td>
<td>0.85±0.08</td>
<td>0.668 – 0.973</td>
</tr>
<tr>
<td>F</td>
<td>45</td>
<td>0.81±0.09</td>
<td>0.650 – 0.966</td>
</tr>
<tr>
<td>G</td>
<td>33</td>
<td>0.87±0.08</td>
<td>0.678 – 0.976</td>
</tr>
</tbody>
</table>
Figure 9: B-mode (left column), ARFI (center column), and pathology (right column) images for RFA lesions formation (lesion C). Before ablation, the normalized ARFI-induced displacements are homogeneous in the myocardium (red). During RFA, a semi-circular region of lower displacement (blue) grows from the ablation catheter contact point on the endocardium. The lesion size did not change significantly during the monitoring time-course and is comparable to the morphology in the TTC stained tissue pathology image at the approximate imaging plane.
Figure 10: B-mode (left column), ARFI (center column), and pathology (right column) images for RFA lesions formation (lesion A). Before ablation, the normalized ARFI-induced displacements are homogeneous in the myocardium (red). During RFA, a semi-circular region of lower displacement (blue) grows from the ablation catheter contact point on the endocardium (slightly out of plane immediately after RFA). The lesion size did not change significantly during the monitoring time-course and is comparable to the morphology in the TTC stained tissue pathology image at the approximate imaging plane.
Overall, the lesion morphology and transmurality observed in the pathology images were consistent with the lesion morphology seen in the ARFI images.

3.3.1 Temporal Stability and Image Contrast Analysis

Figure 12 shows the post ablation reference B-mode images, ARFI images, and outlined ROI for five lesions. Figure 11 presents plots of the mean normalized ARFI-induced displacements and stabilization curve fits for the ROI inside, at the border zone, and outside the lesions. For all post ablation image ROI (n = 287), the mean normalized displacement values were 0.21±0.06, 0.59±0.12, and 0.90±0.15 respectively. An ANOVA determined RFA lesion had a significant (p << 0.001) effect on the normalized displacement means, while the individual lesion did not (p = 0.425).

![Figure 11](image)

Figure 11: Means of the normalized displacement for the ROI inside the lesion (left), in the lesion border zone (center), and outside the lesion (right) and exponential stabilization curve fits (solid lines). Inside the lesion the normalized displacements reach maximum stiffness within the first two minutes post ablation. In the lesion border zone, the normalized displacements stabilized over the first several minutes post ablation. While showing variability over a narrow range, there was no significant change in the normalized displacements outside the lesion.
Figure 12: Reference B-mode (right column) and ARFI images (center column) of RV endocardial RFA lesions (lesion groups A, B, C, E, and G). White boxes outline 1x1 mm ROI inside the lesion, in the lesion border zone, and outside the lesion. The displacements at the axial depth delineated by the horizontal white line are plotted for each ARFI image through the time-course (30 second wide bars) to observe the spatial stability of the lesion (right column). The black region represents the temporal gaps or the lateral translation of each ARFI image based on the registration analysis. The ablation occurred between 0 and 60 seconds (white vertical lines). The lesion widths appear consistent through the time-course.
Table 5: Normalized displacement stabilization times and contrast analysis of ARFI and B-mode images of RFA lesions.

<table>
<thead>
<tr>
<th>Lesion Group</th>
<th>Stabilization Time (sec)</th>
<th>RFA Lesion Contrast Analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lesion Center</td>
<td>Border Zone</td>
</tr>
<tr>
<td>A</td>
<td>60</td>
<td>689</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>394</td>
</tr>
<tr>
<td>C</td>
<td>69</td>
<td>737</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>123</td>
</tr>
<tr>
<td>E</td>
<td>107</td>
<td>297</td>
</tr>
<tr>
<td>F†</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>302</td>
<td>575</td>
</tr>
<tr>
<td>Mean</td>
<td>92±109</td>
<td>469±239</td>
</tr>
</tbody>
</table>

* Right-tailed paired t-test for C (p = 8.9e-9) and CNR (p = 4.8e-6) between ARFI and B-mode images.
† Lesion F: pre-ablation and lesion formation image occurred at different imaging position than the remainder of the time-course due to a large elevation shift of the transducer shift immediately following ablation.

The normalized displacement stabilization time and results of the contrast analysis are presented in table 5. A one-tailed paired t-test determined the mean C and CNR were significantly higher in the ARFI images than the B-mode images.

3.3.2 Temporal Stability of Lesion Width and Area

The compiled normalized ARFI-induced displacements for single axial location (axial depth delineated by white horizontal line) through the time-course is shown in figure 12. The locations of the lesion borders displayed temporal stability.

Figure 13 plots the detected lesion area and stabilization curve fits for each of the seven lesions. In all lesions, the detected area grows rapidly during RFA and stabilizes within the times presented in table 5. The mean increase in lesion area was 11.2±7.2% between the first post ablation image and the last (range 2.7-24.4%), and the lesion area stabilized within ~2 minutes of the ablation.
Figure 13: Time-course of RFA lesion area as detected by ARFI imaging. RF-energy delivery commenced at 0 sec and was terminated after 60 sec (black vertical line). Exponential stabilization curve fits are plotted as solid lines.

3.4 Discussion and Conclusions

This chapter described a method for monitoring cardiac RFA lesion formation in vivo and as well as the spatial and temporal stability of the lesion with ARFI imaging. The results showed ARFI imaging can successfully identify acute stiffness changes in RFA treated myocardium in vivo with good repeatability and high image contrast.

ARFI imaging measured a significant reduction in normalized ARFI-induced displacements in RFA lesion, and the normalized displacements in the lesion center stabilized within the first minute post ablation. The normalized displacements in the
border zones were stable within 10 minutes. The detected lesion area stabilized approximately 2 minutes after ablation, and the mean change in area over the post ablation monitoring time for all lesions was ~11% and no more that 25% for any individual lesion.

Tissue cooling following RF-delivery is not instantaneous; the myocardial temperature at RFA sites has been shown to remain in the hyperthermic injury range for almost a minute post ablation until convective cooling and tissue perfusion return the tissue temperature to baseline. The 1-2 minute stabilization times for the lesion center and lesion area were consistent with this observation. The measurements of the relative tissue stiffness were stable through the remaining time-course.

3.4.1 Implications for Clinical Lesion Assessment

3.4.1.1 Edema at the RFA site

Lardo et al. conducted a comprehensive assessment of the temporal and spatial stability of RFA lesions in canine RV with MRI (T2 weighted fast-spin echo). This study found the lesion image intensity increased and plateaued after the first 10-12 min post ablation (temporal resolution of 2 minutes) once the hydrostatic pressure and edema infiltration equilibrated. This study also showed the MRI imaged lesion size stabilized in the first 5-6 min of lesion formation and slightly overestimated the size of the lesion when compared to a histological cross-section of the tissue.
In this chapter, the detected lesion area based on the ARFI measured relative stiffness stabilized in the first 1-2 min after RF-delivery; therefore the ARFI imaging evaluation of tissue damage based on the stiffness changes at the ablation site stabilized faster than the MRI visualized changes in water content which was largely affected by edema. This finding suggests that the measured ARFI-induced displacements were not significantly confounded by any increase in the interstitial tissue pressure caused by edema around the ablation site.

3.4.1.1 Necrosis at the Lesion Boundary

It has also been shown that actin-myosin contraction band necrosis can be present around the edge of RFA lesions \textit{in vivo},99, 143, 144 Possible mechanisms for the appearance of these bands are: 1) local ischemia due to decreased perfusion at the ablation site, or 2) a heat-induced rise in myocyte calcium influx that causes hypercontraction and cell death due to cytosolic calcium overload.43, 145, 146 Studies have shown lesions composed of high concentrations of these bands appear in canine myocardium within 6 to 10 minutes of exposure to cardiotoxic doses of isoproterenol. The spatial and temporal formation of these bands during RF ablation has yet to be characterized.146-148 It also remains unclear whether all contraction band necrosis becomes chronic scar.143, 149 Edema accumulation from ruptured cells and micro-vessels has also been observed in areas of contraction band necrosis.144
In this study, this banded zone (incomplete thermocoagulation) at the lesion boundaries was presumably stained lighter pink in the TTC pathology images; the relative stiffness gradient (light blue-yellow spectrum, see figure 9) observed at the RFA lesion edge in the ARFI images often showed similar morphology to this boundary in the pathology images. Also, the longer and highly variable relative stiffness stabilization times for the border zone ROI likely reflected the spatial density and dynamic stiffening of the contraction bands and associated edema. A stiffening of these areas, as opposed to “growth” of the lesion, is consistent with the finding that the lesion width and area were stable within minutes post-ablation. Due to the ambiguity of determining myocyte death this region, in a clinical setting ablating the tissue to the blue spectrum (> ~30% of pre-ablation ARFI-induced displacement) of the ARFI imaging color scale would ensure complete RF ablation.

Overall, a better understanding of the connection between acute lesion compliance (protein coagulation, contraction band necrosis, and edema) and the degree of electrical damage could provide a method to distinguish viable or electrically “stunned” tissue from complete thermocoagulation and unablated myocardium. Elasticity-based evaluation of RFA lesion could also potentially provide a method to optimize the RF-energy delivery and avoid complications associated with excess delivery of RF-energy.
3.4.2 Study Design and Limitations

The exact experimental setup described in this study is not a clinically executable method. Given the study objectives, this experimental method was used because it 1) maximized the stability of the imaging plane during the ablation and time-course monitoring, 2) minimized any interference from the RF-energy application because ICE catheter transducers are unshielded and experience interference in the ultrasound signal when RF-energy is applied, and 3) maximized the ARFI imaging FOV.

A direct comparison between the ARFI imaging determined lesion area and the stained lesion pathology was not done in this experiment due to the likelihood of large misregistration errors between the pathology cross-section and the actual imaging plane. Moreover, several lesions were imaged at the edge of the FOV; attempting to spatially align the edges of the imaging plane to the pathology image would also have created errors in the area measurements. Despite any misregistration of the pathological lesion cross-sections, it was valuable to observe and compare the lesion morphology and transmurality to the ARFI image.

The stability of the imaging plane was the primary cause of variation and error in this study. The 2-D normalized cross-correlation was able to adjust for axial and lateral shifts of the imaging plane, but was unable to correct for any elevation or angular translation. Slight changes in the imaging location may have resulted in the imaging of a completely different cross-section of the lesion. Changes in the heart rate may also
have caused temporal variation in the ARFI images. The diastolic delay was held constant over the time-course and variations in the heart rate would acquire a slightly different point in the cardiac cycle. Regardless, any instability of the imaging planes did not appear to affect the findings of this study.

3.5 Acknowledgements

For their contributions to this work, I acknowledge Dr. Maryam Vejdani, Young Kim, Kelly Kang, and Virginia Chen.
Chapter 4: Integration of ARFI Imaging and Electroanatomical Mapping for Intraprocedure Intracardiac Radiofrequency Ablation Lesion Assessment

The work described in this chapter is under review for publication in Ultrasonic Imaging:

Eyerly SA, Bahnson TD, Koontz JI, Bradway DP, Dumont DM, Trahey GE, Wolf PD. Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions.

4.1 Introduction

In chapter 3, a method for acquiring high contrast ARFI images of RFA lesions in an _in vivo_ open chest setup was described. While a successful experiment for precisely monitoring lesion formation and temporal-spatial stability, clinical TCA procedures are conducted in a closed environment with catheters; the use of a linear transducer to directly image the heart during clinical ablation procedures is not feasible.

Real-time ICE has become an important tool for imaging cardiac anatomy and ablation catheter-myocardium contact during clinical TCA procedures. Intracardiac ARFI imaging sequences were developed for the standard ICE transducer often used in TCA cases.

Unlike real-time ICE imaging, 2-D ARFI imaging requires a diastolic gated 50-100 ms acquisition time which limits the display update time interval to the order of
seconds. This frame rate makes it difficult to “scan” the heart for lesions during a TCA procedure. ARFI imaging from an ICE transducer also limits the FOV, as wide beam steering angles have shown a substantial decrease in the ARFI-excitation energy and the resulting displacements. Therefore, a method for using EAM to precisely guide the ARFI imaging plane to RFA lesion sites during TCA was established. Background information about the CARTO EAM system is provided in appendix A.

The first objective of this chapter was to verify the integration of a multi-modality ARFI imaging-EAM system for efficient intraprocedure ARFI imaging of RFA lesions. With this system, the ARFI imaging plane could be navigated to RFA delivery locations marked in the electroanatomical map, and the EAM system RFA markers were treated as positive indicators for the presence of RFA lesions. This multi-modality system was then used to 1) determine the accuracy of identifying RFA lesion delivery locations in electroanatomical maps with ARFI images, 2) quantify the typical ARFI-induced displacement ranges achieved by the ICE transducer in RFA lesion and unablated myocardium, and 3) calculate and compare the C and CNR between RFA lesion and unablated myocardium for ARFI and conventional ICE images.

The chapter is organized as follows: Section 4.2 describes the ARFI imaging-EAM system integration as well as the animal experimental protocols to verify the system and assess linear RFA with intraprocedure ICE-based ARFI imaging. Section 4.3
describes the results from the system verification and linear RFA experiment, and section 4.4 discusses the findings and the utility of the integrated system.

4.2 Methods

The animal study protocol executed in this chapter was approved by the Duke University Animal Care and Use Committee and conformed to the Guide for the Care and Use of Laboratory animals. All canine subjects were anesthetized (pre-anesthesia: intramuscular acepromazine 0.02-0.05 mg/kg followed by interveinous propofol 4-6 mg/kg; general anesthesia: isoflurane gas 1-5% via inhalation), intubated, ventilated and maintained metabolically stable.

4.2.1 Multi-Modality Imaging System

4.2.1.1 ARFI Imaging Sequences and Image Processing

An ACUSON S2000™ ultrasound scanner (Siemens Healthcare, Issaquah, WA, USA) was software modified to implement 2-D ARFI beam sequences from a standard 64 element SoundStar™ catheter phased-array (Biosense Webster, Diamond Bar, CA, USA). Images were acquired with transmit and receive center frequencies of 6.15 MHz and with a 1.5 cm focus (F/# = 2.14). The imaging parameters are summarized in table 6.

The first part of the imaging sequence consisted of a 90° B-mode image. Next, ten high intensity ARFI priming-pulses were transmitted to linearize the transducer kick-back so it could be easily filtered from the ARFI-induced displacement profiles (see
The next step in the imaging sequence was to acquire a 2-D (~54° FOV) ARFI image consisting of 42 equispaced spatially-interleaved (wiper-bladed) ARFI locations. Each lateral ARFI-excitation location was interrogated with 8 scan-lines before the excitation at a tracking PRF of 9.7 kHz.

Table 6: 2-D ICE-based ARFI imaging parameters.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Probe</th>
<th>SoundStar™ (10 French)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elements</td>
<td>64 (7 mm length)</td>
</tr>
<tr>
<td></td>
<td>Array Type</td>
<td>Phased</td>
</tr>
<tr>
<td></td>
<td>Center Frequency [MHz]</td>
<td>6.15</td>
</tr>
<tr>
<td>Scanner</td>
<td>Model (Siemens)</td>
<td>S2000™ (ACUSON)</td>
</tr>
<tr>
<td></td>
<td>Data Type</td>
<td>RF</td>
</tr>
<tr>
<td>B-mode and</td>
<td>Transmit/Tracking</td>
<td>6.15</td>
</tr>
<tr>
<td>ARFI Imaging Parameters</td>
<td>Frequency [MHz]</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Sampling Frequency</td>
<td>1.5 cm</td>
</tr>
<tr>
<td></td>
<td>[MHz]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Focus</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>F/#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycles</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>ARFI push length [µs]</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>ARFI lateral push</td>
<td>42 (54°)</td>
</tr>
<tr>
<td></td>
<td>locations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel tracking</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>Pre-tracks</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Post tracks</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Tracking PRF [kHz]</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Hsu et al. determined the peak intracardiac ARFI-induced displacement in myocardium occurred ~0.60 ms post-excitation, thus the excitation location was tracked for 0.6 ms (9 scan-lines) to capture the peak tissue response while minimizing the acquisition time. The total tracking time at each ARFI-excitation location was ~1.1 ms. Hsu et al. determined unablated and ablated myocardium fully recover to the pre-
excitation baseline after ~2.2 ms. The spatial-interleaving of the sequential excitation locations during the acquisition ensured the local tissue was unaffected by the previous ARFI-excitation. The full imaging sequence took ~92 ms to complete and was within regulatory limits for mechanical index (MI < 1.7) and transducer surface heating (< 4.0°C).

The ARFI image processing was completed offline after the experimental procedure. The 2-D ARFI images were formed using the normalized cross-correlation time-delay displacement estimation method outlined by Hsu et al. A normalized CCC was calculated for each pixel location to quantify the quality of the phase-matching between the post ARFI scan-lines and the last pre-ARFI line (reference line). A low CCC for a displacement value indicated phase decorrelation during the cross-correlation, and therefore a poor displacement estimation. Poor displacement estimates were removed from the ARFI images by thresholding the median CCC (median CCC through tracking time was spatially median filtered by a ~0.5 mm axial by 4 mm lateral kernel) to include only values greater than 0.80. This process eliminated most of the pixels from the blood in the RA.

The ARFI-induced displacement measurements were motion filtered with a quadratic extrapolation model to reduce the effects of axial physiological motion and catheter rebound on the displacement estimates. An example of a displacement profile for a single pixel in unablated myocardium is presented in figure 14.
Figure 14: ARFI-induced displacement curve for a single pixel location in the myocardium imaged with an ICE transducer. In the ICE imaging sequences, 10 priming pulses were delivered to linearize the transducer kick-back. As a result, the catheter is recovering towards the myocardium during the eight pre-excitation scanlines. This motion was removed from the raw displacements (triangles) using the quadratic motion function (blue) extrapolated from the pre-track data to create a profile of only the ARFI-induced displacement (circles). Nine scan-lines were collected to monitor the post-excitation tissue displacement. Total tracking time for a single line was ~1 ms. The maximum displacement over the tracking time (magenta star) was the pixel value in the 2-D ARFI image.

Remaining pixels in the blood or beyond the myocardium were masked from the image by removing individual locations if the measured displacement estimation was > 50 µm (likely noise) or the standard deviation of the displacement measurements through the tracking time was greater than 20 µm. The maximum ARFI-induced
displacement measurements were scan-converted (bilinear interpolation scan-conversion, 0.019 mm axial by ~1.33° lateral kernel pre scan-conversion, 0.05x0.05 mm pixel size post scan-conversion), color-coded at each pixel location, and overlaid onto the scan-converted B-mode image. The ARFI image pixel color scale was manually adjusted to increase the visual contrast and reduce saturation in the final displayed image. The upper limit of the displayed displacement range for all images was between 7.5 and 15 μm.

4.2.1.2 Hardware and Software Integration

The developed multi-modality imaging system consisted of a modified CARTO XP™ EP Navigation System (Biosense Webster; Diamond Bar, CA) and the software modified Siemens ACUSON S2000™ ultrasound scanner (Siemens Healthcare; Issaquah, WA). The S2000 platform used for this research was not supported by the CARTO XP software, and custom hardware and software modifications were made to the CARTO XP to complete the integration.

In the standard clinical system, the CARTO XP EAM system connects to a supported ultrasound scanner with an Ethernet cord and proprietary video cable. The CARTO XP software retrieves the ultrasound imaging parameters, such as the imaging fan depth, through the Ethernet connection and crops the real-time ICE video from the scanner to display in the electroanatomical map. To receive the correct video input from the S2000 scanner, a compatible frame grabber card (Vio Analog, VIO7IAOA/G*: Matrox
Electronic Systems Ltd., Dorval, Quebec, Canada) was installed in the CARTO computer tower to accommodate the video resolution output by the S2000. A custom Matrox Intelllicam software (Matrox Electronic Systems Ltd., Dorval, Quebec, Canada) parameters file was developed with the assistance of Matrox to accept the exact video specifications of the S2000 output. A CARTO XP software update (V9.7) and a parameter “simulating” software (modified from the supported ACUSON X300™, Siemens Healthcare; Issaquah, WA;) provided by the Biosense Webster CARTO Software Development team (Tirat Carmel, Israel) was installed on the CARTO XP system to correctly crop and display the S2000 video signal in the CARTOSound™ Ultrasound Viewer window. The simulator provided modifiable, hard coded XML files to provide the imaging parameters from the S2000 scanner to the CARTO XP software. The S2000 parameter values were found in the scanner Diagnostic User Interface (DUI) and with a screenshot of the S2000 imaging software. Once the video input and XML file modification was complete, the real-time ICE imaging fan was visible in the CARTO XP ultrasound viewer.

4.2.1.3 Imaging System Implementation and Equipment Setup

The ARFI imaging-EAM integrated system used a commercially available unmodified 10 French SoundStar™ catheter (Biosense Webster; Diamond Bar, CA) to acquire spatially registered B-mode and ARFI images. Preliminarily processed ARFI
images were displayed on a laptop computer (Dell Precision M90) within 15 seconds of the acquisition during the procedure.

Catheters were navigated to the heart with fluoroscopy (Philips Healthcare; Andover, MA). All focal RFA lesions were delivered with a Stockert 70 radiofrequency generator (RFG) and NaviStar mapping/ablation catheter (Biosense Webster; Diamond Bar, CA). An octapolar reference catheter (XT™ Steerable, Bard; Lowell, MA) was positioned in the CS and the distal electrodes were used as pacing electrodes (Pulse Stimulator, Grass Technologies; West Warwick, RI).

The surface ECG and endocardial EG from the electrodes of the reference (R1-R8) and mapping (M1-M4) catheters were acquired by the CARTO patient interface unit (PIU), input into an Octal Bio Amp (ADInstruments; Milford, MA) using a custom fabricated cable (figure 15), and recorded using LabChart 7.0 data acquisition software (PowerLab, ADInstruments). In LabChart, an output channel was configured to provide an impulse at a user selected delay after a detected QRS of the ECG. This pseudo-ECG output signal was fed to the ultrasound scanner using a custom fabricated cable (figure 16) and used to gate the image acquisitions. The output signal was also input into the CARTO PIU (custom fabricated cable, figure 17) as a pseudo-EG signal to synchronize the CARTO XP position recoding and display (position data acquired once per heart beat) with the gated ARFI image acquisition.

A diagram of the full equipment setup is presented in figure 18.
Figure 15: Custom cable for transferring intracardiac (IC) EG recorded by the reference catheter (R1-R8) and mapping catheter (M1-M4) from the CARTO system to the bioamp data acquisition system.
Figure 16: Custom cable to for input of pseudo-ECG from data acquisition system to the S2000 ultrasound scanner.

Figure 17: Custom cable to for input of pseudo-EG synchronization signal from data acquisition system to the CARTO.
Figure 18: Diagram of ARFI imaging-EAM equipment and cable connections.
4.2.2 Integrated System Verification

The integrated system was tested in two canine subjects to confirm the spatial registration of the imaging plane and CARTO geometry. In the first canine subject, the integrated CARTO system was used to steer the ARFI imaging plane to interrogate two single RFA lesions before and after ablation. In a second canine, two parallel rows of RFA lesions were delivered in the RA, and the integrated system was used to visualize and ablate the unablated gap between the RFA lines.

4.2.3 ARFI Imaging of Linear RFA

A linear ablation was performed in eight canine subjects. A baseline point-by-point geometry of the RA was made with the ARFI imaging-EAM system. A guideline delineating the planned linear RFA delivery site was drawn on the map geometry, and EAM directed ARFI images of the pre-ablated tissue regions were acquired. A series of lesions were delivered along the guideline using a catheter dragging technique to minimize potential lesion line discontinuities, and the RFA sites were marked in the EAM geometry. The ablation proceeded in two steps: first, the linear ablation left an intentional gap of approximately 1 cm length, and then the gap was closed with consolidating RFA lesions. The ablation catheter tip was temperature controlled between 50-60°C and RF-energy was applied for ~30-90 seconds per line segment. ARFI images
were acquired before and after RFA using the EAM geometry and guideline markers to direct the imaging.

The ablation catheter was removed from the FOV during ARFI imaging because the catheter tip blocked acoustic energy from reaching the myocardium, creating a distinct shadowing artifact. Also, the ICE catheter was positioned such that the endocardium appeared near the focus and as parallel to the transducer face as possible. This was done to maximize the induced displacement and to minimize depth dependent energy delivery to the tissue. ARFI images where the endocardial surface was outside the focal DOF (above 0.5 or below 2.25 cm) were not included in the statistical analysis. Images were also excluded if the myocardium was at an angle greater than 50° because the depth dependent difference in acoustic energy-delivery could potentially be mistaken for RFA treatment.

After the procedure, the heart was removed and photographed to confirm the presence of RFA lesions at the approximate sites shown in the electroanatomical map.

4.2.3.1 ARFI Image Review for the Presence of RFA Lesion

Three reviewers read the processed ARFI images for the absence or presence of RFA lesion in the myocardium at the imaging location, identifying lesion as at least one area (larger than approximately 0.5x0.5 mm) of low relative ARFI-induced displacement. The ARFI images were randomized, and each reviewer was blinded to the CARTO
maps, canine subject, and stage of ablation. The majority assessment was used as the final classification of the image, and the level of agreement between the reviewers was quantified with a kappa coefficient. In the CARTO maps, the ARFI imaging plane transecting any part of a 4 mm spherical RFA marker was used to indicate the presence of a RFA lesion at the imaging location. Each image was categorized in a 2x2 contingency table, and the sensitivity and specificity were calculated.

4.2.3.2 Contrast Performance Analysis of ARFI-induced Displacements in Unablated vs. Ablated Myocardium

A reviewer was blinded to the ARFI images and used the CARTO maps of the RFA markers and ICE-fan projection to classify each location as imaging no lesion (fan did not intersect markers), non-contiguous lesion (fan partially intersected marker lines), or contiguous lesion (fan completely intersected marker lines). Images that partially intersected RFA marker lines were used for the contrast analysis. For these images, the reviewer manually selected an ablated and unablated area in the myocardium on the B-mode image that matched to the marker intersection of the fan in the EAM map. This selection dictated the location of two (one ablated, one unablated) 1x1 mm (20x20 pixels) regions of interest (ROI) in the spatially registered ARFI image. For the ARFI images of no lesion and contiguous lesion, a 2x1 mm (40x20 pixels) region of interest was taken from the center of the FOV. Each image contributed the same number of data points.
(800 total pixels) to the analysis. The 1 mm axial depth for the ROI was chosen because
the atrial myocardium was typically between 1.5 and 2 mm thick. All ROI were taken
0.25 mm below a manual trace of the endocardial surface on the B-mode to ensure the
measurement region was within the myocardium.

The mean and standard deviation of the ARFI-induced displacement (no spatial
median filter) were calculated for the pixels in each ROI. A repeated measures ANOVA
to test for the RFA lesion effect was performed on the ROI displacement values. This
statistical model was used because multiple lesions were created in each animal.

The C and CNR were calculated for each image containing both ablated and
unablated myocardium. The C and CNR were also calculated for the mean signal
amplitude in the spatially registered ROI in the B-mode images. A repeated measured
ANOVA for lesion was performed on the measured ROI displacement means.
Additional repeated measure ANOVA tests were performed on the C and CNR values
in the ARFI and B-mode images. A one-tailed paired t-test was used to determine if
there was a significant increase in the C and CNR of lesion in the ARFI images over the
B-mode images.

4.2.3.3 Bulk Motion Artifacts

The motion filtering technique described previously reduced the effects of bulk
axial motion on the ARFI-induced displacement estimates, but large motion artifacts
(severe decorrelation of the track-lines) occurred if an acquisition was mistimed to acquire partially in systole or during an irregular heartbeat such as a premature ventricular contraction (PVC). The ARFI image scan-lines were acquired at spatially-interleaved lateral locations; therefore if substantial lateral or axial motion occurred during the acquisition, the endocardial surface was discontinuous or “jagged” in the B-mode image compiled from the pre-ARFI excitation RF track-lines (figure 19). Motion artifacts also presented a distinct “streaking” pattern in the displacement estimates that corresponded to the tracking of the largely decorrelated bulk cardiac motion instead of the ARFI-induced displacements.

ARFI images exhibiting such motion artifacts or images where more than 50% of the displacement estimates in the myocardium had cross-correlation coefficients below 0.80 were not included in the statistical analysis (28 of 247 total images).
Figure 19: Motion artifact in B-mode image (RF data). The ARFI lines were acquired at the spatially interleaved locations dictated by the order of the blue numbers. A total of 42 lines were acquired across the FOV (before scan conversion). There is a discontinuity at the myocardial surface in the center of the field of view (white line) that shows the tissue had moved between the acquisition of the center line acquired at the beginning of the sequence and the line to the left that was acquired at the end of the sequence.

4.3 Results

4.3.1 Integrated System Verification

Figure 20 shows ARFI images of a right atrial RFA target site mapped in the CARTO geometry before (white sphere) and after (red sphere) ablation. Post ablation, there is a clear area of increased stiffness in the location of the CARTO RFA marker. Figure 21 is a second example of ARFI imaging of a single RFA lesion site in the RV. There is a region of increased stiffness at this location where the imaging plane intersects
the RFA marker. In figure 22, ARFI imaging verified an unablated gap between two parallel lines of RFA lesions after ablation. When consolidating RFA was delivered, the gap of relatively low ARFI-induced displacements became stiffer. These results verified the ARFI imaging plane was accurately imaging RFA delivery locations using the CARTO map as a guide.

![Figure 20: CARTO maps (left) and ARFI images (center) of a single RFA lesion in the right atrium (RA) before and after radiofrequency ablation (RFA). Post ablation the ARFI image shows a decrease in the relative ARFI-induced displacement (µm) where the imaging plane transects the RFA lesion site (red sphere) in the CARTO map. An image of the tissue pathology (right) confirmed the presence of a transmural lesion.](image)

70
Figure 21: CARTO maps (right column) and ARFI images (center column) of single RFA lesion in the right ventricle (RV) before and after ablation. Post ablation the ARFI image shows a decrease in the relative ARFI-induced displacement (µm) where the imaging plane transects the RFA lesions site (red sphere) in the CARTO map. An image of the RV epicardial surface (right column) confirms the RFA lesion was not transmural.
Figure 22: CARTO maps (right column) and ARFI images (center column) of a unablated gap between lesions before and after ablation. Before RFA (top row) the myocardium exhibits homogeneous ARFI-induced displacements (µm). After the delivery of two parallel RFA lines (middle row), ARFI imaging displayed a relatively soft region of unablated myocardium at the gap between the RFA lesions markers (red spheres) in the CARTO map. The relative stiffness increases when additional RFA is delivered at this gap. An image of the endocardial tissue pathology (right column) confirms a solid ablation line and the approximate imaging plane (IP) location.
4.3.2 Identification of RFA Sites with ARFI Imaging

A total of 219 ARFI images were read for the presence of lesions. Figure 23 is an example of ARFI images acquired before and after incomplete and complete linear RFA. Before RFA, the myocardium in the ARFI images exhibited relatively high ARFI-induced displacement, color coded by the red-orange spectrum of the color bar. Post ablation, the measured ARFI-induced displacements were lower in the RFA lesion (colored blue-green), indicating an increase in the tissue stiffness and the presence of lesions. The ARFI image of incomplete linear ablation confirmed an unablated gap in the lesion line. Table 7 shows the categorization of the 219 ARFI images. Reviewers of the ARFI images showed substantial agreement (kappa = 0.73) and the majority review identified RFA lesion sites with a sensitivity of 90.2% and a specificity of 94.3%. The RFA lesion width observed in the postmortem pathology photographs was typically between 4 and 8 mm.

Table 7: ARFI imaging based confirmation of RFA lesion sites in EAM (4-mm RFA marker diameter).

<table>
<thead>
<tr>
<th>ARFI Image Lesion Assessment</th>
<th>No RFA Detected</th>
<th>RFA Detected</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA Marker Location in EAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No RFA Lesion</td>
<td>55</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>RFA Lesion</td>
<td>6</td>
<td>149</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>158</td>
<td>219</td>
</tr>
</tbody>
</table>

Sensitivity = 90.2%; Specificity = 94.3%; chi-squared test p<0.0001
Figure 23: ARFI images before RFA (row A), after the delivery of a non-contiguous ablation line (row B), and after a complete linear ablation (row C) in a canine right atrium. The ARFI imaging plane was steered to transect the RFA lesion sites geometry (red spheres, 4-mm diameter) that are marked in the EAM (column 1). Conventional B-mode images look similar pre and post ablation. The ARFI images (column 3) exhibit low ARFI-induced displacement at the RFA ablation sites. The regions of interest for unablated and ablated myocardium are outlined in white. Color scale units are micrometers axial displacement away from the transducer.
4.3.3 Contrast of the ARFI-induced Displacements in RFA Lesion

Figure 24 plots the mean and standard deviation of the all the ARFI-induced displacement measurements in unablated and ablated canine myocardium. Table 8 summarizes the results of the statistical analysis. The mean displacement (all images, n = 219) was lower in ablated than unablated ROI (n = 143 unablated, n = 152 ablated). A repeated measures ANOVA indicated the presence of RFA lesion had a significant effect (p = 0.0001) on the measured displacements, whereas the canine subject did not (p = 0.11).

For images that contained both RFA lesion and unablated myocardium (n = 76 paired ROI images), the mean measured ARFI-induced displacement was lower for the ablated ROI. A repeated measures ANOVA determined that the presence of RFA lesion had a significant (p = 0.0004) effect on the measured displacement means and the canine subject did not at an alpha value of 0.01 (p = 0.03).

Table 8 presents the average C and CNR for the ARFI and B-mode images containing both unablated and ablated ROI. The B-mode image C and CNR were significantly lower than the ARFI image C and CNR based on a one-tailed paired t-test (p < 0.001). A repeated measures ANOVA determined the canine subject did not significantly affect the C and CNR for the ARFI (pC = 0.36, pCNR = 0.72) and B-mode (pC = 0.52, pCNR = 0.73) images.
Figure 24: Boxplot of maximum ARFI-induced displacements for ROI in unablated and ablated canine myocardium (n = 219 images). The center line represents the median ARFI-induced displacement measurement. The top and bottom edges of the box (shown in blue) are the 75th and 25th percent quartiles. The top and bottom whisker edges are the extreme values (covering 99.3% of the data), and the individually plotted crosses (shown in red) are statistical outliers.

The criteria described in the methods (low CCC, unrealistic estimates) removed ARFI-induced displacement pixels from 33 ROI. Of these ROI, six had more than 5% of the pixels removed and no ROI had more than 17% of the pixels removed. No pixels were removed from the B-mode image ROI.
Table 8: Mean and standard deviations of the ARFI image ROI displacements and contrast analysis for ROI in unablated and ablated myocardium.

<table>
<thead>
<tr>
<th></th>
<th>Paired Images</th>
<th>All* Images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-mode</td>
<td>ARFI†</td>
</tr>
<tr>
<td>Unablated Myocardium (µm)</td>
<td>-</td>
<td>8.31±4.30</td>
</tr>
<tr>
<td>Ablated Myocardium (µm)</td>
<td>-</td>
<td>5.11±2.36</td>
</tr>
<tr>
<td>Contrast (C)†</td>
<td>-0.03±0.28</td>
<td>0.29±0.33</td>
</tr>
<tr>
<td>Contrast-to-noise ratio (CNR)†</td>
<td>0.74±0.68</td>
<td>1.83±1.75</td>
</tr>
</tbody>
</table>

* 219 total images in 8 canine subjects
† n = 143 unablated ROI, 152 ablated ROI; repeated measures ANOVA, subject effect (p = 0.11, F = 2.61) and lesion effect (p = 0.0001, F = 47.21)
‡ 76 paired images in 8 canine subjects
§ n = 76 unablated ROI, 76 ablated ROI; repeated measures ANOVA, subject effect (p = 0.03, F = 4.67) and lesion effect (p = 0.0004, F = 31.54)
∥ repeated measures ANOVA analysis of subject effect of ARFI image C (p = 0.36, F 1.12), and CNR (p = 0.72, F = 0.64) and B-mode C (p = 0.52, F = 0.89) and CNR (p = 0.73, F = 0.63); one-tailed paired t-test for C (p = 1.15e-8) and CNR (p = 7.54e-7) between ARFI and B-mode images

4.4 Discussion and Conclusions

This chapter described the verification and use of an integrated ARFI imaging-EAM system for precise intraprocedure ARFI imaging of RFA treatment sites. A quantitative analysis showed RFA locations exhibited significantly lower maximum ARFI-induced displacements than untreated areas, and reviewers of the ARFI images identified RFA lesion sites with high sensitivity and specificity. The C and CNR indicated there was excellent contrast between the RFA lesion and unablated myocardium in the ARFI images, and the C and CNR were significantly higher in ARFI imaging than in conventional ICE images.
4.4.1 Qualitative Imaging

In this chapter, the quantitative analysis showed that ablated regions exhibit lower measured ARFI-induced displacements; however it is important to note that the measured ARFI-induced displacements are qualitative surrogates for relative tissue stiffness, and do not directly quantify a material property. Imaging the same location from a different angle, depth, or with different imaging parameters, such as frequency, focal depth, or f/# could result in different measurement ranges of ARFI-induced displacement. This study determined the range of the measurements and contrast for specific but clinically feasibly imaging conditions: the myocardium was imaged 1) in diastole, 2) within a specific focal depth range (0.5 to 2.25 cm below the transducer), 3) from a non-oblique angle (<50°), and 4) off-axis steering of the ultrasound beams was limited to ±27°. It is also important to note that negative displacement amplitudes and amplitudes above 50 µm were removed from the ROI before calculating the mean displacement; these bounds contributed to the skewed distributions and non-normal appearance of the plots in figure 24.

Despite the lack of a quantitative measure, qualitative ARFI imaging is optimally suited to image discrete targets of differing stiffness, such as ablation lesions. ARFI images have a spatial resolution that is dependent on the spatial density of the measurements. At 1.5 cm distance from the transducer, the imaging lines are 0.33 mm
apart. We believe this spatial sampling is adequate to visualize gaps greater than 0.66 mm. However, the measured gap resolution is unknown at this time and its value will be a critical factor in determining overall clinical effectiveness. Shear wave elasticity imaging (SWEI) has also been shown to be useful for quantifying the elasticity changes associated with RFA treatment.153, 154 However, shear wave speed calculation requires a spatial kernel that can result in lower resolution; it is not yet clear if the resolution of SWEI images is adequate for the assessment of lesion line gaps.

The contrast analysis presented in this chapter demonstrated that the relative contrast in a single ARFI image can differentiate RFA lesion from non-lesion. This ability could provide a useful tool for TCA procedure guidance, where exact quantification of the tissue properties is not necessary.

Due to the qualitative nature of the image, the development of a method to automatically detect RFA lesion based on the value of the measured ARFI-induced displacements would require further investigation. In the previous chapter, a pre-ablation image was used to normalize the relative displacements. While this exact technique is not translatable to single intraprocedure images acquired during TCA, the development of a spatial normalization algorithm to compensate for the acoustic energy attenuation through depth and at extreme steering angles could increase the likelihood of developing an effective automatic segmentation method.
4.4.2 Considerations for Clinical Translation

As previously mentioned, diastolic imaging is necessary for successful ARFI imaging of lesions as most of the contrast between lesion and normal tissue disappears when the tissue stiffens during systole.95, 96, 133, 155 Also, late diastole is the time of least intrinsic motion during the cardiac cycle. We manually set the post QRS delay to start the imaging in late diastole; however, this delay had to be adjusted multiple times throughout the study to account for changes in heart rate. Two of the false-positive images (ARFI image reader detected lesion, no marker in EAM) were acquired before the RFA delivery phase of the experiment, and may have indicated low ARFI-induced displacement due to a poor gating delay. Mistiming the acquisition due to intermittent variations in heart rate may have also contributed to the high number of images with motion artifacts. The development of a software tool to adjust the gating delay in real-time could potentially reduce the instances of motion artifacts. Shortening the acquisition time of the imaging sequence could also help reduce the physiological motion during the acquisition.

Imaging the myocardium with the transducer face parallel to the endocardium and at the center of the focal DOF provided the highest contrast ARFI images. Using these criteria, we were able to acquire a substantial number of high-quality ARFI images in the canine RA. The restricted DOF made imaging some areas of the canine heart
challenging, and may limit the number of sites that can be imaged with contemporary ICE catheters during a clinical TCA procedures. Significant technical advances to address these limitations, such as the development of an ARFI imaging optimized transducer or more flexible ICE catheter steering technology, would improve the likelihood of clinical translation.

ARFI images require multiple ultrasound scan-lines at each ARFI-excitation location to monitor the tissue deformation and therefore cannot be acquired at the same high frame rate as B-mode. This, combined with need for diastolic imaging means that continuous display ARFI imaging for lesion evaluation is not possible. Accelerated ARFI imaging could allow the acquisition of multiple frames in a single beat, but any increase in the ARFI imaging acquisition rates must consider the effects of increased acoustic exposure (mechanical index/transducer face heating). With this in mind, the development of 3-D ARFI imaging could reduce the number of acquisitions needed to interrogate a lesion line.

Due to the restricted DOF, ARFI imaging lesion evaluation in the left atrium (LA) would require a double transseptal puncture to position the ICE catheter across the atrial septum. While ICE imaging in the LA is not mandatory for TCA procedures, it is a safe and effective method used by many electrophysiologists to monitor RF-delivery and the ablation catheter contact in real-time. In this study, ARFI images were acquired in
the canine RA to avoid performing a double transseptal puncture; transseptal punctures are difficult in the smaller canine heart. While these results were obtained in the RA, it is expected that similar results would be found in the LA.

4.4.3 Considerations for EAM Guided ARFI Imaging

The experiment described in this chapter determined EAM was an indispensable tool for mapping RFA treatment sites and guiding the imaging plane. The RFA markers in EAM were treated as the gold-standard for indicating lesion locations. The experiment was designed this way because attempting to match the exact orientation and location of each imaging plane to the \textit{ex vivo} pathology would risk substantial misregistration errors that would affect the accuracy of the lesion evaluations. A concern when using EAM as the gold-standard was that the RFA markers themselves only indirectly inferred RFA delivery; the EAM marker did not directly indicate the presence or size of an actual lesion. Discrepancies between the actual pathological lesion configuration and the electroanatomical map could have resulted in the incorrect classification (ablated vs. unablated) of some ROI in the ARFI images. These misclassifications likely affected the statistical analysis and the C and CNR calculations. For example, the six false-negative sites in table 7 could have been sites where the RF-energy did not induce a high enough temperature for ablation despite the location marker or the lesion could have been very small (<4 mm) due to poor electrode-
endocardium contact. At six of the nine false-positive sites, the imaging plane was positioned within ~4 mm of a lesion marker. One of the eight was within ~8 mm. In these cases, the pre-determined marker diameter of 4 mm in the EAM could have contributed to the misclassifications. In the pathology examination, several lesions were substantially larger (> 8 mm) than the EAM marker diameter. Despite this potential for misclassification, expert reviews of the ARFI images were very highly correlated with the presence of the RFA markers in the EAM.

4.4.4 Study Limitations

It is important to note that the displacement ranges, C, and CNR were calculated from the maximum ARFI-induced displacement measurements within 0.6 ms of the ARFI-excitation. An examination of these parameters at different time points after the ARFI-excitation could potentially result in different values for measured displacement.\cite{114,156-158} Also, the ~0.60 ms post tracking time may not have captured the peak displacement in some locations. An optimization of ICE-based ARFI sequences would have to balance any increase in tracking time with overall lengthening of the sequence. Lengthening the sequence increases the effects of bulk tissue motion during the acquisition and would change the safety parameters affected by increased acoustic exposure.
ARFI imaging of lesion borders can result in shear wave (off-axis mechanical wave propagation) reflections from lesion-tissue boundaries. The potential effect of such interactions on the contrast for thin (1–3 mm) inhomogeneous viscoelastic atrial tissue with irregular ablation lesion borders are beyond the scope of this thesis.

In this study, the maximum ARFI-induced displacement was not compared for the same exact sites before and after ablation. Therefore, stiffness inhomogeneity in the atrial tissue could be mistaken for RFA lesion in the ARFI images. Despite this possibility, in the healthy canine heart it is expected that such inhomogeneities would be minimal.

4.5 Acknowledgements

For their contributions to this work, I acknowledge Dr. Stephen Hsu, Dr. Mark Palmeri, Dr. Veronica Rotemberg, Peter Hollender, Joshua Hirsch, Brittany Potter, Matt Brown, and Ellen Dixon-Tulloch.
Chapter 5: Correlation of Electrical Substrate Modification and RFA-Induced Stiffness Changes in ARFI Imaging

The work described in this chapter was published in the following manuscript:

5.1 Introduction

The aim of the previous chapter was to verify the use of an integrated ARFI and EAM imaging system for intraprocedure imaging of RFA lesions using ARFI imaging. Reviewer successfully identified RFA lesion locations in EAM based on the relative stiffness contrast between the lesion and unablated myocardium. While evaluation of the location and extent of the tissue damage is important, to be a clinically relevant method for lesion evaluation during TCA the presence of lesions in the ARFI images must also correlate with the electrical substrate modification, particularly electrical block at the ablation site.

The ARFI images from the animal experiment described in the last chapter were used to determine if ARFI-based lesion assessments accurately identified areas of
conduction disturbance and electrical block. It is hypothesized that ARFI image locations that contain no RFA lesion or non-contiguous lesion will show electrical conduction in the EAM local activation time (LAT) map, while locations showing transmural, contiguous lesion will exhibit conduction block in the LAT map.

The chapter is organized as follows: Section 5.2 describes the in vivo ARFI imaging and conduction mapping protocol as well as the evaluation methods used for the LAT maps and ARFI images. Section 5.3 describes the correlation of the ARFI imaging and LAT map evaluations, and section 5.4 discusses considerations and the potential importance of the results for clinical translation.

5.2 Methods

5.2.1 ARFI Imaging Protocol and Experimental Setup

The full equipment setup (including the ARFI imaging-EAM integration) and ARFI imaging procedure used for this study were described in chapter 4. The ARFI imaging sequences were also identical to those presented in the previous chapter. Refer to chapter 4 for specific details regarding the ARFI imaging protocol.

5.2.2 Animal Experimental Protocol

The animal experimental protocol described in this chapter was conducted on the same animal subjects as described in chapter 4.
In each canine subject, a baseline point-by-point geometry and LAT map was made of the RA with the Navistar mapping catheter and CARTO XP navigation system (Biosense Webster; Diamond Bar, CA). A pre-RFA guideline of points delineating the intended ablation sites was drawn on the CARTO LAT map; baseline ARFI images were acquired along this guideline. The ICE fan position and orientation for each ARFI imaging location was saved for post-procedure review. Discrete RFA lesions were delivered along the guideline in two stages. The first stage left an intentional ~1 cm gap, and the gap was closed in the second stage.

After each stage, a new LAT map was constructed and the ablation line was ARFI imaged. See figure 34 in appendix A for examples of LAT maps and RFA site markers for a canine RA before RFA, after the incomplete linear RFA, and after complete linear ablation with confirmed full conduction block.

At the end of the study, the animal was euthanized and the heart was removed to confirm lesion delivery. The RFA lesions were photographed with a digital camera.

5.2.3 Local Activation Time Map Evaluation

Screenshots of each imaging fan position were compiled with the LAT map using the CARTOSound Module in the system Review Mode. The tricuspid annulus (TA) was cut from the map, and internal points were removed. The ablation (red spheres) and
guideline markers were hidden, and the color scale of each LAT map was adjusted to increase the color gradient at the ablation line.

The LAT maps for each ARFI image location were randomized and read by three different reviewers who were blinded to the ARFI images, the stage of ablation, and canine subject.

The reviewers (two clinical electrophysiologists, one electrophysiology expert) were posed three yes or no questions about each LAT map in reference to the baseline map: 1) “Is there conduction block anywhere on this LAT map?” (additional possible answer of “Cannot be determined”), 2) “Based on the activation pattern in the LAT map, does there appear to be RF lesions present at the ICE imaging fan location?”, and 3) “Is the ICE imaging plane completely parallel to and transecting a line of block, thereby imaging a continuous line of lesion?”. The RFA lesion widths observed in the postmortem pathology photographs were typically between 4 and 8 mm; therefore, questions #2 and #3 were answered considering the imaging plane could be transecting RFA lesions within ~8 mm of conduction block. The majority (at least 2 of 3 reviewers) responses to the questions determined the final evaluations.

5.2.4 ARFI Image Evaluation

The ARFI images were randomized and read by three different reviewers who were blinded to the CARTO maps, stage of ablation, and canine subject.
The reviewers (all experienced in ARFI imaging) were instructed to classify the ARFI images into one of three categories: 1) no lesion, defined as the ARFI image depicts no visible area of low relative displacement in the myocardium, 2) non-contiguous lesion, depicts at least one area of low relative displacement that does not extend the entire length or depth of the imaged myocardium, or 3) contiguous lesion, the full extent of the imaged myocardium depicts low relative displacement. The majority (at least 2 of 3 reviewers) review determined the final image classification.

5.2.5 Statistical Analysis of Evaluations

The degree of the agreement within the sets of three reviewers was quantified with the kappa statistic. Image pairs where the LAT map evaluation had no majority review or the majority review misidentified the correct stage of ablation (question #1, pre vs. post RFA) were also removed from the analysis.

The majority ARFI image categorization and LAT map assessment from question #2 were used to compile a 2x2 contingency table of all image pairs to summarize the ability of ARFI imaging to identify RFA induced conduction disturbances. For the ARFI images, the category “lesion” included the non-contiguous and continuous classifications. A second 2x2 contingency table was compiled to summarize the ability of ARFI imaging to identify conductive lesion line discontinuities and conduction block using the LAT map evaluations from questions #2 and #3. This table only included post-
ablation image pairs with a yes response to LAT map assessment question #2. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for both tables. Heterogeneity analysis was performed to justify pooling the data for all animals. A heterogeneity chi-square statistic was calculated to confirm that the data from different animals came from a homogeneous population.20

5.3 Results

In eight canine subjects, 243 ARFI images were acquired with the outlined imaging conditions (see section 4.2.2). Twenty-eight images were rejected due to motion artifacts; the remaining 219 ARFI image-LAT map pairs (54 pre-ablation, 80 after incomplete ablation, and 85 after gap closure) were reviewed for statistical analysis.

The kappa coefficient for the ARFI image assessments indicated substantial agreement ($\kappa = 0.73$) between the three reviewers. The individual kappa coefficients for the LAT map review questions showed substantial agreement for identifying lesions at the imaging plane ($\kappa = 0.68$), and moderate agreement when assessing full conduction block at the imaging plane ($\kappa = 0.43$). The LAT map reviewers had different question responses (no majority review) for 15 image pairs. The majority review misidentified the correct stage of ablation in five LAT maps. These 20 image pairs we excluded from the final analysis.
The statistical calculations included 199 image pairs. The reviews for detecting RFA treatment with ARFI imaging compared to the reviews for identifying conduction disturbance in the LAT map is shown in table 9. Table 10 shows the ARFI image reviews for RFA lesion contiguity vs. functional conduction block (n = 140, includes only post ablation image pairs confirmed by the LAT map review). The heterogeneity analysis justified pooling the data from all the animal subjects. Table 11 summarizes the heterogeneity chi-square and p-value, sensitivity, specificity, PPV, and NPV for tables 9 and 10.

An image pair example from each ablation stage is shown in figure 25. Before RFA (figure 25C-1), the ARFI-induced displacements within the myocardium were relatively high and homogeneous. Figure 25C-2 shows the unablated gap in the lesion line, visible as the area of high tissue displacement surrounded by areas of relatively low tissue displacement. The final ARFI image (figure 25C-3) shows a homogeneous region of low displacement, confirming complete ablation of the gap.
Table 9: ARFI image assessment for RFA treatment.

<table>
<thead>
<tr>
<th>ARFI image lesion assessment</th>
<th>LAT map assessment at imaging fan location</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No conduction disturbance</td>
<td>Conduction disturbance inferring the presence of lesions</td>
</tr>
<tr>
<td>No RFA Lesion</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>RFA Lesion</td>
<td>5</td>
<td>134</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>140</td>
</tr>
</tbody>
</table>

Table 10: ARFI image assessment for contiguous RFA.

<table>
<thead>
<tr>
<th>ARFI image lesion assessment</th>
<th>LAT map assessment at imaging fan location</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No block</td>
<td>Block</td>
</tr>
<tr>
<td>Noncontiguous lesion</td>
<td>67</td>
<td>27</td>
</tr>
<tr>
<td>Contiguous lesion</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
<td>51</td>
</tr>
</tbody>
</table>

Table 11: Summary of statistical analysis for tables 9 and 10.

<table>
<thead>
<tr>
<th></th>
<th>RFA treatment</th>
<th>Contiguous RFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>199</td>
<td>140</td>
</tr>
<tr>
<td>Heterogeneity, χ^2</td>
<td>4.59</td>
<td>9.29</td>
</tr>
<tr>
<td>Heterogeneity, p value*</td>
<td>0.7099</td>
<td>0.2325</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>95.7</td>
<td>47.1</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>91.5</td>
<td>75.3</td>
</tr>
<tr>
<td>PPV (%)</td>
<td>96.4</td>
<td>52.2</td>
</tr>
<tr>
<td>NPV (%)</td>
<td>90.0</td>
<td>71.2</td>
</tr>
</tbody>
</table>

*Heterogeneity analysis: degrees of freedom = 7, do not reject Ho (8 samples from homogeneous population)
Figure 25: An example of three ARFI image-LAT map pairs. Row 1) acquired before RFA, row 2) acquired after intentionally creating a 1 cm conductive gap, and row 3) acquired after closure of the 1 cm gap. Column A) LAT maps showing the imaging fan position in the canine RA and the location of delivered RFA lesions (red spherical markers). Column B) conventional B-mode images acquired at the location indicated on the LAT maps. There is no lesion visible in the B-mode images. Column C) Maximum ARFI-induced displacement images. The color bar units are microns of tissue displacement away from the transducer. RFA lesions sites are visible as regions of lower relative displacement (stiffer tissue), represented by the blue-green-yellow portion of the color bar.
5.4 Discussion and Conclusions

The results of the study described in this chapter confirmed ARFI images predicted RFA-induced conduction disturbances at the imaging site on the LAT maps. Reviewers of the ARFI images identified RFA treated areas with high sensitivity, specificity, and predictive values. Reviewers also distinguished gaps between adjacent RFA lesions that frequently corresponded to conduction “breakthrough” on the activation map. In many cases, ARFI images reviewed as contiguous RFA displayed conduction block on the activation map.

5.4.1 Clinical Translation and Implications

Lesion evaluation with an ARFI imaging-EAM system could guide the delivery of consolidating RFA to conductive lesion line discontinuities, and subsequently decrease the total procedure time and increase the success rate of procedures that use linear ablation strategies. An ARFI imaging-EAM system uses existing clinical tools and techniques, therefore clinicians would not need to purchase and install expensive new equipment in the operating rooms and electrophysiologists would not need significant training to use the system.

5.4.1.1 Distinguishing Conductive from Non-Conductive Unablated Gaps

Cardio-myocytes near sites of RFA delivery can be reversibly stunned (see section 2.2.2), and areas of conduction block observed acutely after circumferential or
antral PVI have shown conduction recovery in some patients.21-23 The lower sensitivity and discordance between the activation defined completeness of conduction block and the ARFI imaging defined lesion contiguity could potentially be explained by the indirect functional vs. direct imaging method of assessing block. Further investigation will be required to test if imaging tissue stiffness is a more sensitive measure of ablation lesion durability and long-term ablation success than acute activation mapping.

5.4.2 Study Limitations

EAM is the current end procedure gold-standard for assessing ablation line completeness, therefore this study used EAM to identify regions of conduction disturbance or block. Unfortunately, the accuracy of the LAT maps was largely dependent on the mapping catheter stability and EG acquisition density. For example, figure 26C shows an RFA line that was incompletely anchored at the TA. LAT conduction mapping at the annulus was sparse due to the difficulty of achieving stable catheter contact at the annulus. In this case, it was challenging to verify or deny an anchored lesion line from the LAT map. The ARFI image (figure 26A) conclusively visualizes an unablated region at the TA that likely corresponds to the unanchored gap. Adding differential pacing to the methods may have improved the accuracy of these ambiguous EAM maps, but this was difficult to achieve in the small canine RA and was not performed in this study.
Figure 26: Conventional (1) B-mode and (2) ARFI image at the tricuspid annulus. The ARFI image shows an area of relatively high displacements at the annulus indicating a likely unablated region. ARFI image color bar units are microns displacement away from the transducer. B) LAT map surrounding a line of RFA lesions in the right atrium, red spheres indicate RFA delivery sites C) Pathology photograph of the RA endocardial surface confirming continuous line of RFA lesions (LRFA). A small unablated gap is visible at the tricuspid annulus (TA), indicated by the black arrow.
Assessing if the 2-D ARFI imaging plane was parallel and completely transecting a line of conduction block on the LAT map was challenging; the difficulty was reflected in the moderate inter-reviewer agreement. LAT maps could not provide information about lesion line thickness or irregular lesion morphology if the catheter drifted, making it difficult to predict the exact extent of RFA treatment based on the functional conduction map alone. Misalignment of the 2-D imaging plane through complete RFA lines could be responsible for the low sensitivity (non-contiguous lesion in ARFI image, conduction block in LAT) when detecting conduction block. Such misalignments and the corresponding alignment interpretation from the LAT maps were likely a primary source of discrepancy between the ARFI imaging and EAM lesion assessments.

5.5 Acknowledgements

For their contributions to this work, I acknowledge Dr. Stephen Hsu, Dr. Mark Palmeri, Dr. Veronica Rotemberg, Peter Hollender, Joshua Hirsch, Brittany Potter, Matt Brown, and Ellen Dixon-Tulloch.
Chapter 6: ARFI Imaging of RFA Lesions in Human Patients during Clinical TCA

6.1 Introduction

The pre-clinical work described in the previous chapters proved ARFI imaging can visualize the relative stiffness difference between untreated myocardium and RFA lesion in vivo. Also, EAM guided intracardiac ARFI imaging successfully identified RF-delivery locations and conduction disturbances at the imaging site. Based on these findings, a pilot clinical study was undertaken to investigate the feasibility of intraprocedure RFA lesion evaluation with ARFI imaging in human patients.

The following chapter presents images and results from the first human patients imaged with intracardiac ARFI imaging. In six clinical patients undergoing TCA for AF, intraprocedure ICE-based ARFI images were acquired at a target ablation site before and after RFA to observe any relative stiffness change in the myocardium.

The chapter is organized as follows: section 6.2 describes the clinical software imaging tool developed for the ultrasound scanner and the imaging protocol for the clinical patients. Section 6.3 presents images and observations from the patients, and
section 6.4 discusses the technical and procedural successes and challenges encountered during this initial clinical experience.

6.2 Methods

6.2.1 Clinical Tool for ARFI Imaging

A custom software tool was developed at Siemens Healthcare (Issaquah, WA) for the S2000™ ultrasound scanner and either a 10 or 8 French AcuNav™ catheter transducer (Biosense Webster). The tool provided an imaging platform within the scanner software that allowed the fast acquisition and display of co-registered ICE and ARFI images during clinical TCA procedures. The clinical tool also transitioned quickly between live ICE imaging as needed for the clinical procedure and ARFI imaging mode.

The tool allowed the real-time selection of the ARFI imaging focal depth, imaging fan FOV (degrees), and fan imaging direction and depth (within the ICE image) using the scanner panel controls. An ARFI image was acquired with a single button-press and was displayed overlaid onto the ICE image or in a split screen mode within the scanner software. A screen shot of the ARFI imaging display is shown in figure 27. The dynamic range of the ARFI induced displacements could be adjusted in the display using the control panel. A mandatory 3 second “cool-down” time was built into the imaging platform to prevent rapid ARFI image acquisitions that could cause excessive acoustic exposure or transducer heating.
Figure 27: Screen shots of the clinical ARFI imaging tool software. The ARFI imaging focal depth, field of view, and fan steering angle were user selected using the scanner control panel. The ARFI image was displayed within seconds of the acquisition in split screen mode (top) or color overlay mode (bottom).
Table 12: ARFI imaging parameters for S2000 clinical studies.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Probe</th>
<th>AcuNav™ (10 or 8 French)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elements</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Array Type</td>
<td>Phased</td>
</tr>
<tr>
<td></td>
<td>Center Frequency [MHz]</td>
<td>6.15</td>
</tr>
<tr>
<td>Scanner</td>
<td>Model (Siemens)</td>
<td>S2000™ (ACUSON)</td>
</tr>
<tr>
<td></td>
<td>Data Type</td>
<td>IQ</td>
</tr>
<tr>
<td>B-mode</td>
<td>Transmit Frequency [MHz]</td>
<td>6.15</td>
</tr>
<tr>
<td>Imaging</td>
<td>Tracking Frequency [MHz]</td>
<td>6.15</td>
</tr>
<tr>
<td>Imaging</td>
<td>Sampling Frequency [MHz]</td>
<td>40</td>
</tr>
<tr>
<td>Parameters</td>
<td>Focus</td>
<td>1.0 – 2.5 cm</td>
</tr>
<tr>
<td></td>
<td>F/#</td>
<td>1.43 – 3.57</td>
</tr>
<tr>
<td></td>
<td>Cycles</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>ARFI push length [µs]</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>ARFI lateral push locations</td>
<td>42 (20 – 90°)</td>
</tr>
<tr>
<td></td>
<td>Parallel tracking</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Pre-tracks</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Post tracks</td>
<td>8 – 15</td>
</tr>
<tr>
<td></td>
<td>PRF [kHz]</td>
<td>9.67</td>
</tr>
</tbody>
</table>

The patient ECG was monitored by an external defibrillator (LifePak 12, Medtronic; Minneapolis, MN) during the procedure and relayed to the scanner through a custom physio cable (see section 4.2.1.3). All ARFI images were gated to diastole by manually selecting an estimated QRS delay; the delay was determined by observing several seconds of m-mode at the imaging location and measuring the time from the QRS to diastole (least intrinsic motion).
The ranges and fixed parameters for the clinical ARFI imaging tool are presented in table 12. The safety analysis confirmed the sequences were within the FDA limits for MI (< 1.7) and transducer surface heating (<4.0°C).150

6.2.2 ARFI Image Processing

The raw IQ data was saved for each ARFI image acquisition, and the full image processing was completed offline after the procedure. The measured ARFI-induced displacements were calculated from the raw IQ data using a phase-shift estimation algorithm (Loups, axial kernel = 1.5\(\lambda \)).124 Poor displacement estimations with low CXCC (median through the tracking time was less than 0.90) were removed from the image.117 Displacement estimations larger than 50 \(\mu m\) were also removed from the image.

No priming pulses were applied during the acquisition sequence. The measured displacement profiles were motion filtered using a quadratic function interpolated between the pre-excitation locations and the four latest post-excitation displacement measurements.130 An example of a single pixel displacement profile from unablated myocardium and the resulting motion filter and filtered profile is shown in figure 28.

After the application of the motion filter, the maximum displacement was found for each pixel location. The data was then median filtered (2.25 mm lateral by 0.462 mm axial) and scan converted, and the final image was overlaid onto the B-mode image.
Figure 28: ARFI-induced displacement curve for a single pixel location in unablated myocardium. In the clinical ARFI imaging sequences, no priming pulses were transmitted. The raw displacements (triangles) were motion filtered using a quadratic motion function (blue) interpolated from the pre-track points and the last four post-track points. This function was subtracted from the raw displacement to recover the ARFI-induced displacement profile (circles). Ten scan-lines were collected to monitor the post-excitation tissue displacement. Total tracking time for a single line was ~1.5 ms. The maximum displacement through time was the pixel value in the 2-D ARFI image.

6.2.3 Clinical Imaging Procedure

Clinical patients undergoing catheter ablation for clinically diagnosed drug-refractory AF were considered eligible for study enrollment. All patients provided informed consent, and the research protocol was approved by the Duke University Institutional Review Board (IRB) for clinical research.
Real-time ICE imaging was used to guide a double transseptal puncture for LA access. Two steerable catheter sheaths were positioned through the atrial septum to guide the ablation and ICE catheters into the LA. During the ablation procedure, the ultrasound transducer tip was positioned within 2.5 cm of a targeted endocardial RFA sites and as parallel to the ICE array as possible (0 – 40°). These bounds maximized acoustic energy to the tissue and minimized any depth dependent energy attenuation. A diastolic-gated ARFI image was acquired in NSR before RFA, and three images were acquired within several minutes of RF-delivery at the target site. The ablation catheter was removed from the ARFI imaging FOV during image acquisitions; a screenshot was taken of the live ICE image during the ablation to verify the ablation catheter contact (ACC) site and RF-delivery location. Images successfully ECG-gated to diastole and acquired within transducer positioning bounds were read and analyzed for RFA lesions. Standard continuous 2-D ICE imaging was available to the clinical operator at all times during the procedure when ARFI images were not being acquired. ARFI imaging added no more than 5–10 minutes to the TCA procedure, and the ARFI images were not used to guide ablation during the procedure.

6.2.4 Statistical Analysis

The mean ARFI-induced displacement (no spatial median filtering) was calculated for a 1x1 mm region of interest (ROI) below the ACC site in the pre-ablation
image and the three sequential post ablation images. The ROI locations were manually selected using the co-registered B-mode image and ACC snapshot to approximate the RFA lesion location; the manual selection of the ROI was blinded to the ARFI image to prevent biased selection of the RFA location.

The mean, standard deviation, and coefficient of variation (standard deviation divided by mean) were calculated for the ARFI-induced displacement ROI in the three post ablation images. The percent decrease in displacement at the ablation site was calculated by dividing the mean displacement in the pre-ablation ROI by the average of the mean (n = 3) displacement for the post ablation ROI.

6.3 Results

ARFI images were acquired with the S2000 ARFI imaging tool in six patients with drug-refractory AF. ARFI images were successfully acquired of several anatomical structures targeted for ablation, including the LA roofline, posterior wall, and ligament of Marshall (LoM). There were no acute peri-procedural complications in the study patients (stroke, pericardial effusion, and pericardial tamponade). All patients were in NSR at the conclusion of the procedure.

Figure 29 shows the progression of a LA roofline ablation. As the RFA line is created, the ARFI-induced displacements become relatively low (blue) at the ACC site. Figure 30 shows three images of RFA treatment at the LA posterior wall. The RFA
lesion is visible as the area of low ARFI-induced displacement, and the displacement measurements are repeatable across the three acquisitions. Figure 31 presents ARFI images taken before and after a 60 second RF-delivery on the top of the LoM. There was an observable increase in the myocardial stiffness at the RFA site, but this image suggested complete transmural ablation of the LoM was not achieved.

Figure 29: ARFI images of sequential RF ablations along the LA roof. Two-dimensional ICE images of the ablation catheter contact (ACC, row A) and corresponding ARFI images of the transmural RFA lesions (RFA, row B) show there is an increase in the myocardium stiffness immediately following 60 second ablation of the unablated (UA) myocardium.
Figure 30: ARFI images of RFA at the posterior left pulmonary vein antrum. The RFA lesion (RFA) displacements in the ARFI images (row B) exhibited relatively high stiffness at the ablation catheter contact (ACC) point in the ICE image (row A) after a 60 second ablation as compared to the unablated (UA) myocardium. The ARFI images were acquired immediately following RFA (B1) and 12 seconds (B2) and 19 seconds (B3) after the initial image.

Figure 31: ARFI images of RFA at ligament of Marshall (LoM). There is a decrease in the ARFI-induced displacement at the ablation catheter contact (ACC) site shown in the live ICE image (B) after a 60 second ablation. The unablated (UA) myocardium to the left and below the lesion suggests transmurality was not achieved.
Table 13: Statistical summary of measured ARFI-induced displacements in a 1x1 mm region of myocardium below the ACC point before and after RFA.

<table>
<thead>
<tr>
<th>Pair</th>
<th>Imaging Location (left atrium)</th>
<th>Pre-RFA Mean Displacement (µm)</th>
<th>Post RFA Mean Displacement (µm)</th>
<th>Post RFA Coefficient of Variation</th>
<th>Percent Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roofline</td>
<td>2.86</td>
<td>2.19±1.00</td>
<td>0.46</td>
<td>23.58±34.85</td>
</tr>
<tr>
<td>2</td>
<td>Roofline</td>
<td>3.22</td>
<td>2.53±0.88</td>
<td>0.35</td>
<td>21.28±27.39</td>
</tr>
<tr>
<td>3</td>
<td>Posterior</td>
<td>5.07</td>
<td>1.95±0.42</td>
<td>0.21</td>
<td>50.68±16.72</td>
</tr>
<tr>
<td>4</td>
<td>LoM</td>
<td>10.36</td>
<td>3.67±0.60</td>
<td>0.16</td>
<td>64.51±5.81</td>
</tr>
<tr>
<td>5</td>
<td>LoM</td>
<td>11.94</td>
<td>2.26±0.23</td>
<td>0.10</td>
<td>81.11±1.94</td>
</tr>
<tr>
<td>6</td>
<td>LoM</td>
<td>4.52</td>
<td>2.73±0.20</td>
<td>0.07</td>
<td>39.58±4.40</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>6.33±3.58</td>
<td>2.56±0.61</td>
<td>0.23±0.15</td>
<td>46.79±23.45</td>
</tr>
</tbody>
</table>

In four patients, six RFA locations were ARFI imaged before (single acquisition) and after (three sequential acquisitions) a 60 second ablation. All post images showed a decrease in the measured ARFI-induced displacements, and the average percentage decrease in the displacements at the ACC site post ablation was ~47%. The average coefficient of variation between sequential images (mean of 0.23, range between 0.07 – 0.46) indicated there was low-variability and good repeatability of the post ablation displacement measurements. A summary of the statistical results is presented in table 14.

6.4 Discussion and Conclusions

The preliminary clinical study presented in this chapter demonstrated ARFI imaging is feasible in human patients using catheters and equipment currently available for clinical care. Several anatomical structures typically targeted during TCA for
treatment of AF were successfully ARFI imaged from inside the LA. Intraprocedure ARFI imaging identified a ~47\% reduction in the relative stiffness in human myocardium at RFA sites. This is similar to the difference between the mean displacements seen in the canine subjects between RFA sites and unablated myocardium.

6.4.1 Clinical Experience Observations

The LoM was imaged in 5 of the 6 clinical patients, and proved to be the easiest structure to image in this preliminary patient group. The LoM is often an arrhythmogenic structure, and the complete ablation of the LoM is a primary goal during most cardiac ablation procedures for AF.161,162 It is difficult to achieve transmural lesion in the LoM due to the unique shape and thickness; ARFI images of the post RF ablated LoM showed incomplete ablation transmurality in 4 of the 5 patients after the first round of ablation.

ARFI imaging could be a useful tool to study the optimal amount of RFA that should be applied in specific areas of the atria, such as at the LoM. Studying the optimal RF-delivery duration for structures that need minimal RFA would also be useful. A better understanding of the optimal doses of RFA for the various structures and regions of the heart using ARFI imaging could potentially reduce the length of the procedure,
the number of redo procedures, and the instance of procedural complications association with excessive ablation.

Two main challenges stood out during the initial clinical studies: 1) the difficulty of positioning the catheter parallel to and within 2.5 cm of the myocardium and 2) the need for an efficient method to ECG-gate the ARFI acquisitions.

Quickly and efficiently maneuvering the catheter to within 2.5 cm of the chamber wall was very difficult for several locations. For example, it was only possible to image the LA roof when the catheter was in a steerable sheath. To prepare this technology for future trials and widespread clinical adoption, there will likely need to be an increase in the usable rage of the system. It is estimated that a range of 4-6 cm would provide the needed utility. Unfortunately, development of the current ARFI imaging sequences for existing clinical ICE transducers would only marginally increase the imaging DOF range. With the current transducer, increasing the focal depth beyond 2.0 cm (F/# > 3) decreases the intensity of the focused ARFI-excitation, resulting in a substantial reduction in the energy delivered to the tissue and the resultant displacements. Therefore, a solution to this obstacle will require the development and optimization of the catheter hardware for ARFI imaging. Possible developments could include more controlled steering mechanisms for more degrees of freedom when positioning the ICE
catheter, or modifications to the ultrasound transducer to increase the available imaging DOF.

Manual selection of the ECG-gating delay was often inconsistent and time consuming. As in the animal studies, several images contained large motion artifacts because the acquisition was not fully completed in diastole. The development of software to automatically detect changes in the heart rate and update the ECG-gating delay in real-time could improve the consistency of the acquisition timing. Displaying the ECG and exact acquisition time window would provide an efficient method for the operator to quickly discard and reacquire any images that may have been mistimed.

Future work and further developments for clinical translation, including identification of lesion line gaps with ARFI imaging and the correlation with acute and long-term electrical block, are discussed in the final chapter of this thesis.

6.4.2 Study Limitations

In the pre-clinical studies, the canine subject was in NSR through the majority of the cases. In the clinical patients, the heart was frequently in AF and diastolic-gated images could not be acquired. Several pre-ablation sites were not imaged because the heart was in AF, and this resulted in only a few (n = 6) imaging pairs that could be analyzed. A larger number of post ablation images were acquired because the patients had been cardioverted and restored to NSR. While imaging during AF was beyond the
scope of this research thesis, an effective method for imaging lesions during AF would provide more imaging opportunities in TCA procedures.

6.5 Acknowledgements

For their contributions to this work, I acknowledge Dr. Tristram Bahnson, Dr. Douglas Dumont, Joshua Doherty, and Young Kim.
Chapter 7: Conclusions and Future Work

7.1 Conclusions

It has been previously shown in vitro that ARFI imaging accurately measures RFA lesions size when compared to tissue pathology.31, 32 A preliminary in vivo study demonstrated feasibility of RFA lesion visualization with intracardiac ARFI imaging for three endocardial lesions.96

The work described in this thesis investigated the hypothesis that ARFI imaging can be used for visualization of RFA lesions during cardiac ablation procedures. This hypothesis was successfully proven with four specific aims.

The transition from an in vitro model to an in vivo model presented new challenges that could have affected the ability of ARFI imaging to visualize RFA lesions, including: 1) cardiac motion, 2) changes in the myocardium stiffness through the cardiac cycle, and 3) transient physiological processes that affect the tissue elasticity such as interstitial edema. In the first aim it was shown that ARFI imaging can be used to visualize RFA lesions with high C and CNR during and immediately after RFA in vivo, and ARFI determined lesion stiffness and area were temporally and spatially stable within several minutes of the ablation. This experiment demonstrated ARFI imaging
can be used to evaluate RFA lesions based on the change in tissue stiffness throughout a TCA procedure in a living heart.

Two-dimensional ARFI image acquisition rates are limited by the time needed to acquire the image (50-100 ms) and the necessity for diastolic-gated acquisitions for measurable lesion contrast. With a frame rate of approximately one per second, it would be time consuming to scan the cardiac chamber for ablation lesions with 2-D ARFI imaging. An integrated ARFI imaging-EAM system was developed in the second research aim to efficiently guide intraprocedure ARFI imaging of RFA lesions. Transcatheter ablation lesion sites were accurately identified with this system in an animal model.

The purpose of TCA is to block or isolate electrical conduction of a cardiac arrhythmia. To be a relevant method for clinical evaluation of RFA lesions, ARFI image lesion assessments must be consistent with electrical substrate modification at the imaging site. The results of the third experimental aim verified the presence of conduction disturbances at ARFI imaging determined RFA sites, thereby confirming the lesion assessment was consistent with the clinical gold-standard for lesion evaluation.

In the last aim, the feasibility of identifying RFA lesions based on the tissue stiffness at clinically relevant sites in human myocardium was investigated. Results from a pilot study of ARFI imaging in human patients undergoing TCA for AF
confirmed ARFI imaging measured a decrease in the relative tissue stiffness at RFA sites. These results support the undertaking of a larger clinical trial.

Until this point, MRI and computed tomography (CT) have dominated the effort to develop an imaging method for RFA lesion characterization during clinical cardiac ablation procedures. This work is the first to demonstrate that the difference in the tissue elasticity between normal and ablated myocardium can be used as an indicator of lesion location and size. While ARFI imaging was the only modality used to characterize the stiffness change in this thesis, other imaging modalities could emerge that take advantage of the elasticity contrast shown in this work. The promising results of this research also establish ARFI imaging as a potential tool for intraprocedure lesion characterization during clinical TCA, and this work should encourage the commercial development of ARFI imaging tools and techniques for the assessment of cardiac ablation lesions.

7.1.1 Factors for Clinical Translation

ARFI imaging shows great potential for RFA lesion evaluation in clinical TCA procedures. Development and optimization of the technology and methods are needed, but the results presented in this thesis lay the groundwork for clinical feasibility of this technology.
As previously mentioned, the clinical equipment needed to implement ARFI imaging is currently used in TCA procedures. Therefore, the integration of a multi-modality ARFI imaging-EAM system into existing EP labs may not require a significant investment in equipment. The expenses and resources needed to obtain and operate the systems would also be substantially less burdensome for rural and developing world centers than other complex imaging solutions for lesion characterization such as MRI.

Introduction of the ICE imaging catheter into the LA is not a common practice for the majority of electrophysiologists, and the catheter manipulation techniques needed to obtain useful images would require practice and would improve with experience. Regardless, additional training to implement a clinical ARFI imaging system would be minimal for current clinical operators because it uses existing clinical imaging tools.

7.1.2 Significance for Procedure Safety

ARFI imaging could be used to investigate optimal site-specific RF-energy dosages for different regions of the heart. Visual feedback of lesion size and placement would determine the amount of RF-energy necessary to completely ablate the target site, while minimizing damage to collateral tissue.

Due to the unpredictability of determining pathological lesion size based on the RF-energy delivery parameters, particularly when using irrigated ablation catheters
where the ablation is not temperature controlled, clinical operators may apply excessive RF-energy at a target site to improve the likelihood of complete ablation. In some cases, such over-titration of RF-energy can cause life-threatening complications during the ablation procedure, in particular: 1) perforation of the cardiac wall due to a “steam pop” in overheated myocardium (cardiac tamponade) or 2) severe damage to the esophagus due to excessive RF-energy delivery in the adjoining myocardium (transesophageal fistula). The ability to directly visualize RFA lesions in the myocardium during the ablation procedure would provide feedback to help minimize RF-energy delivery. Optimization of the RF-energy delivery could reduce procedural complications caused by excessive RFA and improve overall procedure safety.

7.2 Continuing Efforts and Future Work

7.2.1 Development of a Clinically Approved ARFI Imaging-EAM System

An approved integrated platform for the ACUSON SC2000™ ultrasound scanner (Siemens Healthcare; Issaquah, WA) and CARTO 3™ and SoundStar™ (Biosense Webster; Diamond Bar, CA) was recently announced. This platform can be used for a clinically approved version of the integrated system described in chapter 4.

An integrated SC2000-CARTO 3 clinical system is currently being developed for ARFI imaging, and images have been gathered in four patients undergoing catheter ablation with an introductory version of this system (Duke IRB approved). Work on a
clinical imaging tool for the SC2000 scanner is also currently in progress. A preliminary image from a patient imaged with the system is shown in Figure 32.

This system will provide a platform for conducting larger scale clinical studies for intracardiac ARFI imaging, including: 1) assessing the temporal-spatial stability of acute RFA lesions in human myocardium, 2) the reliability of differentiating complete electrical block from transient electrical block based on the tissue stiffness, 3) and characterization of chronic RFA lesions that are primarily composed of fibrotic scar.

Figure 32: ARFI imaging with an integrated SC2000-CARTO3 imaging system. Panel A depicts an EAM geometry merged with a registered MRI image (CARTO 3™/CARTOMerge™). The ICE catheter and the 2-D ICE imaging plan are projected in EAM, and points of RFA are denoted by red spheres. Panel B and C are the ICE and ARFI images corresponding to the projected imaging plane in A. The arrow in all panels denotes a point of interest where the measured ARFI-induced displacements suggested an unablrated gap between RFA lesions.
7.2.2 Development of 3-D ARFI Imaging

Precisely aligning the straight 2-D ARFI imaging plane to cross-sect lines of irregular RFA lesions is challenging. Misalignment with the lesion line could generate ambiguous images of potential lesion line gaps. For example, figure 32 shows an unablated area in the center of the imaging location; it is not clear when examining the EAM markers if this gap corresponds to a discontinuity in the lesion line or is rather the result of imaging slightly inside the curved lesion line. While additional 2-D ARFI images in this area or validation of electrical connection could clarify the significance of the gap, 3-D ARFI imaging would greatly improve the ease and the reliability of characterizing such discontinuities. ARFI imaging in 3-D could also reduce the dependence on EAM for guidance when imaging RFA sites. Siemens Healthcare recently released the AcuNav V™, a 3-D ICE imaging catheter for the SC2000 ultrasound scanner. ARFI imaging development for this novel intracardiac transducer is underway.

7.2.3 Optimization of Intracardiac ARFI Imaging Sequences and Displacement Motion Filtering

Before the launch of widespread clinical trials, steps must be taken to optimize the ARFI imaging sequences and processing methods for image formation and display in a clinical setting. A thorough investigation of the optimal configuration of pre and post-excitation track-lines, priming pulse application, line sampling density, and maximum steering angle could improve the ARFI imaging quality.
The optimal motion filtering technique for intracardiac ARFI imaging also requires further investigation. It has been shown that extrapolation motion filters offer the best estimate of cardiac motion immediately after the ARFI-excitation (0.1 ms), whereas interpolation motion filters better estimate the physiological motion during the post-excitation tissue recovery (0.7 ms). It was also shown that a quadratic fit may not be an ideal estimate for the physiological motion profile. More sophisticated physiological motion estimation functions and catheter kick-back filtering methods could reduce the bias and jitter in the displacement estimations and improve image quality. Current motion filters are applied to each individual pixel with no regard for the estimated motion of neighboring pixels. Motion filtering techniques that employ a spatially-interpolative algorithm are under investigation. Application of a “no push” or zero power ARFI-excitation sequence to monitor the pure physiological motion at the imaging location may also prove a useful tactic for filtering the ARFI-induced displacement estimations.

7.2.4 Correlation of ARFI Images to Tissue Histology, Ablation Temperature, and Electrical Viability

Further investigation of the histological significance of the stiffness and stiffness gradients seen in ARFI images is recommended. A direct comparison of the ARFI images to the *ex vivo* tissue cellular level histology has not been completed due to the difficulty of accurately aligning the imaging plane to the histology slice. Methods to
acquire spatially registered *ex vivo* histology and ARFI images are currently in discussion.

Plans are underway to modify the experimental setup presented in chapter 3 to characterize the relationship between RF-induced tissue damage as measured by the relative myocardial stiffness in ARFI images and the ablation temperature and electrical conductivity at the ablation site. An investigation of the ability of ARFI imaging to accurately differentiate complete thermocoagulation necrosis from reversibly stunned myocardium is also in progress. Such experiments will provide valuable insight for ARFI imaging technologies, as well as increasing the general understanding of the biophysical mechanisms of RFA.

7.2.5 ARFI imaging During Atrial Fibrillation

It is possible to acquire ARFI images during AF, although the images cannot be ECG-gated to diastole and may be overwhelmed by motion artifacts. Possible methods for acquiring interpretable images of RFA lesions and tissue elasticity during AF are under investigation; different types of ARFI-based imaging methods, for example fast rate stiffness monitoring with ARFI m-mode and composite ARFI images built from sequential un-gated acquisitions, may prove to be useful tools for identifying RFA lesions during AF.
7.2.6 Evaluation of Other Ablation Modalities with ARFI imaging

While radiofrequency ablation is currently the most common ablation modality used in clinical practice, other ablation modalities such as cryoablation and laser ablation are gaining popularity in PVI occlusion-ablation devices.82, 163, 164 It is likely that any hyperthermic ablation modality (laser, microwave) would exhibit a similar thermocoagulation response to RFA, and could potentially be evaluated with ARFI imaging.

The mechanism for tissue necrosis is significantly different for hypothermic cryoablation.165 A preliminary feasibility study found ARFI imaging can visualize cryoablation lesions \textit{in vivo}; it is conjectured that cell rapture and severe interstitial edema increases the stiffness at the ablation site, but further work is necessary to evaluate the feasibility of characterizing cryoablation lesions with ARFI imaging.166

The experimental method presented in chapter 3 would be a powerful validation tool for testing new ablation catheter designs due to its unique ability to capture snapshots of the lesion size and morphology within living myocardium during lesion formation. In recent years, contact-force catheters have been developed to increase the confidence of the myocardium-electrode contact during lesion delivery.15, 16, 167, 168 ARFI imaging could be a useful tool for confirming and optimizing the force necessary for complete transmural ablation.
Appendix A: Introduction to CARTO

Electroanatomical mapping and navigation systems are widely used in clinical ablation procedures. The CARTO XP™ EP navigation system (Biosense Webster®, Inc., Diamond Bar, CA) was developed to serve four main functions: 1) accurately locate the 3D location of catheter tips without fluoroscopy, 2) construct a 3D geometric representation of relevant cardiac chambers and anatomy using points locations cataloged from the catheter positions, 3) tag important locations in the chamber geometry, such as RFA delivery locations, and 4) capture and map local electrical information onto the 3D geometries for large scale understanding of the complex arrhythmia.

A.1 Magnetic Tracking

A coil placed in a magnetic field will generate an electrical current that is dependent on the field strength and the orientation of the coil within the field. The CARTO navigation system triangulates the position and orientation of the mapping catheter (NaviStar™) and ultrasound (SoundStar™) catheter tips in using location sensor coils in the catheter tip. The coils measure the magnetic field generated by a magnetic location pad mounted to the procedure table directly under the patient’s
thoracic cavity; the pad generates three low strength (5×10^{-6} to 5×10^{-5} Tesla) magnetic fields that decay as a function of distance from the pad.169 The heart is contained in the mapping area, and the location sensor measures the strength of the magnetic field. The strength of the magnetic field determines the distance of the sensor from each of the three magnetic field sources. The distances are considered radii of theoretical spheres around the field origins, and the calculated intersection of the three spheres is the spatial location of the catheter tip sensor. The CARTO XP system has been shown to locate the catheter tip to within 1 mm of the actual 3-D position.97

\textbf{A.2 CARTO Maps}

Figure 33 shows an example of a CARTO geometry map. The 3-D positions of the catheter tips are displayed in the CARTO software relative to a stationary reference patch attached to the back of the patient. A 3-D volume of the cardiac chamber is constructed by maneuvering the NaviStarTM to multiple locations along the endocardial walls and plotting the relative tip positions. The heart chamber geometry is interpolated from a point catalog of the acquired mapping catheter positions.

During RFA, the NaviStarTM tip location is marked on the 3D geometry to indicate an RFA treatment location. On the map, the RFA spherical point markers are purely location tags and do not represent lesion size.
The SoundStar™ catheter position is also located in the mapping area. The location and orientation of the ICE catheter and imaging plane can be projected in the CARTO geometry using the CARTOSound™ module. One study measured a mean distance error of ~1.5 mm between the contour of the endocardium in the ICE plane projection and the CARTO geometry in the human LA.170

Figure 33. CARTO XP™ right atrium (RA) geometry showing RFA markers and the orientation of the ICE imaging fan in the geometry (CARTOSound™).
Figure 34. CARTO local activation time (LAT) maps of a canine right atrium (RA) before (left), after incomplete linear RFA (center), and after complete linear ablation (right). The heart was paced from the coronary sinus (CS). Color scale represents activation time, where red is the earliest activation time and magenta is the latest. White arrow indicates direction of electrical propagation. Red spheres indicate RFA treatment locations. The white spheres outline the tricuspid annulus.

Conduction maps are constructed before and after RFA to identify the initial arrhythmia for ablation and confirm substrate modification.\cite{41,169} The NaviStarTM mapping catheter tip collects endocardial EG at each contact position. Local activation times (LAT) are calculated relative to a reference EG, and plotted on the surface of the 3-D volume using a color scale. The reference EG is often a separate sensing/pacing catheter that is positioned in the CS. The LAT map provides visualization of the electrical propagation through the cardiac chamber and is used to identify arrhythmogenic ablation targets and confirm electrical block. Figure 34 shows example LAT maps for a linear ablation.
A.3 Magnetic vs. Electric Impedance-Based Mapping Systems

As previously described, the CARTO XP™ and CARTO 3™ EAM systems locate catheter tips and the tip orientation in the heart using magnetic tracking technology. A second type of EAM mapping system in clinical use is the St. Jude Medical NavX™ and the next generation Ensite Velocity™ navigation system (St. Jude Medical Inc.; Minneapolis, MN). These systems use external surface patches to generate transthoracic electrical fields in three orthogonal directions; the electric field measured by the catheter electrode determines the 3-D position of the catheter tip in the mapping area.171, 172 Unfortunately, while this electrical impedance-based mapping method accurately locates catheter tips in the heart, the catheter orientation, specifically the yaw, pitch, and roll, cannot be determined with this method. These orientation parameters are necessary to accurately determine the direction of the projected ultrasound imaging plane from the ICE catheter. Therefore, existing electrical impedance-based mapping systems cannot be used to guide intraprocedure ARFI imaging as was done with the CARTO mapping system in this thesis.
Appendix B: Image Review Considerations

Chapters 4 and 5 presented the accuracy of identifying RFA lesions with ARFI imaging based on image reviews from calibrated ARFI image readers. It is important to note that the dynamic range of the displayed maximum ARFI-induced displacement was manually chosen for each image. The chosen dynamic range was selected to maximize the contrast and minimize color saturation; the sensitivities and specificities reported in these chapters represent the detection accuracy for the chosen display range. It must be acknowledged that the selection of a different display dynamic range could result in a different image review. In future work, providing the image reader with a control to adjust the display dynamic range during review could provide a more robust interpretation of the image, effectively allowing the reader to observe the complete receiver operating characteristic (ROC) curve during the analysis.173

The reading of the LAT maps to identify conduction disturbances at the imaging plane, such as in chapter 5, could also benefit from the inclusion of user controls during review. Providing the reader the ability to rotate the 3-D geometry as well as manually adjust the LAT color map gradient would be a more robust review method for future projects.
References

130

term single and multiple procedure outcome and predictors of success after catheter ablation for persistent atrial fibrillation. *Heart Rhythm*. 2011

29. Pernot M, Mace E, Dubois R, Couade M, Fink M, Tanter M. Mapping myocardial
elasticity changes after rf-ablation using supersonic shear imaging. *Computers in
Cardiology, 2009*. 2009:793-796

30. Wright NT, Humphrey JD. Denaturation of collagen via heating: An irreversible

of acoustic radiation force impulse imaging for visualizing cardiac

32. Eyerly SA, Dumont DM, Trahey GE, Wolf PD. In vitro monitoring of the
dynamic elasticity changes during radiofrequency ablation with acoustic

33. Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC, Allessie MA. High-
density mapping of electrically induced atrial fibrillation in humans. *Circulation.*
1994;89:1665-1680

Schwartz PJ, Spooner PM, Van Wagoner DR, Waldo AL. Pathophysiology and

36. Everett THt, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation.
Heart Rhythm. 2007;4:S24-27

37. Everett THt. Pulmonary veins and the initiation of atrial fibrillation: Are we
getting closer to understanding their role? *Heart Rhythm*. 2007;4:1563-1564

64. Chang IA. Considerations for thermal injury analysis for rf ablation devices. *The open biomedical engineering journal*. 2010;4:3-12

137

70. Schwartzman D, Parizhskaya M, Devine WA. Linear ablation using an irrigated electrode electrophysiologic and histologic lesion evolution comparison with ablation utilizing a non-irrigated electrode. *J Interv Card Electrophysiol*. 2001;5:17-26

138

radiofrequency ablation lesions with nonenhanced magnetic resonance imaging. *Heart rhythm : the official journal of the Heart Rhythm Society*. 2007;4:208-214

111. Christensen D. Ultrasonic bioinstrumentation. 1988

162. Hwang C, Chen PS. Ligament of marshall: Why it is important for atrial fibrillation ablation. *Heart Rhythm*. 2009;6:S35-40

Biography

Stephanie Ann Eyerly was born in St. Paul, Minnesota on May 15th, 1985. She received a Bachelor of Science in Biological Engineering from the School of Agriculture and Life Sciences jointly with the School of Engineering at Cornell University in June 2007. Eyerly received a Master of Science in Biomedical Engineering from Duke University in May 2009, and remained at Duke to conduct the presented PhD research.

Peer Reviewed Publications:

