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Abstract  

Brain-machine interfaces (BMIs) offer the potential  to assist millions of people 

worldwide suffering from immobility due to loss of limbs, paralysis, and 

neurodegenerative diseases.  BMIs function by decoding neural activity from intact 

cortical brain regions in order to control external devices in real -time.  While there has 

been exciting progress in the field over the past 15 years, the vast majority of the work 

has focused on restoring of motor function of a single limb .  In the work presented in 

this thesis, I first investigate the expanded role of primary sensory (S1) and motor (M1) 

cortex during reaching movements.  By varying target size during reaching movements, 

I discovered the cortical correlates of the speed-accuracy tradeoff known as FiÛÛÚɀɯÓÈÞȭɯɯ

Similarly, I analyzed cortical motor processing during tasks where the motor plan is 

quickly reprogrammed.  In each study, I  found that parameters relevant to the reach, 

such as target size or alternative movement plans, could be extracted by neural decoders 

in addition to simple kinematic parameters such as velocity and position .  As such, 

future BMI functionality could expand to account for relevant sensory information and 

reliably decode intended reach trajectories, even amidst transiently considered 

alternatives. 

 The second portion of my thesis work was the successful development of the first 

bimanual brain -machine interface.  To reach this goal, I expanded the neural recordings 

system to enable bilateral, multi -site recordings from approximately  500 neurons 



v 
 

simultaneously.  In addition, I upgraded the experiment to feature a realistic virtual 

reality  end effector, customized primate chair, and eye tracking system.  Thirdly , I 

modified the tuning function of the unscented Kalman filter (UKF ) to conjointly 

represent both arms in a single 4D model.  As a result of widespread cortical plasticity in 

M1, S1, supplementary motor area (SMA), and posterior parietal cortex (PPC), the 

bimanual BMI enabled rhesus monkeys to simultaneously  control two v irtual limbs 

without any movement of their own body.  I demonstrate the efficacy of the bimanual 

BMI in both a subject with prior task training using joysticks  and a subject naïve to the 

task altogether, which simulates  a common clinical scenario.  The neural decoding 

algorithm was selected as a result of a methodical comparison between various neural 

decoders and decoder settings.  I lastly introduce  a two-stage switching model with a 

classify step and predict step which was designed and tested to generalize decoding 

strategies to include  both unimanual and bimanual movements.   
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1. Neuronal control  of reaching movements  

The ability to generate movements in a coordinated and efficient way underlies 

some of the most interesting and complex phenomena of primate behavior.  It enables 

both the essential movements for  survival as well as a diverse repertoire that enriches 

our daily lives.  The behavioral evidence of this is striking, simply by observing the 

precision and mastery of a concert pianist or the requisite dexterity , athleticism, and 

strength of professional athletes.  3ÏÌɯÉÖËàɀÚɯÔÖÛÖÙɯÔÈÊÏÐÕÌÙà enables a fusion between 

the innate and the unimaginable.  We grow and learn and adapt our behaviors  

throughout our lifespan because our  brain maintains the ability to do so.    Evident from 

the enlargement and specialization of the brain itself throughout primate evolution  [1] 

there was a clear connection between the complexity of the motor system and the 

complexity of the resultant movements.   

For these, and many other reasons, I focus my investigation on rehabilitative 

solutions for subjects with severe motor deficits.  Loss or absence of healthy motor 

function can be devastating and very often the paralysis is irreversible.  The most 

common cause is spinal cord injury which is estimated to have an incidence of 22 

people/million population in the western and developing world and nearly twice this 

rate in the US for a total of nearly 3 million people worldwide [2]. Other causes of lost 

motor function include limb amputation and neurodegenerative diseases such as 

amyotrophic lateral sclerosis (ALS).  These conditions are devastating not only because 

of the acute reduction in quality of life, but also due to the current ly  bleak outlook on 
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viable and affordable rehabilitation therapies.  In my research, I embark on the  

development of a technology, called a brain-machine interface (BMI), which can bypass 

the nonfunctional structures which sustained injury or pat hology to enable the brain to 

act directly on the world.  This is possible because the brain is often still fully intact post-

injury and the signaling within the brain is rich with motor, sensory, and cognitive 

information which can be extracted to re -establish a functional  motor pathway . 

Although still in the early stages of development, BMIs offer tremendous potentia l in the 

coming years.  BMIs themselves are a broad class of neural engineering tools which will 

be outlined more completely in Chapter 2.  I  will begin the backgroun d discussion by 

introducing what is known about the anatomy and physiology of the brain with respect 

to creating and executing movements. 

A great deal of research has embarked on understanding motor physiology, 

ranging from the ori gins [1], various pathologies [3, 4], and the underlying principles  [5-

8].  Taking advantage of the widespread similarities of our most recent ancestors - apes 

and monkey species ɬ the research conducted in many laboratories such as ours looks at 

the mechanisms related to movements in non-human primates.  The following section 

introduces a literature -driven  review of fundamentals of neuronal control of m ovements 

in a limited context that relates specifically to development of BMI technology in the 

subsequent studies of this thesis. 

1.1 Cortical neuroanatomy  and physiology  

Execution of volitional motor plans is the result of signaling amongst a network 
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of regions ranging from the cortex (the outermost layers near the surface) to subcortical 

areas of the brain, as well as in spinal and peripheral nerves.  The anatomy of the 

primate motor system is extensive and to review all such components with their 

respective contribution s would be  unnecessary for the content of this work .  The focus 

will  be primarily motor neurophysiology at the cortical level.  The localization of a 

cortical area related to movement control was facilitated by late 19th century 

advancements in surgical and experimental techniques.  A series of experiments by 

Fritsch and Hitzig in 1870 [9, 10] used electrical stimuli  on the cortical surface and laid  

ÛÏÌɯÍÖÜÕËÈÛÐÖÕɯÍÖÙɯÔÜÊÏɯÖÍɯÛÖËÈàɀÚɯÔÖÛÖÙɯÊÖÙÛÐÊÈÓɯÙÌÚÌÈÙÊÏȭɯɯ%ÐÙÚÛȮɯÛÏÌɯÌÓÌÊÛÙÐÊÈÓɯÚÛÐÔÜÓÐɯ

evoked movements which suggested a critical link between brain and periphery.  

Secondly, there was a topographic organization of the primate body in cortex ɬ what 

would eventually be known as the homunculus  or the motor map .  Axial and lower limb 

regions were identified most medial, with upper limb, hand, and face most lateral.  

What these scientists discovered was the central cortical structure in voluntary 

movement: the primary motor cortex , or M1.   

The nature of the neural representation of movements in M1 is today still not yet 

completely understood  [11-13].  Enacting even a simple reaching movement involve s 

many other cortical regions [14]. More specifically , the areas involved include the 

premotor cortex [15], supplementary motor  area (SMA) [16], posterior parietal cortex 

(PPC) [17], and more indirectly , association areas like prefrontal cortex [18].  The relative 

contribution of each area has been the subject of many studies in motor 
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neurophysiology.  M1 has remained the central figure among this network, commonly 

thought of as downstream of these other cortical areas [19].  M1 is thus considered to be 

the location of the output signal from the cortex to subcortical structures.  Anatomically, 

this is supported by the unique ex istence of huge cell bodies in the output layer V in 

primary motor cortex, termed Betz cells , which project to the specific level of the spinal 

cord appropriate for the intended movement .  Although most Betz cells project to spinal 

interneurons, a fraction  of these cells directly synapse on lower motor neurons [19]. In 

addition, not all of M1 output projects to the spinal cord.  M 1 output also engages 

striatal [20], thalamic [21] and brainstem circuits [22].  The various output targets 

suggest both a direct and indirect function in movement execution.  

Premotor cortex, most often dorsal portions (PMd),  has been found to encode 

higher order components of movements, such as spatial attention [23], visual perception 

[24], planning [25-27], and execution [25, 28].  In a more general sense, premotor cortex 

has been characterized as serving an intermediate role between higher order cognitive 

function  and pure motor representation [29-31].  A similar role is  reported for SMA in 

motor sequence planning [32], movement initiation [33], and kinematics of movement 

[34].  Both premotor cortex and SMA have dense inputs to M1 as well as corticospinal 

projections [19, 35].  A third major  sources of input to M1 is somatotopically organized 

input from primary sensory cortex (S1) [19].  The topographic organization of S1 mirrors 

that of M1 on the precentral gyrus.  The high interconnectivity between M1 and S1 

provides a high-level feedback of proprioceptive and tactile information from the body 
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area being controlled by M1.  The final major input to M1 comes from PPC.  Located 

caudal to M1, this region synthesizes relevant spatial information via the d orsal visual 

processing stream [19]. Studies have shown a several subregions of PPC, the parietal 

reach region and area 5b, to be related to spatial, goal-directed actions [36, 37]. 

1.2 Neurophysiological representation of movements   

The anatomy and subsequent neurophysiological characterization of these 

motor -related cortical areas has laid the groundwork for the next question to be asked: 

How does the brain use this machinery to enact multi -joint movements?  There are two 

prevailing theories on the mechanism of control enacted by motor-related cortex during 

movements.  The first is termed force-control [38] and in the strictest sense claims that 

voluntary movements are carried out by a series of coordinate transformation s. This is a 

hierarchical model that was in part influenced by robotic controller studies  [8, 39].  The 

first step would be identify the goal of the movement in space with respect to the end 

effector (e.g. the hand), termed the extrinsic kinematics.  Second, the motor system 

would compute the requisite joint rotations  and muscle lengths to accomplish this 

movement, referred to as the intrinsic kinemati cs.  Lastly, the intrinsic dynamics of the 

movement - the forces generated by muscle activation - must be specified. The support 

for this theory is provided by electrophysiological studies of neurons in motor cortex.  

Reach kinematics such as direction and velocity are well  known to modulate firing rate 

in M1 [5, 8].  Similarly, studies have shown a tuning of M1 neurons to muscle contractile 

forces, measures as EMG [7, 40], c.f. [41].  These results have a strong basis 



6 
 

experimentally and serve as the foundation by which many intracortical BMIs operate.   

The criticism  of the force-control model is th at a vast amount of information 

must be specified at the cortical level and updated constantly.  For example, in a simple 

reaching movement, the first computation is the three -dimensional trajectory of the 

hand, then the precise joint rotations through  a series of coordinate transformations, and 

lastly the magnitude of contractile forces of  all involved shoulder, arm, and hand 

muscles.  Despite the complexity, the cerebral cortex seems to be highly capable of 

making these transformations.  A series of studies by the Kalaska and Andersen groups 

describe a mechanism in PPC that generates multiple simultaneous spatial 

representations based on differing reference frames (eye, hand, head, etc.) [8, 42].  In the 

most basic sense, the required coordinate transformation for a reaching movement is to 

identify the end location in hand -centric coordinates and convert this into patterns of 

muscle activation.  The force-control  model attempts to establish a causal relationship 

between cortical activation and very specific components of a movement.  The many 

calculations suggested by the force-control theory, although based on strong evidence 

experimentally, ha ve given rise to a second theory of motor control of reaching 

movements. 

The second prevalent model for motor control is the equilibrium point model.  

Rather than specify explicit kinematic and kinetic parameters of movements, this model  

proposes that the motor system signals the desired final equilibrium state [43].  An 

important difference with this model is that the properties of the muscles dictate the 
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precise joint rotations and movements rather than commands from the cerebral cortex.  

Early models proposed by Feldman propose that the length-force relationship of  

muscles and the stretch reflex determine the various equilibrium states, which provides 

the basis for voluntary motor control [43-45].  More recently, two new hypothes es have 

emerged from this model: motor synergies and the uncontrolled manifold hypothesis  

(UCM)  [46, 47].  The muscle synergy hypothesis proposes that small group s of muscles 

(synergies) become activated or inactivated collectively [46, 48].  Doing so greatly 

reduces the degrees of freedom of motor output and could provide a parsimonious 

solution which  minimiz es the number of computations performed in higher order 

structures of the CNS [49].  EMG recordings during realistic, m ulti -joint m ovements 

show activations in discrete, modular combinations, which supports  this hypothesis [50, 

51].  The UCM hypothesis differs from the motor sy nergy hypothesis in several key 

areas.  Rather than reduce the dimensionality of the output space, synergies of elemental 

variables (e.g. the rotations shared by the shoulder, elbow, and wrist joints)  are used to 

stabilize the performance variable (e.g. the endpoint coordinates of the hand) [52].  The 

manifold is the set of these elemental variable points that are organized according to 

some imposed physical criteria.  Higher level  motor circuits in spinal cord and CNS, 

would act in the space of the elemental variables and organize covariation of these 

points within the UCM [52, 53].  This framework suggests that the controller (higher 

level circuits) exerts minimal control over elemental variables when within the UCM, 

and act to return these variables to the UCM when deviation occurs. 
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A corti cal role that lies somewhere between the force-control model and 

equilibrium point model  could be termed end effector control.  The force-control model 

would identify this reference frame as t he extrinsic kinematics.  A purely  end effector 

neural representation, however, points to a higher level control by cortex.  Rather than 

supposing that movements are generated by complex joint angle and muscle kinematic 

and kinetic computations at multiple reference frames, the theory suggests that motor 

cortical netwo rks delegate this responsibility to downstream systems.  The predominant 

parameters being encoded would be related to how the end  effector moves.  The work 

by Georgopoulos et al [6, 54] showed impressive modulation s in M1 neurons with 

respect to end effector movement di rection.  Single M1 neurons exhibited cosine-tuned 

direction al preferences (discussed more in Chapter 2) and the population represented 

enacted movements as the vector sum of the individual units, termed a population 

vector.  Additional  work by this group introduced further evidence of a largely end  

effector-centric neural representation.  The activity within motor cortical po pulations, 

even of a single neuron, can encode multiple parameters including  hand movement 

direction in 2D space, velocity , and acceleration [55, 56]. In addition, the representation 

of these can vary on a moment-to-moment basis throughout a task [5].  These results do 

not act to fully disprove either force -control or equilibrium point models . The results 

from the Georgopoulos studies, together with the evidence from the p revious models 

demonstrate the diversity of parameters which M1 may represent.  Higher -level cortical 

commands could very well be one of the several parameters represented by motor  
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cortical neurons. 

1.3 Cognitive functions of motor -related cortex  

Further evidence for higher -order cognitive functions  of motor -related cortex 

comes from decision making studies.  The initiation of a movement is often thought of as 

the surpassing of a decision threshold.  Within single or populations of neurons,  

multiple possibilities are considered in terms of the activity of the neuron (s).  Support 

for the various choices could come either internally  or from accumulated sensory 

information.  Many of the same regions with motor -related modulations such as PPC 

[57, 58] and PMd [28, 59] have been found to encode sensory evidence in sensorimotor 

transformation tasks.  This suggests a tremendous overlap between motor and cognitive 

areas of the brain.  An example of this comes from the work by Shadlen and colleagues 

in a two -alternative forced choice paradigm [57].  The average firing rate from a 

population of 54 LIP neurons (located within PPC) reflected the coherence of the 

random-dot motion visual stimuli.  The onset of neuronal firin g rate across the 

population was less steep when the evidence was less clear.  LIP receives many inputs 

from visual cortex and accumulates visual evidence for motor decisions  [60, 61].  

Although shown in a saccade study, work by Cisek and Kalaska showed that reaching 

decisions were represented in PMd [28]. PMd provides dense inputs into M1, analogous 

to LIP inputs into frontal eye field for saccades.  More recent work has identified a 

decision circuit between PPC and PMd [62].   

The multilayered information content of the motor -related cortical areas may be 
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inconvenient for the purpose of clear functional segregation, however this may underlie 

how intertwined motor and decision circuits  are in the motor system.  The ability to 

evaluate alternative outcomes and provide motor output commands within the same 

cortical area could be advantageous biolog ically.  Furthermore  ɬ and to consider from 

the perspective of brain-machine interface development ɬ this expands the quantity and 

type of information that can potentially be extracted from the brain using intrac ortical 

multielectrode arrays.  Cognitive neural prosthetics (CNP) have been proposed to 

extract the cognitive state of the subject rather than strictly motor commands [63-65].  

This will be further discussed within the context of BMI development.  

1.4 Neural representations of bimanual movements  

 A phenomenon almost entirely u nique to upper limb movements is the ability to 

coordinate the two limbs with high spatiotemporal precision, termed bimanual 

coordination.  There are several different definitions of bimanual coordination 

throughout experimental and clinical studies.  In t he most general sense, a movement 

has been considered bimanual when the two arms are coordinated either simultaneously 

[66] or sequentially [67]. The two limbs are often coupled temporally such that the in -

phase or out-of-phase movements can be reliably performed with high synchrony.  A  

strong preference for temporal coordination suggests that a bimanual action is not 

simply the linear superposition of two distinct motor plans.  It has been shown through 

lesion studies that interhemispheric connections play a major role in establishing 

bimanual motor routines [68, 69].  Spatial coordination in split brain patients is greatly 
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reduced, however the temporal coordination remains intact [70].  It has been proposed 

that the temporal coordination is localized within central pattern generator (CPG) 

circuits of the spinal cord, strengthened by findings that rhythmic, bilateral movements 

that could be produced following high spinal transections [71].  Because CPG circuits are 

modulated by cortical and subcortical efferent projections, the motor structures of the 

brain may enact an indirect role of temporal coordination.  

To study bimanual neurophysiology and the single cell level, the most common 

experimental model has been rhesus macaques.  Despite some behavioral differences 

such as less lateralization/handedness compared with humans  [72], rhesus monkeys 

naturally couple and decouple two arms  in a spatiotemporally precise way, similar to  

bimanual movements in  humans.  One of the earliest studies of specialized bimanual 

function  in primate  cortex was by Tanji et al during a key-press task [73].  This study 

found that 28% of SMA neurons and 16% of premotor neurons exhibited limb -specific 

(only left/right/both) activity before movement initiation .  Brain imaging [74] and EEG 

[75] studies have shown increased SMA activation that is specific to bimanual 

movements.  Later work by the Vaadia group found an even larger percentage of SMA 

neurons with bimanual task -related activity  [76].  These two groups both investigated 

whether this bimanual -specific activity also occurred in M1, but their results differed .  

Tanji et al found almost no M1 cells with bimanual modulation  [73], but the Vaadia 

group reported 69% of M1 neurons wit h activity specific to bimanual movements 

compared to 64% of SMA neurons in a bimanual center-out reaching task [77].   
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The different results could be a byproduct of testing reaching movements 

(Vaadia) instead of tapping  movements (Tanji).  Furthermore, the Vaadia results were 

found in  a series of additional studies [78-80].  SMA seems an especially likely candidate 

for bimanual coordination when considering the location along the sagittal sulcus as 

well as anatomical evidence.  A study in macaques found dense callosal projections from 

the hand representations of SMA to the same area in the opposite hemisphere [81, 82].  

These studies found callosal M1 projections to be much more diffuse. 

 The phenomenon of bimanual-related (BR) activity is a multi -layered question.  

The existence of BR-type M1 and SMA neurons is typically identified by looking at per i-

event time histograms (PETHs). BR neurons will show strong bursts of firing in a 

particular direction  during exclusively  bimanual or unimanual movements.  The 

Georgopoulos cosine-tuning model  has been well-established to describe unimanual 

reaches in contralateral motor cortical neurons [6].  It was initially unclear how neuronal 

tuning would change, if at all, when t he enacted movement was bimanual.  It has also 

been shown that M1 and SMA neurons have both contralateral and ipsilateral  arm 

directional tuning  [73, 83]. Furthermore,  the preferred d irections (PDs) of tuning curves 

for  the contralateral and ipsilateral arm of M1, SMA, and PMd neurons were highly 

correlated [80].    

If single neurons in motor -related cortex represent movements of each arm 

individually, how could a neuron encode both movement directions simultaneously, as 

in a bimanual movement? A linear model would suppose that the neural representation 
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of bimanual movements would be simply the linear combination of the  contralateral and 

ipsilateral commands .  A comprehensive study by Donchin et al [76] refuted the claim 

that BR neural activity could be explained by linear combinations of unimanual activity.  

In addition, the study showed  that it could not be explained by differences in kinematics 

or EMG activity.   With these alternative  explanations rejected, the neural activity in M1, 

SMA, and PMd must reflect some specialized cortical processing associated with 

bimanual coordination .  Further work has shown that during bimanual movements, the 

PDs of these neurons shift from the unimanual co ntralateral and ipsilateral PDs [78]. The 

contralateral PD, on average, is shifted much less than the ipsilateral PD.  The directional 

ÛÜÕÐÕÎɯÖÍɯÕÌÜÙÖÕÚɯÛÖɯÌÈÊÏɯÈÙÔÚɀɯÔÖÝÌÔÌÕÛÚɯÐÚɯÊÖmbined in a nonlinear mechanism  

which has been proposed to be a byproduct of callosal inhibition  [78]. The 

network/corticocor tical mechanisms which establish bimanual modulation properties 

M1, SMA, and PMd remain largely unknown.  Further discussion of intercellular 

mechanisms would distract from the focus of the present project, however an 

understanding of this component in the future may play a key role in understanding the 

cortical role in bimanual motor control.  
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2. Brain -machine interface development  

Brain-machine interfaces (BMIs) are technologies designed to facilita te mobility 

and limb function  for  millions of people suffering from paralysis, neurological injuries, 

neurodegenerative diseases, and limb loss [84].  Among these people, the spinal cord or 

peripheral areas often suffer severe trauma which have few viable treatment options and 

the patients suffer from poor  quality of life [85, 86].  Fortunately, the regions of the brain 

which output motor commands  and receive sensory information, such as M1 and S1, are 

often entirely intact.   BMIs are a subfield of neuroprosthetics with a goal to extract the 

ÜÚÌÙɀÚɯÔÖÛÖÙɯÊÖÔÔÈÕËÚɯÍÙÖÔɯÊÖÙÛÐÊÈÓɯÕÌÜÙonal activity to control an external device, 

such as a prosthetic limb.  As discussed previously, motor -associated cortical areas 

encode a wide variety of information related to motor execution, motor planning, and 

cogniti ve function .  Research related to BMIs has grown immensely over the past twenty 

years [87-89].  The impressive progress has resulted from three major areas of 

advancement:  

(1) Improved understanding of neurophysiology  

(2) Technological improvement s 

(3) Improved strategies for decoding motor commands  

The first of these provides the biological foundation for BMIs and was discussed in the 

previous chapter.   Important work in the latter two areas will be discussed in the 

present section.  These three areas will again be discussed with respect to the findings of 

this thesis work.  
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2.1 Technological advancements in brain -machine interfaces  

2.1.1 Electrodes and ne ural signal acquisition  

Neural signals can be acquired for a BMI using a variety of techniques.  This 

ranges from noninvasively with scalp/electroencephalogram (EEG) electrodes [90], 

slightly more invasively  with electrocorticogram (ECoG) electrodes [91], to most 

invasively  using intracortical multielectrode arrays (MEA) [92].  Although the research 

in the present project uses exclusively invasive MEA  recordings, it is worth discussing 

the differences and advantages of each approach.  EEG systems require no surgical 

implantation and ha ve been successful in human studies for communication [93], target-

selection [94], and 2-D cursor control [94, 95].  The EEG signal is low bandwidth and 

thus has limited ability  to extract complex kinematic parameters.  The most successful 

EEG BMI implementation has been the P300-based BMI which has enabled locked-in or 

ALS patients to communicate with the outside world  [93, 96].  The P300 evoked 

potential is represents the parietal cortex response to a preferred versus nonpreferred 

stimulus [97].  The recorded EEG signal is typically less that 30 Hz and represents field 

potentials of  large populations of neurons across several brain regions.  The spatial 

resolution of the signal is poor, and is further deteriorated by passing through brain 

tissue, bone, and skin before reaching the scalp electrode.   

ECoG systems record higher frequency 30-100Hz signals whic h have been shown 

to be correlated with single unit action potentials in the surrounding tissue  [98].  ECoG 

electrodes are placed below the dura and typically over cortical gyri to record from 
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neurons perpendicular with the plane of the electrode.  Similar to EEG systems, ECoG-

based BMIs have achieved success in human studies to control a 2D computer cursor 

[99].  Researchers see ECoG as a unique opportunity to obtain an accurate representation 

of single-unit activity from large populations of neurons with improved long -term 

stability and reduced invasiveness compared to intracortical MEAs [100].  

The earliest and still most direct method to record activity from cortical neurons 

is with intracortical electrode arrays .  The fundamental unit of commun ication in the 

brain is the action potential , or spike, which  can be detected by a microelectrode when 

located within 50 -ƕƔƔɯϟÔ of the neuron [101, 102].  An i ntracortical electrode-based BMI 

would detect and decode the spiking pattern of populations of  neurons for the purpose 

of controlling some external device.  A series of studies by Fetz and colleagues found 

that single-unit cortical activity could be voliti onally  modulated in monkeys [103-106].  

This direct user control over the activity pattern of a single neuron, dissociated from the 

related muscle movement, provided the first proof -of-concept for  volitional control  of 

cortical neurons.  This was an important earl y step towards cortically controlled BMIs .  

Later work by Schmidt further demonstrated a n even finer level of volitional control 

such that the firing rate of a single neuron could be modulated to as many as eight 

different frequency gradations  [107].  Quantifying this result in terms of bits of 

information per second, the volitional control of even a single neuron gave a 2.45 bits/sec 

information output rate compared to 4.48 bits/sec with wrist flexion/extension  (normal 

motor output) .  Schmidt proposed that neural signals may be sufficient to control an 
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external device given advances in electrode stability and signal processing. 

Much of the modern success of BMIs is owed to the technological development 

related to MEA improvements in  the approximately thirty  years that followed . The Utah 

(ÕÛÙÈÊÖÙÛÐÊÈÓɯ$ÓÌÊÛÙÖËÌɯ ÙÙÈàɯÞÈÚɯËÌÝÌÓÖ×ÌËɯÐÕɯÛÏÌɯÌÈÙÓàɯƕƝƝƔɀÚɯÜÚÐÕÎɯÈɯÚÐÓÐÊÖÕ-based 

penetrating electrode array with 100 needle-type electrodes, specifically designed for 

implantation in the cerebral cortex [108, 109].  The 96 channel Utah array (now a product 

of Blackrock Microsystems) has remained a critical component of intracortical  BMI 

systems even to this day [110, 111].  By 2000, Nicolelis and colleagues pioneered a large-

scale multi-site neural recording paradigm capable of recording from  hundreds of 

neurons throughout sensory and motor cortices [92, 112].  With large neuronal 

populations of task -related M1 and ventrolateral neurons, Chapin and colleagues 

demonstrated for the first time the real-time brain control of a robotic arm in in rats 

[113].  As the number of recorded neurons increased, it was shown by several research 

groups that primate reaching and grasping could be driven by an intracortical BMI [114-

116]. 

 MEA s implanted within the cortex ha ve clear advantages for BMI engineering 

purposes, but the potential danger of chronic implants often overshadows the 

tremendous potential.   Most commonly, MEAs are lowered into the cortical tissue at an 

angle orthogonal to the plane of the cortical surface to a depth of 0.5 to 1.5 mm [117, 

118].  Upon insertion , the electrodes must penetrate the brain parenchyma which causes 

acute local neural and vascular damage, increasing the risk for CNS infections [119].  In 
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the days and weeks that follow, a cascade of tissue responses to the implant occur which 

act to isolate the foreign MEA materials and protect the brain (review by Polikov  et al. 

[120]).  This immunological  process is referred to as the foreign-body response.  

Astrocytes in the brain proliferate and become reactive causing increased extracellular 

matrix production and gliosis .  After several weeks a glial scar forms around the 

electrodes to encapsulate the foreign body and reestablish the blood-brain barrier [121].  

Once encapsulated, the electrode becomes nearly electrically isolated from the brain due 

to the high impedance of the glial scar.  In BMIs, this can contribute to the loss of quality 

recorded units over time.  Efforts to limit the injury and improve the viability of chronic 

implants have prompted new electrode designs.  This research has focused on electrode 

geometry and spacing [92, 117, 122], electrode coating materials [92, 123], or use of 

bioactive molecules to promote positive tissue integration [124].  Proof of the safety and 

long term efficacy of chronically implanted MEAs is a key step in the clinical translation 

of BMIs in the coming years.   

2.1.2 End effectors for BMIs  

 Other technological advancements have centered on the end effector of the BMI.  

The motor goal of BMIs is to enact highly realistic walking or upper limb movements in 

the absence of healthy limbs.  Limb kinematic are often characterized b y the degrees of 

freedom (dof) ɬ a term common in robotics to specify the number of ways that a limb (or 

artificial limb ) can move.  The human arm (excluding hand)  is considered to have seven 

degrees of freedom [125].  Early BMI work in rats demonstrated a single dof to position 
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a robot arm [113].  Within four years, monkeys in several labs learned to control a three 

dof robotic arm for reaching and grasping [116, 126].  A self-feeding prosthetic arm for 

rhesus monkeys was developed by the Schwartz lab using five dof  [127].  The DEKA 

prosthetic limb was developed shortly thereafter offering  a highly realistic six arm dof 

and four hand dof ȹ# 1/ ɀÚɯ1ÌÝÖÓÜÛÐÖÕizing Prosthetics program, 2006).  Although 

some dof were removed by wrist angle fixation, the DEKA arm was utilized most 

recently in a human study  where tetraplegic patients with M1 impl ants were able to 

reach and grasp objects using modulations of cortical activity  [111].  The rapid 

progression of research has resulted in prosthetic limbs approaching the complexity of 

natural limbs, but intuitive enough such that they can be controlled with a BMI.  

Psychologically it is important for the subject (monkey or human) to feel a sense that the 

prosthetic limb is an extension of their own body.   

Ongoing work in the Nicolelis lab is exploring the use of realistic virtual reality 

avatar body representations for BMI applications [128, 129].  The sense of being ability to 

control the movements of an object  such as a limb is known as agency [130].  In virtual 

reality studies, users have reported a sense of agency for external devices, such as virtual 

hands [131].  The agency of the virtual hands  was manifested both perceptually and in 

oxygenation changes in the brain detected by fMRI.  If the external device not only feels 

ÜÕËÌÙɯÛÏÌɯÜÚÌÙɀÚɯÊÖÕÛÙÖÓȮɯÉÜÛɯÈÊÛÜÈÓÓàɯÍÌÌÓÚɯÓÐÒÌɯÈÕɯÌßÛÌÕÚÐÖÕɯÖÍɯÖÕÌɀÚɯÉÖËàȮɯÛÏÐÚɯÐÚɯknown  

as incorporation.  Full incorporation of an external device has been demonstrated using 

experiments such as the rubber hand illusion .  In this experiment, the tactile sensations 
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ÍÙÖÔɯÖÕÌɀÚɯÖÞÕɯÏÐËËÌÕɯÏÈÕËÚɯÊÖÕÍÓÐÊÛɯÞÐÛÏɯÝÐÚÜÈÓɯÐÕÍÖÙÔÈÛÐÖÕɯÍÙÖÔɯÛÏÌɯÛÖÜÊÏÐÕÎɯÖÍɯÈɯ

visible rubber hand [132].  This is an example of creating incongruence between visual 

and sensory input to the external device.  Detectability of the incongruent sensory 

information is a key marker for body incorporation.  Incorporation is a stronger 

phenomenon than agency, in which  the user not only feels control over the ÖÉÑÌÊÛɀÚɯ

movements but possesses a sense of ownership of the object [130].  It has yet to be 

demonstrated ÏÖÞɯ!,(ɯÊÖÕÛÙÖÓɯÖÍɯÈÙÛÐÍÐÊÐÈÓɯÓÐÔÉÚɯÌÍÍÌÊÛÚɯÛÏÌɯÜÚÌÙɀÚɯÈÎÌÕÊàɯÖÙɯ

incorporation of the external device.  

2.2 Decoding movements from neural activity for  BMIs  

 The third area of research which has greatly contributed to intracortical BMI 

success has been improve d neural decoding methods.  It should be noted that 

neuroscientists are still far from understanding the complex rate encoding, temporal 

encoding, and population encoding of motor neuronal populations in the brain.  Certain 

aspects of neural encoding have been understood through carefully designed 

experimental paradigms and trial -averaged spike histograms.  Even in the cleanest 

ÈÕÈÓàÚÐÚȮɯÏÖÞÌÝÌÙȮɯÛÏÌÙÌɯÐÚɯÉÐÖÓÖÎÐÊÈÓɯɁÕÖÐÚÌɂɯÐÕɯÝÐÙÛÜÈÓÓàɯÈÓÓɯÊÌÕÛÙÈÓɯÕÌÜÙÖÕÚɯwith a 

poorly understood function [133].  Fortunately, a comprehensive understanding of 

single cell and motor network computations does not preclude a clinically relevant BMI 

system.  Variance in the neuronal discharge can be largely accounted for by changes in 

several parameters of movements ɬ often simply the kinematics or kinetics.  This 

correlation  is strong enough to be exploited in fairly straightforward neural decoding 



21 
 

algorithms.   

Regardless of which algorithm is used, the first step is to characterize each 

recorded neuron so that modulations in its activity can be predictive of a motor 

parameter.  This is typically accomplished by fitting a set of parameters to the activity  

according to a mathematical model.  The method of fitting movement parameters to 

neuronal modulation is a question of major clinical relevance. Experimentally it is 

common to train the model on several minutes of the task when the arms are moving 

naturally [116, 126].  With this being impossible to obtain clinically from  patients lacking 

upper limb mobility, there is a need for efficacious training paradigms that do not 

require ÖÕÌɀÚɯÖÞÕɯÈÙÔɯÔÖÝÌÔÌÕÛÚȭɯɯ ɯÊÖ-adaptive framework was proposed by Taylor 

et al [116], where the movements would be enacted by cortical control from the 

beginning.  Over the course of trials which showed both the cursor and the target, the 

tuning properties were iteratively refined.  Furthermore, this technique resulted in 

improvement from one session to the next.  Other studies have requested the subjects to 

imagine movements during model training [111, 134] or had the subjects passively 

observe end effector movements [135, 136]. This remains an actively researched topic 

and is a subject which will be discussed further in later sections. 

2.2.1 Early approaches: Population vector and the Wiener Filter  

The basis for the theory that neural activity can be modeled as a simple function 

of motor parameters (or in actuality, t he inverse) stems from the work of Georgopoulos 

et al. [6, 54].  Recordings from M1 neurons revealed directional preferences ɬ 
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mathematically described by a simple linear relationship as shown in Eq. 1 (from [6]):  

ÄἙ ὦ ὦ ÃÏÓ—                                   (1) 

where d is the discharge rate of an M1 neuron,  —  ÐÚɯÛÏÌɯÈÕÎÓÌɯÉÌÛÞÌÌÕɯÛÏÌɯÕÌÜÙÖÕɀÚɯ

preferred direction and the direction of movement, with ὦ ÁÎÄ ὦ are coefficients 

determined for each neuron.  Substituting — —  —  and solving for — : 

 

— —  ÃÏÓ
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it  becomes more clear how the single-neuron pointing vectors are computed.  Knowing 

the discharge rate of the neuron, the optimal coefficients, and the preferred direction —, 

the direction of movement — could be computed.  The single-neuron pointing ve ctor 

was therefore a vector in the direction of —  with a magnitude scaled by the firing rate of 

the neuron.  The vector sum of all single neuron vectors was termed the population 

vector [6].  Several research groups have utilized a population vector -based algorithm to 

compute 3D upper limb kinematics in non -human primate s [116, 135] and 2D cursor 

control in humans [137]. 

  The discrete-time Wiener filter is an optimal linear fin ite impulse response 

filtering method which has also been successfully applied to BMI systems.  The 

algorithm is based on the time-series signal processing algorithm pioneered by Wiener 

and Kolmo gorov [138, 139].  The Wiener filter is commonly used to reduce the noise of a 

signal or estimate a desired signal in a way that minimizes the expected mean-square 
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error.  With motor command signals being  embedded with in noisy neural activit y, this 

relatively simple approach was a good starting point for neural decoders.  BMIs using a 

Wiener filter have been successful in predicting arm movement trajectories that correlate 

with actual trajectories with correlation coefficients of around 0.8 [114, 115].  It may 

initially seem surprising that the high dimensionality of the input space ( hundreds of 

millions of motor cortical neurons) can project to a low dimensional output trajectory 

using a linear model.  The projection is performed on a set of bases that are continuously 

following the input signal (the past input samples)  [140].  That is, using a short history of 

the neural activity, it is possible to reliably extract  the most relevant two or three  motor 

parameters from the activity of large populations of neurons .  In the most common 

implementation of the Wiener filter, the neural input ● and kinematic output  ◐ are 

related as in Eq. 3 (from [140]): 

                    ώ ὲ ὼὲ ὰύ ὦ                          σ 

where c is the output dimension, n is the time instance, L is the number of taps, and M is 

the number of neurons.  In Eq. 3,  ύ  is the weight for neuron Ὥ, during tap ὰ, for output 

dimension ὧ.  The bias term ὦ for each dimension is typically removed by zeroing the 

mean of input and output.  L is commonly set such that the previous 1 s of neural 

activity is sample d [83, 114, 126].  Given a sampling rate of 10 Hz, L= 10.  Despite its 

simplicity and relative success in low dof  BMI studies (2 dof : [134] or 3 dof : [114, 116]), 

predictions made with the Wiener filter show substantial jitter and noise. Additionally, 
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the non-probabilistic  nature of the decoder makes integration into more sophisticated 

decoding system difficult . 

2.2.2 More sophisticated  solutions for neural decoding  

The challenge of neural decoding in BMI research has spurred the use of 

increasingly complex algorithms that have shown improve d performance in certain 

applications (see review by Bashashati [141]).  The different methods that can be used 

generally falls into two groups: linear a nd non-linear. Linear methods are generally less 

computationally demanding, yet ascribe a linear mapping between neural activity and 

limb movements.  A  probabilistic linear method, with marked advantages over the 

Wiener filter, is the Kalman filter.   The Kalman filter  [142] applies recursive Bayesian 

inference to compute an a posteriori probability of hand kinematics based on an observed 

sequence of firing rates [140, 143].  The posterior probabilities are the product of a 

likelihood term and an a priori probability  as in Eq. 4 (from [143]): 

ὴ●ȿ◑  ‖  ὴ◑ȿ●  ὴ●ȿ● ὴ● ȿ◑ Ὠ●                                     τ 

where ὴ◑ȿ●  is the likelihood term - an estimate of the probability of the firing rates 

given hand kinematics.  This likelihood is multiplied by the integral term, called the 

prior.  In a reaching experiment, the ὴ●ȿ●  prior term models how the hand moves 

and the  ὴ● ȿ◑  term represents the kinematics at the previous time instant  [143].  

When both the likelihood and prior models are linear and Gaussian, the recu rsive 

update algorithm within th e Kalman filter provide s the optimal and exact estimate of 
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the posterior probability.   

The Kalman filter implementation for  neural decoding purposes is described 

fully by Wu et al. [143]. There are two steps to the algorithm: predict and update.  In the 

predict step, the mean and the covariance values for the kinematics from the previous 

iteration are used to predict the kinematics in the current iteration . The results of this 

prediction serve as the prior for the current step.   In the update step, the posterior mean 

and covariance matrix of the kinematics are computed using the priors, as in Eq. 4.  

The main difference of the Kalman filter from the Wiener filter is the probabilistic 

approach.  At every time point, an estimate of uncertainty is computed in terms of an 

error-covariance matrix.  The drawback from this model (and the cause of its simplicity) 

is the assumption of linearity  in the models describing neural activity and kinematic 

evolution .  Despite the weakness of this assumption, the Kalman filter has been 

successfully implemented into real -time BMI systems [110, 111, 143, 144].  Some BMI 

groups argue that the linearity assumption affects algorithm performa nce during real-

time control in a much more subtle way than previously thought [145].   

Much of the decoding algorithm development in the past decade has focused on 

non-linear models [146-150].  A quadratic tuning model was implemented by Li et al 

[150] and was much more predictive of neural firing rate than a linear model.  The linear 

model, Eq. 5: 

Π ίὴὭὯὩίὃϽὺὩὰὄϽὺὩὰὅ                                 (5) 
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was modified to add velo city squared terms as in Eq. 6: 

Π ίὴὭὯὩίὃϽὺὩὰὄϽὺὩὰὅ ϽὺὩὰὺὩὰ        (6) 

This change increased accuracy of offline kinematic reconstructions over 

standard linear models (Kalman and Wiener filters).   Another nonlinear approach, 

called a particle filter or sequential Monte -Carlo, is a decoding algorithm being 

researched by several groups for BMI applications  [146, 147, 151].  The particle filter is a 

recursive Bayesian estimator based on non-parametric probability distribution 

representations and stochastic simulation [152].  The major disadvantage of the particle 

filter is heavy computational cost, which makes it more difficult to implement into real -

time BMIs.   

Another approach is to decode from individual neuron spike times, rather than 

instantaneous firing rates.  These decoders are called point process filters and they use 

models of spike trains as discrete events, or point processes.  Work within the Donoghue 

group has focused on developing a point process filter, analogous to the Kalman filter, 

which used a Gaussian representation for uncertainty in state estimates and an 

inhomogeneous Poisson model for neural activity [153-155].  Altho ugh this has shown 

promising results offline [155, 156], point process filters have yet to be implemented in 

an online BMI.   

A different nonlinear technique which has been successful in both offline and 

online BMIs is artificial neural networks  (ANN)  [149, 157, 158].  Most recently, the 

Shenoy group has implemented  dynamical variation s of these, known as recurrent 
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neural networks (RNN), to control a virtual cursor in a 2D point -to-point reaching task 

in a real-time BMI [158].  This model emphasizes the recurrent nature of neuronal 

dynamics, where the activity of a neuron is a function of its own past firing  in addition 

to desired movements.  In the study, the researchers overcame a previous challenge of 

training an RNN model by using an echostate network [159] ɬ a randomly initialized 

RNN.  Using a constrained learning paradigm, the echostate network output (a linear 

readout of the recurrent, nonlinear units) easily trained the RNN to enable online control 

[158].  Furthermore, the RNN decoder outperformed the Kalman filter algorithm.  

Although presented as one piece of the BMI puzzle, neuronal decoding algorithm 

development and parameter optimization is a field unto itself.   

Similar to the work being done for development for decoding algorithms, there 

are innovations in decoding strategies which are important for BMI efficacy as well.  

These often utilize well -established neural decoders but make modifications to the way 

is it applied to neural data.  Such studies often focus on neuron selection procedures 

[160, 161], nonstationarities in neuronal properties [162, 163], or parameter optimization 

[164]. There are countless other studies with novel approaches and modifications which 

could be discussed.  For the purposes of the present review ɬ and to focus this 

discussion ɬ the remainder of th is section will focus on the algorithm most important to 

the work in the present  thesis project.  The work within the Nicolelis lab within the past 

five years has developed a nonlinear decoding algorithm which has shown to be a 

strong improvement over the three of the most commonly used BMI models: the 
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population vector model, the Wiener filter and Kalman filter [150].   

2.2.3 The unsc ented Kalman filter for BMI decoding  

Improvements to the Kalman algorithm were accomplished by using an 

unscented Kalman filter (UKF).   The most important advance was transitioning to a 

nonlinear, quadratic tuning model (see Eq. 6) whi le remaining computat ionally light.   

The latter part is not a trivial consideration, even with the rapid improvement of 

computing power.  Future BMIs will be highly mobile systems. The power consumption 

and weight must be minimize d.  Similarly, the algorithms must be able to decode signals 

from large populations of neurons and control prosthetic limbs in real -time.  Many of 

the previous nonlinear models, such as the point process filter and the particle filter 

have yet to be realized in real-time BMI systems for these and other reasons.  The 

modification to the Kalman  filter algorithm  which enables nonlinear modeling is termed 

the unscented transform [165]. It uses a deterministic sampling  method to approximate 

non-linear function evaluation on r andom variables.  Using the unscented transform, a 

set of simulation points (rather than a single value), called sigma points, are selected 

around the mean.  These points are then propagated through the non-linear model, 

resulting in a mean and covariance estimate for the effect of the non-linear model on the 

distribution. The decoding result  is more accurate than the Kalman filters [150, 165, 166].  

This approach also eliminates the need to compute Jacobian matrices as in the extended 

Kalman filter, which is not as accurate of an approximation . 

A second important feature of the UKF described by Li et al. [150] is that it takes 
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advantage of patterns of movements that are found within a given task.  Taking 

advantage of these patterns has been shown to improve accuracy of BMI-enacted 

movements.  The state variables were extended to keep a history (n offsets) of the 

desired hand movements.  This allowed an autoregressive (AR) movement model and 

tuning model for each of the n time offsets. Using an n-th order UKF, position and 

velocity are computed using the quadratic tuning model (Eq. 6) using n taps of position 

and velocity.  The standard Kalman filter used in previous BMI studies [110, 111, 143, 

144] uses only a single tap to predict the future parameters.  The optimal number of past 

and future taps was found to be task dependent. In a smoother movement with slow, 

predictable trajectories, adding more taps resulted in improved predictions offline [150]. 

More variable reach trajectories and speeds, such as the center-out movements used in 

this project, were best predicted using fewer (3-6) taps.   

The algorithm [150, 165] follows the same general two -step predict and update 

structure as the standard Kalman filter.  The predict step is very similar .  The prior term 

models how the hand moves and is computed using the conditional probability 

ὴ●ȿ● .  Evaluating the non -linear tuning model on the  sigma points …ȣ…  (in a 

state space of dimension d) produces an estimate of the neural firing : 

ὤȣὤ Ὢ…ȣ…                           (7) 

The mean and covariance of the predicted neural firing are then computed using the 

weighted sigma points : 
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ὖ ȟ  ύ ὤ ᾀǶὤ ᾀǶ ύ ὤ ὤ ὤ ὤ ὗ

ȣ

                    ω 

where Q is the observational noise fit during  training. From the predicted neural firing 

covariance matrix, the optimal Kalman gain ὑ can be computed.  In the final step, the 

state mean and covariance are updated using the previous state and the predicted neural 

firing ᾀǶ and ὖ ȟ: 

ὼ ὼ ὑώ ᾀǶ    (10) 

ὖ ȟ ὖ ȟ ὖ ȟὖ ȟ ὖ ȟ                         (11) 

where ώ is the spike data and ὖ ȟ is the cross covariance of state and observation.  The 

unscented transform avoids costly numerical calculations while yielding an accurate 

approximation of the posterior distribution under the non -linear model . 

The nth order UKF presented by Li et al has become the standard decoding model 

used in the Nicolelis lab since its development.  Certain properties of the model even 

suggest that it may be applied to training paradigms in the absence of arm movements.  

The UKF could be trained during passively observed movements, when the user is 

attending to the task and neural activi ty is simultaneously recorded  [129].  UKF decoded 

neural activity during pass ively observed realistic avatar limb  movements could 

reconstruct the movement trajectories with very high fidelity  offline  [129].  This passive 

observation phenomenon has been observed in previous work within PMd and M1 [129, 

167, 168], although it has only recently been exploited for BMI applications.  Recent 
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work in the Nicolelis lab has shown that the UKF can function in an adaptive manner, 

updating parameters using Bayesian regression [169].  This approach is further 

advantageous because it would require no information about the user actions and can 

update in the background without explicit recalibration.  Notwithstanding the 

improvements made by our lab and elsewhere, there remain several key questions.  

First, it is unknown how well these models can generalize as experiments beyond 

oversimplified, lab -setting movements towards real -life applications.  Second, all 

previous models aim to control a single limb and prior to my work, it was unknown 

how to model multiple limbs  simultaneously .  Lastly, there remains the challenge of 

utilizin g the right model in the right  context.  For example, a certain model might be 

optimal in one behavioral state  (left arm movement) , but not for another  (bimanual 

movement)ȭɯɯ3ÏÌɯÈÉÐÓÐÛàɯÛÖɯÐËÌÕÛÐÍàɯËÐÍÍÌÙÌÕÊÌÚɯÐÕɯËÐÍÍÌÙÐÕÎɯɁÚÛÈÛÌÚɂɯÛÖɯÎÜÐËÌɯÔÖËÌÓɯ

selection is another key area for improvements.  I address these opportunities to 

advance the UKF decoding strategies for bimanual BMIs within Chapter 9.  
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3. Cortical correlates of Fittsô Law 

In the effort to advance the sophistication and naturalism of BMIs, it is beneficial 

to take a brief step back to understand the processing steps that go into even very basic 

reaching movements.  In goal-directed reaching movements, there exists a known or 

estimated endpoint.  The properties of the endpoint can often be just as important as the 

location.  In daily life, we encounter a wide range of endpoints:  push-open doors, a can 

on a grocery store shelf, or simply  reaching out for self-protection from in coming 

threats.  Fortunately, we adapt the arm movement s in a context-dependent way which 

benefits whatever motor parameters that we favor.  For  the examples given, the 

emphasis could be spatial precision (picking the right can from a shelf), reach speed 

(safety concerns), or crude movements that optimize force generation (opening a heavy 

door).  Notably, the first two these are tightly related.  Careful, spatially precise 

movements are generally slower in order  to preserve the accuracy of the reach. The act 

of processing sensory information and converting this into action is term ed 

sensorimotor transformation (see Section 1.3). In the present context, the size of the 

target is the sensory input affecting the action, which is a reaching movement. This 

intuit ive and well -known behavioral phenomenon is quantified in  %ÐÛÛÚɀɯÓÈÞ [170-172].  

Fitts hypothesized that this tradeoff existed due to a limitation of information capacity in 

the motor system.  The law derived by Fitts [170] and Shannon [172] states that there 

exists a relationship between the target properties (size, distance from reach origin) and 
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the speed that a person moves their arm towards a target.  This is quantified as shown in 

Eq. 12 and Eq. 13: 

ὍὈ ὰέὫ
ςὈ

ὡ
                           ρς 

Ὕ ὥ ὦϽὍὈ                          ρσ 

where ID is the index of difficulty for a reach  which  is simply a function of the distance 

to target Ὀ and the width of the target ὡ.  The time to reach (or inversely, the velocity) 

was proposed to be a linear function of ID and ὦ is the information capacity of the 

system.  More simply, ὦ quantifies the degree that target difficult y influences the motor 

ÚàÚÛÌÔɀÚɯËÌÊÐÚÐÖÕɯÛÖɯÙÌËÜÊÌɯÝÌÓÖÊÐÛàȭɯɯThis law has held for a wide variety of movements 

and suggests underlying  machinery of the motor system.  In other words, Fitts used 

behavior to make conclusions about how the nervous system generates movements.  In 

this study, I look from the reverse perspective ɬ looking at the motor cortical firing to 

understand which parameters are being represented by neurons when issuing motor 

commands to create behaviors.   

%ÐÛÛÚɀɯÓÈÞɯÊÖÕÚÐËÌÙÈÛÐÖÕÚɯÏÈÝÌɯÉÌÌÕɯÊÙÐÛÐÊÈÓɯfor  computer interface design in the 

past 20 years [173], resulting in improved pointing devices, screen layouts, and menu 

designs.  1ÌÊÌÕÛÓàȮɯÛÏÌɯ!,(ɯÍÐÌÓËɯÏÈÚɯÜÚÌËɯ%ÐÛÛÚɀɯÓÈÞɯÈÚɯÈɯÛÖÖÓɯÛÖɯÔÌÈÚÜÙÌɯ×ÌÙÍÖÙÔÈÕÊÌɯÖÍɯ

neuroprosthetic systems [174].  As BMIs continue to develop, interfacing with 

computers will need to be improved in much the same way as traditional computer 

interaction.  Rather than gaining the user intentions directly, I hypothesize that a BMI 
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system would be able to extract both the movement trajectories and goals (e.g. speed vs. 

accuracy) from neural signals.  This study [175] was the first to identify the cortical 

corrÌÓÈÛÌÚɯÖÍɯ%ÐÛÛÚɀ law and demonstrate that both kinematics and target-related 

properties can be extracted using a simple BMI decoding approach. 

3.1 Electrode implantation and experimental design  

 To conduct this study, one male and one female rhesus monkey (M and N, 

respectively) were chronically implanted with multielectrode arrays in M1 and S1 of 

right and left hemispheres using established surgical methods [92].  Within each 

hemisphere, two 96 channel arrays were placed in cortical areas corresponding to the leg 

and arm representations in S1 and M1 (Fig. 1B).  Each array consisted of two 4x4 grids of 

independently movable electrode triplets.  Each of the triplets was comprised of 

ÌÓÌÊÛÙÖËÌÚɯÖÍɯËÐÍÍÌÙÌÕÛɯÓÌÕÎÛÏÚɯÐÕɯƗƔƔɯϟÔɯÐÕÛÌÙÝÈÓÚ which allowed us to sample neuronal 

activity from different depths of cortical tissue.   For the purpose of this study, neural 

activity was recorded from depths of 1.2-2.0 mm into the arm representation of the right 

hemisphere M1 (both monkeys) and S1 (only monkey M) (Fig. 1B).  Recorded signals 

were amplified, digitized, and filtered by a multichannel recording system (Plexon Inc ., 

Dallas, TX, USA).  Neuronal spikes were sorted on-line using waveform template 

matching and threshold features built into the spike sorting software.  

 We developed a variation o f the original  Fitts experiment by training each 

monkey to perform two dimen sional center-out reaching movements towards 

peripheral targets.  The monkey placed its working hand on a hand -held joystick located 
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at waist level in front of the monkey  (Fig. 1A).  For both monkeys, the working hand 

was chosen to be the left hand because the quality of the neural recordings was better in 

the right hemisphere than the left.  Movements of the joystick in the X (left -right) 

direction and Y (forward -backward) direction s were translated to X (left-right) and Y 

(up-down) movements of a computer  cursor on the display screen.  Trials were initiated 

by holding the joystick within a central target for a random interval between 800 and 

1500 ms.  After this hold period, the central target would disappear and a peripheral 

target would appear on the screen.  The monkey was required to move the cursor 

radially toward the peripheral target to complete a correct tr ial and receive a juice 

reward  (Fig. 1D,F)ȭɯɯ3ÖɯÚÐÔÜÓÈÛÌɯÈɯÙÈÕÎÌɯÖÍɯ(#ɯÝÈÓÜÌÚɯÍÙÖÔɯÛÏÌɯ%ÐÛÛÚɀɯÓÈÞɯÍÖÙÔÜÓÈÛÐÖÕɯȹ$Øȭɯ

12 and 13), the peripheral target was designed to be an arc of variable width: either 8, 15, 

or 22° aligned on the center of the screen (Fig. 1E).  The target arc appeared as a 

thickened arc along the perimeter of  a grey boundary circle.  There were four potential 

target locations: 45, 135, 225, 315° relative to the center of the screen (Fig. 1C).  A correct 

trial required the monkey to move the cursor through the specified arc without first 

leaving the boundary circle.  Trials where the monkey made errant reaches resulted in a 

500-ms timeout period and no juice reward.   The trial sequence is illustrated in Fig. 1D. 

3.2 Results  

3.2.1 Fittsô Law in reaching movements of rhesus monkeys  

 3ÏÌɯÍÐÙÚÛɯÈÕÈÓàÚÐÚɯÞÈÚɯÛÖɯËÌÛÌÙÔÐÕÌɯÐÍɯ%ÐÛÛÚɀɯÓÈÞɯÌßÐÚÛÌËɯÐÕɯÙÏÌÚÜÚɯÔÖÕÒÌàÚȭɯɯTrials 

were divided up both by target location and by target size (TS).  Mean reach trajectories 
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for each trial category were computed offline  (Fig. 1F, 3A-B).  Several components of 

these reaches reflect TS-related differences.  Reaction time (RT) was defined as the time 

elapsed between target onset and initiation of movement.  I developed an algorithm 

which identifies specific patterns in joystick velocity and acceleration to identify the 

movement onset (See Appendix B).  This algorithm was validated by visual inspection of 

correct movement onset identification on greater than 95% of tested trials.  I found that 

RT was elongated for smaller targets (p<0.05, Kruskal-Wallis test; Table 1).  This effect 

held true  in both monkeys for each of the four reach directions (Fig. 2).  One observation 

was that the most difficult target  size (8°) was handled very differently than the two 

easier target sizes.  This could have been the result of center-out overtraining which had 

made all except the very small targets very easy to perform for the monkey.  

Nevertheless, there were consistent trends of longer RT (p<0.05; Fig. 2; Table 1) and 

slower movements (p<0.05, Kruskal-Wallis test; Fig. 3; Table 1) as a result of smaller 

target sizes.  Fitting Eq. 13 with parameters from both monkeys, the estimate of 

ÐÕÍÖÙÔÈÛÐÖÕɯÊÈ×ÈÊÐÛàɯÞÈÚɯÞÐÛÏÐÕɯÈɯÚÐÔÐÓÈÙɯÙÈÕÎÌɯÈÚɯÛÏÈÛɯÖÍɯÏÜÔÈÕÚɯÍÙÖÔɯ%ÐÛÛÚɀɯÖÙÐÎÐÕÈÓɯ

work (10-20 bits/s, Fig. 2D). 3ÏÜÚȮɯ%ÐÛÛÚɀɯÓÈÞɯÏÌÓËɯÐÕɯÙÏÌÚÜÚɯÔÖÕÒÌàÚ and TS caused 

similar behaviora l changes as were found in previous human studies [176].  I next 

pursued the identification of the neural correlates of this behavioral phenomenon.  

3.2.2 Neural representation of Fittsô law in M1 and S1 populations  

Activity of M1 and S1 neurons during center -out reaches follows a characteristic 

profile each trial.  After target onset, activity across the population rises quickly,  
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Figure 1: Implantation and experimental protocol . (A) Rhesus monkeys controlled the location 

of a cursor on a display screen by moving a joystick with their left hand. Joystick kinematics 

as well as the neural activity were recorded and analyzed offline. (B) 4×4 Grids of 16 electrode 

triplets were impla nted bilaterally in M1 and S1arm and leg regions, however only the right 

hemisphere arm region of M1 and S1 was recorded from in this study. (C) For each trial, the 

cursor was to move along the radial origin -to-ÛÈÙÎÌÛɯÈßÐÚɯȹ7ɀȺɯÛÖÞÈÙËɯÖÕÌɯÖÍɯÍÖÜÙɯ×ÖÛÌÕÛÐÈÓ 

target locations. (D) Left to right -typical trial begins with cursor moved within the target at 

center of screen.  After hold period, penalty ring and target arc appear.  The cursor is then 

moved radially through the target arc to receive a reward. (E) Th ree potential target sizes are 

shown with respect to the cursor, for size reference. (F) An example of a single trial movement 

trace is shown. Target onset (TO) and movement onset (MO) are denoted on time axis. The 

approach epoch that was used in later ana lysis spanned from movement onset to target 

acquisition.  
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Figure 2: Effect of target size on movements. Distribution of reaction times was computed for 

ÌÈÊÏɯÔÖÝÌÔÌÕÛɯËÐÙÌÊÛÐÖÕɯÉàɯÔÖÕÒÌàɯ-ɯȹ ȺɯÈÕËɯÔÖÕÒÌàɯ,ɯȹ!ȺɯÞÐÛÏɯ×ÙÖÉÈÉÐÓÐÛàɯɁ/ɂɯÚÏÖÞÕɯÈÚɯ

a function of RT.  A Kruskal -Wallis test was performed for each direction to determine 

significance of target size on dis tribution of reaction times (see Table 1). C, Reaction time for 

trials of the three different indices of difficulty (ID) was fit with linear function and tested for 

significance using F test.  Means for each ID plotted as filled circles (monkey M) and open  

circles (monkey N). The target size of the trial is denoted by colors specified below panels A 

and B. D, Movement time for the three ID conditions.  A regression line was used to fit all 

trials and the subsequent inverse of slope yields Index of Performan ce (IP) in bits/s.  

Significance was tested in same way as in C.  All error bars indicate standard error.  
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Figure 3: Reach kinematics reflect differences in target size. A,B, Averaged position traces of 

monkey N and monkey M along the X´ axis from 0 (the origin) to 4 (the target, denoted by 

dashed line).  The target size of the trial is denoted by colors specified in panel A. C,D, 

Distribution of mean approach velocity for ea ch of the four movement directions with 

probability (P) shown as a function of mean approach velocity.  For each direction, Kruskal -

Wallis test performed to evaluate the effect of target size; p -values shown for each separately 

(see Table 1). 
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Table 1: Effect of target size on reaction time and target approach time  

 
Monkey N  Monkey M  

Direction  Target Size   x 

Reaction Time 

Target Size   x 

Velocity, TAT  

Target Size   x 

Reaction Time 

Target Size   x 

Velocity, TAT  

45° p<0.001 p<0.001 p<0.001 p<0.001 

135° p<0.001 p<0.001 p<0.02 p<0.01 

225° p<0.001 p<0.001 p<0.001 p<0.001 

315° p<0.001 p<0.001 p<0.001 p<0.001 

 

 

 

Table 2: Effect of reaction time and target size on firing rate slope preceding movement onset  

 Monkey N, M1 cells  Monkey M, M1 cells  Monkey M, S1 cells  

 Pref Least Pref Least Pref Least 

Long RT 

 

Short RT 

 

0.114±0.01 

 

0.266±0.01 

(0.53)** 

0.085±0.01 

 

0.257±0.01 

(0.57)** 

0.232±0.01 

 

0.345±0.01 

(0.69)** 

0.202±0.01 

 

0.278±0.01 

(0.56)** 

0.092±0.01 

 

0.143±0.01 

(0.58)** 

0.096±0.01 

 

0.112±0.01 

(0.53)ɓ 

Small 

 

Medium  

 

 

Large 

 

 

0.058±0.01 

 

0.153±0.01 

(0.64)*** 

 

0.143±0.01 

(0.65)*** 

 

 

0.077±0.01 

 

0.104±0.01 

(0.57)* 

 

0.132±0.01 

(0.61)*** 

 

 

0.260±0.01 

 

0.297±0.01 

(0.57)*** 

 

0.313±0.01 

(0.61)*** 

 

 

0.192±0.01 

 

0.263±0.01 

(0.60)*** 

 

0.265±0.01 

(0.62)*** 

 

0.058±0.01 

 

0.152±0.01 

(0.64)*** 

 

0.143±0.01 

(0.65)*** 

0.077±0.01 

 

0.104±0.01 

(0.57)* 

 

0.132±0.01 

(0.61)*** 

*p<0.05, ** p<0.001 short RT vs. long RT, ***p<0.001 medium or large target vs. small target,      
ɓnot significant.  
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Figure 4: Effect of reaction time on firing rate profiles . A-C, Averaged and normalized firing 

rate of all recorded M1 cells in monkey N, M1 cells in monkey M, and S1 cells in monkey M.  

For each four-axis panel, the left column denotes movements in preferred direction of each 

neuron and right column shows the least preferred direction.  The upper and lower rows 

represent the averaged and normalized PSTH across long and short reaction tim e trials, 

respectively.  Target size specified by line color (see legend below B). Slopes in spk/s2 

computed from regression of normalized firing rate during analysis interval (gray box, see 

methods). D -F, Population PSTH showing normalized firing rate pro files on long reaction 

time trials for all cells (ordinate) over time (abscissa) relative to target onset (denoted by 

vertical black bar) from M1 of monkey N (D), M1 of monkey M (E), and S1 of monkey M (F).  

For each, the most preferred (left) and least pr eferred direction (right) are compared. G -I, Same 

as D-F with PSTH showing firing rate profiles during the short reaction time trials. Color of 

pixel represents normalized firing rate (z -score.  Scale of axis in A-C narrower than in D -I due 

to averaging across M1 or S1 populations reducing the amplitude of P STH profile compared to 

single cell activity levels.  
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reaching a maximum level approximately near movement onset.  After this, the activity 

returns to baseline levels.  The firing  rate amplitude  of a motor-tuned neuron is a 

function of velocity and directional preference of the specific neuron, among other 

parameters.  To establish the neural correlates of target representation independent of 

these two kinematic parameters, I compared the firing rate (FR) profiles between trials 

with different size targets.  Peri -event time histograms (PETHs, Appendix A .1.1) [177] 

were generated to visualize the activity of neurons temporally aligned to the onset of the 

peripheral target.   

The first major result was that TS affected the slope of the FR ascent following 

target appearance (Fig 4).  TS had a significant effect on FR slope (p<0.05, 1-way 

ANOVA , Table 2), with larger targets related to steeper slopes.  This effect persisted 

when looking only at short RT trials (p<0.05) and only long RT trials (p<0.05).  

Furthermore, the TS ɬ FR slope effect was observed both in the preferred and least 

preferred direction of M1 neurons  (p<0.05).  Among S1 neurons, the TS-FR slope effect 

was only significant in the preferred direction (p<0.05).  Analysis of the FR slope is 

complicated by the clear effect that RT has on slope.  Trials with elongated RTs (greater 

than the median) had a significantly lower FR slope than short RT trials (p<0.05). 

Multiple linear regression was used for each recorded neuron to quantify the fraction of 

the population which exhibited  each of these effects.  To do this, single trial FR slopes 

were computed and fit as a function of both RT and TS (Eq. 14):  

ὛὰέὴὩὥϽὙὝ ὦϽὝὛ ὧ          (14)  
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Regression of each neuron individually yielded 95% confident intervals (from t statistic) 

for the coefficients.  If the confidence interval did not contain zero, it was deemed 

significant  (Table 2).  From monkey N, 40% of M1 neurons had significant regression 

coefficients for the TS term, compared to 18% for the RT term.  For monkey M, the 

results from M1 were 11% for TS and 31% for RT and in S1 the results were 20% for TS 

and 32% for RT.  To summarize, both the reaction time and the target size had a 

significant effect on the FR slope. Differences in reach velocity were also reflected in 

modulation in M1 and S1 activity.  A similar analysis to Fig. 4 was performed where 

trials were separated into low and high velocity trials  (Fig. 5).  Amongst these two  

Table 3: Effect of trial velocity and target size on mea n firing rate in peri -movement epoch  

 Monkey N, M1 cells Monkey M, M1 cells Monkey M, S1 cells 

 Pref Least Pref Least Pref Least 

Slow 

 

Fast 

 

1.29±0.02 

 

1.44±0.03 

(0.67)* 

0.41±0.02 

 

0.53±0.03 

(0.62)* 

1.31±0.02 

 

1.53±0.03 

(0.59)* 

0.19±0.02 

 

0.31±0.03 

(0.55)* 

0.73±0.02 

 

1.25±0.02 

(0.82)* 

0.57±0.01 

 

0.74±0.02 

(0.53)* 

Small 

 

Medium 

 

 

Large 

 

 

1.04±0.03 

 

1.54±0.03 

(0.75)***  

 

1.50±0.02 

(0.73)***  

 

0.35±0.03 

 

0.54±0.03 

(0.64)***  

 

0.50±0.03 

(0.62)***  

1.34±0.04 

 

1.44±0.04 

(0.56)** 

 

1.48±0.03 

(0.56)***  

 

0.24±0.03 

 

0.27±0.03 

(0.51)
À
 

 

0.23±.0.03 

(0.48)
À 
 

 

0.20±0.03 

 

1.03±0.03 

(0.93)***  

 

0.97±0.01 

(0.92)***  

0.56±0.03 

 

0.59±0.03 

(0.53)
À
 

 

0.58±0.03 

(0.61)
À
 

ANOVA 

overall 

ANOVA   

fast only 

ANOVA 

slow only 

P<0.001 

 

 

P<0.001 

 

 

P<0.001 

 

P<0.001 

 

n/s 

 

 

P<0.001 

 

P<0.02 

 

 

n/s 

 

 

P<0.001 

 

n/s 

 

 

n/s 

 

 

n/s 

 

P<0.001 

 

 

P<0.001 

 

 

P<0.001 

 

n/s 

 

 

n/s 

 

 

n/s 

 

* p<0.001 difference from slow trial MFR, ** p<0.05 difference from small target MFR, *** p<0.001 

difference from small target MFR. 
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Figure 5: Effect of velocity on firing rate profiles.   The normalized firing rate was computed 

during the one second interval surrounding movement onset from three subpopulations of 

neurons: (A) M1 neurons in monkey N, (B) M1 neurons in Monkey M, (C) S1 neurons in 

M onkey M.  In each panel, the left column represents averaged, normalized FR for movements 

ÐÕɯÌÈÊÏɯÊÌÓÓɀÚɯ×ÙÌÍÌÙÙÌËɯËÐÙÌÊÛÐÖÕȮɯÙÐÎÏÛɯÊÖÓÜÔÕɯÛÏÌɯÓÌÈÚÛɯ×ÙÌÍÌÙÙÌËɯËÐÙÌÊÛÐÖÕȭɯɯ3ÏÌɯÛÖ×ɯÙÖÞɯÐÚɯ

averaged over all trials slower than the median approach epoch velocit y and the bottom row 

shows only fast trials. Target size specified by line color (see legend below B). D, Same data 

from A -C collapsed into simply a comparison of slow vs. fast trial average PSTH for each of 

the three cell groups.  Population PSTH for slow  (E-G) and fast (H -J) trial averages.  In each 

panel: y -axis contains all neurons, x -axis represents time aligned on movement onset (black 

bar).  Color of pixel represents norm alized firing rate (z -score). 
























































































































































































































































































































































































