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Abstract 

Mathematical modeling has become an increasingly important aspect of 

biological research.  Computer simulations help to improve our understanding of 

complex systems by testing the validity of proposed mechanisms and generating 

experimentally testable hypotheses.  However, significant overhead is generated by the 

creation, debugging, and perturbation of these computational models and their 

parameters, especially for researchers who are unfamiliar with programming or numerical 

methods.  Dynetica 2.0 is a user-friendly dynamic network simulator designed to expedite 

this process.  Models are created and visualized in an easy-to-use graphical interface, 

which displays all of the species and reactions involved in a graph layout.  System inputs 

and outputs, indicators, and intermediate expressions may be incorporated into the model 

via the versatile “expression variable” entity.  Models can also be modular, allowing for 

the quick construction of complex systems from simpler components.  Dynetica 2.0 

supports a number of deterministic and stochastic algorithms for performing time-course 

simulations.  Additionally, Dynetica 2.0 provides built-in tools for performing sensitivity 

or dose response analysis for a number of different metrics.  Its parameter searching tools 

can optimize specific objectives of the time course or dose response of the system. 

 Systems can be translated from Dynetica 2.0 into MATLAB code or the SBML format 

for further analysis or publication.  Finally, since it is written in Java, Dynetica 2.0 is 

platform independent, allowing for easy sharing and collaboration between researchers. 
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1. Introduction  

1.1 A Brief Overview of Computational Modeling 

Over the past several decades, mathematical modeling has become an important 

tool in biological research. Due to the rapid expansion of biological knowledge, kinetic 

modeling has become a realistic goal, particularly for experimentally well-characterized 

systems.  

Kinetic models have been essential for the progress of the fields of systems and 

synthetic biology where scientists have successfully applied these models to explain 

many biological phenomena. For example, scientists recently constructed a whole cell 

kinetic model of the bacterium Mycoplasma genitalium which was used to predict 

phenotypic features of the bacterium (Karr et al., 2012); kinetic modelling and synthetic 

circuits were recently used to successfully examine the role of stochastic pulses in 

regulating the stress response in bacteria (Locke et al., 2011), quantitatively understand 

quorum sensing in bacteria (Pai et al., 2012) and create genetic oscillators (Danino et al., 

2010).  

A kinetic model essentially represents a mathematical integration of existing data 

and mechanisms on a particular system, and may be useful in a number of ways. A 

kinetic model can be used to test the consistency in the experimental data or mechanisms 

(Ferrezuelo et al., 2012), provide mechanistic explanations for counter-intuitive 

observations (Tan et al., 2012), to facilitate the formulation of experimentally testable 

hypotheses (Yao et al., 2011) or to provide insight into emergent properties, such as 



 

2 

robustness(Wong et al., 2012, Wang et al., 2010, Pai et al., 2012), which may be 

otherwise difficult to grasp intuitively.  

 

Kinetic models need to be simulated using a kind of algorithm: the kind of 

algorithms can be used varies. Because this process is computationally intensive 

simulations of the model using various algorithms is usually done using a modeling 

software. 

1.2 Need for GUI Software 

As seen in Table 1, majority of the latest annotated kinetic models submitted to 

the Biomodels Database (Li, Donizelli et al. 2010) use either COPASI, MATLAB or both 

softwares for modelling or simulation needs. Although these softwares are extremely 

powerful for model creation and simulation, they have a high learning threshold. This 

high learning threshold makes it hard for beginning modelers who have little or no 

programming experience to start modelling synthetic gene regulatory networks. To 

alleviate this problem and facilitate modelling many GUI softwares have been created 

such as OpenAlea (Pradal, Dufour-Kowalski et al. 2008), CellDesigner (Funahashi, 

Morohashi et al. 2003), VCell (Moraru et al., 2008) and E-Cell (Takahashi et al., 2003). 

However these modeling softwares have several drawbacks, for example: OpenAlea does 

not cater to general modelling needs and is specialised for solving plant modelling 

problems; CellDesigner allows GUI modelling of Biochemical networks, however it 

requires an external mathematical package (COPASI) for simulating networks or fitting 

parameters; Both E-Cell and VCell allow simulation, GUI modelling and provide very 
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high functionality, however they have a high learning threshold making them hard to 

intuitively use by beginners. Moreover, there are proprietary tools available such as 

Monolix(Team, 2012), which allow both modelling and simulation capabilities in a single 

user friendly package. However since these tools are proprietary they are not openly 

accessible for facilitating teaching and research. Moreover, many of the other softwares 

are generally available only as plugins and require some main package or software for 

either simulating or modelling a network. 

Therefore, there is a need for an open, user friendly GUI based software with a 

low learning threshold for both simulating and modelling: synthetic biochemical and 

gene regulatory networks. To cater to this need we have developed the software Dynetica 

2.0. 

To provide added functionality while maintaining a simple GUI interface the 

following additions were contributed: 

1. Modular System implementation, improvement of custom GUI, and import, 

export and merger facilities for modules was implemented by me. 

2. SBML input and export was implemented by Samir Unni. 

3. MATLAB export, Parameter Search, and Sensitivity Analysis functionality 

was implemented by Derek Eidum. 

4. Rest of the improvements like inclusion of Expression Variables, and 

improving figure windows was implemented by Dr. Lingchong You. 

This manuscript will cover all the features implemented for Dynetica 2.0. 

Detailed explanation of Modular System implementation and other improvements will be 



 

4 

in a separate section to highlight the contributions made by me, and will remain the main 

part of the thesis. 

To further allow greater adoption and usage of Dynetica 2.0 by the synthetic 

biology community. The source code for Dynetica 2.0 has been released at 

https://github.com/youlab/dynetica under a GPL Version 2 license. 

 

Table 1: Description of Modelling Softwares for Latest Biomodel Database 

Entries. Source: Biomodels Database (Li et al., 2010)  

Publication Modelling Software 

GUI 

Based 

Modelling 

Software 

Simulation Software 
Type of 

Models 

(Kallenber

ger et al., 

2014) 

PottersWheel (Maiwald 

and Timmer, 2008) 
Yes 

MATLAB 

(Mathworks Inc.) 

ODE 

Model 

(Muraro et 

al., 2014) 

OpenAlea(Pradal et al., 

2008) 
Yes 

Systems Biology 

ToolBox for 

MATLAB(Schmidt 

and Jirstrand, 2006) 

ODE 

Model 

(Ribba et 

al., 2012) 
Monolix (Team, 2012) Yes 

Monolix (Team, 

2012) 

ODE 

Model 

(Smallbone 

and Corfe, 

2014) 

COPASI (Hoops et al., 

2006) 
No 

COPASI (Hoops et 

al., 2006) 

ODE 

Model 

(Kerkhove

n et al., 

2013) 

PySCeS (Olivier et al., 

2005) 
No 

COPASI (Hoops et 

al., 2006) 

ODE 

Model 

(Benson et 

al., 2014) 
Unknown  NA Unknown 

ODE 

Model 

(Barrack et 

al., 2014) 
Unknown NA Unknown 

ODE 

Model 

(Gardner et 

al., 2000) 

XPP 

(http://www.math.pitt.ed

u/~bard/xpp/xpp.html) 

No 
MATLAB(Mathwork

s Inc.) 

ODE 

Model 

(van Eunen JWS Online Cellular Yes Mathematica(Wolfra ODE 
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et al., 

2013) 

Systems Modeling 

(jjj.bio.vu.nl) 

m Research) Model 

(Proctor et 

al., 2013b) 

COPASI(Hoops et al., 

2006) 
No 

COPASI(Hoops et 

al., 2006) 

ODE 

Model 

(Messiha et 

al., 2014) 

COPASI(Hoops et al., 

2006)  
No 

 COPASI(Hoops et 

al., 2006) 

ODE 

Model 

(Begitt et 

al., 2014) 
Unknown NA Unknown 

ODE 

Model 

(Vizan et 

al., 2013) 

XPP 

(http://www.math.pitt.ed

u/~bard/xpp/xpp.html) 

No 
COPASI (Hoops et 

al., 2006) 

ODE 

Model 

(Mitchell 

and 

Mendes, 

2013) 

CellDesigner 

(Funahashi et al., 2003) 
Yes 

COPASI (Hoops et 

al., 2006) 

ODE 

Model 

(Stanford 

et al., 

2013) 

Systems Biology Table 

(http://www.sbtab.net/) 
No 

MATLAB(Mathwork

s Inc) and 

COPASI(Hoops et 

al., 2006) 

ODE 

Model 

(Sen et al., 

2013) 
Unknown NA Unknown 

ODE 

Model 

(Roblitz et 

al., 2013) 

BioPARKIN (Dierkes et 

al., 2012) 
No 

MATLAB 

(Mathworks Inc) 

ODE 

Model 

(Schittler 

et al., 

2010) 

MATCONT (Dhooge et 

al., 2003) 
No 

MATLAB 

(Mathworks Inc) 

ODE 

Model 

(Pathak et 

al., 2013) 

SBMLsqueezer(CellDes

igner Plugin) (Drager et 

al., 2008) 

Yes 

COPASI(Hoops et 

al., 2006) and 

CellDesigner 

(Funahashi et al., 

2003) 

ODE 

Model 

(Demin et 

al., 2013) 

DBSolve Optimum 

(Gizzatkulov et al., 

2010)  

Yes 

DBSolve 

Optimum(Gizzatkulo

v et al., 2010) 

ODE 

Model 

(Sharp et 

al., 2013) 

COPASI (Hoops et al., 

2006) 
No 

COPASI (Hoops et 

al., 2006) 

ODE 

Model 

(Proctor et 

al., 2013a) 

COPASI (Hoops et al., 

2006) 
No COPASI and R 

ODE 

Model 
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1.3 An Overview of Dynetica 

Models in Dynetica 2.0 are represented by the substances and reactions that make 

up the system, as well as the parameters and expressions which govern them.  Models are 

drawn in a graph layout and can be compartmentalized into individual modules. These 

modules can be copied, saved, and imported independently, thus facilitating the 

construction of large systems from basic subcomponents. 

Simulations may be run using either of the following algorithms: Runge-Kutta 

(Fourth Order, Fixed Time Step), Runge-Kutta-Fehlberg (Fourth Order, Variable Time 

Step), Doob-Gillespie algorithms (both First Reaction and Direct Method 

implementations), and the Euler-Maruyama method for stochastic differential equations. 

Additionally, Dynetica 2.0 provides a number of useful tools for analyzing the 

behavior of models.  Sensitivity analysis allows the user to examine how the time courses 

or characteristic metrics of a system change with perturbations in the system’s parameters 

or initial conditions.  Repeated stochastic simulations allow the user visualize the 

distribution of a system’s substance values across many trials.  Parameter searching 

perturbs the system’s parameter values in order to match the system’s output to some 

user-specified behaviors. 

Finally, Dynetica 2.0 supports the import and export of models in SBML format, 

and provides tools for exporting models to either deterministic or stochastic MATLAB 

scripts, allowing the user to perform any analyses not covered by Dynetica. 
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Figure 1.  The design paradigm of Dynetica 2.0.  The user specifies the 

module components: substances, reactions, parameters, and expression variables.  

 The module representation is independent of algorithm used to simulate it. 

 Additionally, Dynetica 2.0 provides analysis tools which measure the behavior of the 

system in the form of metrics, which are calculated independent of how the simulation is 

performed.  Depending on the type of analysis performed, these metrics may lead to or be 

measured as the result of some perturbation in the system parameters or initial conditions. 

 Additionally, the model representation may be imported from or exported to SBML 

format, and can generate simple MATLAB simulation scripts. 

The areas of improvement in Dynetica 2.0 can be summarized in four segments: 

interface enhancements, sensitivity analysis support, genetic parameter searching, and 

import/export functions. 
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2. Overview of New Features Implemented in Dynetica 

2.1 Interface 

The three primary interface enhancements in Dynetica 2.0 are expression variable 

support, modular system construction, and import/export support. 

2.1.1 Expression Variables 

An expression variable is an entity in Dynetica 2.0 that can can be represented by 

any mathematical or boolean function of substance concentrations, parameters, and time. 

 Expression variables can be used in reaction kinetics equations just like substance 

concentrations or parameter values.  Because of this flexibility, they can be used as time-

dependent system inputs, intermediate expressions, and output variables or indicators. 

2.1.2 Modules 

When building large and/or complex systems in Dynetica, it often becomes 

difficult to keep track of the various components and how they interact. One way to 

mitigate this problem is by taking advantage of the modular nature of many of these large 

networks. Although there may be many components, they do not interact with all other 

components. Rather they tend to form small subnetworks, which then interact with one 

another via a handful of interconnects. 

Dynetica 2.0 allows users to take advantage of this phenomenon by creating such 

subnetworks, called “modules.” Fig. 2, displaying a model for programmed altruistic 

death, exemplifies how Dynetica modules can be harnessed to enhance conceptual 

simplicity. The substances comprising the cheater and cooperator modules, on the bottom 
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right and bottom left corners of the network graph, respectively, have each been isolated 

into their own module. 

2.1.3 Import/Export support  

A major improvement in Dynetica 2.0 over the previous version is its ability to 

import and export models in SBML(Systems Biology Markup language). The earlier 

version of Dynetica only allowed models to be stored in the native DYN format used by 

Dynetica. This made it hard for models created in Dynetica to be further extended using 

more advanced modelling softwares, as they would have to be recreated in the new 

modelling platform. This new feature allows models created in Dynetica to be imported 

by other software packages that recognize the SBML format. Another useful export 

feature in the newest version is the ability to generate MATLAB code for a model created 

in Dynetica. 

In addition, Dynetica 2.0 allows the user to: merge existing models with each 

other or add one model to another as a module. These features give the user incredible 

power when creating new models because it allows existing models to be reused or 

extended. Moreover, these new features allow the user to quickly create and test synthetic 

circuits by combining circuit elements from a library. Another advantage of using this 

new feature the initial MATLAB or SBML code for a model can be generated much 

more quickly and robustly, as the user won’t have to rewrite the entire code when the 

model is modified or extended. Moreover, parameter values and constants are also 

preserved during merger. 
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Figure 2. The module feature of Dynetica’s UI. The upper window represents 

the entire cheater-cooperator system, while the bottom window shows just the 

cheater module. 

2.2 Sensitivity Analysis Support 

2.2.1 Repeated Stochastic Simulations 

Analyze transient effects under stochastic conditions and generate (what could be 

a signature) distribution of 

values.

 

 

Figure 3. A stochastic simulation of the RbE2F system. The histogram on the 

right shows the distribution of [CE] values after 500 ms. 
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2.2.2 Metrics 

Metrics are the key units used to analyze the behavior of a system in Dynetica 2.0. 

 A metric is a value which describes some characteristic of a single time course.  These 

are used in both sensitivity analysis and parameter searching. 

¶ The metric implemented in Dynetica 2.0 include: 

¶ Final, min, max value 

¶ Range 

¶ Maximum rate 

¶ Time to reach a user-specified fraction of steady state value 

¶ Area under curve 

¶ Peak frequency in the power spectrum 

¶ Correlation coefficient when compared to another substance or expression 

variable in the same system 

2.2.3 Sensitivity Analysis 

Dynetica 2.0 provides the user the ability to explore how the behavior of the 

system varies with changes in either parameter values or initial substance concentrations 

through its sensitivity analysis tool.  The user selects a parameter or substance from the 

model to act as the independent variable, and defines any number of metrics to evaluate. 

The simulation is run multiple times over a range of values for the independent variable, 

and the value of each metric is plotted as a function of the parameter or initial 

concentration value.  Alternatively, the time courses for each trial can be plotted on the 
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same axes in order to visualize the change in behavior as the independent variable is 

perturbed. 

2.2.3.1 Deterministic 

 

Fig. 4 shows an example of a sensitivity analysis conducted using deterministic 

simulations. The parameter ‘w’ is varied from 0.5 to 2.0, resulting in a change in the 

length of the transient response and the oscillation frequency at steady state for the 

substance ‘n’. Note the use of color to facilitate the differentiation of the different time 

courses. 

Frequency is not the only metric that Dynetica’s sensitivity analysis tools support. 

The other difference between the timecourses in fig. 4 - the time to steady state - can also 

be measured, using the “time to steady state” metric. 
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Fig. 5 contains an example of a more sophisticated sensitivity analysis. Rather 

than simply showing the timecourses for the various substances comprising the system 

under simulation, the frequencies of oscillation are shown. This is particularly useful for 

a system such as that in fig. 4, where one of the few differences between the timecourses 

is their oscillation frequency.  

 

2.2.3.2 Stochastic 

The above tools may be used with stochastic algorithms as well.  However, this 

may prove less meaningful because the change in system behavior may be due to random 

noise rather than the deviations in the independent variable.  To examine how stochastic 

systems respond to changes in parameters or initial concentrations, Dynetica 2.0 provides 

a tool for performing repeated stochastic simulations for each value of the independent 
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variable.  Both the timecourses and the distribution of values can be viewed for each 

point, as shown in the figure below. 

 

 
Figure 6. The above figure demonstrates the results of a stochastic sensitivity 

analysis on an RbE2F system.  The options panel on the far left allows the user to 

select a substance or expression variable to plot, which value of the independent 

variable to look at, and the figure window options.  The center panel shows the 

resulting timecourses.  The user can select how many are displayed.  The right panel 

shows the distribution of values across the repeated simulations, as well as the mean 

and variance.  The slider bars at the top allow the user to specify the time window of 

interest. 
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2.3 Parameter search 

Dynetica 2.0 provides tools for searching the parameter space of a system in order to 

optimize user defined objectives.  This is useful for when the user knows the desired 

behavior of a system and wants to find a set of parameters for which the system closely 

matches this behavior.  The search may be performed over all or any subset of the 

system’s parameters. 

 

The user defines the desired behavior of the system by specifying a number of target 

objectives, which the algorithm will attempt to match.  The user selects a metric and 

specifies a goal for that metric’s value, which can be to minimize, maximize, or target its 

value to a specific number.  Target objectives can also be given different weights, with 

higher weighted objectives having a greater influence on the search than lower ones. 

 

The search is done using a genetic algorithm.  The population is made up of individual 

parameter vectors.  In order to calculate the evolutionary fitness of each individual 

parameter vector, its parameters are applied to the system and the simulation is run.  The 

vector then receives a fitness score between 0 and 100 based on how well the simulation 

matches the user-defined metrics.  At each generation, high scoring parameter vectors 

survive and reproduce, while low scoring vectors die off, maintaining a constant 

population size.  The implementation details for this algorithm can be found in the 

supplementary materials. 
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To run a parameter search, the user must specify which parameters will be 

perturbed.  All others will remain fixed at their user defined values.  The user also must 

specify the target objectives for the algorithm to optimize, each of which consists of a 

metric, a goal for that metric, and a relative weight.  The user must also specify the 

simulation duration, population size, and maximum number of generations the algorithm 

will run.  The user can also define a stopping threshold, which is a fraction specifying 

what score is needed to cause the search to complete.  For example, the default value of 

0.05 indicates that a fitness score of 95 or higher (out of 100) is sufficient to stop the 

search.  Setting this value to 0 means the search will not stop unless the target objectives 

are matched exactly or the maximum number of generations is reached. 

The user may also choose how the initial population of parameter vectors is 

created.  By default, each parameter vector is created by random normal perturbations 

around the user’s defined value.  This allows the algorithm to use the user-given values as 

an initial guess.  However, the user may also chose to create the initial population by 

selecting uniformly random numbers between the parameter’s specified minimum and 

maximum values.  This may produce better results by exploring new areas of the 

parameter space.  Note, however, that if this option is selected, it is important to specify 

realistic constraints for the parameter’s minimum and maximum values. 
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Figure 7. Shows the resulting time course plots before (above) and 

after(below) running a parameter search. 

Dynetica 2.0 also features a tool for searching the parameter space of a system when the 

desired behavior is not a feature of a single simulation, but of the dose response or 

sensitivity analysis curves.  In addition to the inputs above, the user must specify a 

parameter or initial substance concentration to use as the independent variable, as well as 

a range of values to scan over.  The same genetic search algorithm is used; however, 

rather than using a single metric value, the fitness score is calculated as a function of the 

shape of curves when the specified metrics are plotted as against the independent 
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variable.   

For each metric selected, there are five target functions which can be used.  The range of 

the sensitivity plot can be minimized or maximized, resulting in the metric being 

minimally or maximally responsive to perturbations in the independent variable, 

respectively.  The user may also select to maximize or minimize the difference between 

the first two local extrema, or the first local extrema and the steady state value.  Lastly, 

the user may choose for the response curve to be maximally linear, in which case a linear 

regression will be case the score will be based on the coefficient of determination. 
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Figure 8. Shows the resulting time course plots before and after running a 

parameter search.
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3. Modular Systems in Dynetica 

 

3.1 Introduction 

Modular Systems are an extension of Dynetica 2.0 that allow the user to create 

and maintain models that are modular in organization. This ability add and remove 

modules gives the user incredible power when creating models, as it allows previous 

models to be reused and extended. Moreover, many gene circuits are modular in 

organization and construction. Using Dynetica 2.0 the user can quickly create models 

which can be used to study the properties of a new gene circuit constructed using well 

known smaller circuits as modules. Moreover, by using this new feature the initial 

MATLAB or SBML code for a model can be generated much more quickly and robustly, 

as the user won’t have to rewrite the entire code when the model is modified or extended. 

3.2 Design Paradigm 

Like the previous version of Dynetica, a model can have Reactions, Substances, 

Parameters and Expressions (RSPEs) at the highest level of organization. In this version 

in addition to RSPEs, the highest level of organization (henceforth referred to as the 

Super system) also contains Modules. Like the Super system each module can also have 

its own RSPEs. These RSPEs remain globally accessible, i.e. individual RSPEs are 

visible to all the other RSPEs in the system, independent of whether they are present in 

the super system or in a module; for example a reaction can have substances inside a 

module as reactants and substances outside the module as products: the system behaves 
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as if the modules don’t exist.  Moreover, the user can build models of arbitrary 

complexity by importing or exporting modules to and from Dynetica 2.0 (at the moment 

the ability to import modules into a system is restricted to the system type “Modular 

System”). In addition, an existing model can be extended by merging its contents with an 

empty Modular System. 

To aid in the creation and maintenance of modules, Dynetica 2.0 has introduced 

many new and intuitive features.  

 

3.3 Creating and Editing Modules: 

Modules can be created from the main Dynetica 2.0 window by clicking the new 

Entity dropdown menu at the bottom of the screen and clicking on “GeneralModule”. 

This should open a dialog box asking the user to name the new Module.  

Once created the module interface looks similar to the interface of the main 

system. New entities can be created within the module by using the entity creation 

dropdown menu at the bottom of the window. Moreover, the structure of the module can 

be visualized using the module tree on the left. In addition to providing visual 

representation of the module structure, the module tree can be used to access each 

element in the module. 

RSPEs can also be easily added to the Super system from a module and added to a 

module from the super system or from another module, using intuitive gestures. 

The drag and drop gesture common in windows file systems can be used to drag 

and drop RSPEs into a module using the main system window. Moreover, by clicking 
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and dragging an RSPE within a module to the bottom of the module window transfers the 

RSPE to the main system. Drag and drop gesture can also be used to transfer entities 

from  Poped-out modules to other modules that have not been Poped-out (explained 

below). 

3.4 Module Visualization: 

A module can be visualized easily by double clicking the module in the main 

system. Moreover, by right clicking a module and then clicking on Pop Out, the contents 

of a module are immediately displayed in the main system window. These contents can 

be hidden again by clicking on “Pop In all Modules” at the bottom of the main window. 

Moreover, modules can be Poped In and Out from their respective windows. 

The module window also provides a few intuitive features to help the user 

understand and visualize the model structure. These features include the ability to hide 

and display connections to the super system and the ability to visualize the immediate 

connection partners for RSPE’s in the module. 

In addition Dynetica 2.0 displays the kinetics or value of an RSPE when you 

mouse over it. 

3.5 Importing Exporting and Merging modules: 

To create a module that the user wants to store as an independent system a new 

system type of “Reactive System” can be created from the File menu. This system can 

then be manipulated in a manner similar to a “Modular System” except no new modules 

can be created in this system.  
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To import the above system or any older systems as a module, the saved .dyn file 

for that system can simply be either merged with or imported as a module when “Merge” 

or “Import as Module” buttons are clicked at the top of the main window. Therefore by 

merging or importing a system a module, models of arbitrary complexity can be easily 

made. 

3.6 Manipulating the System Tree: 

The main system tree displays the complete model and its structure. It contains 

the nodes Parameters, Reactions, Substances, Expressions and Modules. Expanding each 

parent node allows the user to view and access the elements inside that node.  

By clicking the Modules node in the system tree and expanding a particular 

module node shows the RSPEs within that module. Moreover right clicking each node 

shows several options, including the ability to Pop In and Pop Out modules. The structure 

of this tree changes dynamically as RSPE’s are moved from and to modules. 
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Conclusion 

Dynetica 2.0 has added support for much more sophisticated analyses of 

stochastic simulations. For a variety of metrics, not only can they be repeated with a fixed 

parameter set to generate outcome distributions, they can also be varied to accomplish 

sensitivity analyses. For small systems, stochastic analyses can provide realistic insight 

into laboratory phenomena. For those systems that are too large for stochastic algorithms 

to be practical, sensitivity analyses can also be conducted using deterministic algorithms. 

The aforementioned metrics can also be used for the opposite of a sensitivity analysis. A 

genetic search algorithm is used to determine a set of parameter values that would 

produce the desired value of a specified metric. Significant interface and experience 

improvements have been made to Dynetica, in the form of the expression 

variable/module features, as well as import/export functionality. These enhancements 

ease the process of constructing and evaluating models in Dynetica 2.0, as well as the 

collaboration process when working with researchers who utilize other pieces of dynamic 

network simulation software. 

Some of the limitations of Dynetica 2.0 are its inability to model spatial gradients 

and multiple compartments such as those found in Eukaryotic cells and organ systems. 

Despite these limitations we believe that Dynetica 2.0 serves its purpose by providing a 

robust and easy to use modelling and simulation environment for non-programmers. In 

addition many basic modelling tasks do not require the added complexity of multiple 

comparments, computationally intensive simulations, and spatial modelling. 

 



 

27 

Appendix A: Important Web links  

Dynetica Main Page: 

http://www.genome.duke.edu/labs/YouLab/software/dynetica/index.php  

Dynetica  Github Page: 

https://github.com/youlab/dynetica 

Dynetica Youtube tutorials: 

https://www.youtube.com/channel/UCfn8saYPtPKkeIw786bHpmA 

http://www.genome.duke.edu/labs/YouLab/software/dynetica/index.php
https://github.com/youlab/dynetica
https://www.youtube.com/channel/UCfn8saYPtPKkeIw786bHpmA
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