Fine-Scale Foraging Behavior of Humpback Whales *Megaptera novaeangliae* in the Near-Shore Waters of the Western Antarctic Peninsula

by

Reny Blue Tyson

Marine Science and Conservation
Duke University

Date:_______________________

Approved:

Douglas Nowacek, Supervisor

Ari Friedlaender

James Hench

Daniel Rubenstein

Dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor
of Philosophy in Marine Science and Conservation in the Graduate School
of Duke University

2014
ABSTRACT

Fine-Scale Foraging Behavior of Humpback Whales *Megaptera novaeangliae* in the Near-Shore Waters of the Western Antarctic Peninsula

by

Reny Blue Tyson

Marine Science and Conservation
Duke University

Date:_______________________

Approved:

Douglas Nowacek, Supervisor

Ari Friedlaender

James Hench

Daniel Rubenstein

An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Science and Conservation in the Graduate School of Duke University

2014
Abstract

High-resolution bio-logging tools were used to examine the fine-scale foraging behaviors of humpback whales (*Megaptera novaeangliae*) in the coastal waters of the Western Antarctic Peninsula during the austral autumn of 2009 and 2010. Discrete feeding events (i.e., lunges) were inferred from the biologging records of thirteen whales, including a mother and her calf. In general, humpback whales exhibited efficient foraging behaviors that allowed them to maximize energetic gains and minimize energetic costs as predicted by optimal foraging theory. They fed at a continuous and high rate in the upper portion of the water column (< 100 m) from approximately dusk to dawn when their prey (Antarctic krill, *Euphausia superba*) were most vulnerable and less costly to acquire (i.e., near the surface). When forced to dive to greater depths, they adjusted their behaviors (e.g., descent and ascent rates) so that they could maximize their foraging durations and increase their lunging rates. In addition, humpbacks appeared to accept short term (i.e., dive by dive) costs associated with depleted oxygen stores in favor of maximizing long term (i.e., daily) energetic gains. Such efficient behaviors are particularly beneficial for mother-calf pairs who have additional energetic costs associated with foraging, such as lactation (mother), growth (calf), and maintaining proximity. In addition, because the physiology of humpback whales is poorly understood yet critically important for predicting their behaviors in response to
fluctuations in their environmental conditions, foraging behaviors inferred from the bio-
logging records were used to estimate their metabolic rates, oxygen storage capacities,
and oxygen replenishment rates under the framework of optimal foraging theory. This
research suggests that the current techniques used to estimate humpback whale oxygen
stores is appropriate but that the estimation of metabolic rates of humpbacks while
foraging and while traveling need to be addressed further. This work aims to increase
the current understanding of humpback whale foraging behaviors along the Western
Antarctic Peninsula so that appropriate measures can be taken to aid in their recovery
and in the sustainability of the Antarctic marine ecosystem.
Dedication

I dedicate this dissertation to my mother, Dr. Gail Tyson, who got mad at me for jumping out of a plane...

....without her.
Co-Authorship Statement

The research presented in this dissertation is part of a collaborate study designed to elucidate the ecological relationships between humpback whale and Antarctic krill in the Western Antarctic Peninsula and aspects it have been previously published elsewhere (e.g., Nowacek et al. 2011, Ware et al. 2011, Espinasse et al. 2012, Johnston et al. 2012, Stimpert et al. 2012, Tyson et al. 2012, Friedlaender et al. 2013). Several colleagues contributed to my research and are (or will be) listed as co-authors on modified versions of each data chapter submitted for peer-review to scientific journals. Douglas Nowacek and Ari Friedlaender were co-principle investigators of the collaborative research project and supplied funding for much of the work. They are co-authors on all of my data chapters. Allison Stimpert and Colin Ware contributed significantly to the analysis of tag data presented in Chapters 2. Finally, James Clark helped me to design the simulated model to estimate humpback whale physiology in Chapter 4 and provided analytical support.
Contents

Abstract .. iv

List of Tables .. xi

List of Figures .. xiii

Acknowledgements .. xvii

1. Introduction .. 1

 1.1 Balaenopterid Foraging Ecology ... 2

 1.2 Research Objectives ... 6

 1.3 General Materials and Methods .. 8

 1.3.1 Study Area .. 9

 1.3.2 Data Collection .. 12

2. In Synch? Humpback Whale Mother and Calf Foraging Behavior: Insights from Multi-Sensor Suction Cup Tags* ... 20

 2.1 Introduction... 20

 2.2 Methods .. 24

 2.3 Results .. 30

 2.3.1 Foraging Behaviors ... 30

 2.3.2 Synchronous Behaviors ... 35

 2.4 Discussion .. 39

3. How Should a Clever Whale Allocate Foraging Time and Effort 46

 3.1 Introduction... 46

 3.2 Methods .. 49
4.3.1 Observed Whale Behavior ... 102
4.3.2 Results of Simulation .. 104
4.4 Discussion .. 109
5. Current Knowledge, Data Gaps, and Future Research Directions 117
 5.1 Current Knowledge .. 118
 5.2 Data Gaps and Future Research Directions ... 120
Appendix A ... 124
Appendix B ... 125
Appendix C ... 127
Appendix D ... 131
References .. 133
Biography ... 154
List of Tables

Table 1: Whale ID, date, and location for each humpback whale tagged with a Dtag. Total time the tag was on each whale is also included. Whale IDs represent the julian day each individual was tagged and whether the individual was the first (a) or second (b) animal tagged that day..13

Table 2: Mean (± SD) values of dive duration (sec), post-dive surface duration (sec), and maximum dive depth (m) per number of lunges executed on a dive..........................34

Table 3: Percent of correlation coefficients that were greater than 0.5 (synchronous behaviour) and greater than 0.9 (highly synchronous behaviour) for the pair’s depth, pitch, and heading...39

Table 4: Descriptions, equations, and values of parameters used in the optimal model. *mτ was converted from W to L O₂ s⁻¹ for use in the optimal model. The calculation of mτ factors in an estimated energetic savings attributed to gliding behaviors (Williams 2001). ..54

Table 5: Dtag deployment information. Whale ID, tag on date, tag start time, and tagging location are shown as well as the number of lunges and foraging dives detected for each whale..59

Table 6: Pearson’s product moment correlation coefficients (r) and model efficiencies (ME) for each individual whale for observed foraging durations (t), lunge counts (l), dive durations(u), and post-dive surface durations (s) against corresponding optimal foraging durations (t*), lunge counts (l*), dive durations (u*), dive-lactate threshold durations (DLT), and surface durations (s*). Strongly positively correlated coefficients (r > 0.90; Cohen 1988) are indicated with a §. ME values close to one indicate a near-perfect match between observed and predicted values, while negative values cannot be recommended (Loague & Green 1991, Mayer & Butler 1993)..73

Table 7: Dtag deployment information. Whale ID, tag on date, tag start time, and tagging location, tag on time, and the number of foraging dives recorded for each humpback whale...94

Table 8: Descriptions, equations, and values of parameters used as priors in the simulated model. Notes: values of mτ, and mτ were converted from Watts to L O₂ s⁻¹ for use in the optimal model. ...99
Table 9: Pearsons r correlation coefficients for maximum dive depths, post-dive surface durations (s), travel durations (τ), forage durations (f), and dive durations (u). All correlations were significant (i.e., $p < 0.001$).

Table 10: Posterior estimates of humpback whale metabolic rates while traveling and (m_τ) and foraging (m_t), total oxygen capacity (K), and initial rate of oxygen replenishment (α); estimates are given as the posterior means, medians, standard deviations (SD) and 2.5% and 97.5% credible limits (CL).

Table 11: Body length estimates for tagged Antarctic humpback whales from the Western Antarctic Peninsula region. Lengths were measured using photogrammetric techniques on digital photographs taken in the fall of 2009 and 2010. Data are compiled from Kutcher (unpublished data). Total body lengths are represented as means ± SD.
List of Figures

Figure 1: U-shaped foraging dives of a humpback whale. The descending and ascending excursions at depth have been linked to discrete feeding lunges. ...5

Figure 2: Study sites located along the Western Antarctic Peninsula: Wilhelmina Bay, Anvord Bay, and Flanders Bay. ..10

Figure 3: A) Dtag and suction cup attachment with VHF antenna visible at the bottom (Johnson & Tyack 2003); B) successful Dtag attachment; C) Dtag attached to a humpback whale..14

Figure 4: An example of a humpback whale pseudo-track created from data collected with Dtags within TrackPlot (Ware et al. 2006). The blue ribbon represents the whale’s pseudo-track, the dashed vertical line represents depth (10 m bars), the horizontal arrow represents magnetic north, and the blue and red wedges along the track represent the magnitude of the frequency of fluke strokes. From Ware et al. (2011). ...17

Figure 5: Locations where the mother and calf were tagged (open circles), tracked (dotted line), observed at the surface (fluke symbols), and where their tags released (closed circles); May 19-20, 2010, Wilhelmina Bay, Antarctica. Note that the mother’s tag released 4 h 6 min before the calf’s tag released; therefore, the separation in tag off locations is not necessarily representative of the pair being separated in space.25

Figure 6: Dive profiles (depth versus time) and foraging lunges executed by the mother (A) and her calf (B) during the duration of the concurrent tag records. Note: simultaneous recordings began at 11:51:17 on May 19, 2011, occurred overnight, and ceased when the mother’s tag came off at 7:42:00 on the morning of May 20, 2010.32

Figure 7: Mean dive durations (sec), post-dive surface durations (sec), and maximum depth (m) values for foraging dives executed by the mother and its calf.35

Figure 8: Pearson’s product-moment correlations coefficients calculated for each dive for the duration of the concurrent tag records: A) correlation of depth behavior; B) correlation of pitch behavior; and C) correlation of heading behavior. The solid horizon line represents $r = 0.5$ (i.e., synchronized behavior), while the dashed horizontal line represents $r = 0.9$ (i.e., highly synchronized behavior). ..37

Figure 9: Three-dimensional visualizations of the mother and calf’s dive behavior during varying behavioral states (TrackPlot, Ware et al. 2006). The mother’s track is yellow
while the calf’s track is blue; feeding lunges are represented as green boxes on the pseudo-track. The dashed vertical line represents depth (10 m increments from the surface), the horizontal arrow represents magnetic north, and the wedges along the track represent the magnitude and frequency of fluke strokes (identified from angular accelerations about a lateral axis). Note: horizontal proximity is approximated based on surface fixes (N = 30, 27 for the mother and calf, respectively) and dead-reckoning techniques and may not represent the true horizontal proximity. A) A synchronized dive during which both animals are foraging; B) an unsynchronized dive during which both animals are foraging; C) a synchronized dive during which the mother is foraging and the calf is not foraging but swimming nearby; and D) an unsynchronized dive during which the mother is foraging and the calf is not foraging and not swimming synchronously.

Figure 10: A whale’s pseudo-track with associated acoustic spectrogram and estimated speed (green line overlaid onto spectrogram) shown in TrackPlot (Ware et al. 2006). The drop in speed shown on the spectrogram is indicative of a lunge performed by the whale, which is represented as a green box on the pseudo-track.

Figure 11: Temporal distribution (A) and frequency (B) of the maximum dive depths of foraging dives. Note: values are color coded by whale ID (A) for comparison.

Figure 12: Observed and predicted values (A and B), raw residuals ($y_i - \hat{y}_i$) (B and C), and root mean squared errors (E and F) of foraging durations and the number of lunges executed per dive, respectively, as a function of maximum dive depth. Note: values are color coded by whale ID (A - D) for comparison. The boxes in E and F are drawn with widths proportional to the square-roots of the number of observations in each group and outlying data points are excluded (R Core Team 2013).

Figure 13: Observed and predicted foraging durations and lunge counts as a function of dive durations and post-dive surface times, respectively. Note: values are color coded by whale ID for comparison.

Figure 14: Observed and predicted values (A), raw residuals ($y_i - \hat{y}_i$) (B and C), and root mean squared errors (D and E) of dive durations and the diving lactate threshold, DLT, respectively, as a function of maximum dive depth. Note: values are color coded by whale ID (A, B, and C) for comparison. The boxes in D and E are drawn with widths proportional to the square-roots of the number of observations in each group and outlying data points are excluded (R Core Team 2013).
Figure 15: Observed and predicted values (A), raw residuals \((y_i - \hat{y}_i) \) (B), and root mean squared errors (C) of post-dive surface durations as a function of maximum dive depths. Note: values are color coded by whale ID (A and B) for comparison. The boxes in C are drawn with widths proportional to the square-roots of the number of observations in each group and outlying data points are excluded (R Core Team 2013).

Figure 16: Results of a principal component analysis aimed to determine which parameters contributed the most to variability amongst the data: whale ID (Whale), maximum dive depths (Depth), Times of day (Time of day), dive durations (Dive), post-dive surface durations (Surface), forage durations (Forage), and number of lunges per dive (Lunges). A) The percent variance that each principle component contributed to the data. B) A biplots of PC1 and PC2, which reveal the parameters that were most strongly correlated with these components.

Figure 17: Oxygen balance, utilization and acquirement rates: A) oxygen balance per dive against time of day each dive was executed; B) oxygen balance per dive against maximum dive depth; C) the cumulative rate of oxygen loss over the tagging period; and D) the cumulative rate of oxygen loss over the tagging period represented as the amount of oxygen available for each dive cycle. Note: values are color coded by whale ID.

Figure 18: Proportion of time spent during each dive cycle versus maximum dive depth. A) the proportion of time spent diving, B) the proportion of time spent surfacing, C) the proportion of time spent foraging, D) the lunging rate (number of lunges per second of the dive cycle; note different y-axis scale), E) the proportion of time spent descending, and F) the proportion of time spent ascending. Outliers are not included in the figure and each box is drawn with widths proportional to the square root of the number of observations in each group (R Core Team 2013).

Figure 19: Durations of each discrete behavior within a dive cycle (surfacing, \(s \); traveling, \(\tau \); and foraging, \(t \)) plotted with their respective maximum dive depth (m). The plane through the plot represents the linear regression \(s \sim \tau + t \) \((y = -15.39 + 0.86\tau + 0.24t, R^2 = 0.38, p < 0.001) \). The vertical lines represent the values of \(s \) against their respective values of \(\tau \) and \(t \).

Figure 20: Kernel density estimates for humpback whale metabolic rates while traveling and \((m_{\tau})\) and foraging \((m_{t})\), and for total oxygen capacity \((K)\) and initial rate of oxygen replenishment \((\alpha)\). Each column represents a different physiological parameter while each row represents a simulation run using different prior values (i.e., prior values were calculated for whales of the following lengths: 10 m (first row), 12 m (second row), 13.45
(third row), and 15 m (forth row)). The red vertical lines indicate the respective prior parameter values, which were calculated using equations found in Table 2.

Figure 21: Frequency and temporal distribution of all dives categorized by behavioral state for whales tagged in Wilhelmina Bay in 2009 and 2010 in local time (GMT – 5 h). Individual dives are staggered along the vertical axis for each behavioral state to show the density of points. (From Friedlaender et al. 2013).
Acknowledgements

I am fortunate to have been surrounded by many supportive and inspirational people during my graduate tenure at Duke. Of all these people, my advisor, Doug Nowacek is the person I must first and foremost thank. I still question why he selected me, a naïve bright-eyed nineteen year old, to work in his lab eleven years ago at Florida State but I am forever grateful that he did. His decision that day completely changed my life for good and brought me into a field that I truly do love. His continuous optimism, trust, and encouragement have allowed me to grow as a scientist who is willing to take risks, to take stride when those risks don’t pan out, and to share the wealth of those risks that result in high rewards with those around me. He has taught me that the science has no boundaries but that collaboration is necessary and fruitful for moving beyond what others thought was not possible (really, a blimp?). I am thankful to have had Doug as a boss, a teacher, a mentor, and a colleague, but most importantly, I am most thankful to have Doug as a friend.

My committee has been so supportive and insightful throughout this process and I thank each and every one of them for the discussions we shared and the time they spent helping me throughout this process. Discussions with Dan Rubenstein regarding behavioral ecology were inspiring and forced me to think outside the ‘marine mammal’ box in ways that greatly enhanced my study of animal behavior. Jim Hench truly
encouraged me to think creatively about my data analysis in ways that greatly influenced my appreciation for statistical methods and oceanography. Finally, I think it is fair to say that I would not have been able to do this research if it had not been for Ari Friedlaender. This research is in many ways his baby and he allowed me to come along for the ride and share in this adventure with him. I have had a blast doing this research alongside and learning from the ‘famous’ whale tagger and hope that this is just the beginning of our collaborative ventures.

I must next thank Dave Johnston and Andy Read. I have always considered these two to be my unofficial committee members and knew that if I asked them for help or assistance they would be there in a heartbeat (and they were!). Dave has inspired and encouraged me to become more involved with outreach activities and to think creatively about how to connect with the public (hooray for Ipads). Andy, my Antarctic buddy, welcomed me with open arms as an honorary Read Lab member on day one and has been truly broadened my perspective of ecology, conservation, and policy and how they intertwine. I hope to work with these two for years to come and will always cherish the nights we shared dancing at Palmer Station (yes, Andy danced).

My research collaborators are some of the most amazing people I have ever had the pleasure of working with. Colin Ware, Jim Clark, Alison Stimpert, Corrie Curtice, Amanda Katlenberg, Elliott Hazen, Joseph Warren, Pat Halpin, Ann Allen, Boris Espinassee. Meng Zhou, and Yiwu Zhou have contributed significantly to the success of
this research and I would not have been able to do this work without them. Also, the entire Antarctic field crew and all those who made this research happen are forever in my debt. Lindsey Peavey, Andrew Westgate, Elletta Revelli, Roland Arsenault, Megan O’Neill, Dan Powers, Chance Miller, and Julie Jackson specifically made this research experience unforgettable: rock band concerts and weed marathons just wouldn’t have been the same without you.

The Duke Marine Lab is a special place and I truly want to thank every person who makes the lab what it is. Special thanks must go to Rachel Lo Piccolo, Danielle Waples, Kim Urian, Heather Foley, Zachary Swaim, Katie Wood, Patty Nolin, Janil Miller, Shirley Miller, Jen Beggs Dunn, Lisa Campbell, Cindy Van Dover, Hazel George, and Fred Tootle. These guys truly rock. My fellow PhD students, past and present, were amazing and truly made my time spent in Beaufort unforgettable. Matt Bowers, my brother from another mother, and Kenady Wilson were the best office mates a girl could ask for. I will miss our ‘lady lounge’ but am thankful to know that I will have them as life-long friends, colleagues, and collaborators. Kristina Cammen, Rebecca Gruby, Meagan Dunphy-Daly, Joy Stainstreet, Tara Essock-Burns, Lesley Thorne, Lynne Williams Hodge, Caroline Good, Shay Vieham, Julia Burrows, Goldie Phillips, Erin LaBrecque, Wendy Dow Piniak, Sara McDonald, and Christopher Ward especially made my graduate life an amazing one. Enjoying beers at backstreet or the Haus, hitting each
other with racquetballs (woops!), and enjoying wine and gossip while watching the latest Bachelorrette episode helped keep me sane during the tougher days.

Audrey, Scott, and Sadie Hernandez, Jennifer Sanctis, Meaghan Young, Amy Grover, Sarah Walker, and Wesley Wincek, my non-sciency friends, are truly my extended family. They have put up with me coming home smelly after cutting up dead whales, missing important moments in their life because I was away in the field, and disappearing for weeks on end to ‘write’. I owe them my sincerest thanks for standing by me and my nerdyness during all these years. They have kept me grounded and are a constant reminder to me of what life is truly all about.

Steph, Jack, and Wyatt have been my extended family for years and I thank them sincerely for everything they have done for me. They truly have had my back through thick and thin during this experience and I am so thankful to have them in my life. Paul and Laura Moore have been so generous and supportive and I thank them you accepting me into their family and for loving me as if I was their own. My immediate family, may be a weird one, but is the best I could ever ask for. My sister Sherri and nephew Zane are ‘da bomb’ and my brother Ben has been and continues to be an inspiration to me every single day. My mom is the most selfless person I know and I can never thank her enough for all she has done for me. Whenever I thought about doing something new or unusual, she always responded with “why not, doesn’t hurt to try.” Its phrases like that,
which allowed me to believe I could travel to the moon and back again, then go out and actually do it.

Finally I must thank Jason Moore. I never imagined he would go on a second date with me five years ago after I told him I would be leaving in a few weeks to study whales in the Antarctic. But he did and every day since he has sat right next to me on this rollercoaster of life. Along the hills and troughs, he has been my strong and efficient rock. I will never be able to thank him enough for his love, patience, and support during this adventurous ride.
1. Introduction

Baleen whales (Mysteceti) include the largest animals ever to inhabit the planet (e.g., blue whale, *Balaenoptera musculus*) yet because of the inherent restrictions humans have in observing them in their natural environment (i.e., underwater), very little is understood about their foraging behavior at depth. This includes how they find, exploit, and respond to distributions of prey and how much food they need to consume to support their energetic needs. Because foraging is essential for an individual’s survival and reproduction, this gap is limiting our understanding of the ecology and life history of these large, wide-ranging species.

Optimal foraging theory suggests that organisms are adapted to exploit resources as efficiently as possible; natural selection should favor foraging strategies that are efficient in minimizing costs (in time and energy) while simultaneously maximizing benefits (e.g., energy, nutrients) (Macarthur & Pianka 1966). When resources are distributed in a patchy manner, this optimal foraging strategy can be achieved by minimizing the time spent searching for or acquiring energy, or maximizing the total energy acquisition per unit time (Schoener 1987). Baleen whales deal with patchiness in prey resources by conducting annual migrations from low latitude breeding regions of limited food resources (winter) to high latitude regions with predictably abundant concentrations of prey (summer) (Mackintosh 1965). Unlike toothed whales (odontocetes), which pinpoint or hunt singular prey items such as fish or squid, baleen whales consume large amounts of patchily distributed prey efficiently from these
regions using bulk filtration (Williams 2006). They use keratinized plates of baleen to filter small zooplankton and/or small fish from ingested water by skim or continuous ram feeding (Balaenidae), suction feeding (Eschrichtiidae), or lunge feeding (Balaenopteridae).

1.1 Balaenopterid Foraging Ecology

Advancements in bio-logging technologies have greatly enhanced the current understanding of baleen whale foraging behavior. In particular, the use of these tools has resulted in large advances in detailing the kinematics and energetic costs of lunge feeding in Balaenopterids (e.g., blue whales; fin whales, *Balaenoptera physalus*; humpback whales, *Megaptera novaeangila*; minke whales, *Balaenoptera bonaerensis*; hereafter referred to as rorquals) (Goldbogen et al. 2006, Goldbogen et al. 2007, Goldbogen et al. 2008, Friedlaender et al. 2009, Potvin et al. 2009, Goldbogen et al. 2010, Potvin et al. 2010, Doniol-Valcroze et al. 2011, Goldbogen et al. 2011, Ware et al. 2011, Wiley et al. 2011, Potvin et al. 2012, Simon et al. 2012, Tyson et al. 2012, Friedlaender et al. 2013, Goldbogen et al. 2013, Ware et al. 2013). Lunge feeding involves accelerating with a burst of energetic fluking towards and engulfing a mass of prey-laden water, filtering the prey from the ingested water through keratinized plates of baleen, and swallowing the captured prey. Rorquals have a series of longitudinal grooves of highly extensible, elastic blubber on the ventral side of their body (ventral groove blubber, VGB) that allow them to open their mouths wide to approximately 75 degrees (Brodie 1993) and engulf a
volume of water that may be greater than their body mass (Goldbogen et al. 2010). This process has been deemed the largest biomechanical event to take place on earth (Brodie 1993) and has been suggested to be energetically costly, limiting the maximum dive time of these large predators (Dolphin 1988, Croll et al. 2001, Acevedo-Gutierrez et al. 2002, Goldbogen et al. 2006, Goldbogen et al. 2007, Goldbogen et al. 2008). Recent work by Goldbogen et al. (2011) and Potvin et al. (2012), however, suggests that the foraging efficiency of rorquals can be significantly higher than other marine mammals by nearly an order of a magnitude when lunges target extremely dense patches of krill. This efficiency is attributed to the animals enhanced engulfment capacity, their rapid filter rate, and their low mass-specific metabolic rates associated with their large size (Goldbogen et al. 2011). Still, the rate at which rorquals acquire and use energy is largely unknown and needs to be more thoroughly examined and understood.

U-shaped foraging dives, in which whales directly descend to a foraging depth, perform a number of descending-ascending excursions linked to lunges during bottom time, and then directly ascend to the surface alternating between gliding and fluking behaviors are the most frequently described types of rorqual foraging behaviors performed at depth (Figure 1) and have been described in fin whales (Goldbogen et al. 2006), blue whales (Goldbogen et al. 2011), and humpback whales (Goldbogen et al. 2008, Ware et al. 2011, Simon et al. 2012). Bio-logging tools have allowed a further analysis into the three-dimensional structure of lunges at depth and an assortment of lunge techniques has been described. For example, rolling while lunging at depth has
been observed in blue, fin, and humpback whales (e.g., Hain et al. 1982, Corkeron et al. 1999, Goldbogen et al. 2006, Stimpert et al. 2007, Friedlaender et al. 2009, Canning et al. 2011, Goldbogen et al. 2013, Ware et al. 2013). Potvin et al. (2010) suggest that a lateral roll of 90° while lunging decreases the ability of potential prey to escape through the gaps in the mandibles that are present when the whale approaches from a flatter angle and thus may increase the amount of prey the whale can capture. Rolling can be extreme in the case of blue whales, which have been observed to perform 360° rolling maneuvers, allowing them to reorient their body and position their lower jaws so that they can engulf krill while inverted (Goldbogen et al. 2013). The authors suggest that these maneuvers may allow the whales to visually process the prey field and subsequently target the densest prey aggregations.
Figure 1: U-shaped foraging dives of a humpback whale. The descending and ascending excursions at depth have been linked to discrete feeding lunges.

Rorquals also execute various maneuvers at the seafloor and the ocean surface, which appear to further limit escape routes of their target prey. Bottom feeding, a technique in which the animal rolls on their side and ‘brushes’ the bottom, typically using the right side of their mouth (Hain et al. 1982), has been described in humpback whales in the Gulf of Maine (Hain et al. 1982, Canning et al. 2011, Friedlaender et al. 2013, Ware et al. 2013). This maneuver is correlated with American sand lance (*Ammodytes spp.*) seeking refuge in the substrate at night (Friedlaender et al. 2009). Crittercam video of humpback whales foraging at depth in this region revealed large numbers of sand lance located just above the seafloor where these lunges occur (Ware et al. 2013). Humpbacks also limit prey escape routes at the surface by corralling prey with
bubble nets or clouds (e.g., Juarasz & Juarasz 1979, Hain et al. 1982, Weinrich et al. 1992, Wiley et al. 2011), vertically lunging at such aggregations, and utilizing associated lobtail (Weinrich et al. 1992) and “free-form” feeding techniques (Hays et al. 1985, Wiley et al. 2011). In the Western Antarctic Peninsula (WAP), humpbacks have been observed to exhibit a repetitive looping behavior at the surface where they presumably exploit a single, small krill patch (Ware et al. 2011). This wide variety of maneuvers associated with lunging suggests that rorquals are plastic in their feeding behaviors and may be able to adapt to fluctuations in prey resources.

A few studies have attempted to quantify rorqual feeding behavior in relation to their prey (e.g., Dolphin 1987b, Croll et al. 2001, Goldbogen et al. 2008, Witteveen et al. 2008, Hazen et al. 2009, Goldbogen et al. 2011, Nowacek et al. 2011, Friedlaender et al. 2013) but none, to my knowledge, have quantified prey density at a fine-scale (i.e., the scale of a dive) in relation to feeding events. Opportunistic observations of whales in the Antarctic led Ainley et al. (2006) to suggest that rorquals may deplete prey enough at a fine scale that other krill predators, such as penguins, alter their foraging behavior and switch prey (Ainley et al. 2006). Again, hypotheses such as these cannot fully be addressed until a fine-scale examination of rorqual foraging ecology is undertaken.

1.2 Research Objectives

The objective of this research was to increase the understanding of fine-scale humpback whale foraging behaviors in the coastal waters of the WAP. This information
is critical in light of environmental changes observed and predicted in the region associated with rapid climate warming (Smith & Stammerjohn 2001, Vaughan et al. 2003, Parkinson 2004, Stammerjohn et al. 2008a, Stammerjohn et al. 2008b). In the following chapters, I describe several elements of humpback whale foraging behaviors that take place in this region, which were inferred from data collected using high-resolution bio-logging tools. In Chapter 2, I examine the foraging behaviors and synchrony of a mother and calf humpback whale pair and discuss the fitness implications of my findings. In Chapter 3, I combine theory with observations of whale behavior to examine how adult humpbacks allocate their time during foraging dives and assess if their foraging behaviors are energetically efficient. Finally in Chapter 4, I use observations of humpback whale foraging behavior to model aspects of their physiology, including metabolic rates and oxygen storage capacities. The findings of this research may be useful in future studies that attempt to predict the behavioral response of humpback whales and other rorquals to environmental and/or ecological change.

Finally, I summarize my findings and their implications in Chapter 5. This work will provide baseline data regarding the foraging behaviors of humpback whales in the WAP and will make predictions regarding how these animals may respond to changes in this ecosystem.
1.3 General Materials and Methods

My work is part of a larger, inter-disciplinary collaborative study that was designed to elucidate the ecological and environmental relationships between humpback whales and krill along the WAP (e.g., Nowacek et al. 2011, Ware et al. 2011, Espinasse et al. 2012, Johnston et al. 2012, Stimpert et al. 2012, Tyson et al. 2012, Friedlaender et al. 2013). Humpback whales were chosen as the target study species for this research because they are the most abundant baleen whale in the near-shore waters of the WAP (Thiele et al. 2004, Friedlaender et al. 2006, Johnston et al. 2012), they forage almost exclusively on Antarctic krill (*Euphausia superba*; Mackintosh 1965, Ichii & Kato 1991, Kawamura 1994), and they are easily approachable from a small boat for tagging purposes (e.g., Friedlaender et al. 2009, Hazen et al. 2009, Nowacek et al. 2011, Friedlaender et al. 2013). Research was primarily conducted within several embayments of the WAP in the austral autumn of 2009 and 2010 from the ASRV *Laurence M. Gould* and the RVIB *Nathaniel B. Palmer*, respectively. These vessels are operated and maintained by the United State Antarctic Program (USAP) and supported by the National Science Foundation (NSF). All research was permitted under the U.S. Marine Mammal Protection Act by the National Marine Fisheries Service Permit 808-1735, the Antarctic Conservation Act Permit 2009-014 and the Duke University Institutional Animal Care and Use Permit A041-09-02, which were awarded to DP Nowacek. All research was supported by NSF, USAP Grant ANT-07-39483. The following information
regarding materials and methods applies to all chapters of this dissertation. All other analyses will be chapter specific and will be described in detail when appropriate.

1.3.1 Study Area

Data for this research were collected in Wilhelmina Bay, Andvord Bay and Flandres Bay (Figure 2). The circulation patterns in the bays are heavily influenced by the Gerlache Current (Zhou et al. 2002), which starts from the southwest entrance of the Gerlache Strait at Flandres Bay and exits into the Bransfield Strait. The Gerlache Current is made up of Modified Circumpolar Deep Water (MCDW); a water mass made up of warm (up to 2°C), saline (> 34.6 ppt), and nutrient rich water that stimulates primary productivity on the WAP continental shelf and determines the ice condition in this region (Prezelin et al. 2000, Zhou et al. 2002). The MCDW is cooled as it intrudes upon the shelf due to the loss of heat to the atmosphere and mixing with local cold waters (Dinniman et al. 2011), and resultant temperature gradients (warm to cool) have been observed stretching from the current entrance to its exit into Bransfield Strait (Zhou et al. 2002). As the Gerlache Current flows throughout the Strait, mesoscale eddies and jets often form, specifically in the neighboring embayments (Nowacek et al. 2011, Espinasse et al. 2012), which provide an essential mechanism for the retention of biota and food supplies (i.e., mesoplankton for fish and krill; Nowacek et al. 2011, Espinasse et al. 2012). Krill aggregations have been observed being retained in such eddies that are near jets within these bays, which may allow them to stay in the eddies and feed on food.
delivered by the jets while simultaneously avoiding being advected away (Nowacek et al. 2011, Espinasse et al. 2012).

Figure 2: Study sites located along the Western Antarctic Peninsula: Wilhelmina Bay, Anvord Bay, and Flanders Bay.

In 2009, a persistent super-aggregation of Antarctic krill (the largest aggregation of krill reported in 20 years) was observed concurrent with the greatest density of humpback whales ever reported, ranging from 0.02 to 1.75 whales km$^{-2}$ (5.1 whales per km2, 12.1 % CV; Nowacek et al. 2011) in Wilhelmina Bay. The supper-aggregation of krill ranged from 10s of m to 10s of km in the horizontal plane and from 8 to 410 m in the
vertical plane and had an estimated overall mean krill density of 62 g m$^{-3}$ and total biomass of 2.0 million tons (krill comprised 88.4% of the total measured acoustic backscatter). This aggregation was driven by local physical processes, primarily a small cyclonic eddy that occurred within the bay, which was driven by strong, episodic southerly katabatic winds (the bay had < 10% occasional brash ice; Nowacek et al. 2011). These winds drove westward Ekman transport and induced a geostrophic northward coastal current (20 cm s$^{-1}$) off the western coast of the bay and the upwelling of deep nutrient rich MCDW from the Gerlache Strait in the southern and eastern portions of the bay (Nowacek et al. 2011). The eddy margins were nearly coincident with the spatial limits of the krill aggregations and the distribution of humpbacks tightly matched that of the krill aggregation. In 2010, a similarly dense krill aggregation was found in Wilhelmina Bay, however it was concentrated near the opening of the bay in open water; sea ice cover reached 100% at the head of Wilhelmina Bay (Nowacek et al. 2011, Espinasse et al. 2012). A high density of humpbacks was also observed to be associated with this aggregation (Nowacek et al. 2011, Johnston et al. 2012), which was once again primarily retained by a mesoscale eddy that was located at the bay’s mouth (Nowacek et al. 2011, Espinasse et al. 2012).

Anvord Bay is relatively narrow and its circulation appears to be opposite to the two-layer circulation patterns characteristic of an estuary (Nowacek et al. 2011). The surface cooling in the bay forms denser deep water producing the surface inward flow and deep outward flow. Flandres Bay (surveyed in 2010 only) is the warmest of these
three bays as it is located closest to the intrusion of the Gerlache Current. Smaller but still dense aggregations of krill and humpbacks were found in Anvord Bay in 2009 (Nowacek et al. 2011) and 2010 and in Flandres Bay in 2010 (unpublished data). Krill in these bays remained below 150 m instead of migrating to the surface; Espinasse et al. (2012) suggest that they may have been passively reducing their metabolism in preparation for the winter season.

1.3.2 Data Collection

Three-dimensional individual humpback whale diving behavior was inferred from data collected using digital acoustic recording tags (Dtags; Johnson & Tyack 2003) that were attached non-invasively to whales located within the study area (Table 1, Figure 3). The Dtag is a small, lightweight, pressure tolerant and waterproof bio-logging tool developed to continuously collect data on the fine-scale behavior of marine mammals. The Dtag has been successfully deployed on over 15 cetacean species (e.g., Nowacek et al. 2001, Johnson & Tyack 2003, Miller et al. 2004, Nowacek et al. 2004, Zimmer et al. 2005, Woodward et al. 2006, Friedlaender et al. 2009, Hazen et al. 2009, Ware et al. 2011, Wiley et al. 2011, Simon et al. 2012, Goldbogen et al. 2013) and its use has provided insights into several aspects of marine mammal ecology including diving, foraging, and social behavior as well as responses to anthropogenic sound.
Table 1: Whale ID, date, and location for each humpback whale tagged with a Dtag. Total time the tag was on each whale is also included. Whale IDs represent the julian day each individual was tagged and whether the individual was the first (a) or second (b) animal tagged that day.

<table>
<thead>
<tr>
<th>Whale ID</th>
<th>Date</th>
<th>Location</th>
<th>Total tag time (hh:mm:ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>122b</td>
<td>2009-May-02</td>
<td>Wilhelmina Bay</td>
<td>18:45:00</td>
</tr>
<tr>
<td>127a</td>
<td>2009-May-07</td>
<td>Wilhelmina Bay</td>
<td>25:00:00</td>
</tr>
<tr>
<td>136a</td>
<td>2009-May-16</td>
<td>Anvord Bay</td>
<td>23:00:00</td>
</tr>
<tr>
<td>140a</td>
<td>2009-May-20</td>
<td>Anvord Bay</td>
<td>22:33:00</td>
</tr>
<tr>
<td>148a</td>
<td>2009-May-28</td>
<td>Wilhelmina Bay</td>
<td>25:38:00</td>
</tr>
<tr>
<td>152a</td>
<td>2009-June-01</td>
<td>Wilhelmina Bay</td>
<td>22:30:00</td>
</tr>
<tr>
<td>132a</td>
<td>2010-May-12</td>
<td>Wilhelmina Bay</td>
<td>23:28:00</td>
</tr>
<tr>
<td>133a</td>
<td>2010-May-13</td>
<td>Wilhelmina Bay</td>
<td>22:36:20</td>
</tr>
<tr>
<td>139a</td>
<td>2010-May-19</td>
<td>Wilhelmina Bay</td>
<td>20:59:00</td>
</tr>
<tr>
<td>139b</td>
<td>2010-May-19</td>
<td>Wilhelmina Bay</td>
<td>23:42:00</td>
</tr>
<tr>
<td>146a</td>
<td>2010-May-26</td>
<td>Flandres Bay</td>
<td>20:01:00</td>
</tr>
<tr>
<td>151a</td>
<td>2010-May-31</td>
<td>Wilhelmina Bay</td>
<td>25:00:01</td>
</tr>
<tr>
<td>155a</td>
<td>2010-June-04</td>
<td>Flandres Bay</td>
<td>24:11:00</td>
</tr>
<tr>
<td>155b</td>
<td>2010-June-04</td>
<td>Flandres Bay</td>
<td>22:00:00</td>
</tr>
</tbody>
</table>

Dtags were placed on humpbacks using an 8 m carbon-fiber pole and were attached via four silicon suction cups to the dorsal surface of the animal, between the dorsal fin and the blowhole. Whale behavior was not visibly affected by the tagging (other than immediate startle responses by some), which is consistent with reports from other studies (e.g., Nowacek et al. 2004, Hazen et al. 2009). Preliminary examinations of the tag data suggested that the whales returned to their normal behavior within a few dive cycles.
Figure 3: A) Dtag and suction cup attachment with VHF antenna visible at the bottom (Johnson & Tyack 2003); B) successful Dtag attachment; C) Dtag attached to a humpback whale.

The Dtag incorporates a hydrophone (96 kHz sampling rate), a pressure sensor, three-axis accelerometers, three-axis magnetometers, a thermistor (for water temperature), and an embedded VHF transmitter. Data from the pressure sensors, magnetometers, and accelerometers can be used to estimate depth, heading, pitch, and roll, respectively, at 50 Hz for approximately 24 hrs and are stored synchronously with audio data on flash memory within the tag. Prior to deployment, time on the tags was synchronized to GPS time to ensure the ability to synchronize data parameters (e.g., Friedlaender et al. 2009, Hazen et al. 2009) and the tags were de-gaussed to minimize nonlinearity in the magnetic sensor due to hard iron effects (i.e., magnetic fields held by metallic components within the tags; Johnson & Tyack 2003).
Tagged whales were tracked visually during daylight hours from a rigid inflatable boat that stayed within 500 m of the individual; surface behaviors were logged using standard behavioral methodology (Altmann 1974). The geographic position of the tagged whale was determined regularly (every few surfacings) by combining the known location of the inflatable boat, from GPS, and data from laser range finding binoculars used to pinpoint the whale’s location in relation to the boat. Photographs of each tagged whale were periodically taken to record the position and orientation of the tag on the whale for calibration and photogrammetric purposes. At night, tagged whales were tracked with directional VHF antennas. An active release, which corrodes in sea water, was timed to release the tag once data storage was complete causing the tag to float to the surface. The VHF signal and a directional antenna were used to locate and retrieve the buoyant tag. Upon tag retrieval, post-tagging calibration was immediately conducted and the data were downloaded via infrared transmission. Post-tagging calibration accounts for hard iron and soft iron effects in the magnetometers (Johnson & Tyack 2003).

Dtags provide a continuous record of the animal’s depth and orientation (pitch, roll and heading) during the tagging deployment. I used TrackPlot (Ware et al. 2006); a software program designed to interpret data from tags containing accelerometer, magnetometer, and pressure sensors; to generate a three-dimensional interpretation of each whale’s movements while tagged (Figure 4). TrackPlot creates a ‘pseudo-track’ of the whales movements and behaviors by means of a form of dead reckoning based on
the time series of whale behaviors (Ware et al. 2011) and by assuming that the whale moves forward in the rostral direction. The rate of forward movement at any point on the track is either assumed to be constant (1 m s$^{-1}$; Goldbogen et al. 2008, Ware et al. 2011) or is based on the rate of depth change for an ascending or descending individual divided by the sine pitch of the angle (Ware et al. 2011). A 4 m wide by 1 m thick ribbon is generated using the whale reference frame time series (caudal, dorsal, and ventral axes) together with depth (Figure 4). A representation of fluke strokes are generated as estimates of the angular accelerations about the lateral axis in whale coordinates (Figure 4). The pseudo-track has been a valuable tool for understanding different kinematic behavioral patterns (e.g., Friedlaender et al. 2009, Hazen et al. 2009, Ware et al. 2011, Wiley et al. 2011, Goldbogen et al. 2013, Ware et al. 2013) and has been shown to accurately depict the individual’s movement patterns (Schmidt et al. 2010). When sufficient surface fixes were available, tracks were geo-referenced (i.e., assimilation of known surface fixes to the dead-reckoned track) so that their underwater geographical position could be estimated (Dtags do not record horizontal position information).
Figure 4: An example of a humpback whale pseudo-track created from data collected with Dtags within TrackPlot (Ware et al. 2006). The blue ribbon represents the whale’s pseudo-track, the dashed vertical line represents depth (10 m bars), the horizontal arrow represents magnetic north, and the blue and red wedges along the track represent the magnitude of the frequency of fluke strokes. From Ware et al. (2011).

I identified feeding lunges from the Dtag records following methods detailed in Ware et al. (2011); a collaborative effort of this research. When lunging, a rorqual rapidly accelerates, opens its jaws once a sufficient speed (e.g., 3 m s⁻¹) has been obtained, and then rapidly decelerates due to the drag forces related to the opening of their buccal cavity (Goldbogen et al. 2006, Goldbogen et al. 2007, Potvin et al. 2009); flow noise recorded by the tag simultaneously increases as the animal accelerates and decreases as the animal is slowed. Goldbogen et al. (2006) pioneered a method using flow noise
recorded from hydrophones on tags to pinpoint discrete feeding lunges based on this notion. Ware et al. (2011) used an in situ method to estimate each tagged individual’s speed to identify feeding lunges. Speed was estimated from the rate of ascent or descent when pitched up or down at greater than 45° (speed = Δdepth/[sin(pitch)Δtime]). For sections of the pseudo-track that met this criterion, Ware et al. (2011) sampled 5 s intervals and used a Fourier transform of the tag’s acoustic record to compute the average acoustic energy in different bands. Ware et al. (2011) applied a quadratic fit and calculated a regression of the acoustic energy against the estimated speed of the animal. Using the regression coefficients, the speed of the tagged animal at any interval where the animal was submerged could be plotted and feeding lunges could be identified. While this method provides only an estimate of speed, examinations of these speed estimates concurrent with both video footage and accelerometer data confirm that this method can be used to pinpoint lunge feeding events in rorquals (e.g., Goldbogen et al. 2006, Simon et al. 2012, Ware et al. 2013). Therefore, this same process was utilized in my research.

Ware et al. (2011) built an automatic lunge detecting filter within TrackPlot to pinpoint discrete feeding lunges executed by the tagged individuals based on the idea that the most reliable indicator of a lunge is a precipitous drop in the animal’s speed. The lunge filter allows the user to examine the animal’s estimated speed alongside a pseudo-track of its behavior aligned in time. I used this filter to identify putative lunges executed by each tagged humpback. I confirmed the presence of a lunge if all of the
following criteria (Goldbogen et al. 2006, Goldbogen et al. 2008, Ware et al. 2011, Simon et al. 2012) were met: 1) a bout of fluking associated with a distinct speed maximum; 2) continued swimming and fluking throughout the lunge, particularly during the deceleration; and 3) an isolated group of fluke strokes with a large well-defined excess acceleration followed by a period of gliding. Other aspects of whale behavior recorded by the Dtags such as dive times, maximum dive depths, and post-dive surface times were calculated using custom written code in either MATLAB® (MathWorks 2013b) or R (R Core Team 2013).
2. In Synch? Humpback Whale Mother and Calf Foraging Behavior: Insights from Multi-Sensor Suction Cup Tags*

2.1 Introduction

Synchronized behaviors, animals in proximity to one another, performing the same behavior at the same time, usually in parallel orientation (Fellner et al. 2006), are common in the early stages of cetacean (whale, dolphin, and porpoise) mother-calf relationships (e.g., Bel’Kovich 1991, Gubbins et al. 1999, Fellner et al. 2006). Synchrony serves several functions, such as receiving an aero- or hydrodynamic advantage by slipstreaming (Wiehs 2004, Noren et al. 2008, Noren & Edwards 2011), protection from predators (Norris & Schilt 1988), and social learning via imitation during developmental stages critical to survival (e.g., independent foraging behaviour; Whiten & Ham 1992, Whiten 2001, Fellner et al. 2006, Bender et al. 2009, Sargeant & Mann 2009).

Synchronized behaviors observed in mother-calf southern right whale (*Eubalaena australis*) and humpback whale (*Megaptera novaeangilae*) pairs have provided evidence to suggest that mysticetes (baleen whales) and other cetaceans exhibit ‘following’ behavior (Taber & Thomas 1982, Thomas & Taber 1984, Szabo & Duffus 2008): a maternal strategy in which the offspring accompany their mother soon after parturition and are rarely more than several body lengths from her until they separate permanently (Lent 1974).

‘Following’ benefits the mother by not requiring her to return to her offspring and benefits the offspring by gaining maternal vigilance and defense as a means of predator avoidance and protection (Espmark 1971, Lent 1974, Estes 1976, Fisher et al. 2002). Therefore, synchronized behaviors associated with following in cetacean mother-calf pairs may be critical for the success of the pair’s behavioral development.

Compared to terrestrial animals that exhibit a following maternal strategy, humpbacks and other baleen whales are constrained in that their young typically suffer from a reduced physiological capacity to dive relative to older conspecifics and therefore do not dive as frequently or as long as their mothers (Würsig et al. 1984, Szabo & Duffus 2008). If the mother-calf pair do not want to lose the benefits of their close proximity when the mother makes long-duration dives (e.g., foraging dives), one individual must actively modify its behavior in relation to the other individual. On a foraging ground in southeastern Alaska, mother humpback whales modified their behavior in the beginning of the foraging season by shortening the duration of their dives whenever their offspring remained at the surface, presumably to minimize the duration of their separation (Szabo & Duffus 2008). Later in the season, however, as the calves grew and gained independence, the mothers became significantly less responsive to their offspring and performed longer dives, thereby forcing their offspring to actively modify their behaviors and increasingly synchronize their dives with their mothers (Szabo & Duffus 2008). This shift has also been documented in southern right whales where calves are primarily responsible for maintaining contact with their mothers at the end of their foraging season (Taber & Thomas 1982). Thus, the mother’s foraging efficiency (i.e.,
amount of energy consumed per unit of energy expended while acquiring food) may be low early in the foraging season because she is primarily responsible for maintaining the pair’s proximity and may increase later in the season as the calf takes over this responsibility. In addition, once the calf can begin to forage independently, the energetic burden of lactation for the mother will decrease. Humpback calves may begin to feed independently as early as six months old, although they may nurse for up to a year (Van Lennep & Van Utrecht 1953, Chittleborough 1958, Clapham & Mayo 1987).

Humpback whales belong to a group of baleen whales known as rorquals (Balaenopteridae), which in Antarctica forage primarily on small euphausiid crustaceans (e.g., Antarctic krill, Euphausia superba) and other small prey by lunge feeding. Lunge feeding involves accelerating with a burst of energetic fluking towards and engulfing a mass of prey-laden water that may equal be greater than their body mass (Goldbogen et al. 2010). The whales then filter the prey from the ingested water through keratinized plates of baleen and swallow the captured prey. Advancements in bio-logging technologies have enabled a better understanding of the kinematics and energetic costs of lunge feeding in fin (Balaenoptera physalus), blue (Balaenoptera musculus), and humpback whales (Megaptera novaeangliae) (hereafter referred to as rorquals; Goldbogen et al. 2006, Goldbogen et al. 2007, Goldbogen et al. 2008, Friedlaender et al. 2009, Potvin et al. 2009, Goldbogen et al. 2010, Potvin et al. 2010, Doniol-Valcroze et al. 2011, Goldbogen et al. 2011, Ware et al. 2011, Wiley et al. 2011, Potvin et al. 2012, Simon et al. 2012, Tyson et al. 2012, Friedlaender et al. 2013, Goldbogen et al. 2013, Ware et al. 2013); however, to my knowledge, feeding lunges have not been documented in a mother-calf
rorqual pair. Mother-calf pairs have additional energetic and behavioral costs associated with foraging compared to other non-lactating females and/or adult males, such as the cost of lactation (mother; Lockyer 2007) and the cost of growth (calf). Understanding the foraging behavior of mother-calf pairs is critical to understanding their energetic demands during the calf’s first year.

In the Southern Ocean, humpback calves are born in the winter and early spring in calving grounds found off of Australia, Africa, Oceania, and South America (Chittleborough 1965, Mackintosh 1965, Florez-Gonzalez 1991); early August is the peak birth month (Chittleborough 1958, 1965). Several months later, calves migrate with their mothers to their foraging grounds (e.g., Western Antarctic Peninsula (WAP); Mackintosh 1965, Clapham 1996) where they typically remain and forage on euphausiids from late spring through late autumn (Baker et al. 1986, Clapham & Mayo 1987, Baraff & Weinrich 1993). The majority of mother-calf pairs will separate during, or shortly before, their second winter, although a few pairs remain associated for two years (Clapham & Mayo 1987, Baraff & Weinrich 1993).

To my knowledge, all inferences regarding fine-scale baleen whale mother-calf relationships have come from boat- or land-based surface observations, aerial surveys, or from underwater video recordings (e.g. Taber & Thomas 1982, Baker et al. 1986, Baraff & Weinrich 1993, Szabo & Duffus 2008, Zoidis et al. 2008, Cartwright & Sullivan 2009). In this chapter, I used data collected from high-resolution digital acoustic recording tags (Dtags; Johnson & Tyack 2003) to describe the first record of a long-term (~20 hr) continuous underwater relationship and concurrent foraging behavior of a
baleen whale mother-calf pair. I identified feeding lunges executed by both whales and compare the frequency of lunges and related dive parameters, including the number of lunges per dive, maximum dive depth, dive duration, post-dive surface duration, and within-dive inter-lunge interval associated with feeding to assess how these parameters may relate to the energetic demands of each animal. I also examined the synchrony of the pair in terms of their feeding events and their underwater behavior to assess the structure of the pair’s relationship. Based on observations made by Szabo and Duffus (2008), I predicted that the pair’s association was waning as the calf was likely eight to twelve months old at the time of tagging (i.e., the austral autumn).

2.2 Methods

On May 19, 2010, Dtags (Johnson & Tyack 2003) were attached to an adult female humpback whale and her calf in Wilhelmina Bay to continuously collect data on their fine-scale behavior (WAP; Figure 5). The pair was approached using a rigid-hulled inflatable boat with a four-stroke outboard engine and Dtags were placed non-invasively via suction cups on the dorsal surface of the whales, between the dorsal fin and the blowhole, using an 8 m carbon-fiber pole. The Dtag incorporates a hydrophone (sampling rate up to 96 kHz), a pressure sensor to measure depth, three-axis accelerometers, three-axis magnetometers, and an embedded VHF transmitter. The pressure sensors, magnetometers, and accelerometers measured depth, heading, pitch, and roll, respectively, at 50 Hz, which was stored synchronously with audio data on flash memory (16 GB) within the tag. Prior to deployment, the time on the tags was
synchronized to the GPS time to ensure the ability to synchronize data parameters (e.g., Friedlaender et al. 2009, Hazen et al. 2009).

Figure 5: Locations where the mother and calf were tagged (open circles), tracked (dotted line), observed at the surface (fluke symbols), and where their tags released (closed circles); May 19-20, 2010, Wilhelmina Bay, Antarctica. Note that the mother’s tag released 4 h 6 min before the calf’s tag released; therefore, the separation in tag off locations is not necessarily representative of the pair being separated in space.

The mother was tagged at 11:02:33 (tag start time: 11:02:58 local time, GMT - 5 hr) while the calf was tagged 49 minutes later at 11:51:56 (tag start time: 11:52:17) (Figure 5). Whale behavior was not visibly affected by the tagging (other than immediate startle responses), which is consistent with reports from other studies (e.g., Nowacek et al.)
The tagged whales were tracked visually during daylight hours (9:11:00 – 14:59:00) from a rigid-hulled inflatable that stayed within 500 m of the pair and they were tracked with directional VHF antennas at night. An active release, which corrodes in seawater, was timed to release the tags once data storage was complete (approximately 24 hours), causing the tag to float to the surface. Tags released from the animals at 7:46:00 (mother) and 11:52:07 (calf) on May 20, 2010. Upon tag retrieval, post-tagging calibration was immediately conducted and the data were downloaded via infrared transmission.

I used TrackPlot (Ware et al. 2006) to visualize and analyze the pair’s simultaneous three-dimensional orientations (depth, pitch, roll, and heading). TrackPlot creates a ‘pseudo-track’ of each whale’s movements and behaviors using dead-reckoning based on the time series of whale orientations and by assuming that the whale moves forward in the rostral direction (Ware et al. 2011). The rate of forward movement at any point on the track is either assumed to be constant (1 m sec⁻¹) or is based on the rate of depth change for an ascending or descending individual divided by the sine pitch of the angle (Ware et al. 2011). Dtags do not provide position information (e.g., GPS points) so known fixes need to be integrated to the dead-reckoning process wherever possible to establish horizontal positions. These known fixes were derived from visual observations made by observers in the rigid-hulled inflatable when the animal surfaced during the Dtag deployment. Most of the tag attachment period of this pair, however, was at night and only 30 and 27 geo-referenced locations were made for the mother and calf, respectively, during daylight. Therefore, the lack of fixes for the majority of the
concurrent records (e.g., night-time) hinders me from confidently interpreting the pair’s absolute geographic position. Instead, I could only assess the pair’s vertical proximity to each other in the water column (i.e., calculated as the difference in depth of the pair at each specific time). I also used TrackPlot to extract summary data for each dive (defined here as an excursion > 10 m; Goldbogen et al. 2006), including dive duration (sec), post-dive surface duration (sec), and the maximum depth (m) of each dive. I synchronized extracted track and dive data in Microsoft® Excel based on the time parameter.

I identified feeding lunges executed by each whale from flow noise recorded on the Dtag hydrophone (Goldbogen et al. 2006, Goldbogen et al. 2008, Ware et al. 2011, Simon et al. 2012). When lunging, a rorqual rapidly accelerates, opens its jaws once a sufficient speed (e.g., 3 m s⁻¹) has been obtained, and then rapidly decelerates due to the drag forces related to the opening of its buccal cavity (Goldbogen et al. 2006, Potvin et al. 2009); flow noise will simultaneously increase as the animal accelerates and decrease as the animal is slowed. Ware et al. (2011) used flow noise as an estimate of speed to successfully detect lunges from humpback whales and developed an automatic lunge-detecting filter within TrackPlot. The lunge filter (which detects precipitous drops in the animal’s speed) allows the user to examine the putative lunges and the animal’s estimated speed alongside a pseudo-track of its behavior aligned in time. I used this filter to detect feeding lunges executed by the mother and the calf. I also scanned the entire Dtag records in TrackPlot for missed lunges. I excluded lunges detected at a depth shallower than 10 m from analyses due to possible interference from surface interactions (i.e., abrupt changes in flow noise due to surfacing).
I used the following criteria to confirm the presence of a lunge: 1) an isolated bout of fluking (identified from angular accelerations about a lateral axis) associated with a distinct speed maximum, followed by a rapid reduction in speed, followed in turn by a period of gliding; and 2) continued swimming and fluking throughout the lunge, particularly during the deceleration (Goldbogen et al. 2006, Goldbogen et al. 2008, Ware et al. 2011, Simon et al. 2012). I logged the times of the confirmed lunges in Excel and plotted them with the animal’s dive profiles. I defined a feeding dive to be any dive for which at least one lunge was detected. I recorded the number of lunges per dive, the dive duration, the post-dive surface duration, and the maximum depth of each feeding dive to examine and compare feeding effort and behavior within and between whales. I performed least-squares linear regressions to determine the relationships between these parameters. Two-sample Students t-tests were computed to assess the probability that these relationships (e.g., dive duration by number of lunges per dive) were significantly different for the mother and for the calf. I also used two-sample Students t-tests to examine the probability that the pair’s mean within-dive inter-lunge intervals were significantly different. I used a significance level of 0.05 for all statistical tests. I examined synchrony in terms of feeding events by comparing the time and depth of the pair’s lunges.

I evaluated the synchrony of underwater behaviors throughout the concurrent dive records was evaluated using a cross-correlation analysis (Pearson product-moment correlation coefficient for angular and non-angular variables) in the software program R (R Core Team 2013) (R Core Team, 2013). First, to compare the pair’s overall similarity in
depth, pitch, roll, and heading, I computed correlation coefficients for both the entire concurrent tag records and at lagged time intervals; correlation coefficients (r) vary from 1.0 (highly positively correlated) to -1.0 (highly negatively correlated), with zero corresponding to no correlation. For the purpose of this chapter, r-values greater than 0.5 indicated that the animals were generally behaving synchronously (i.e., their behaviors were positively correlated) and r-values greater than 0.9 indicated that the animals were behaving very synchronously (Cohen 1988). When lagging the tracks for the cross-correlation analyses, I assumed that if the animals exhibited synchronized behaviors, the cross correlation function would have the greatest correlation at a lag time close to zero. Second, to examine how synchrony changed over the duration of the concurrent tag records and during different behavioral states (e.g., feeding dives versus non-feeding dives), I computed r-values for each dive by comparing the depth, pitch, roll, and heading of each of the mother’s dives to the calf’s respective depth, pitch, roll, and heading at the same times. I examined the percentage of r-values > 0.5 and > 0.9 to compare differences in synchronized behaviors between behavioral states (e.g., neither animal feeding during the dive, both animals feeding during the dive, only the mother feeding during the dive, only the calf feeding during the dive). Synchrony of diving and surfacing behaviors was examined by pairing synchronized dives in time and then examining their temporal separation in their descent (when they were submerged < 1 m depth) and in their surfacing (when they were > 1 m depth). Synchrony in feeding lunges was also examined by comparing the time and depth of the mother’s lunges to the time and depth of the calf’s lunges.
2.3 Results

The tags logged 19 hr 54 min of concurrent recordings; data reported hereafter refer only to the time when the two animals were simultaneously tagged (11:51:17 May 19, 2010 – 7:46:00, May 20, 2010). I recorded 285 dives from the mother’s tag (maximum depth = 164.04 m, mean ± SD = 59.24 ± 38.19 m) and 281 dives from the calf’s tag (maximum depth = 249.80 m, mean ± SD = 46.20 ± 39.32 m). The pair’s vertical proximity was within 20 m (approximately two body lengths) for 71.22 % of the records.

2.3.1 Foraging Behaviors

Feeding lunges were identified for both animals (Figure 6). The mother executed 792 lunges over 246 foraging dives while the calf executed 118 lunges over 30 foraging dives (note: lunges were not included if they were executed shallower than 10 m). Prior to feeding, the pair generally rested near the surface (as seen from surface observations during daylight hours) and executed a few exploratory dives (defined here as dives > 50 m where no lunges were executed). The mother then initiated feeding at 16:22:00 and fed continuously and regularly until her tag came off (Figure 6). The calf, however, initiated feeding at 17:00:08 and executed 95.80 % of its lunges by 19:28:21. The mother and calf both lunged between one and multiple times per feeding dive (mean ± SD: 3.22 ± 1.88 and 3.93 ± 2.36 lunges per dive, respectively), with the maximum number of lunges executed per dive equaling eight and nine, respectively (Table 2). The mother’s within-dive inter-lunge interval (ILI) was higher and had a smaller variance than the calf’s (mean ± SD = 46.33 ± 8.10 and 33.71 ± 10.32 sec, respectively; \(t = 13.07, df = 634, p < 0.01 \)).
variances between the animals were significantly different ($F = 0.62$, $df = 546; p < 0.01$).

Additionally, the mother’s ILI was consistent throughout the tag record ($y = 0.02 x + 45.92$, $p < 0.01$) and the change in ILI was not significantly different than zero ($p = 0.82$).
Figure 6: Dive profiles (depth versus time) and foraging lunges executed by the mother (A) and her calf (B) during the duration of the concurrent tag records. Note: simultaneous recordings began at 11:51:17 on May 19, 2011, occurred overnight, and ceased when the mother’s tag came off at 7:42:00 on the morning of May 20, 2010.
An increased number of lunges executed on a foraging dive was associated with longer mean dive durations for both animals (mother: $F = 5592$ on 1 and 252 df, $R^2 = 0.96$, $p < 0.01$; calf: $F = 33.81$ on 1 and 28 df, $R^2 = 0.55$, $p < 0.01$), longer mean post-dive surface durations (mother: $F = 180.90$ on 1 and 252 df, $R^2 = 0.42$, $p < 0.01$; calf: $F = 32.43$ on 1 and 28 df, $R^2 = 0.54$, $p < 0.01$), and deeper mean maximum dive depths (mother: $F = 735.50$ on 1 and 252 df, $R^2 = 0.75$, $p < 0.01$; calf: $F = 55.98$ on 1 and 28 df, $R^2 = 0.67$, $p < 0.01$); these relationships were more consistent for the mother (always increasing) than for the calf (Table 2, Figure 7). Additionally, the calf dove shorter and shallower than its mother when comparable numbers of lunges were executed during a given dive (mother versus calf dive duration by number of lunges: $t = -6.79$, $df = 282$, $p < 0.01$; maximum dive depth by number of lunges $t = 5.45$, $df = 282$, $p < 0.01$, respectively). However, there was no significant difference in the post-dive surface duration between the mother and calf when compared with the number of lunges executed per foraging dive, dive duration, and maximum dive depths (mother versus calf post-dive surface duration by number of lunges: $t = -1.71$, $df = 282$, $p = 0.09$; post-dive surface duration by dive duration: $t = 0.63$, $df = 282$, $p = 0.53$; and post-dive surface duration by maximum dive depth: $t = -0.34$, $df = 282$, $p = 0.71$, respectively).
Table 2: Mean (± SD) values of dive duration (sec), post-dive surface duration (sec), and maximum dive depth (m) per number of lunges executed on a dive.

<table>
<thead>
<tr>
<th>Number of lunges per dive</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of dives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>69</td>
<td>23</td>
<td>48</td>
<td>47</td>
<td>27</td>
<td>16</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Calf</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dive duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>36.20 ± 94.68 ± 151.78</td>
<td>209.61 ± 260.03 ± 309.39</td>
<td>354.07 ± 387.60 ± —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.53 ± 15.40 ± 20.52</td>
<td>27.28 ± 36.39 ± 23.93</td>
<td>± 21.01 ± 32.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calf</td>
<td>172.64 ± 156.93 ± 149.80</td>
<td>186.93 ± 220.40 ± 310.40</td>
<td>294.60 ± 346.40 ± 382.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>74.91 ± 86.95 ± 21.54</td>
<td>31.19 ± 47.90</td>
<td>± 2.26 ± 25.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-dive surface duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>21.22 ± 25.60 ± 34.67</td>
<td>62.55 ± 67.97 ± 97.92</td>
<td>89.27 ± 140.4 ± —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.83 ± 18.58 ± 27.27</td>
<td>33.69 ± 42.07</td>
<td>± 54.19 ± 41.90</td>
<td>± 16.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calf</td>
<td>30.72 ± 54.13 ± 45.20</td>
<td>45.87 ± 81.40 ± 97.20</td>
<td>147.80 ± 129.60 ± 172.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.29 ± 43.04 ± 28.43</td>
<td>32.62 ± 52.19</td>
<td>± 14.14 ± 45.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum dive depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>22.21 ± 45.38 ± 66.06</td>
<td>75.80 ± 87.24 ± 113.53</td>
<td>125.99 ± 138.19 ± —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.11 ± 14.18 ± 16.35</td>
<td>25.52 ± 26.40</td>
<td>25.07 ± 21.00</td>
<td>± 11.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calf</td>
<td>64.33 ± 60.87 ± 71.67</td>
<td>84.24 ± 78.20 ± 140.02</td>
<td>118.36 ± 146.79 ± 150.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.21 ± 16.05 ± 11.20</td>
<td>20.72 ± 8.13</td>
<td>± 10.25 ± 19.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3.2 Synchronous Behaviors

Cross-correlation analyses of the mother and calf’s depth, pitch, roll, and heading for the entire concurrent tracks were derived to determine the correlation of the pairs’ behaviors. Depth was positively correlated \((r = 0.62, p < 0.01) \) and was greatest when the calf’s track lagged behind the mother’s track by 4.5 sec \((r = 0.62, p < 0.01) \). Pitch and heading were also positively correlated (pitch: \(r = 0.35, p < 0.01 \); heading: \(r = 0.36, p < 0.01 \)).
0.01); however, this correlation was weaker than the correlation for depth. Pitch and heading were most correlated when the calf’s track lagged behind the mother’s track by 5 and 11 sec, respectively. Rolling was not significantly correlated ($r = 0.02, p < 0.01$) and was therefore not considered in further analyses. Correlation coefficients calculated for depth, pitch, and heading for each dive varied during the concurrent tag record and will be discussed in more detail below. In terms of their diving and surfacing behaviors, the pair dove and surfaced within ± 20 sec of each other for 57.81 % and 44.40 % of their dives, respectively. Within these ± 20 sec dives, the mother dove and surfaced before the calf 45.27 % and 54.78 % of the time while the calf dove and surfaced before the mother 20.95 % and 33.91 % of the time; the pair dove and surfaced at approximately the same time (within ± 1 sec) 33.78 % and 11.30 % of this time, respectively.

Correlation coefficients calculated for the pair’s depth, pitch, and heading varied throughout the concurrent tag records and between behavioral states (Figures 8 and 9). Depth and pitch were highly positively correlated at the beginning of the concurrent record when the animals were resting and gradually weakened when the pair became more active and started making exploratory dives (~15:30:00) (Figure 8 A, B); heading showed a similar pattern but with lower r-values overall (Figure 8 C). Correlation coefficients were highly positively correlated again when the mother initiated feeding (16:22:00) and strengthened further when the calf joined its mother in feeding (17:00:08). After the calf stopped feeding (19:28:21), and for the remaining duration of the concurrent records, the correlation coefficients were variable, with lower r-values occurring when the mother was feeding at shallow depths in the middle of the night.
(presumably following the diel vertical migration of krill; Espinasse et al. 2012, Friedlaender et al. 2013) and higher r-values when the mother was performing deeper foraging dives later in the morning. The percentage of r-values for depth, pitch, and heading that were > 0.5 and > 0.9 for the varying behavioral states (Figure 9) are shown in Table 3 (note: there were no dives during which only the calf was foraging).

Figure 8: Pearson’s product-moment correlations coefficients calculated for each dive for the duration of the concurrent tag records: A) correlation of depth behavior; B) correlation of pitch behavior; and C) correlation of heading behavior. The solid horizon line represents $r = 0.5$ (i.e., synchronized behavior), while the dashed horizontal line represents $r = 0.9$ (i.e., highly synchronized behavior).
Figure 9: Three-dimensional visualizations of the mother and calf’s dive behavior during varying behavioral states (TrackPlot, Ware et al. 2006). The mother’s track is yellow while the calf’s track is blue; feeding lunges are represented as green boxes on the pseudo-track. The dashed vertical line represents depth (10 m increments from the surface), the horizontal arrow represents magnetic north, and the wedges along the track represent the magnitude and frequency of fluke strokes (identified from angular accelerations about a lateral axis). Note: horizontal proximity is approximated based on surface fixes (N = 30, 27 for the mother and calf, respectively) and dead-reckoning techniques and may not represent the true horizontal proximity. A) A synchronized dive during which both animals are foraging; B) an unsynchronized dive during which both animals are foraging; C) a synchronized dive during which the mother is foraging and the calf is not foraging but swimming nearby; and D) an unsynchronized dive during which the mother is foraging and the calf is not foraging and not swimming synchronously.
Table 3: Percent of correlation coefficients that were greater than 0.5 (synchronous behaviour) and greater than 0.9 (highly synchronous behaviour) for the pair’s depth, pitch, and heading.

<table>
<thead>
<tr>
<th></th>
<th>Depth</th>
<th>Pitch</th>
<th>Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither foraging</td>
<td>62.07, 34.48</td>
<td>48.28, 17.24</td>
<td>37.93, 10.34</td>
</tr>
<tr>
<td>Both foraging</td>
<td>85.19, 59.26</td>
<td>62.96, 0.00</td>
<td>48.15, 11.11</td>
</tr>
<tr>
<td>Only mother foraging</td>
<td>36.36, 10.45</td>
<td>38.18, 9.09</td>
<td>31.36, 6.36</td>
</tr>
</tbody>
</table>

Values are percentages of r values > 0.5, > 0.9

Lunges performed by the calf appeared to be synchronized with lunges performed by its mother in terms of time and depth. Indeed, 84.26 % and 79.63 % of the calf’s lunges were performed within ± 20 sec and within ± 20 m, respectively, of its mother’s lunges while 35.19 % and 53.70 % were performed within ± 5 sec and within ± 5 m, respectively. Of these, the mother lunged before the calf 60.19 % of the time and shallower than the calf 52.78 % of the time. In addition, 97.46 % of the calf’s lunges were executed during a dive in which its mother was also foraging. The mother, however, did not appear to forage based on whether or not her calf was simultaneously foraging or exhibiting synchronized behaviors (based on the continuity and regularity of her within-dive ILIs).

2.4 Discussion

This analysis represents the first record of a long-term (~20 hr) continuous underwater relationship and concurrent foraging behavior of a baleen whale mother-calf pair. Because the calf that was tagged was likely between eight and 12 months old (assuming it was born in the previous winter or early spring), my findings represent a
snapshot of the period of time when the calf was gaining independence and was becoming more responsible for maintaining proximity to its mother. This is supported by the mother’s foraging behavior, which did not appear to change according to changes in the calf’s behavior (e.g., her ILI was consistent and stable for the duration of the time she spent foraging, despite changes in the calf’s behavior), and was instead likely a function of the vertical position of the prey (Croll et al. 2005, Friedlaender et al. 2009, Hazen et al. 2009, Goldbogen et al. 2011). In accordance, the calf appeared to be primarily responsible for altering and synchronizing its behaviors to its mother throughout the concurrent tag records. This is similar to other humpback whale calves (Szabo & Duffus 2008, Cartwright & Sullivan 2009), southern right whale calves (Taber & Thomas 1982, Thomas & Taber 1984), and other mammals, such as infant rhesus monkeys (Macaca mulatta) (Berman 1980), during the later stages of the mother-offspring relationship.

While both animals exhibited feeding lunges, there were some striking differences in the frequency and duration of their foraging behaviors that likely correspond to the changes associated with the calf gaining nutritional independence and weaning. For instance, as previously stated, once the mother began feeding, she continued to consistently and regularly feed without resting for any significant period of time. In addition, she executed more lunges (N = 792) than have been previously been described for other adult humpback whales (unknown age/sex) tagged for similar durations in the WAP (Ware et al. 2011). These findings may be explained by her spending less energy on her calf due to the calf’s decreasing vulnerability to being left
alone more frequently and for longer periods of time, and spending more energy attending to the increased demands on her personal fitness (e.g., replenishing energy reserves diminished from lactation and the recent migration, and increasing energy reserves for successful future migrations and successful rearing of additional offspring).

While the calf may have still been nursing (although we saw no apparent evidence of its occurrence), the calf executed 118 feeding lunges over 30 dives. Interestingly, the calf primarily foraged between 17:00:08 and 19:28.21. There are several potential reasons for why its foraging behavior was so discrete in frequency and in duration. First, if the calf was still nursing then its feeding lunges were likely to obtain supplemental energy in addition to nursing. Second, the calf may require proportionally less food than larger animals to support its resting metabolism. Third, when young animals are less active their metabolic rates decline (Arnould et al. 2003) and energy is preferentially allocated to growth (Sibley & Calow 1986). Thus, it may be beneficial for the calf to spend only a small portion of its time feeding and a larger portion of its time either resting near the surface or swimming in synchrony with its mother gaining the associated hydrodynamic advantage (Noren et al. 2008, Noren & Edwards 2011). This would allow the calf to dedicate more of its energy to growth, which is important for its survival; a large body size reduces the costs associated with travel during migrations (Williams 1999), increases the individual’s breath holding and oxygen storage capacity (Schreer & Kovacs 1997), reduces the risk of predation (Chittleborough 1958), and enhances future reproductive success (Spitz et al. 2002).
While adult rorqual dives have been characterized by a gliding descent with a low rate of fluking, a series of lunges at depth, and an ascent to the surface powered by steady fluking (Goldbogen et al. 2006, Goldbogen et al. 2008), preliminary examinations of the calf’s dive plot reveal that the calf beat its flukes frequently on the descent, performs a series of lunges at depth, and then ascends to the surface with few, if any, fluke strokes. Positively buoyant whales, such as right whales (*Eubalaena glacialis*; Nowacek et al. 2001) and sperm whales (*Physeter macrocephalus*; Miller et al. 2004) are known to actively stroke to depth and glide during ascent. Aoki et al. (2011) found that an increase in fat content in a Northern elephant seal (*Mirounga angustirostris*) resulted in an increased descent stroke rate and decreased ascent stroke rate. This suggests that the calf is more buoyant than its mother and must expend more energy to stay submerged. Further work to characterize buoyancy and fluking effort differences between mother and calf pairs should be conducted to examine this hypothesis more closely.

The frequency of lunges executed per dive has been associated with deeper maximum dive depths, longer dive durations, and longer post-dive surface durations in humpback whales (Dolphin 1987a, c, Goldbogen et al. 2008, Ware et al. 2011), fin whales (Croll et al. 2001, Acevedo-Gutierrez et al. 2002, Goldbogen et al. 2006, Goldbogen et al. 2007), and blue whales (Croll et al. 2001, Acevedo-Gutierrez et al. 2002, Goldbogen et al. 2011). Our results (Figure 7, Table 2) are consistent with these findings and thus provide further support for the hypothesis that lunge feeding is energetically costly. Interestingly, the mother and calf had proportionally equivalent post-dive surface durations (i.e., recovery times) when considering the number of lunges executed per
dive, dive durations, and maximum dive depths. This suggests that foraging dives executed by the mother and calf of comparable foraging effort were equivalently energetically costly. Despite this, the calf dove shallower and had shorter dive durations than its mother for comparable number of lunges executed per dive. These findings are likely related to the calf’s limited oxygen capacity and possibly greater buoyancy. The duration for which a diving animal can remain underwater is related to its oxygen storage capacity, the rate at which it uses stored oxygen, and its anaerobic capacity (Schreer & Kovacs 1997); as such, larger animals are better equipped to dive. Thus, a humpback calf should exhibit shorter dives for similar dive depths and durations than its larger mother.

My results also further support the hypothesis that humpback whales exhibit a following maternal strategy (Lent 1974, Szabo & Duffus 2008). While the pair was not always traveling together, they were within a vertical distance of ± 20 m for 71.40 % of the concurrent records and exhibited a high percentage of synchronized dives in terms of their depth, pitch, and heading (Figure 9, Table 3). In addition, the pair’s depth was most highly correlated when the calf’s track was lagged 4.5 sec behind its mother. Also, when the calf was feeding, it lunged after its mother 60.2 % of the time. These findings suggest that the pair were generally traveling and feeding in synchrony with each other with the calf traveling and feeding closely behind.

Interestingly, a higher percentage of positively correlated dives were found when both animals were feeding than when neither animal was feeding or when just the mother was feeding. There are several beneficial reasons for the calf to synchronize its
feeding behavior with its mother, including learning how to forage and/or benefiting from the food its mother has found. In addition, synchrony during foraging may ease the energetic costs associated with foraging for the calf by gaining the hydrodynamic advantages associated with synchronized swimming (Noren et al. 2008, Noren & Edwards 2011). This may contribute to the equivalent recovery times we found for the mother and the calf for comparable foraging dive efforts. When the calf was not feeding, it would go in and out of synchrony with its mother (shown by the fluctuation in r values; Figure 9), generally behaving independently of its mother when its mother was feeding near the surface and re-synchronizing its behaviors when the mother made deeper feeding dives. This suggests that while the mother was feeding near the surface, the calf could behave independently of its mother while maintaining a close proximity but when the mother executed deeper dives, the calf had to join and synchronize its behavior in order to maintain similar levels of proximity.

While my findings only represent ~20 hrs of a single humpback whale mother-calf pair, they demonstrate how bio-logging tools can enhance our understanding of marine animals during periods that are critical for their behavioral development. It is important to note that the behavior of mother-calf pairs can vary widely across pairs and over time (Taber & Thomas 1982, Cartwright & Sullivan 2009) and therefore more tags need to be deployed on additional mother-calf pairs at varying times during the first year of their relationship. Such attempts should take the appropriate measures to minimize disturbance during tagging, however, as mother-calf pairs may be more
sensitive to boat approaches than groups of adults (Stimpert et al. 2012). These efforts will enable us to gain a better understanding of early baleen whale behavioral ontogeny.
3. How Should a Clever Whale Allocate Foraging Time and Effort

3.1 Introduction

Optimal foraging theory (OFT) suggests that organisms should favor foraging strategies that are efficient in minimizing costs (e.g., time, energy) while simultaneously maximizing benefits (e.g., energy, nutrients) (Macarthur & Pianka 1966). Models based on this premise have been developed to examine the efficiency of foraging behaviors in air-breathing diving animals, such as birds and marine mammals, under the framework of central-place foraging (Orians et al. 1979), where the surface acts as the central place (Houston & McNamara 1985) (e.g., Croll et al. 2001, Thompson & Fedak 2001, Acevedo-Gutierrez et al. 2002, Doniol-Valcroze et al. 2011, Heaslip et al. 2014). One of the most widely used models for this purpose is a time-allocation model developed by Kramer (1988) and later modified by Houston and Carbone (1992), which predicts the optimal foraging, dive, and surfacing durations of divers in response to changes in foraging depth. The model is based on the assumption that the amount of time traveling to and from a prey patch will increase with increasing prey patch depth. Consequently, the amount of time spent recovering on the surface after a dive will increase (Kooyman & Ponganis 1998) and the proportion of time available for foraging will decrease (Kramer 1988, Houston & Carbone 1992). Under these assumptions, air-breathing diving animals should spend the amount of time at the surface obtaining oxygen that will maximize the proportion of time spent in the foraging area (Kramer 1988, Houston & Carbone 1992).
Given the cost in energy and time of deep dives, animals should prefer to feed at shallow depths if prey can be obtained equivalently (Charnov 1976). When prey patch structure varies by depth, however, divers should forage within shallower patches until the search, capture, and handling of prey times outweigh the net energetic gain from consumption (Macarthur & Pianka 1966). When forced to dive to greater depths to find sufficient prey patches, divers should adjust time allocation within their dives by, for example, increasing their ascent and/or descent rates to maximize bottom time (Mori 1998, Doniol-Valcroze et al. 2011). This change in behavior may allow them to compensate for travel costs by increasing their rate of prey encounters and ultimately prey captures (Thompson & Fedak 2001).

It has been assumed that rorquals (i.e., Balaenopterids) forage according to OFT (Dolphin 1987b, 1988, Hazen et al. 2009, Doniol-Valcroze et al. 2011); however, this has been hard to test quantitatively due to the difficulty in describing their foraging behavior at depth, specifically in direct relation to prey access and availability. Acevedo-Gutierrez et al. (2002) were the first to use an OFT model to examine foraging behaviors in rorquals. They found that the foraging dives of blue (*Balaenoptera musculus*) and fin whales (*Balaenoptera physalus*) measured with time-depth recorders were shorter than predicted by OFT (Houston & Carbone 1992) and suggested that this was due to a high cost of lunge feeding. Lunge feeding has been deemed as the largest biomechanical event to take place on earth (Brodie 1993) because it involves accelerating with a burst of energetic fluking towards a prey patch then rapidly decelerating as the whale opens its buccal cavity to approximately 75 degrees (Brodie 1993) to consume a mass of prey-
laden water that may be greater than the whale’s total body mass (Goldbogen et al. 2010). Doniol-Valcroze et al. (2011) similarly predicted dive durations of blue whales but also took into consideration their lunging rates (inferred from estimates of the whale’s swim speeds sensu Goldbogen et al. 2008) and updated estimates of their metabolic rates (Potvin et al. 2009, Goldbogen et al. 2010). They found that an optimal framework did predict blue whale foraging patterns: blue whales increased their foraging times within dives to compensate for longer travel durations and to optimize resource acquisition, and shallow dives were short and yielded the highest feeding rates (Doniol-Valcroze et al. 2011).

In this chapter, I predicted the optimal foraging durations, dive durations, and post-dive surface durations of humpback whales (*Megaptera novaeangliae*) following Houston and Carbone (1992). I compared the predicted durations to observed durations recorded with high-resolution, multi-sensor digital acoustic recording tags (Dtags; Johnson & Tyack 2003) that were attached to humpback whales foraging in the Western Antarctic Peninsula (WAP) (Nowacek et al. 2011, Stimpert et al. 2012, Tyson et al. 2012, Friedlaender et al. 2013) and assessed model agreement. Based on previous observations of rorqual foraging behavior (e.g., Dolphin 1987b, 1988, Acevedo-Gutierrez et al. 2002, Hazen et al. 2009, Doniol-Valcroze et al. 2011, Friedlaender et al. 2013), I predicted that humpback whales in the WAP would allocate their time according to OFT: during a dive, humpbacks would maximize the proportion of time available for foraging and minimize the proportion of time required for traveling and recovering at the surface regardless of dive depth.
3.2 Methods

3.2.1 Observed Whale Behavior

Three-dimensional individual humpback whale diving and foraging behaviors were inferred from digital acoustic recording tags (Dtags) attached non-invasively to whales in Wilhelmina Bay, Anvord Bay, and Flanders Bay (WAP) between May and June 2009 and between June and July 2010. Dtags incorporate a pressure sensor, three-axis accelerometers, and three-axis magnetometers to measure depth, heading, pitch, and roll, respectively, at 50 Hz during the tag deployments as well as a hydrophone (sampling rate of 96 KHz) and a an embedded VHF transmitter (Johnson & Tyack 2003). Recorded measurements were stored synchronously with audio data on flash memory within the tag. Dtags were placed on humpbacks using an 8 m carbon-fiber pole and were attached via four silicon suction cups to the dorsal surface of the animal, between the dorsal fin and the blowhole. Whale behavior was not visibly affected by the tagging (other than immediate startle responses by some), consistent with other studies (e.g., Hazen et al. 2009, Nowacek et al. 2011).

Tagged whales were tracked visually during daylight hours from a rigid inflatable boat that stayed within 500 m of the individual; surface behaviors were logged using standard behavioral methodology (Altmann 1974) to calibrate measurements recorded by the tag. Photographs of each tagged whale were periodically taken to record the position and orientation of the tag on the whale for calibration and photogrammetric purposes. At night, tagged whales were tracked with directional VHF antennas. An active release, which corrodes in sea water, was timed to release the tag once data
storage was complete (approximately 24 hrs) causing the tag to float to the surface. The VHF signal and directional antenna were used to locate and retrieve the buoyant tag. Upon tag retrieval, post-tagging calibration was immediately conducted and the data were downloaded via infrared transmission. Post-tagging calibration accounts for hard iron and soft iron effects in the magnetometers (Johnson & Tyack 2003).

I used TrackPlot (Ware et al. 2006) to generate a three-dimensional time series (i.e., a pseudo-track) of each whale’s estimated movements (see Ware et al. 2006, Ware et al. 2011; Figure 10) and it’s embedded automatic lunge detector to identify feeding lunges. This detector pinpoints putative lunges using an algorithm that finds distinct fluctuations in the flow noise recorded by the hydrophone within the Dtag, which are indicative of the whale’s speed (Ware et al. 2011) and hence the rapid accelerations and decelerations characteristic of lunging (Goldbogen et al. 2006, Ware et al. 2011). I only confirmed the presence of a lunge if all of the following were observed: (1) an isolated bout of fluking associated with a distinct speed maximum, followed by a rapid reduction in speed, followed in turn by a period of gliding; (2) continued swimming and fluking throughout the lunge, particularly during the deceleration phase (Goldbogen et al. 2006, Goldbogen et al. 2008, Ware et al. 2011, Simon et al. 2012, Tyson et al. 2012); and (3) the whale was deeper than 3 m (lunges executed shallower than 3 m were excluded from analyses due to detection capabilities being diminished because of surface interactions; i.e., abrupt changes in flow noise when the whale surfaced). I also scanned all pseudo-tracks for missed lunges and manually added that adhered to these criteria to the database.
Figure 10: A whale’s pseudo-track with associated acoustic spectrogram and estimated speed (green line overlaid onto spectrogram) shown in TrackPlot (Ware et al. 2006). The drop in speed shown on the spectrogram is indicative of a lunge performed by the whale, which is represented as a green box on the pseudo-track.

I used custom code built for Dtag analyses to determine the dive durations, post-dive surface durations, and maximum dive depths of each dive (defined as any submergence greater than 3 m) for each tagged whale in the software program MATLAB® (Johnson & Tyack 2003, MathWorks 2013b). I defined feeding dives as any dive for which a feeding lunge was detected (Friedlaender et al. 2013) and used the software program R (R Core Team 2013) to assign the appropriate lunge counts to each feeding dive.
3.2.2 Optimal Model Based On Time Allocation

I used a time allocation OFT model (Houston & Carbone 1992) to compare the foraging behaviors of humpback whales inferred from the Dtags to those predicted by OFT. I divided observed feeding dives into three parts for use in the model: i) travel duration, τ; ii) foraging duration, t; and iii) post-dive surface duration, s (Kramer 1988, Houston & Carbone 1992). I calculated t as the duration of time starting from the moment the first lunge was executed (i.e., mouth opening) on a dive to the moment the last lunge on that dive was completed (this included an estimated filter duration for an average sized humpback whale (13.00 sec; Goldbogen et al. 2012). I considered τ to be total dive duration, u ($u = \tau + t$), minus t.

Following Houston and Carbone (1992), I assumed that a whale that spends time s on the surface following a dive gained oxygen as:

$$x(s) = K(1 - e^{-\alpha s}),$$

where K is the total oxygen storage capacity and α is the initial proportional exchange rate of oxygen at the surface. While diving, I assumed that a whale would use oxygen at a rate of m: when traveling and m: when foraging (Kramer 1988, Houston & Carbone 1992, Carbone & Houston 1996) and that all feeding dives were balanced (Houston & Carbone 1992): all of the oxygen stored prior to each dive would be used during the present dive (in contrast to all of the oxygen that can be stored; Houston 2011):

$$x(s) - m_\tau \tau + m_t t = 0.$$

(i.e., the dives are aerobic). In addition, I assumed that a whale would maximize the proportion of time during a dive cycle (π) foraging:
\[
\pi = \frac{t}{t + \tau + s}
\]
which is equivalent to maximizing \(t/(\tau + s) \) (see Houston & Carbone 1992). I eliminated \(t \) from this proportion with its equivalent from equation 2 to get:

\[
\pi(s) = \frac{x(s) - m_r \tau}{m_t(s + \tau)}
\]
The value of \(s^* \) that maximizes equation 4 also maximizes \(t \) (Houston & Carbone 1992). Because the optimality condition states that \(\pi' = 0 \) and because \(x'(s) = m_r \), I simplified equation 4 to get:

\[
x(s) - m_r t = x'(s)(s + \tau)
\]
I then determined the optimal surface duration, \(s^* \), for a given dive as a function of \(\tau, m_r, K, \) and \(\alpha \) by solving

\[
K(1 - e^{-\alpha s^*}) - m_r \tau - \alpha Ke^{-\alpha s^*}(s^* + \tau) = 0
\]
numerically for \(s^* \) (Houston & Carbone 1992, Stephens et al. 2008) (Table 4).
Table 4: Descriptions, equations, and values of parameters used in the optimal model. *m_t was converted from W to L O$_2$ s$^{-1}$ for use in the optimal model. The calculation of m_t factors in an estimated energetic savings attributed to gliding behaviors (Williams 2001).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description (units)</th>
<th>Equation</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Length (m)</td>
<td></td>
<td>13.45</td>
<td>Clapham and Mead (1999)</td>
</tr>
<tr>
<td>M</td>
<td>Body Mass (kg)</td>
<td>$16.473 \times L^{2.95}$</td>
<td>35196.82</td>
<td>Lockyer (1976)</td>
</tr>
<tr>
<td>K</td>
<td>Total oxygen storage capacity (L)</td>
<td>$0.03 \times M^{1.05}$</td>
<td>1782.17</td>
<td>Stephens et al. (2008)</td>
</tr>
<tr>
<td>α</td>
<td>Initial rate of oxygen replenishment (s$^{-1}$)</td>
<td>$0.09 \times M^{-0.33}$</td>
<td>0.02</td>
<td>Stephens et al. (2008)</td>
</tr>
<tr>
<td>m_t</td>
<td>Metabolic rate while traveling (W)</td>
<td>$6 \times 4 \times M^{0.75}$</td>
<td>2.95</td>
<td>Potvin et al. (2012)</td>
</tr>
<tr>
<td>m_t^*</td>
<td>*Metabolic rate while traveling (L O$_2$ s$^{-1}$)</td>
<td>$m_t - (m_t \times 0.28)$</td>
<td>2.12</td>
<td>Williams (2001)</td>
</tr>
<tr>
<td>m_f</td>
<td>Metabolic rate while foraging (L O$_2$ s$^{-1}$)</td>
<td>$1.78 \times m_t$</td>
<td>3.78</td>
<td>Potvin et al. (2009), Goldbogen et al. (2010), Donio-Valcroze et al. (2011)</td>
</tr>
<tr>
<td>V</td>
<td>Vertical speed (m s$^{-1}$)</td>
<td></td>
<td>1.00</td>
<td>Goldbogen et al. (2008), Ware et al. (2011)</td>
</tr>
</tbody>
</table>
I determined the values of \(s^* \) for an average sized humpback whale (13.45; Clapham & Mead 1999) diving to depths ranging from 0 – 400 m (depths are representative of the study region’s bathymetry). I assumed a constant vertical speed \((V)\) of 1 m s\(^{-1}\) to express \(t \) as a function of target depth in the model as suggested by Doniol-Valcroze et al. (2011) (i.e., target depth = 2 × \(V \times \) predicted depth). This speed is supported by data recorded from Dtags attached to humpback whales (Goldbogen et al. 2008, Ware et al. 2011). Given an estimate of \(m_f \) (metabolic rate while foraging; Table 4), I substituted values of \(s^* \) into equation 2 to yield estimates of optimal foraging durations, \(t^* \), and calculated optimal dive durations, \(u^* \), as \(t^* + \tau \) (Houston & Carbone 1992). I derived all model predictions and examined all comparisons to observed data with custom written code in R (R Core Team 2013).

I predicted the number of lunges executed per dive \((l^*)\) as \(t^* \) divided by the mean lunge duration of an average sized whale (14 m, 41 sec; Potvin et al. 2012) and compared them to the observed number of lunges executed per dive \((l)\) as an additional assessment of the whale’s foraging behaviors and how they compared to the OFT model. Finally, I predicted the diving lactate threshold \((DLT)\), the dive duration at which post-dive lactate concentration increases (Kooyman 1985, Butler & Jones 1997, Butler 2006), for an average sized humpback whale (Table 4) for depths \((p)\) ranging from 0 – 400 m as:

\[
DLT(p) = \left(\frac{p}{V} \times 2 \right) + \left(\frac{K - m_r \times \frac{p}{V} \times 2}{m_t} \right)
\]

(Doniol-Valcroze et al. 2011).
In the execution of the OFT model, each dive is treated as an independent sample. Therefore, two major assumptions of the model are that each whale has \(K \) oxygen stores available at the beginning of every foraging dive and that all of \(K \) is used during that foraging dive. To assess if these assumptions were upheld, I calculated the amount of oxygen used during each foraging dive following \(m_r \tau + m_t t \) and gained after each foraging dive following \(K(1-e^{-as}) \) and determined if they were equivalent. To further examine how humpbacks used oxygen while foraging and to assess how their behaviors may have affected the model comparisons, I calculated the rate of change in oxygen stores throughout the tagging records, \(X(s) \):

\[
X(s_{i+1}) = X(s_i) - m_r \tau_i + m_t t_i + K(1 - e^{-as_i}),
\]

(8)

where \(X(s_i) \) of each individual was equal to \(K \) (Table 4). Non-foraging dives were included in this iteration (e.g., resting dives; Friedlaender et al. 2013) and used \(m_t t_i \) set to zero (i.e., no foraging costs). This calculation allowed for an examination of oxygen balance over time scales ranging from a single foraging dive to entire foraging periods (c.a. 16 hrs).

3.2.3 Statistical Analyses

Model validity needed to be assessed (Mayer & Butler 1993), therefore I tested the fit of my data (i.e., \(u, s, t, \) and \(l \)) to the model predictions (i.e., \(u^*, DLT, s^*, t^*, \) and \(l^* \)) in several ways. I calculated the residuals of observed versus predicted values (\(y_i - \hat{y}_i \)), the standard deviation of the model prediction error (i.e. root mean squared error; RMSE),
the Pearson’s product moment correlation of \(y_i \) and \(\hat{y}_i \) (Guisan & Zimmerman 2000), and the modelling efficiency (\(ME \); Loague & Green 1991, Mayer & Butler 1993):

\[
ME = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \overline{y_i})^2}. \tag{9}
\]

\(ME \) values equal to 1 indicated a perfect match of \(y_i \) and \(\hat{y}_i \); \(ME \) values equal to 0 indicated that the fit of \(y_i \) and \(\hat{y}_i \) is equal to the fit of \(y_i \) and \(\overline{y_i} \); and \(ME \) values less than 0 indicated the \(\overline{y_i} \) is a better predictor of the data than \(\hat{y}_i \). I also computed linear regressions of \(y_i \) and \(\hat{y}_i \) and tested if they deviated significantly from 1 and 0, respectively (Smith & Rose 1995). All samples in this chapter were tested for normality, linearity, homoscedasticity, and outliers and statistical tests were determined based on the outcome of the sample’s adherence to these assumptions. I assessed individual variability by examining dive variables for each tagged whale separately and conducted a principal component analysis to determine the influence that such variations may have had on the data. I conducted all statistical analyses in R (R Core Team 2013) and used a significance level of 0.05.

3.3 Results

I examined Dtag data collected from 13 adult humpback whales for this chapter (Table 5). I detected feeding lunges from each tagged whale’s tag record but the number of lunges executed by individual varied from 40 (whale identification (ID): 140a) to 943 (whale ID: 146a). The number of lunges executed per foraging dive (\(l \)) ranged from 1 to 13 with a median of 2 and a mean (± SD) of 2.90 (± 2.36). The number of foraging dives
(N) detected ranged from 7 (whale ID: 140a) to 462 (whale ID: 152a) by individual, for a total sample of 2365 foraging dives. Tagged whales generally exhibited an extreme diel feeding pattern (Friedlaender et al. 2013): they started feeding near dusk (14:00:00, GMT – 5 hr), fed constantly through nighttime, stopped feeding by 07:00 the next morning, and rested or traveled for the rest of the day before starting the cycle over again (Figure 11; see Friedlaender et al. 2013 for more details). While maximum dive depths varied by individual (Figure 11 A; AOV: df = 12, 2352, F = 374.18, p < 0.001), 81.27 % of all foraging dives (N = 1922) were to maximum dive depths shallower than 100 m (Figure 11 B) and were distributed primarily between 5 and 40 m (N = 1098, 46.23 %) and between 60 and 90 m (N = 529, 22.37 %).
Table 5: Dtag deployment information. Whale ID, tag on date, tag start time, and tagging location are shown as well as the number of lunges and foraging dives detected for each whale.

<table>
<thead>
<tr>
<th>Whale ID</th>
<th>Tag on date</th>
<th>Tag start time (GMT − 5 h)</th>
<th>Tagging location</th>
<th>Total tag on time (hrs)</th>
<th>Number of lunges (l)</th>
<th>Number of feeding dives (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>122b</td>
<td>2009-May-02</td>
<td>14:28:44</td>
<td>Wilhelmina Bay</td>
<td>18.4</td>
<td>620</td>
<td>419</td>
</tr>
<tr>
<td>127a</td>
<td>2009-May-07</td>
<td>08:42:03</td>
<td>Wilhelmina Bay</td>
<td>24.6</td>
<td>383</td>
<td>89</td>
</tr>
<tr>
<td>136a</td>
<td>2009-May-16</td>
<td>09:09:54</td>
<td>Anvord Bay</td>
<td>23.0</td>
<td>456</td>
<td>82</td>
</tr>
<tr>
<td>140a</td>
<td>2009-May-20</td>
<td>10:58:03</td>
<td>Anvord Bay</td>
<td>22.5</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>148a</td>
<td>2009-May-28</td>
<td>09:48:17</td>
<td>Wilhelmina Bay</td>
<td>25.2</td>
<td>578</td>
<td>225</td>
</tr>
<tr>
<td>152a</td>
<td>2009-June-01</td>
<td>10:39:24</td>
<td>Wilhelmina Bay</td>
<td>22.3</td>
<td>826</td>
<td>462</td>
</tr>
<tr>
<td>132a</td>
<td>2010-May-12</td>
<td>09:58:38</td>
<td>Wilhelmina Bay</td>
<td>23.1</td>
<td>317</td>
<td>97</td>
</tr>
<tr>
<td>133a</td>
<td>2010-May-13</td>
<td>12:03:50</td>
<td>Wilhelmina Bay</td>
<td>22.2</td>
<td>392</td>
<td>102</td>
</tr>
<tr>
<td>139a</td>
<td>2010-May-19</td>
<td>11:02:58</td>
<td>Wilhelmina Bay</td>
<td>20.6</td>
<td>847</td>
<td>292</td>
</tr>
<tr>
<td>144a</td>
<td>2010-May-24</td>
<td>14:05:18</td>
<td>Wilhelmina Bay</td>
<td>21.1</td>
<td>943</td>
<td>307</td>
</tr>
<tr>
<td>146a</td>
<td>2010-May-26</td>
<td>15:17:42</td>
<td>Flandres Bay</td>
<td>20.0</td>
<td>498</td>
<td>64</td>
</tr>
<tr>
<td>151a</td>
<td>2010-May-31</td>
<td>10:23:51</td>
<td>Wilhelmina Bay</td>
<td>24.6</td>
<td>573</td>
<td>160</td>
</tr>
<tr>
<td>155a</td>
<td>2010-June-04</td>
<td>09:42:03</td>
<td>Flandres Bay</td>
<td>22.2</td>
<td>390</td>
<td>59</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td>6863</td>
<td>2365</td>
<td></td>
</tr>
</tbody>
</table>
Figure 11: Temporal distribution (A) and frequency (B) of the maximum dive depths of foraging dives. Note: values are color coded by whale ID (A) for comparison.
3.3.1 Model Agreement

3.3.1.1 Observed Versus Predicted Foraging Behaviors

I predicted the foraging durations (t^*) as well as the number of lunges executed per dive (l^*) for an average sized humpback whale and compared them to their respective values (t and l) recorded by the Dtags (Figure 12 A, C, and E). Predicted foraging durations were not consistent with t (Figure 12 A). Three hundred fifty-three dives had longer t than t^* (14.93 %), while 2012 dives has shorter t than t^* (85.07 %). Of these two groups, 84.70% ($N = 299$) and 89.76% ($N = 1868$) of dives with longer and shorter t than t^* were deeper and shallower than 100 m, respectively (note: 100 % of dives shallower than 49.56 m had t shorter than t^*). The Pearson’s product moment correlation coefficient for t^* and t was low ($r = 0.25, p < 0.001$; i.e., they were not correlated) and the ME value was negative ($ME = -0.54$) suggesting that the model cannot be recommended for the observed data. Shallow dives generally had shorter t than t^*, while deeper dives generally had longer t than t^* (the 25 and 75 % quartile of dives with shorter and longer t than t^* was 11.65 m and 67.32 m and 126.72 m and 267.45 m, respectively). Foraging durations of dives to intermediate depths (approximately 50 to 180 m) were most similar to t^* (they had the lowest RMSE values; Figure 12E). In addition, the mean depths of foraging dives with t values that were shorter than or longer than t^* were significantly different (mean ± SD = 42.02 ± 39.30 m and 203.05 ± 83.04 m, respectively; Wilcoxon Rank Sum Test: $W = 687973, p < 0.001$).

Lunge counts per dive were also not predicted by the OFT model (Figure 12 B, D, and E). Four hundred one dives had more l than l^* (16.96 %), while 1964 dives had fewer
than \(l^* \) (83.04\%). The Pearson’s product moment correlation coefficient for \(l \) and \(l^* \) was low \((r = 0.33, p < 0.001; \text{i.e., they were not correlated}) \) and the \(ME \) value was negative \((ME = -0.31) \). Similar to the agreement of \(t \) and \(t^* \), \(l \) of dives to intermediate depths (approximately 60 to 170 m) were most similar to \(l^* \) (Figure 12 F). Lastly, observed \(t \) and \(l \) were significantly positively correlated with each other \((r = 0.95, p < 0.01) \) and with \(u \) \((r = 0.92, p < 0.001; r = 0.86, p < 0.001; \text{respectively}) \), but not with \(s \) \((r = 0.46, p < 0.001; r = 0.40, p < 0.001; \text{respectively}) \) or \(\tau \) \((r = 0.54, p < 0.001; r = 0.49, p < 0.001; \text{respectively}) \).
Figure 12: Observed and predicted values (A and B), raw residuals ($y_i - \hat{y}_i$) (B and C), and root mean squared errors (E and F) of foraging durations and the number of lunges executed per dive, respectively, as a function of maximum dive depth. Note: values are color coded by whale ID (A - D) for comparison. The boxes in E and F are drawn with widths proportional to the square-roots of the number of observations in each group and outlying data points are excluded (R Core Team 2013).
The relationships between \(t \) and \(l \) with \(u \) and \(s \) are shown in Figure 13 along with their respective predicted values. The observed values of \(t \) and \(l \) in relation to \(u \) were positively correlated to their predicted relationships (Figure 13 A and B: \(r = 0.79, p < 0.001 \) and \(r = 0.92, p < 0.001 \); respectively). In addition, the predicted relationships between \(l^* \) and \(u^* \) agreed with the observed relationships between \(l \) and \(u \) (\(ME = 0.39 \)); the \(ME \) for \(t \) and \(u \) against \(t^* \) and \(u^* \) was low (\(ME = -0.04 \)). Model fit varied with \(l \) (AOV of RMSE values: \(df = 12, 2352, F = 64.05, p < 0.001 \)), with dives having 8 or more lunges being most similar to the model predictions (and statistically similar to one another; Tukey multiple comparison of means: \(p < 0.001 \)). The observed values of \(l \) in relation to \(s \) were also positively correlated to their predicted relationship (Figure 13 D: \(r = 0.64, p < 0.001 \)), but the observed values of \(t \) in relation to \(s \) were not (Figure 13 C: \(r = 0.38, p < 0.001 \)). \(ME \) values for both comparisons were negative suggesting poor model fit (\(ME = -6.68 \) and \(ME = -4.65 \), respectively). Again, model fit varied with \(l \) (AOV of RMSE values: \(df = 12, 2352, F = 326.7, p < 0.001 \)), with fit decreasing with increasing lunge counts per dive (Figure 13 D).
Figure 13: Observed and predicted foraging durations and lunge counts as a function of dive durations and post-dive surface times, respectively. Note: values are color coded by whale ID for comparison.

3.3.1.2 Observed Versus Predicted Dive Durations

I compared predicted dive durations (u^*) to their respective durations (u) recorded by the Dtags (Figure 14). The OFT model predicted that u^* would increase rapidly at shallow depths then increase at a decreasing rate with increasing depth. The Pearson’s product moment correlation coefficient for u^* and u were significantly positively correlated ($r = 0.95, p < 0.001$) and the ME was greater than zero ($ME = 0.10$) suggesting fair model fit. The slope of the linear regression between u and u^* was close
to 1, suggesting that the prediction accuracy did not vary with depth \(y = 163.93 + 0.91x, \) \(R^2 = 0.91, p < 0.001 \). However, a closer examination of the residuals between \(u \) and \(u^* \) (Figure 14 B) and the RMSE values (Figure 14 D), suggests that dives to maximum depths between approximately 30 and 160 m and greater than 340 m had durations that were less similar to \(u^* \) than dives with maximum depths shallower than 30 m or between 170 m and 340 m. While 98.99 % of foraging dives \((N = 2341) \) had shorter durations than \(u^* \), the mean maximum dive depths of foraging dives with shorter or longer \(u \) than \(u^* \) \((N = 2341, 98.99 \% \) and \(N = 24, 1.01 \%, \) respectively) were significantly different \((\text{mean} \pm \text{SD} = 65.09 \pm 74.24 \text{ m and } 160.02 \pm 95.24 \text{ m, respectively; Wilcoxon Rank Sum Test: } W = 45729, p < 0.001) \). Regardless of model agreement, dive durations increased with maximum dive depths \((y = 2459 + 2.11x, R^2 = 0.91, p < 0.001) \) and were strongly positively correlated with this parameter \((r = 0.95, p < 0.001) \).

The DLT was predicted to increase with increasing maximum dive depth (Figure 14 A). The Pearson’s product moment correlation coefficient for \(u \) and the predicted DLTs was similar \((r = 0.95, p < 0.001) \) to that of \(u^* \), but the \(ME \) value was negative \((ME = -4.27) \) suggesting the model does not describe the data. The slope of the regression of \(u \) and DLT \((y = -1109 + 2.40x, R^2 = 0.91, p < 0.001) \), and an examination of the residuals (Figure 14 C) and of the RMSE (Figure 14 E) suggests that the prediction accuracy of DLT varied with depth. Increasing maximum dive depths had \(u \) that were increasingly similar to DLT (i.e., residuals were increasingly larger and RMSE values were increasingly smaller) up to approximately 210 m (Figure 14 A, C, and E). Dive durations for dives to maximum depths greater than 210 were equally similar to DLT (Tukey
multiple comparisons of RMSEs for all \(n \) by \(n \) comparisons, \(p > 0.05 \). The mean maximum dive depths of foraging dives that were shorter or longer than the DLT predictions were significantly different (mean ± SD = 65.84 ± 74.86 m and 237.69 ± 7.77 m, respectively; Wilcoxon Rank Sum Test: \(W = 6659, p < 0.08 \)). Note, however, that only three dives had dive durations longer than their predicted DLT and these dives were all executed by whale w127a (Figure 14 A and C). In addition, these dives also had longer \(t \) and \(s \) than \(t^* \) and \(s^* \), respectively, and had a higher \(l \) than \(l^* \) (12, 11, 7 versus 4, 4, 4; respectively).
Figure 14: Observed and predicted values (A), raw residuals \((y_i - \hat{y}_i)\) (B and C), and root mean squared errors (D and E) of dive durations and the diving lactate threshold, DLT, respectively, as a function of maximum dive depth. Note: values are color coded by whale ID (A, B, and C) for comparison. The boxes in D and E are drawn with widths proportional to the square-roots of the number of observations in each group and outlying data points are excluded (R Core Team 2013).
3.3.1.3 Observed Versus Predicted Post-Dive Surface Durations

The OFT model predicted that s^* would increase with increasing dive depths (Figure 15 A). While s did increase with maximum dive depths ($y = -10.29 + 1.15x$, $R^2 = 0.40$, $p < 0.001$), the model did not describe the data ($ME = -7.50; r = 0.63$, $p < 0.001$) and most foraging dives had s shorter than s^* ($N = 2356$, 99.62%; Figure 15). The slope of the linear regression of s versus s^* ($y = 310.13 + 1.30x$, $R^2 = 0.39$, $p < 0.001$) as well as the residuals (Figure 15 B) and RMSE values (Figure 15 C) suggests that prediction accuracy of s varied by depth: increasing maximum dive depth resulted in s that were increasingly shorter than s^* (Figure 15 B, C). In addition, the mean maximum dive depths of foraging dives with s shorter or longer than s^* were significantly different (mean ± SD = 65.44 ± 74.12 m and 228.37 ± 134.04 m, respectively; Wilcoxon Rank Sum Test: $W = 16942$, $p < 0.001$). It should be noted that 77.78 % of the s that were greater than s^* ($N = 9$) were from dives that were executed before 3 pm and after 7 am (local time) the next morning. In general, s increased with increasing maximum dive depths ($y = -10.29 + 1.16x$, $R^2 = 0.40$, $p < 0.001$) and increasing u ($y = -12.66 + 0.49x$, $R^2 = 0.34$, $p < 0.001$) and were moderately positively correlated to these parameters ($r = 0.63$, $p < 0.001$; $r = 0.58$, $p < 0.001$; respectively).
Figure 15: Observed and predicted values (A), raw residuals \((y_i - \hat{y}_i)\) (B), and root mean squared errors (C) of post-dive surface durations as a function of maximum dive depths. Note: values are color coded by whale ID (A and B) for comparison. The boxes in C are drawn with widths proportional to the square-roots of the number of observations in each group and outlying data points are excluded (R Core Team 2013).

3.3.1.4 Individual Variation

It is important to note that individuals did vary in their behaviors: individual whales had significantly different foraging durations (AOV: \(df = 12, 2352, F = 149.41, p < \))
0.001), lunge counts (AOV: $df = 12, 2352, F = 111.51, p < 0.001$), diving durations (AOV: $df = 12, 2352, F = 111.51, p < 0.001$), and post-dive surfacing durations (AOV: $df = 12, 2352, F = 90.392, p < 0.001$). These differences resulted in varied agreement between their observed and predicted behaviors (Table 6). Despite this, a principal component analysis revealed that whale ID was not a large source of the variation present in the data (Figure 16). The first component of the analysis explained 57.36 % of the variation in the data and Whale ID as well as time of day were not correlated to this component ($r = 0.01$ and $r = 0.01$, respectively). Instead, dive duration ($r = 0.49$), maximum dive depth ($r = 0.47$), forage duration ($r = 0.47$), lunge counts ($r = 0.45$), and post-dive surface durations ($r = 0.33$) were most correlated to this component. Whale ID and time of day, instead, were most correlated to the second component ($r = -0.71$ and $r = -0.70$, respectively), which accounted for 18.09 % of the variance in the data.
Figure 16: Results of a principal component analysis aimed to determine which parameters contributed the most to variability amongst the data: whale ID (Whale), maximum dive depths (Depth), Times of day (Time of day), dive durations (Dive), post-dive surface durations (Surface), forage durations (Forage), and number of lunges per dive (Lunges). A) The percent variance that each principle component contributed to the data. B) A biplots of PC1 and PC2, which reveal the parameters that were most strongly correlated with these components.
Table 6: Pearson’s product moment correlation coefficients (r) and model efficiencies (ME) for each individual whale for observed foraging durations (t), lunge counts (l), dive durations(u), and post-dive surface durations (s) against corresponding optimal foraging durations (t^*), lunge counts (l^*), dive durations (u^*), dive-lactate threshold durations (DLT), and surface durations (s^*). Strongly positively correlated coefficients ($r > 0.90$; Cohen 1988) are indicated with a §. ME values close to one indicate a near-perfect match between observed and predicted values, while negative values cannot be recommended (Loague & Green 1991, Mayer & Butler 1993).

<table>
<thead>
<tr>
<th>Whale</th>
<th>t^*</th>
<th>l^*</th>
<th>u^*</th>
<th>DLT</th>
<th>s^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>ME</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>122b</td>
<td>0.49</td>
<td>< 0.001</td>
<td>-7.60</td>
<td>0.51</td>
<td>< 0.001</td>
</tr>
<tr>
<td>127a</td>
<td>-0.45</td>
<td>< 0.001</td>
<td>-0.45</td>
<td>-0.16</td>
<td>0.135</td>
</tr>
<tr>
<td>136a</td>
<td>-0.17</td>
<td>0.017</td>
<td>-1.06</td>
<td>-0.13</td>
<td>0.237</td>
</tr>
<tr>
<td>140a</td>
<td>0.08</td>
<td>0.860</td>
<td>-0.15</td>
<td>-0.02</td>
<td>0.961</td>
</tr>
<tr>
<td>148a</td>
<td>0.75</td>
<td>< 0.001</td>
<td>-0.80</td>
<td>0.76</td>
<td>< 0.001</td>
</tr>
<tr>
<td>152a</td>
<td>0.71</td>
<td>< 0.001</td>
<td>-2.24</td>
<td>0.73</td>
<td>< 0.001</td>
</tr>
<tr>
<td>132a</td>
<td>0.34</td>
<td>< 0.001</td>
<td>-0.84</td>
<td>0.32</td>
<td>0.001</td>
</tr>
<tr>
<td>133a</td>
<td>-0.16</td>
<td>0.103</td>
<td>-0.57</td>
<td>-0.16</td>
<td>0.103</td>
</tr>
<tr>
<td>139a</td>
<td>0.70</td>
<td>< 0.001</td>
<td>-0.75</td>
<td>0.69</td>
<td>< 0.001</td>
</tr>
<tr>
<td>144a</td>
<td>0.66</td>
<td>< 0.001</td>
<td>-2.95</td>
<td>0.68</td>
<td>< 0.001</td>
</tr>
<tr>
<td>146a</td>
<td>-0.34</td>
<td>0.005</td>
<td>-18.42</td>
<td>-0.29</td>
<td>0.018</td>
</tr>
<tr>
<td>151a</td>
<td>0.71</td>
<td>< 0.001</td>
<td>-0.75</td>
<td>0.71</td>
<td>< 0.001</td>
</tr>
<tr>
<td>155a</td>
<td>-0.83</td>
<td>< 0.001</td>
<td>-2.26</td>
<td>-0.80</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
3.3.1.5 Adherence of Data to Model Assumptions

Oxygen utilization and acquisition rates were calculated to assess whether each whale had K oxygen stores available at the beginning of every foraging dive and that all of K was used during that foraging dive as assumed by the OFT model (Figure 17 A, B). Oxygen losses and gains per dive were only approximately equivalent for 1.06 % ($N = 25$) of foraging dives (i.e., oxygen used during a dive was within 5 L of oxygen gained after these dive). Instead, oxygen stores of foraging dives were generally not replenished at the surface following a dive (Figure 17): 90.96 % ($N = 2151$) of foraging dives had negative oxygen gains. In general, oxygen losses per dive were within a few hundred liters: 54.07 % ($N = 1163$) of these losses were within 200 L, while 96.84 % ($N = 2083$) of these losses were within 600 L. The time of day a foraging dive was executed poorly predicted whether oxygen would be balanced during a dive cycle (Figure 17 A; $y = -290.32 + 1.79x$, $R^2 < 0.001$, $p < 0.001$). The maximum depth of a dive, however, was a stronger predictor of oxygen balance (Figure 17 B; $y = -48.72 - 3.04$, $R^2 = 0.52$, $p < 0.001$): increasing maximum dive depths resulting in greater net oxygen losses. The loss of oxygen stores dive per dive resulted in an increased gross loss of oxygen as the whales continued to execute foraging dives throughout the tagging periods (Figure 17 C). The consequence of this behavior was that proportion of oxygen stores available to perform a dive cycle decreased throughout the tagging period (Figure 17 D). These finding suggests that the assumption of oxygen balance in the OFT model was not upheld and may contribute to the disagreement observed and predicted behaviors described above.
Figure 17: Oxygen balance, utilization and acquirement rates: A) oxygen balance per dive against time of day each dive was executed; B) oxygen balance per dive against maximum dive depth; C) the cumulative rate of oxygen loss over the tagging period; and D) the cumulative rate of oxygen loss over the tagging period represented as the amount of oxygen available for each dive cycle. Note: values are color coded by whale ID.

3.3.2 Proportional Foraging Behaviors

Because the assumptions of the OFT model were violated, I examined the proportions of time whales spent diving, descending, foraging, ascending, and surfacing as well as their lunging rates as a function of maximum dive depth out of the total dive
cycle (μ + s) to assess the efficiency of foraging patterns (Figure 18). The proportion of
time spent surfacing varied by maximum dive depth (AOV: df = 38, 2326, F = 4.84, p < 0.001) and generally increased with increasing maximum dive depth (Figure 18 A; mean ± SD = 0.22 ± 0.17). The proportion of time spent diving, conversely, decreased with
increasing maximum dive depths (Figure 18 B; mean ± SD = 0.78 ± 0.17). The proportions of time spent diving and surfacing were more variable at shallow depths.
Figure 18: Proportion of time spent during each dive cycle versus maximum dive depth. A) the proportion of time spent diving, B) the proportion of time spent surfacing, C) the proportion of time spent foraging, D) the lunging rate (number of lunges per second of the dive cycle; note different y-axis scale), E) the proportion of time spent descending, and F) the proportion of time spent ascending. Outliers are not included in the figure and each box is drawn with widths proportional to the square root of the number of observations in each group (R Core Team 2013).
The proportion of dive time spent foraging was generally high across all maximum dive depths (mean ± SD = 0.38 ± 0.19) and was statistically similar for dives with maximum dive depths greater than 110 m (mean ± SD = 0.43 ± 0.17; Tukey multiple comparisons of means, p > 0.05; Figure 18 C). The shallowest dives had the lowest mean proportions of foraging times; dives with maximum depths shallower than 30 m had significantly similar mean foraging proportions (mean ± SD = 0.28 ± 0.12; Tukey multiple comparisons of means, p > 0.05). Dives with intermediate maximum depths (between 50 m and 90 m) had the highest proportions of foraging times (mean ± SD = 0.69 ± 0.07).

Lunging rates varied by maximum dive depth (AOV: df = 38, 2326, F = 61.71, p < 0.001) and were highest for dives with shallow maximum depths (i.e., less than 20 m; Figure 18 D). Lunge rates were statistically similar for all dives having maximum depths greater than 80 m (Tukey multiple comparisons of means, p > 0.05).

Descent and ascent rates were variable according to maximum dive depth (Figure 18 E and F, respectively). The proportion of time spent descending on a dive was highly variable for dives with maximum dive depths shallower than 100 m (mean ± SD = 0.40 ± 0.22) but was lower and more consistent on dives with maximum depths greater than 100 m (mean ± SD = 0.18 ± 0.10; Figure 18 F). During dives with maximum depths greater than 60 m, whales spent statistically similar proportions of dive time descending to their target foraging depth (Tukey multiple comparisons of means, p > 0.05; mean ± SD = 0.19 ± 0.12). The proportion of time spent ascending on a dive was typically low across all maximum dive depths (Figure 18 G), but dives with maximum depths greater
than 30 m had significantly similar ascent durations (Tukey multiple comparisons of means, \(p > 0.05 \); mean ± SD = 0.10 ± 0.10).

3.4 Discussion

The humpback whales observed in this study exhibited foraging behaviors that were not predicted by the Houston and Carbone (1992) time allocation model. Despite this, these whales exhibited foraging behaviors that were in agreement with many of the theoretical predictions of OFT and may be regarded as ‘clever’ (\textit{sensu} Owens-Smith & Novellie 1982). For instance, humpbacks generally foraged in shallow depths (i.e., < 100 m; Figure 11) where they had a high rate of feeding (i.e., lunging; Figure 18 D), and when forced to dive to greater depths they adjusted their behaviors so that they could maximize their foraging durations and increase their lunging rates (Figure 18; Charnov 1976, Mori 1998, Thompson & Fedak 2001, Doniol-Valcroze et al. 2011). Interestingly, these whales also appeared to accept short term (i.e., dive by dive) costs associated with depleted oxygen stores in favor of maximizing long term (i.e., daily) energetic gains. These findings suggest that these whales were exhibiting behaviors to maximize their energetic gains and minimize their energetic costs over time scales longer than those examined by many OFT models (e.g., Houston & Carbone 1992).

The humpback whales observed in this study were spatially and temporally correlated with super-aggregations of Antarctic krill (\textit{Euphausia superba}), which were up to 10s of km wide in the horizontal plane and 410 m thick in the vertical plane and had estimated biomasses of up to 2.0 million tons (Nowacek et al. 2011, Espinasse et al. 2012).
Friedlaender et al. (2013) reported that humpbacks in this region exhibit extreme diel foraging behaviors, whereby they initiate feeding near dusk when krill begin their vertically migration to the surface (Zhou & Dorland 2004), feed throughout the night, and cease feeding soon after sunrise when the krill begin to migrate back to depth (note: Friedlaender et al. (2013) examined the same humpbacks examined in this study). They suggest that this behavior allowed these whales to limit the amount of time and energy spent diving when prey are deep and instead focus their foraging efforts in shallow depths, where they can maximize their feeding rates and potentially their foraging efficiency. The findings reported here support this hypothesis and further suggest that this diel behavior was related to these whales’ preferences in maximizing feeding rates over balancing their oxygen stores dive per dive while feeding. While the extreme daily resting behaviors observed in these whales may have been related to processing ingested food from the previous night (Friedlaender et al. 2013), they were also likely related to the energetic demand associated with replenishing the oxygen stores they so severely depleted during that c.a. 16 hr foraging bout. These whales, therefore, were clever: they adjusted their foraging behaviors in accordance to the behaviors of their prey and focused their foraging efforts on periods when prey was most easily accessible and less costly to acquire (i.e., near the surface).

During their nightly foraging bouts, humpbacks observed in this study focused their efforts in the upper 100 m of the water column (Figure 11). Dive durations were shorter than predicted for these depths, but lunging rates were high, with the majority of dives having one (57.28 %) or two (10.46 %) recorded lunges. The high rate of lunging
near the surface is likely associated with looping behaviors describe by Ware et al. (2011; a collaborative project), whereby whales repeatedly loop back and forth while lunging, presumably exploiting a single, small krill patch. This looping behavior allowed these whales to feed almost continuously: by incorporating their breathing into the lunge cycle they almost eliminated the need to spend additional time at the surface replenishing depleted oxygen stores and instead could forage at a high and consistent rate (Ware et al. 2011).

When forced to dive to depth (i.e., > 100), the humpbacks observed in this study adjusted their behaviors so that they could maintain a high feeding rate (Figure 18). Such adjustments allowed these whales to exhibit longer foraging durations and have a higher lunge count than predicted by the OFT model: 84.70 % and 66.82 % of dives to maximum depths deeper than 100 m had longer \(t \) than \(t^* \) (Figure 12) and more \(l \) than \(l^* \), respectively. The disagreement between observed and predicted values may be related to lunges being executed on both the ascending and descending portions of feeding dives (Ware et al. 2011), which are not accounted for in the OFT model (Houston & Carbone 1992). These behaviors, as well as changes in their ascent and descent rates, allowed these whales to minimize the costs associated with traveling to depth while simultaneously maximize the proportion of time spent foraging (Figure 18; Mori 1998, Thompson & Fedak 2001), thereby increasing overall energetic gains.

Doniol-Valcroze et al. (2011) found that blue whales had shorter recovery times following deep dives than predicted and suggested that this may be a consequence of the value they used for \(\alpha \) not being a realistic measure of oxygen exchange in large
whales. Stephens et al. (2008) noted that the model predictions of Houston and Carbone (1992) are very sensitive to α, and suggested that future research should work towards obtaining more realistic measures of physiology in diving predators. If the values used in this study to predict humpback whale physiology were not accurate (Table 4), the predictions of the OFT model as well as the estimates of temporal oxygen balance may be inaccurate. Unfortunately, the physiology of humpback whales and other rorquals is not well understood and are estimated primarily from relationships based on crude estimates of body mass (Leaper & Lavigne 2001). Therefore, the potential for error is high, which further stresses the importance for further examining and estimating rorqual physiology. In addition, the true size of the whales examined in this study was unknown, which restricted the model predictions to be generalized to that of an average sized humpback. Body size can have a large influence on metabolic rates (Potvin et al. 2009, Goldbogen et al. 2010, Potvin et al. 2012) and oxygen storage capabilities (Tenney & Remmers 1963, Lasiewski & Calder 1971, Kooymans 1973, Halsey et al. 2006, Stephens et al. 2008), and therefore may have influenced the varied agreement between predicted and observed behaviors reported in this study for individual whales (Table 6; Mori 2002).

While individual variation was apparent in foraging behaviors (Table 6), a principle component analysis revealed that individualized behaviors did not explain much of the variance observed in the data: whale ID was not correlated to the first component, which explained 57.36% of the variance. This finding suggests that examining these whales as a group to assess general foraging patterns is acceptable.
Despite this, future research should examine these individual differences in more depth to assess whether some whales are more ‘clever’ than others. For example, the repetitive looping behaviors at the surface described by Ware et al. (2011) may be a learned behavior that only a small number of individuals perform. Such knowledge would likely be advantageous for these whales and may have direct and advantageous fitness implications. For instance, these individuals may be able to deal with fluctuations in prey resources attributed to environmental conditions (e.g., decreases in overall krill abundance and krill recruitment associated with rapid climate changes; Loeb et al. 1997, Siegel et al. 1998, Quetin & Ross 2003, Vaughan et al. 2003, Atkinson et al. 2004) more effectively than individuals that exhibit less efficient foraging behaviors.

The humpback whales observed in this study exhibited clever foraging behaviors. They accepted short term costs (e.g., gross loss of oxygen stores) for long term gains (e.g., increased foraging durations and lunging rates), which allowed them to take advantage of their prey when they were most vulnerable (i.e., when krill were foraging near the surface at night). While the behaviors observed here did not conform to the time allocation OFT model (Houston & Carbone 1992), they were supported by many of the theoretical predictions of OFT, and they stress the importance of examining multiple temporal scales when evaluating optimization of foraging behaviors (e.g., Fortin et al. 2002, Austin et al. 2006). Future work should examine the efficiency of foraging behaviors in humpbacks and other rorquals at additional temporal scales (e.g., multiple days, a foraging season), and how energy maximization may vary with prey patch structure. Humpbacks in the WAP were able to take advantage of a temporally and
spatially stable dense krill aggregation (Nowacek et al. 2011, Espinasse et al. 2012) that allowed them to exploit their prey in a very efficient (and clever) manner. Rorquals in other regions (e.g., Gulf of Maine, Gulf of Alaska) may not have the same luxury.
4. Physiology of Foraging Humpback Whales: Insights from an Optimality Approach

4.1 Introduction

Physiological studies of free-living, diving marine predators can be difficult to conduct due to the inherent difficulties associated with studying these animals (Hunt et al. 2013). Doubly labelled water techniques (e.g., Lifson & McClintock 1966, Nagy 1987, Speakman & Racey 1988, Boyd et al. 1995, Butler et al. 2004), heart rate recordings (e.g., Butler et al. 1992, Boyd et al. 1995, Woakes et al. 1995, Butler et al. 2004), and the training of animals to swim to metabolic stations (Boyd 1997, Yazdi et al. 1999, Boyd 2002) have been used to estimate physiological parameters such as metabolic rates of some marine mammals and diving birds. Metabolic rates and oxygen availability of baleen whales (mysticetes), however, cannot currently be estimated using these methods because their large size and wide-ranging behaviors limit their application. Instead the direct collection of whale faecal samples, respiratory samples, and biopsy samples (see Hunt et al. 2013 for a review) can be used to estimate some aspects of their physiology by examining, for example, their diet (e.g., stable isotopes, fatty acids). These methods, however, present several logistical and/or validation concerns and do not provide much information regarding the rate of energetic losses or gains.

Because of these constraints, physiological studies of baleen whales often use allometric relationships to estimate parameters such as an individual’s total oxygen storage capabilities and their metabolic rate. Many of these relationships, however, were
developed using estimates of terrestrial, captured, or captured and released species’
physiology (e.g., Kleiber 1975, Lockyer 1976, Halsey et al. 2006, Stephens et al. 2008,
Wiedenmann et al. 2011) and few have been empirically tested. In fact, Leaper and
Lavigne (2001) pointed out that many of the parameters used to model the energetics of
cetaceans are often ‘based on little more than guess work.’ Despite this, these parameters
have been used to model behaviors (e.g., foraging, energetics) of whales and to evaluate
their response to current environmental conditions and/or to predict their response to
future environmental changes. For example, optimal foraging theory (OFT) models,
based on the premise that natural selection should favor foraging strategies that are
efficient in minimizing costs (in time and energy) while simultaneously maximizing
benefits (e.g., energy, nutrients) (Macarthur & Pianka 1966), have been used to assess the
foraging efficiency of foraging dives executed by blue (Balaenoptera musculus) and fin
whales (Balaenoptera physalus) (e.g., Croll et al. 2001, Acevedo-Gutierrez et al. 2002,
Doniol-Valcroze et al. 2011). These models, however, require estimates of the whale’s
metabolic rates and of their oxygen storage capacities and replenishment rates. Because
much is still unknown regarding these physiological parameters of whales, estimates of
their foraging efficiency based on OFT models may be inaccurate to an unknown degree.

In this chapter, I used Maximum Likelihood Estimation (MLE) techniques within
a Bayesian framework to estimate the metabolic rates, total oxygen storage capacities,
and oxygen replenishment rates of humpback whales (Megaptera novaeangliae) during
foraging dives executed along the Western Antarctic Peninsula (WAP). I developed and
used a model built upon the assumption that recorded observations of humpback whale
diving behavior recorded with a high-resolution bio-logging tool were true and that the observed whales were allocating their time optimally on foraging dives according to optimal foraging theory (OFT; i.e., they were maximizing their foraging durations while minimizing their recovery and travel durations; Kramer 1988, Houston & Carbone 1992). I calculated posterior densities of the physiological parameters of interest by finding the values of these parameters that result in the recorded observations being most probable assuming these whales were in fact foraging optimally. This method offers an alternative approach to allometric equations and scaling relationships for estimating these parameters, which may provide insights into both the accuracy of these relationships and the true values of these parameters.

4.1.1 Current Understanding of Humpback Whale Metabolic Rates

Direct estimates of metabolic rates in humpback whales are not currently available, but computational modelling techniques have been developed to try to gain a better understanding of the energetic cost of feeding and traveling in Balaenopterids (e.g., blue whales, fin whales, humpback whales; hereafter referred to as rorquals) (e.g., Goldbogen et al. 2007, Potvin et al. 2009, Goldbogen et al. 2010, Potvin et al. 2010, Goldbogen et al. 2011, Potvin et al. 2012). Observations of dive durations for foraging rorquals are much shorter than expected for their large body side (Dolphin 1988, Croll et al. 2001, Acevedo-Gutierrez et al. 2002, Goldbogen et al. 2006, Goldbogen et al. 2007, Goldbogen et al. 2008, Doniol-Valcroze et al. 2011), suggesting that their feeding behaviors are energetically costly. Rorquals forage by accelerating with a burst of
energetic fluking towards and engulfing a mass of prey-laden water that may be larger than the whale itself (Goldbogen et al. 2010); a process termed lunge feeding. Potvin et al. (2010) used an unsteady hydrodynamic model to estimate the amount of energy spent during the pre-engulfment and engulfment phase of lunge feeding in fin whales. Doniol-Valcroze et al. (2011) assumed that the rate reported by Potvin et al. (2010) could be scaled for blue whales because fin whales are morphologically similar to blue whales and because use the energetic costs of lunge feeding likely scale allometrically with body length (Goldbogen et al. 2010). Assuming that this rate applied to the entire foraging time (i.e., that it applies to the time spent while lunging as well as the time spent between consecutive lunges), Doniol-Valcroze et al. (2011) reported a metabolic rate while foraging for blue whales equal to 1.78 times their metabolic rate during traveling.

More recently, Potvin et al. (2012) derived engulfment metabolism rates (EMR) for rorquals from simulations based on hydrodynamic models that coupled rorqual structure and function, fluid dynamics, and krill escape behaviors. They derived scaling equations to estimate EMRs with respect to rorqual body length; however, the equation reported for humpbacks is only applicable to the duration of the mouth-opening phase during a lunge (2.2 sec for a 14 m humpback; Potvin et al. 2012). Potvin et al. (2012) found that EMRs during the mouth opening stage significantly increase with rorqual body size but that this rate converges with the rorqual average active metabolic rate (RAMMR, a new assessment for active metabolism specific to rorquals; Potvin et al. 2012) at small body sizes: EMR is approximately equal to RAMMR for a 10 m whale (e.g., a small-medium sized humpback whale) but approximately 3.7 times RAAMR for
a 27 m whale (e.g., a very large blue whale). Based on these findings, Potvin et al. (2012) suggests that the metabolic expenditure during engulfment by smaller whales, such as humpbacks, is similar to their metabolic expenditure during non-feeding swimming. Alternatively, other estimates of metabolic expenditures during feeding in marine mammals have suggested that this rate is 4 times AMR (active metabolic rate; Boyd & Croxall 1996, Croll et al. 2001). This variability in estimates needs to be further examined to fully assess the potential energetic costs of feeding, specifically in humpback whales.

Energy used during traveling to and from target feeding depths also needs to be accounted for when trying to calculate the total energetic costs of feeding in humpback whales. Potvin et al. (2012) derived equations for RAAMRs for blue, fin, and minke (Balaenoptera bonaerensis) whales under an assumption of steady travel that took into account power expenditures calculated from thrust data and the average speed of transport calculated from long duration tracking data (Bose & Lien 1989, Potvin et al. 2012). They were unable, however, to calculate this rate for humpback whales because their fluke morphology is significantly different than fin whales (Woodward et al. 2006), the species they used in their model to calculate the amount of thrust generated by fluking (Bose & Lien 1989). Therefore, the best known estimate of a humpback whale AMR can be calculated with the following allometric equation that relates body mass to power:

$$AMR = 3 \times 2 \times (4M_w^{0.75}),$$

(10)

where AMR is estimated in Watts (Costa & Williams 1999, Croll et al. 2006, Potvin et al. 2012). This rate is based on previous studies of marine mammal metabolism (Costa &
Williams 1999, Williams 1999, 2006) and assumes a basal metabolic rate (BMR) that is twice that of terrestrial animals expressed via Kleiber’s scaling formula (Kleiber & Rogers 1961, Kleiber 1975). Croll et al. (2006) noted, however, that AMR-based studies have yielded estimates of AMR that have differed by as much as 100 % depending of the AMR-BMR relationship and BMR model used. Again, this variability needs to be addressed.

Further complicating the ability to estimate humpback AMRs is the observation that rorquals, like many marine mammals, can extend their aerobic dive durations by gliding for periods of time during a dive (e.g., Williams et al. 2000, Croll et al. 2001, Davis et al. 2001, Nowacek et al. 2001, Nousek-McGregor et al. 2014). Typically, rorquals begin a dive with a period of active fluking followed by a period of gliding to their target depth. While ascending, they generally alternate between periods of fluking and gliding before gliding to the surface to breathe (e.g., Croll et al. 2001, Nowacek et al. 2001, Ware et al. 2006, Goldbogen et al. 2008, Goldbogen et al. 2010, Tyson et al. 2012). In Weddell seals (Leptonychotes weddellii), gliding reduces oxygen consumption during a dive by an average of 27.80% (Williams et al. 2000). However, in Steller sea lions (Eumetopias jubatus) metabolic savings from gliding are generally proportional to the additional energetic costs of active swimming during the ascending phase of a dive (Fahlman et al. 2008). Humpback whales exhibit gliding behaviors during feeding dives (e.g., Goldbogen et al. 2008, Ware et al. 2011, Tyson et al. 2012) but it is unknown to what extent, if any, gliding reduces their energetic costs.
4.1.2 Current Understanding of Humpback Whale Oxygen Stores and Replenishment Rates

The amount of oxygen available for use during a dive is related to the amount of time available for acquiring energy through foraging; the more oxygen that is available, the longer an animal can stay submerged searching for and capturing prey. Marine mammals have evolved a variety of adaptations that allow them to maximize the amount of time they can spend diving, including storing a proportion of oxygen in their skeletal muscles and blood (Castellini et al. 1981) and collapsing their lungs at depth (Kooyman & Ponganis 1997). Because of these adaptations, the total oxygen storage capacity of marine mammals (hereafter referred to as K) is believed to scale approximately proportionally with mass (Tenney & Remmers 1963, Lasiewski & Calder 1971, Kooyman 1973, Halsey et al. 2006, Stephens et al. 2008):

$$K = 0.03M^{1.05}. \tag{11}$$

Values calculated using this proportion are similar to predicted estimates of these values based on observed dive-pause ratios in birds and mammals (Halsey et al. 2006) including blue whales (Croll et al. 2001, Doniol-Valcroze et al. 2011). This suggests that equation 11 may be a reliable estimate of K for humpbacks, although to my knowledge no studies have examined this.

Between dives, whales must replenish their oxygen stores so that an adequate amount of oxygen is available for the subsequent dive. The time it takes to replenish oxygen at the surface is time that cannot be spent actively foraging. Therefore the rate of oxygen acquisition affects the amount of time whales have for foraging and ultimately
the amount of food they can consume. The rate of oxygen replenishment in divers is logistically hard to estimate directly, and only a few studies have attempted to measure it (e.g., Parkes et al. 2002, Halsey et al. 2003). This rate, termed the initial rate of oxygen replenishment α (expressed as a proportion of total available stores, K), depends on the speed of oxygen uptake. Current theory suggests two different scaling relationships to derive estimates of α, both of which are based on an animal’s mass. The first is a surface area relationship whereas oxygen uptake is expected to be limited by the surface area available for gaseous exchange (implying a scaling exponent of approximately two thirds; Stephens et al. 2008):

$$\alpha = 0.75M_c^{\beta_\alpha}. \quad (12)$$

Stephens et al. (2008) suggested that α will likely scale with an allometric exponent in the region of $\beta_\alpha = -0.33$ because α is proportional to K. The second relationship follows the principle of symmorphosis (Weibel et al. 1998) whereby each component of the oxygen chain must evolve to supply oxygen at the rate required by the muscles (Taylor & Weibel 1981). Under this scenario oxygen uptake is believed to scale with the same exponent as metabolism (i.e., $\beta_\alpha = \beta_m - 1$):

$$\alpha = 0.75M_c^{\beta_m - 1} \quad (13)$$

(Stephens et al. 2008, Potvin et al. 2012). Stephens et al. (2008) derived the values for the slopes in both of these relationships in an ad hoc manner to obtain realistic dive times for divers of intermediate mass (150 kg). Therefore these slope values may not provide a realistic measure of oxygen exchange performance by large whales (Doniol-Valcroze et al. 2011). Currently, there is disagreement regarding which relationship is most accurate
for estimating α but many agree that this value is a critically important parameter in models used to scale surface durations of diving animals (Stephens et al. 2008).

4.2 Methods

4.2.1 Humpback Whale Dive Behavior

Observations of humpback whale dive behavior were collected in 2009 and 2010 along the coastal waters of the Western Antarctic Peninsula (WAP) with high-resolution digital acoustic recording tags (Dtags; Johnson & Tyack 2003) (Table 4; Nowacek et al. 2011, Ware et al. 2011, Stimpert et al. 2012, Tyson et al. 2012, Friedlaender et al. 2013). Dtags were placed via 4 silicon suction cups on the dorsal surface of each animal, between the dorsal fin and the blowhole, using an 8 m carbon-fiber pole. Other than startle responses by a few individuals, whale behavior was not visibly affected by the tagging events. Dtags recorded each whale’s depth, pitch, roll, and heading at 50 Hz for up to 24 hrs via an internal pressure sensor, a three-axis accelerometer, and a three-axis magnetometer, respectively. The tool also recorded any and all sounds produced in the environment at 96 kHz with an embedded hydrophone. After a pre-programmed time, an active release caused the suction cups to release the Dtags from the whales, causing them to float to the surface where they were retrieved by hand. Once the Dtags were collected they were immediately calibrated and the recorded data were downloaded via infrared transmission.
Table 7: Dtag deployment information. Whale ID, tag on date, tag start time, and tagging location, tag on time, and the number of foraging dives recorded for each humpback whale.

<table>
<thead>
<tr>
<th>Whale ID</th>
<th>Tag on date</th>
<th>Tag start time (GMT − 5 h)</th>
<th>Tagging location</th>
<th>Total tag on time (hr)</th>
<th>Number of foraging dives</th>
</tr>
</thead>
<tbody>
<tr>
<td>122b</td>
<td>2009-May-02</td>
<td>14:28:44</td>
<td>Wilhelmina Bay</td>
<td>18.4</td>
<td>419</td>
</tr>
<tr>
<td>127a</td>
<td>2009-May-07</td>
<td>08:42:03</td>
<td>Wilhelmina Bay</td>
<td>24.6</td>
<td>89</td>
</tr>
<tr>
<td>136a</td>
<td>2009-May-16</td>
<td>09:09:54</td>
<td>Anvord Bay</td>
<td>23.0</td>
<td>82</td>
</tr>
<tr>
<td>140a</td>
<td>2009-May-20</td>
<td>10:58:03</td>
<td>Anvord Bay</td>
<td>22.5</td>
<td>7</td>
</tr>
<tr>
<td>148a</td>
<td>2009-May-28</td>
<td>09:48:17</td>
<td>Wilhelmina Bay</td>
<td>25.2</td>
<td>225</td>
</tr>
<tr>
<td>152a</td>
<td>2009-June-01</td>
<td>10:39:24</td>
<td>Wilhelmina Bay</td>
<td>22.3</td>
<td>462</td>
</tr>
<tr>
<td>132a</td>
<td>2010-May-12</td>
<td>09:58:38</td>
<td>Wilhelmina Bay</td>
<td>23.1</td>
<td>97</td>
</tr>
<tr>
<td>133a</td>
<td>2010-May-13</td>
<td>12:03:50</td>
<td>Wilhelmina Bay</td>
<td>22.2</td>
<td>102</td>
</tr>
<tr>
<td>139a</td>
<td>2010-May-19</td>
<td>11:02:58</td>
<td>Wilhelmina Bay</td>
<td>20.6</td>
<td>292</td>
</tr>
<tr>
<td>144a</td>
<td>2010-May-24</td>
<td>14:05:18</td>
<td>Wilhelmina Bay</td>
<td>21.1</td>
<td>307</td>
</tr>
<tr>
<td>146a</td>
<td>2010-May-26</td>
<td>15:17:42</td>
<td>Flandres Bay</td>
<td>20.0</td>
<td>64</td>
</tr>
<tr>
<td>151a</td>
<td>2010-May-31</td>
<td>10:23:51</td>
<td>Wilhelmina Bay</td>
<td>24.6</td>
<td>160</td>
</tr>
<tr>
<td>155a</td>
<td>2010-June-04</td>
<td>09:42:03</td>
<td>Flandres Bay</td>
<td>22.2</td>
<td>59</td>
</tr>
</tbody>
</table>

Total Foraging Dives: 2365

I used custom code built for Dtag analyses (Johnson & Tyack 2003) to determine the dive durations, surface durations, and maximum dive depths of each dive (defined as any submergence greater than 3 m) for each tagged whale in the software program MATLAB® (MathWorks 2013b). I used TrackPlot (Ware et al. 2006) to identify discrete feeding lunges executed by each whale from these records (see Ware et al. 2006, Tyson et al. 2012, Friedlaender et al. 2013 for details). I defined feeding dives as any dive for which a feeding lunge deeper than 3 m was detected (Friedlaender et al. 2013); non-feeding dives were not examined in the following analysis. I divided feeding dives into three parts for use in the simulated model: i) travel duration to and from the whales feeding depths τ; ii) foraging duration, t; and iii) post-dive surface duration, s. For the purposes of this chapter, I calculated t as the duration of time lasting from the moment
the first lunge was executed (i.e., mouth opening) on a dive to the moment the last lunge on that dive was completed (I included an estimated filter duration to this time for an average sized humpback whale: 13.00 sec; Goldbogen et al. 2012). Accordingly, I calculated \(\tau \) as

\[
\tau = u - t, \quad (14)
\]

where \(u \) is the observed dive duration \((u = \tau + t) \).

4.2.2 Optimal Foraging Model

The time allocation optimal foraging model treats the diver as a central place forager with the surface acting as the central place: the diver must repeatedly come to the surface to breathe (Kramer 1988, Houston & Carbone 1992). An assumption of the model is that a diver that spends time \(s \) on the surface following dive duration \(u \) and gains oxygen as

\[
x(s) = K(1 - e^{-as}). \quad (15)
\]

During the subsequent dive, the diver uses all of this stored oxygen, \(x(s) \), as

\[
x(s) = m_t \tau + m_i t, \quad (16)
\]

where \(m_t \) is the metabolic rate while traveling \((\tau) \) and \(m_i \) is the metabolic rate while foraging \((t) \). Thus, the diver balances oxygen stores over the dive cycle (Houston & Carbone 1992). It is also assumed that a diver will maximize the proportion of time it spends foraging during a dive cycle,

\[
\pi = \frac{t}{t + s + \tau}, \quad (17)
\]
which is equivalent to maximizing

\[\pi = \frac{t}{s + \tau} \] \hspace{1cm} (18)

(see Houston & Carbone 1992). By substituting

\[t = \frac{x(s) - m_\tau \tau}{m_t} \] \hspace{1cm} (19)

from equations 15 and 16 into equation 18, it is shown that a dive is maximized when

\[\pi(s) = \frac{K(1 - e^{-as}) - m_\tau \tau}{m_\tau \times (s + \tau)} \] \hspace{1cm} (20)

(Houston & Carbone 1992) and that the value of \(s \) that maximizes \(\pi(s) \) will also maximize the proportion of time spent foraging. Because of the optimality condition that

\[\pi'(s^*) = 0, \] \hspace{1cm} (21)

the value of \(s \) that maximize \(\pi(s), s^* \), is found by solving

\[x'(s^*) = \frac{x(s^*) - m_\tau \tau}{(s^* + \tau)} \] \hspace{1cm} (22)

numerically for \(s^* \) (\(x'(s^*) = m_\tau \)). This solution, however, does not rely on \(m_\tau \), one of the parameters I am interested in estimating, but the solutions for the optimal foraging time, \(t^* \):

\[t^* = \frac{x(s^*) - m_\tau \tau}{m_t} \] \hspace{1cm} (23)

and for the optimal dive time, \(u^* \), do:

\[u^* = \frac{x(s^*) - m_\tau \tau}{m_t} + \tau. \] \hspace{1cm} (24)

(Houston & Carbone 1992). I used \(u^* \) in my simulated model (described in more detail below) because it relies on both \(s^* \) and \(t^* \) and thus all of the physiological parameters I
am interested in estimating. I performed all computations using custom written code in the statistical software program R (R Core Team 2013; Appendix C).

4.2.3 The Simulated Model

I calculated the likelihood of the observed values of \(u \) based on the predicted values of \(u^* \) for each foraging dive, where \(u^* \) was calculated following equation 24 with observed values of \(\tau \) and candidate values of \(K, \alpha, m_\tau, \) and \(m_t \). I assumed that observed values of \(u \) were normally distributed, thus the likelihood function that described the probability of \(u \) assuming that the optimal model was correct is:

\[
L = \prod_{i=1}^{n} N(u_i|\tau_i, K, \alpha, m_\tau, m_t; \sigma^2) = \prod_{i=1}^{n} N(u_i|u_i^*, \sigma^2),
\]

where \(\sigma^2 \) is the model variance. I found the values of \(K, \alpha, m_\tau, \) and \(m_t \) that maximize this function by summing the log of this likelihood,

\[
\ln L \propto -n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (u_i - u_i^*)^2,
\]

differentiating it for each parameter value, and setting them equal to zero (Clark 2007).

I used this MLE approach within a Bayesian statistical framework because Bayesian methods allow for prior information regarding model parameters to influence the estimation of the posterior values of interest. Following Bayes theorem (Bayes & Price 1763), I estimated posterior densities of \(K, \alpha, m_\tau, \) and \(m_t \) as

\[
p(\tau, K, \alpha, m_\tau, m_t|u) = \frac{p(u|\tau, K, \alpha, m_\tau, m_t)p(\tau, K, \alpha, m_\tau, m_t)}{p(u)}.
\]
Here, the probability of τ, K, α, m_τ, and m_t given observed durations of u is equal to the product of the likelihood, $p(u|c, K, \alpha, m_\tau, m_t)$, and the prior density of the proposed values, $p(\tau, K, \alpha, m_\tau, m_t)$, divided by the probability of the observed u, $p(u)$. I used candidate values of K, α, m_τ, and m_t estimated following equations provided in Table 8 to produce their prior densities. The equations I used provide, in my opinion, the most conservative estimates of these parameters based on the current understanding of their true value (as discussed previously).
Table 8: Descriptions, equations, and values of parameters used as priors in the simulated model. Notes: values of m_t, and m_t were converted from Watts to $L O_2 s^{-1}$ for use in the optimal model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description (units)</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Length (m)</td>
<td>$16.473 \times L^{2.95}$</td>
<td>Lockyer (1976)</td>
</tr>
<tr>
<td>M</td>
<td>Body Mass (kg)</td>
<td>$16.473 \times L^{2.95}$</td>
<td>Lockyer (1976)</td>
</tr>
<tr>
<td>m_t</td>
<td>Metabolic rate while traveling ($L O_2 s^{-1}$)</td>
<td>$6 \times 4 \times M^{0.75}$</td>
<td>Potvin et al. (2012)</td>
</tr>
<tr>
<td>m_t</td>
<td>Metabolic rate while foraging ($L O_2 s^{-1}$)</td>
<td>$1.78 \times m_t$</td>
<td>Potvin et al. (2009), Goldbogen et al. (2010), Donio-Valcroze et al. (2011)</td>
</tr>
<tr>
<td>K</td>
<td>Total oxygen storage capacity ($L O_2$)</td>
<td>$0.03 \times M^{1.05}$</td>
<td>Stephens et al. (2008)</td>
</tr>
<tr>
<td>α</td>
<td>Initial proportional rate of oxygen replenishment (s^{-1})</td>
<td>$0.075 \times M^{0.33}$</td>
<td>Stephens et al. (2008)</td>
</tr>
</tbody>
</table>
I used a Markov Chain Monte Carlo (MCMC) simulation with a Gibbs sampler and a Metropolis sampling algorithm to obtain the posterior densities of K, α, m_τ, and m_t. A Gibbs sampler allows for the estimation of multivariate distributions for multiple parameters (i.e., K, α, m_τ, and m_t), to be simulated by alternatively sampling from the conditional distributions of each parameter (German & German 1984). The Metropolis sampling algorithm is a MCMC technique that allows for the construction of a random walk of each parameter having a stationary distribution described by the target distribution (Metropolis et al. 1953, Hastings 1970). Within the Metropolis sampling algorithm, I proposed values of each parameter at iterative steps (g) and compared them to random candidate values selected from a symmetric ‘jump’ density of each parameter conditioned on the current values of each parameter (Gelman et al. 1995):

$$J(K^*, \alpha^*, m_\tau^*, m_t^* | K^{(g)}, \alpha^{(g)}, m_\tau^{(g)}, m_t^{(g)}) ,$$

(28)

where parameter* is a random candidate value and parameter$^{(g)}$ is the current value. I used a truncated normal density with mean values given by the current parameter vectors and a covariance matrix \mathbf{V} to calculate the jump density:

$$J \left(K^*, \alpha^*, m_\tau^*, m_t^* | K^{(g)}, \alpha^{(g)}, m_\tau^{(g)}, m_t^{(g)} \right)$$

(29)

$$= \int_{(100, 0.0001, 0.01, 0.01)}^{(5000, 1, 50, 50)} N_p \left(K^*, \alpha^*, m_\tau^*, m_t^* | K^{(g)}, \alpha^{(g)}, m_\tau^{(g)}, m_t^{(g)}, \mathbf{V} \right).$$

I based the values for the upper and lower bounds of this truncated normal density on prior knowledge of these parameters (e.g., Table 8) but set them to be wide so that the
observed whale dive data would have a larger influence on the model than the prior estimate values (i.e., I used vague priors in my simulation). I set the starting parameter values of each simulation to be equal to those calculated using equations listed in Table 8 for a random sized whale (a random length of 12 m was selected). I set \(V \) to be equal to the priors values of each parameter (Table 8) divided by 10000. \(V \) dictates the size and direction of the iterative steps in the Metropolis algorithm and this value resulted in high convergence of the MCMC chains.

I determined the density of the candidate values relative to that of the current values following

\[
 z = \frac{p(K^*, \alpha^*, m_t^*, m_t^*)}{p(K^{(g)}, \alpha^{(g)}, m_t^{(g)}, m_t^{(g)})}
\]

(30)

If \(z \geq 1 \) (i.e., the probability that the candidate values exceeded the current values), I accepted the candidate values in the simulation. If \(z < 1 \) I accepted the candidate values as new values (i.e., \(K^{(g)}, \alpha^{(g)}, m_t^{(g)}, \) and \(m_t^{(g)} \)) with probability \(z \) if \(z > y \), where \(y \) was a randomly drawn univariate between zero and one. Otherwise, I retained the current values (i.e., \(K^{(g+1)}, \alpha^{(g+1)}, m_t^{(g+1)}, \) and \(m_t^{(g+1)} = K^{(g)} \), \(\alpha^{(g)}, m_t^{(g)}, \) and \(m_t^{(g)} \)) (Hastings 1970).

Because I used a Gibbs sampler, each value was updated before proceeding to the next step in the simulation. Also, I accepted and rejected the parameters together as a block because they are conditionally dependent. Finally, I repeated the simulation using prior densities estimated from a variety of sized whales to examine the effect that prior values
had on the model: 10 m, 12 m, 13.45 m (average length of a humpback whale, Clapham & Mead 1999), and 15 m.

Because there are no specific rules for stopping the simulation (e.g., Cappe & Robert 2000), I ran the simulations long enough to obtain a MCMC sequence that adequately represented the target distribution of each parameter estimate. I used the density function in the stats package in R (R Core Team 2013) to calculate their respective normal Kernel density distributions (I applied the default kernel bandwidth smoothing parameters). I computed the mean, median, standard deviation, and 2.5%, and 97.5% credible limits for each parameter’s posterior estimate from the MCMC sequences derived for each parameter. In the discussion, I compared these posterior estimates from each simulation to the prior estimates and discuss the implications of my findings.

4.3 Results

4.3.1 Observed Whale Behavior

I recorded 2365 feeding dives executed by the thirteen whales listed in Table 7. Maximum dive depths ranged from 3.29 to 388.16 m (mean ± SD: 66.06 ± 75.06 m), while dive durations (u) ranged from 10.60 to 748.60 sec (mean ± SD: 163.64 ± 166.02 sec). Dives were successfully split into their respective durations of τ, t, and s (Figure 19): τ values ranged from 0 to 609.80 sec (mean ± SD: 67.48 ± 77.30 sec), t values ranged from 5.91 to
547.40 sec (mean ± SD: 96.16 ± 110.80 sec), and s values ranged from 0 to 2466.8 sec (mean ± SD: 65.78 ± 136.79 sec). Of τ and t, τ was found to have a greater influence on the predicted value of s (s ~ τ + t: y = -15.39 + 0.86τ + 0.24t, R² = 0.38, p < 0.001). In addition, all durations were significant and positively correlated with maximum dive depth and each other (Table 9).

Figure 19: Durations of each discrete behavior within a dive cycle (surfacing, s; traveling, τ; and foraging, t) plotted with their respective maximum dive depth (m). The plane through the plot represents the linear regression s ~ τ + t (y = -15.39 + 0.86τ + 0.24t, R² = 0.38, p < 0.001). The vertical lines represent the values of s against their respective values of τ and t.
Table 9: Pearsons r correlation coefficients for maximum dive depths, post-dive surface durations (s), travel durations (τ), forage durations (t), and dive durations (u). All correlations were significant (i.e., $p < 0.001$).

<table>
<thead>
<tr>
<th></th>
<th>Maximum dive depth</th>
<th>Post-dive surface duration (s)</th>
<th>Travel duration (τ)</th>
<th>Forage duration (t)</th>
<th>Dive duration (u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum dive depth</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Post-dive surface duration (s)</td>
<td>0.63</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Travel duration (τ)</td>
<td>0.83</td>
<td>0.59</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Forage duration (t)</td>
<td>0.84</td>
<td>0.46</td>
<td>0.54</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Dive duration (u)</td>
<td>0.95</td>
<td>0.58</td>
<td>0.83</td>
<td>0.92</td>
<td>-----</td>
</tr>
</tbody>
</table>

4.3.2 Results of Simulation

I used all values of s, u, τ, and t in each simulation to derive posterior estimates of K, α, m_τ, and m_t (i.e., I did not run the simulation separately for each individual whale) and the agreement between observed and simulated values was high (Model efficiency = 0.69; Pearson product-moment correlation coefficient = 0.87, $p < 0.001$). Convergence of chains varied by parameter and by simulation run. Therefore, I discarded the first 3000 iterations (of 100000; i.e., the burn in) of each chain to ensure that each MCMC sequence had reached convergence and that they were comparable before I calculated each parameter’s posterior densities (Figure 20). The posterior estimates and associated summary statistics of each parameter and simulation are found in Table 10. Prior values for each simulation are included for comparison.
Figure 20: Kernel density estimates for humpback whale metabolic rates while traveling and \((m_t)\) and foraging \((m_f)\), and for total oxygen capacity \((K)\) and initial rate of oxygen replenishment \((\alpha)\). Each column represents a different physiological parameter while each row represents a simulation run using different prior values (i.e., prior values were calculated for whales of the following lengths: 10 m (first row), 12 m (second row), 13.45 (third row), and 15 m (forth row)). The red vertical lines indicate the respective prior parameter values, which were calculated using equations found in Table 2.
Table 10: Posterior estimates of humpback whale metabolic rates while traveling and (m_τ) and foraging (m_t), total oxygen capacity (K), and initial rate of oxygen replenishment (α); estimates are given as the posterior means, medians, standard deviations (SD) and 2.5% and 97.5% credible limits (CL).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior values</th>
<th>Posterior estimates</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whale length (m)</td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>m_τ</td>
<td>10.00</td>
<td>1.53</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>2.29</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>13.45</td>
<td>2.95</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>3.75</td>
<td>2.33</td>
</tr>
<tr>
<td>m_t</td>
<td>10.00</td>
<td>2.72</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>4.07</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>13.45</td>
<td>5.24</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>6.68</td>
<td>4.25</td>
</tr>
<tr>
<td>K</td>
<td>10.00</td>
<td>711.59</td>
<td>711.70</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>1251.69</td>
<td>1251.71</td>
</tr>
<tr>
<td></td>
<td>13.45</td>
<td>1782.17</td>
<td>1782.07</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>2498.48</td>
<td>2498.50</td>
</tr>
<tr>
<td>α</td>
<td>10.00</td>
<td>3.16 x 10$^{-3}$</td>
<td>2.71 x 10$^{-3}$</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>2.65 x 10$^{-3}$</td>
<td>2.64 x 10$^{-3}$</td>
</tr>
<tr>
<td></td>
<td>13.45</td>
<td>2.37 x 10$^{-3}$</td>
<td>2.72 x 10$^{-3}$</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>2.13 x 10$^{-3}$</td>
<td>2.72 x 10$^{-3}$</td>
</tr>
</tbody>
</table>
Mean posterior estimates of \(m_t \) from each simulation were similar despite using prior values calculated for whales of different sizes (Figure 20; Table 10: all posterior estimates had a 2.5 – 97.5 % CL ranging between 2.22 and 2.42 \(\text{L O}_2 \text{ s}^{-1} \)). The mean posterior estimates calculated from the simulations that used prior values derived for 10 m and 12 m whales had the lowest SDs (0.01), but the latter mean posterior estimate was most similar to its prior value (mean = 2.32 \(\text{L O}_2 \text{ s}^{-1} \); prior value of \(m_t \) for a 12 m whale = 2.29 \(\text{L O}_2 \text{ s}^{-1} \)); the former mean posterior estimate was larger than its prior value by an estimated 0.71 \(\text{L O}_2 \text{ s}^{-1} \). The mean posterior estimates calculated from the simulations using prior values of \(m_t \) derived for whales of 13.45 m and 15 m were smaller than their prior values by an estimated 0.61 and 1.41 \(\text{L O}_2 \text{ s}^{-1} \), respectively (Figure 20; Table 10), albeit having SDs of only 0.05 and 0.06. Interestingly, the 2.5 – 97.5% CLs of the posterior estimates calculated using prior values of \(m_t \) for 10 m whales (2.24 – 2.28 \(\text{L O}_2 \text{ s}^{-1} \)) and 12 m whales (2.30 – 2.35 \(\text{L O}_2 \text{ s}^{-1} \)) were within the 2.5 – 97.5 % CLs of the posterior estimates calculated using prior values of \(m_t \) derived for 13.45 m and 15 m whales (2.21 – 2.37 \(\text{L O}_2 \text{ s}^{-1} \) and 2.22 – 2.47 \(\text{L O}_2 \text{ s}^{-1} \), respectively).

The mean posterior estimates of \(m_t \) were also similar to one another despite being calculated using increasing prior values of \(m_t \) in the simulated models (Figure 20; Table 10). Again, the mean posterior estimate of \(m_t \) calculated from the simulation that used
prior values of m_l derived for a 12 m whale was most similar to its prior value (mean = 3.98 L O$_2$ s$^{-1}$; SD = 0.03; prior value = 4.07 L O$_2$ s$^{-1}$). While the SDs of the posterior means calculated using prior values of m_l derived for 10 m, 13.45 m, and 15 m whales were low (0.01, 0.04, and 0.05), the estimates were 1.32 L O$_2$ s$^{-1}$ larger and 1.06 L O$_2$ s$^{-1}$ and 2.43 L O$_2$ s$^{-1}$ smaller than their respective prior values (Table 8). Also, none of the 2.5 – 97.5% CLs calculated from the simulations included the respective prior values used for m_l, although they were similar to one another (Table 10). The 2.5 – 97.5% CL calculated from the simulation using a prior value of m_l derived for a 12 m whale was most similar to its prior value (prior value = 4.07 L O$_2$ s$^{-1}$; CL = 3.91 – 4.04 L O$_2$ s$^{-1}$).

Prior values used in the simulated model had a strong influence on the posterior estimates of K (Figure 20; Table 10). Each simulation resulted in a mean posterior estimate of K that was within 1 L O$_2$ of its prior value. In addition, the 2.5 – 97.5% CL of each simulation included their respective prior value but none of them overlapped with a CL from another simulation. Finally, SDs of each simulation were less than 4.30 L O$_2$ (Table 10).

Posterior densities of α converged upon mean values ranging from 2.64×10^{-3} to 2.72×10^{-3} s$^{-1}$ (Figure 20, Table 10). Similarly to the mean posterior estimates of m_t and m_l, the mean posterior estimate of α calculated from the simulation that used prior values
derived for a 12 m whale had the lowest SD (1.27×10^{-5} s$^{-1}$) and was most similar to its prior value (mean = 2.64×10^{-3} s$^{-1}$; prior value = 2.65×10^{-3} s$^{-1}$). The mean posterior estimates calculated using prior values of α for 10 m, 13.45 m, and 15 m whales all were extremely similar to one another with $2.5 – 97.5\%$ CLs ranging within 2.64×10^{-3} s$^{-1}$ and 2.76×10^{-3} s$^{-1}$ (Table 10). The $2.5 – 97.5\%$ CL of the posterior estimates of α calculated with a prior value of α derived for a 12 m whale ranged from 2.60×10^{-3} s$^{-1}$ to 2.65×10^{-3} s$^{-1}$. SDs of all simulations were less than 4.5×10^{-5} s$^{-1}$.

4.4 Discussion

In this study, I implemented MCMC simulations with a Gibbs sampler and a Metropolis sampling algorithm to estimate posterior values of K, α, m_r, and m_t for humpback whales based on the likelihood that observed dive behaviors were optimal according to OFT. I was able to use 2365 feeding dives from humpback whales in the simulations that included a wide range of s, t, and u durations (Figure 17), which were positively correlated with one another (Table 9). Repeated simulations using an assortment of prior values estimated for different sized humpbacks revealed high convergence of MCMCs, specifically in regards to m_r, m_t, and α, that centered on prior values estimated for a 12 m humpback whale from allometric equations listed in Table 8.
The simulations also revealed a strong influence of prior values on posterior estimates of K.

Prior values of \(m_\tau \), \(m_t \), and \(\alpha \) had little influence on the calculation of their posterior distribution suggesting that the observed dive data instead drove the model. Despite the use of a range of prior values for each of these parameters, the posterior estimates converged upon similar distributions. Interestingly, these distributions all converged on estimates that are similarly obtained using the allometric equations listed in Table 8 for a humpback whale 12 m in length. This could mean either that the whales observed in this study were, on average, approximately 12 m in length or that the whales have a different approximate mean length and the prior values obtained from the equations listed in Table 8 are inaccurate. A preliminary analysis aimed at estimating the lengths of 11 of the 13 whales observed in this study using photogrammetry techniques suggest that the mean size of whales tagged in this study was 12.9 m (average SD = ± 1.29, CV = 9.98%; Kutcher, unpublished data; Appendix D).

If I assume that the whales observed in this study were on average 12 m in length then the current allometric equation used to calculate \(m_\tau \):

\[
AMR = 3 \times 2 \times 4M_c^{0.75}; \text{equation 10}
\]

may be accurate. The observed dive data of humpback whales suggests that their \(m_\tau \) ranged from 2.21 to 2.42 L O₂ s\(^{-1}\); the value of \(m_\tau \)
calculated using equation 10 for a 12 m humpback is 2.32 L O$_2$ s$^{-1}$. However, if the whales observed in this study were either larger or smaller than 12 m, estimates of m_T calculated with equation 10 may overestimate or underestimate this rate, respectively. For example, if the whales observed in this study were on average 12.9 m in length, their predicted m_T value from equation 10 would be 2.69 L O$_2$ s$^{-1}$; a value slightly higher than that predicted by my simulations (Table 10). This suggests that values of m_T derived from equation 10 may overestimate m_T by an increasingly large amount with increasing body size. This may be related to the increased volumetric mass that is associated with increased body size (Goldbogen et al. 2010).

The calculation for m_T used in my model does not take into account any energetic savings that may be the result of gliding. If the posterior estimates I obtained did account for energy saved by gliding, the finding that the posterior estimates were lower than those predicted by AMR may be attributed to energy being saved through this behavior. This is reasonable to assume because the prior values did not appear to have a strong influence on the model. The amount of energy saved from gliding in rorquals, however, has not been adequately measured; future research efforts will hopefully address this more fully.
The mean posterior estimates of m_t obtained from the simulations ranged from 3.98 to 4.25 L O$_2$ s$^{-1}$. If the whales observed in this study were 12 m in average length then the multiplicative factor of $1.78 \times m_t$ derived by Doniol-Valcroze et al. (2011) and based on simulations of blue and fin whales computed by Goldbogen et al. (2010) and Potvin et al. (2010) may be an accurate calculation for m_t. That calculation results in a value of m_t equal to 4.07 L O$_2$ s$^{-1}$, a value that is within the CLs of all but one of the simulations I ran (Table 10). However, if the observed whales were smaller or larger than 12 m, the calculation derived by Doniol-Valcroze et al. (2011) likely overestimates or underestimates the true value of m_t, respectively. Nonetheless, it appears that the true value of m_t lies somewhere in the range of 1.62 – 1.96 m_t (values were calculated from the smallest value of m_t obtained from the 2.5 % CLs divided by the largest value of m_t obtained from the 97.5 % CLs, and the largest value of m_t obtained from the 97.5 % CLs divided by the smallest value of m_t obtained from the 2.5 % CLs, respectively).

The manner in which I derived durations of τ and t may have affected the posterior estimates I obtained from my simulations. I chose to define foraging durations as the duration of time lasting from the moment the first lunge was executed (i.e., mouth opening) on a dive to the moment the last lunge on that dive was completed, which included a filter duration of 13.00 sec (Potvin et al. 2012). Other studies have defined this
duration as the amount of time spent between first reaching the mean depth of feeding activity on a dive and the time they last exit that depth (e.g., Doniol-Valcroze et al. 2011) or as the time spent at depths greater than 75% of the maximum depth of dive (e.g., Acevedo-Gutierrez et al. 2002). Because I was able to explicitly identify feeding events during a dive, I chose to calculate foraging times based on these lunges and to apply m_i to this entire duration. If periods of travel between consecutive lunges were included in the calculation of foraging durations the results of the simulation may have been biased to an unknown degree. Previous examinations, however, suggest that this definition of travel time is appropriate (see Chapter 2).

The posterior estimates of α that I obtained in the simulations were remarkably similar despite the difference in prior values used, with mean values ranging from 2.13×10^3 to 3.16×10^3 s$^{-1}$ (Table 10). Again, the simulations converged on posterior estimates that were most similar to the prior value I used to calculate α with for a 12 m whale. As with m_i and m_t, if the observed whales were on average 12 m in length then the equation of α that assumes oxygen uptake is limited by the surface area available for gaseous exchange (equation 12) may be accurate. It is unclear whether running the simulations using prior values following the principle of symmorphosis, whereby each component of the oxygen chain must evolve to supply oxygen at the rate required by the muscles
would have resulted in different posterior estimates.

Here, I used the surface area relationship to estimate \(\alpha \), where oxygen uptake is expected to be limited by the surface area available for gaseous exchange, because it is more commonly used to derive estimates of \(\alpha \) in baleen whales and thus perhaps more comparable to other studies (e.g., Doniol-Valcroze et al. 2011). I predict that simulations using \(\alpha \) derived via the principle of symmorphosis would also converge on similar values because changing the prior values in the simulations did not appear to have a large influence on the model output (the observed data had a stronger influence than the prior values of \(\alpha \)). Future research should address the effect that these two methods would have on this model’s estimation of \(\alpha \) because this parameter is highly critical in models aimed to scale surface durations of diving animals (Stephens et al. 2008).

Interestingly, the posterior estimates of \(K \) were strongly influenced by their prior value: mean posterior estimates of \(K \) were within 1 L of their prior values for all simulations (Table 10). This extreme influence of prior values on the model suggests that \(K \) is strongly influenced by an animal’s body size. This finding is intuitive because larger whales will have a greater ability to store oxygen than smaller whales based strictly on the size of their lungs and muscles and increased volumes of blood. These results also suggest that the equation used to calculate the prior values of \(K \) (equation 2; Tenney &
Remmers 1963, Lasiewski & Calder 1971, Kooyman 1973, Halsey et al. 2006, Stephens et al. 2008) is an accurate method to estimate this parameter. This finding agrees with other studies that have reported that values calculated using this proportion are similar to predicted estimates of these values based on observed dive-pause ratios in birds and mammals (e.g., Croll et al. 2001, Halsey et al. 2006, Doniol-Valcroze et al. 2011).

The true size of the each individual whale observed in this research and their respective number of foraging dives may have influenced the posterior estimates of the simulations. For example, if the whales that executed the most foraging dives (e.g., 122a, 152a) were 12 m in length their observations may have biased the simulations such that the posterior estimates applied mostly to their dives. According to preliminary predictions of these whales from photogrammetry data (Appendix D: Kutcher unpublished data), however, the lengths of observed whales that executed 300 or more feeding dives (i.e., 122b, 152a, and 144a) ranged from 9.32 m (144a) to 13.48 m (122b; no length estimate is available for 152a). Therefore, the results from my simulations may represent the average values of these parameters for humpback whales.

The results of this study offer insights into the appropriateness of the current techniques used to estimate the metabolic rates and oxygen storage capacities and replenishment rates. These findings are extremely useful for directing future research as
they suggest that parameters such as K are adequately estimated using the respective current allometric equations, while the estimation of metabolic rates of rorquals while foraging and while traveling need to be addressed further. Future research efforts will use this model to simulate these physiological parameters in additional diving species, such as southern elephant seals (*Mirounga leonina*) and/or Weddell seals where metabolic rates may be available for groundtruthing the model, and will explore how mixed-metabolism models would influence the posterior estimates.
5. Current Knowledge, Data Gaps, and Future Research Directions

In this dissertation, I use high-resolution bio-logging tools to examine the fine-scale foraging behaviors of humpback whales (Megaptera novaeangliae) in the coastal waters of the Western Antarctic Peninsula (WAP). I identified discrete feeding lunges of humpback whales recorded via high-resolution digital acoustic recording tags during the austral fall of 2009 and 2010 from within several embayments along the Peninsula. I used these data to describe several fundamental elements of humpback whale foraging ecology, including the foraging efficiency of adult humpback whales as well as the foraging behaviors and synchrony of a mother and calf. I also used these data to increase the understanding of aspects of humpback whale physiology so that future modelling efforts may be more accurate. I hope that this work significantly advances the current understanding of humpback whale foraging behaviors along the WAP so that appropriate measures can be taken to aid in their recovery and in the sustainability of the Antarctic marine ecosystem.
5.1 Current Knowledge

In order to be evolutionarily successful, animals must dedicate a portion of their available time to foraging (animals can’t survive to reproduce if they don’t fulfill their energy requirements). Natural selection, therefore, should favor foraging strategies that are efficient in minimizing costs (in time and energy and exposure to predation) while simultaneously maximizing benefits (e.g., energy, nutrients) (Macarthur & Pianka 1966). In this research, I found that humpback whales in the near-shore waters of the WAP exhibit efficient foraging strategies with minimal energetic costs (Chapter 3). They feed at a continuous and high rate, favoring energy gains over oxygen balance, from approximately dusk to dawn (Figure 21; see Friedlander et al. 2013) and spend approximately 40.00 % of this time actively lunging for prey (~ 8 hrs; Chapter 3). These behaviors allow them to exploit their prey when they are most vulnerable and less costly to acquire (i.e., at night when krill are foraging near the surface).
Figure 21: Frequency and temporal distribution of all dives categorized by behavioral state for whales tagged in Wilhelmina Bay in 2009 and 2010 in local time (GMT – 5 h). Individual dives are staggered along the vertical axis for each behavioral state to show the density of points. (From Friedlaender et al. 2013).

The high rate of foraging observed in this research allows these whales to store a large volume of energy in the form of blubber, which can be used to replenish energy reserves diminished from the recent migration and increasing energy reserves for successful future migrations (Lockyer 1981). This is particularly beneficial for nursing
mothers who must also replenish energy reserves lost due to the added cost of lactation and the caring of their calf, and the calf who must acquire energy for growth (Chapter 2). My findings suggest that the whales examined in this study were foraging efficiently and in a clever manner and that the current structure of the Antarctic marine ecosystem is favorable to the fitness and recovery of the humpback whales in the Southern Ocean.

5.2 Data Gaps and Future Research Directions

While this dissertation provides added information to the baseline foraging behaviors of humpbacks, much about their behaviors is still unknown. Some of the biggest questions still apparent are those regarding the energetics and physiology of baleen whales. While the model presented in Chapter 4 provides important information regarding the accuracy of current methods used to estimate aspects of rorqual physiology (e.g., metabolic rates and oxygen replenishment rates), it represents just a step towards obtaining the true values of these parameters. Future research directions will be focused on ground-truthing this model with data such as the dive records of seals that have concurrent measurements of metabolic rates so that the true accuracy of its predictions can be better assessed. This is critically important because these parameters can be used to predict foraging behaviors in response to fluctuations in prey
resources (e.g., Wiedenmann et al. 2011), a prediction that is of high value in the face of a changing Antarctic marine ecosystem.

Since the 1950s, the WAP has experienced rapid climate change. Most strikingly, winter atmospheric temperatures have increased by 6°C (Vaughan et al. 2003) and the duration and spatial extent of winter sea-ice have decreased (Smith & Stammerjohn 2001, Vaughan et al. 2003, Parkinson 2004, Stammerjohn et al. 2008a, Stammerjohn et al. 2008b). Further decreases in the duration and spatial extent of winter sea-ice may result in longer foraging seasons for migrating species, such as humpback whales, and a reduction in the standing stock of Antarctic krill. In addition, an expanding commercial krill fishery in the region and a whale population recovering from exploitation may further constrain this system (Nicol & Foster 2003).

Wiedenmann et al. (2011) suggest that whales in the Antarctic marine ecosystem may be able to reduce the impacts of declines in krill abundance if they can change their foraging behaviors in response to changes in the local environment. Humpback whales and other baleen whales have demonstrated plastic behaviors in response to prey types and distributions (Juarasz & Juarasz 1979, Hain et al. 1982, Hays et al. 1985, Friedlaender et al. 2009, Ware et al. 2011, Wiley et al. 2011, Ware et al. 2013), however, the plasticity of whales in the Southern Ocean has not been examined. Such plasticity would be
beneficial for whales if, for instance, the competition for krill is significantly increased and should be examined.

Ware et al. (2011) described both deep and shallow lunge types exhibited by humpback whales along the WAP, but a preliminary analysis of the tag data suggests that several behaviors never before described in baleen whales are executed by the humpback whales examined in this research (e.g., surface loops, and spiraling ascending and descending lunges). Currently, it is unknown whether these behaviors are individually specific or if they are used broadly by the population. Specialized feeding patterns (defined as the consistent use of a pattern of foraging, feeding technique, or prey species, or some combination of these, by an individual or group of animals within a population where other foraging strategies are also employed; Partridge & Green 1985) have been described for a variety of cetacean species including minke whales (Hoelzel et al. 1989) and humpbacks feeding at the surface (Weinrich et al. 1992, Wiley et al. 2011) and presumably allow individuals to exploit prey patches with increased efficiency or to access highly mobile prey that would be otherwise unavailable (Wiley et al. 2011). Future research should examine the different behaviors exhibited by rorquals in the Southern Ocean and attempt to determine their associated energetic costs and gains to assess the potential for plasticity in rorqual feeding behaviors in this region.
Finally, while this research advances the current knowledge of fine-scale foraging behaviors of humpback whales, specifically along the WAP, much is still unknown regarding their ecological relationships with other species in these waters, including other baleen whales. Friedlaender et al. (2009b, 2011) suggest that humpbacks and other krill predators may be able to partition their resources to reduce their competition. It is unknown, however, what factors may reduce their ability to maintain their ecological niches and how, if forced to compete, that will affect the structure and function of the Antarctic marine ecosystem. Therefore, future research along the WAP should focus on placing studies of individual species in the context of their potential competitors and the extreme Antarctic environment.
Appendix A

Description of acronyms used throughout the dissertation (in order of appearance).

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAP</td>
<td>Western Antarctic Peninsula</td>
</tr>
<tr>
<td>VGB</td>
<td>Ventral Groove Blubber</td>
</tr>
<tr>
<td>ASRV</td>
<td>Antarctic Science Research Vessel</td>
</tr>
<tr>
<td>RVIB</td>
<td>Research Vessel Ice Breaker</td>
</tr>
<tr>
<td>USAP</td>
<td>United States Antarctic Program</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>MC DW</td>
<td>Modified Current Deep Water</td>
</tr>
<tr>
<td>Dtag</td>
<td>Digital Acoustic Recording Device</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>GPS</td>
<td>Geographic Positioning System</td>
</tr>
<tr>
<td>ILI</td>
<td>Inter-Lunge Interval</td>
</tr>
<tr>
<td>OFT</td>
<td>Optimal Foraging Theory</td>
</tr>
<tr>
<td>DLT</td>
<td>Dive Lactate Threshold</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>ME</td>
<td>Modelling Efficiency</td>
</tr>
<tr>
<td>AOV</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimate</td>
</tr>
<tr>
<td>EMR</td>
<td>Engulfment Metabolism Rate</td>
</tr>
<tr>
<td>RAAMR</td>
<td>Rorqual Active Metabolic Rate</td>
</tr>
<tr>
<td>AMR</td>
<td>Active Metabolic Rate</td>
</tr>
<tr>
<td>BMR</td>
<td>Basal Metabolic Rate</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
</tbody>
</table>
Appendix B

Description of mathematical symbols used throughout the dissertation (in order of appearance).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Pearson R Correlation Coefficient</td>
</tr>
<tr>
<td>t</td>
<td>Student’s T-test</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>p</td>
<td>Significance Level</td>
</tr>
<tr>
<td>F</td>
<td>F-Statistic</td>
</tr>
<tr>
<td>R^2</td>
<td>Multiple R-Squared</td>
</tr>
<tr>
<td>τ</td>
<td>Travel Duration</td>
</tr>
<tr>
<td>t</td>
<td>Forage Duration</td>
</tr>
<tr>
<td>s</td>
<td>Surface Duration</td>
</tr>
<tr>
<td>u</td>
<td>Dive Duration</td>
</tr>
<tr>
<td>K</td>
<td>Total Oxygen Storage Capacity</td>
</tr>
<tr>
<td>α</td>
<td>Initial Proportional Rate of Oxygen Replenishment</td>
</tr>
<tr>
<td>m_T</td>
<td>Metabolic Rate During Traveling</td>
</tr>
<tr>
<td>m_F</td>
<td>Metabolic Rate During Foraging</td>
</tr>
<tr>
<td>π</td>
<td>Dive Cycle</td>
</tr>
<tr>
<td>s^*</td>
<td>Optimal Surface Duration</td>
</tr>
<tr>
<td>V</td>
<td>Whale speed</td>
</tr>
<tr>
<td>t^*</td>
<td>Optimal Forage Duration</td>
</tr>
<tr>
<td>u^*</td>
<td>Optimal Dive Duration</td>
</tr>
<tr>
<td>l^*</td>
<td>Optimal Lunge Count</td>
</tr>
<tr>
<td>L</td>
<td>Observed Lunge Count</td>
</tr>
<tr>
<td>L</td>
<td>Whale Length</td>
</tr>
<tr>
<td>M</td>
<td>Whale Mass</td>
</tr>
<tr>
<td>p</td>
<td>Depth</td>
</tr>
<tr>
<td>N</td>
<td>Number of Foraging Dives</td>
</tr>
<tr>
<td>W</td>
<td>Wilcoxon Rank-Sum Distribution</td>
</tr>
<tr>
<td>$\beta\alpha$</td>
<td>Scaling Exponent for α</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>L</td>
<td>Likelihood</td>
</tr>
<tr>
<td>σ^2</td>
<td>Model Variance</td>
</tr>
<tr>
<td>i</td>
<td>Iteration</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
<tr>
<td>K^*</td>
<td>Candidate Value</td>
</tr>
<tr>
<td>$K^{(g)}$</td>
<td>Current Value</td>
</tr>
<tr>
<td>V</td>
<td>Covariance Matrix</td>
</tr>
<tr>
<td>g</td>
<td>Index of the Process in the Model Simulation</td>
</tr>
<tr>
<td>z</td>
<td>The Probability of the Candidate Values</td>
</tr>
<tr>
<td>CL</td>
<td>Credible Limits</td>
</tr>
</tbody>
</table>

126
Appendix C

Custom written R code (R Core Team 2013) used in Chapter 4 to estimate posterior values of humpback whale total oxygen capacity (K), initial rate of oxygen replenishment (α), and metabolic rates while traveling (m_1; m_1 in the code) and foraging (m_2; m_2 in the code).

#Subset dive durations from observed data
tau <- data$travel_time
t <- data$forage_time
s <- data$surface_time
u <- tau + t

#Function to calculate physiological parameters for a whale of length X:
Physparam <- function(length){
 mass <- 0.016473*(length)^2.95 #W is body weight in tones and L is body length in m (Lockyer 1976)
 mass <- mass*1000 #convert mass from tones to kilograms
 K <- 0.03*mass^(1.05) #Total oxygen storage capacity (L) (Stephens et al. 2008)
 a <- 0.075*mass^(-0.33) #Initial rate of oxygen replenishment (s-1) if symmorphosis holds (Stephens et al. 2008)
 m1 <- 3 * 2 * (4*mass^0.75) #Metabolic rate while traveling in Watts (Potvin et al. 2012)
 m1 <- m1*0.0143 #Convert Watts to kcal/min
 m1 <- m1/5 #Convert kcal/min to VO2 in L/min
 m1 <- m1* 0.0167 #Convert L/min to L/sec
 m2 <- m1*1.78 #Metabolic rate while foraging (Doniol-Valcroze et al. 2011)
 return(as.numeric(rbind(K,a,m1,m2)))
}

127
#Calculate physiological parameters for average whale to be used as prior values
 priors <- phypar(13.45)
 K <- priors[1]
 a <- priors[2]
 m1 <- priors[3]
 m2 <- priors[4]

#Function to estimate the amount of oxygen gained by a diver that spends time s on the surface
 o2 <- function (s) {K*(1-exp(-1*a*s))}

#Function to predict optimal durations for observed values of tau
 opt_predictions <- function(tau){
 optST <- vector() #create empty vector for surface time
 ratio <- function(s) { (o2(s)-m1*tau)/(m2*(s+tau)) } #ratio of t to s + tau
 optST <- optimize(f=ratio, interval=c(0,2000), maximum=T)$maximum #determine s*
 optFT <- (o2(optST)- m1*tau)/m2 #determine t*
 optDT <- optFT+tau #determine u*
 }

#Function to get means of physiological parameters based on optimal equation
 getMu <- function(pars){
 m1 <- pars[1]
 m2 <- pars[2]
 K <- pars[3]
 a <- pars[4]
 apply(tau,1,opt_predictions) #find the optimal prediction of u* for all values of tau
 }

#Define the physiological parameters:
 pars <- c(m1,m2,K,a)

#Function to calculate the sum of the negative log Likelihood
 diveLik <- function(pars){ -sum(dnorm(u,getMu(pars),sqrt(sg),log=T))}
Set standard deviation of the normal distribution:
sg <- 1

Function to update standard deviation in the gibbs sampler
updateS <- function(){
 u1 <- s1 + n/2
 u2 <- s2 + .5*sum((getMu(pars) - u)^2)
 1/rgamma(1,u1,u2)
}

Where:
 n <- length(u) # the number of observed dives
 s1 <- 1
 s2 <- 1

Pick the starting values of the Metropolis Sampler
xg <- physparam(12) # chose a random (but realistic) length for a humpback whale
Kg <- xg[1]
ag <- xg[2]
m1g <- xg[3]
m2g <- xg[4]

Function to update model parameters (i.e., run the Metropolis algorithm)
updatePars <- function(){
 sprop <- c(m1,m2,K,a)/10000 # Covariance matrix
 pars <- c(m1g,m2g,Kg,ag) # Current values of physiological parameters
 parNew <- tnorm(4,c(0.001,0.001,100,0.001),c(50,50,5000,1),pars,sprop)
 # Create new candidate values for parameters based on a truncated normal distribution assuming mean values are the current parameters and the error is equal to the covariance matrix
 pnow <- diveLik(pars) + sum(dnorm(pars,c(m1,m2,K,a),sqrt(10),log=T))
 # Likelihood of u based on current values + likelihood of current values
 pnew <- diveLik(parNew) + sum(dnorm(parNew,c(m1,m2,K,a),sqrt(10),log=T))
 # Likelihood of u based on candidate values + likelihood of candidate values
Metropolis Step to determine which of these parameter values result in observed values of u being more probable if u* is true:

```r
a <- exp(pnew - pnow)
z <- runif(1,0,1)  # sample as a block
if (z < a) {pars <- parNew}
pars
```

Select number of iterations for the MCMC

```r
ng <- 1000000
```

Create empty matrix with column names to hold values

```r
pgibbs <- matrix(NA, ng, 5)
colnames(pgibbs) <- c('m1', 'm2', 'K', 'a', 's')
```

Run the Gibbs Sampler

```r
for(g in 1:ng){
pars <- updatePars()  # update parameter values using the metropolis algorithm
m1g <- pars[1]  # set the updated parameter values
m2g <- pars[2]
Kg <- pars[3]
ag <- pars[4]
sg <- updateS()  # set the updated error value
pgibbs[g,] <- c(pars, sg)  # store these values
}
```
Appendix D

The lengths of tagged whales used in this research estimated using photogrammetry methods using the Dtag on the whales as an estimate of scale (Table 15). High quality photographs (i.e., in focus, low contrast) taken approximately perpendicular to the whales and with clear views of the Dtag were examined in the software program UTHSCSA ImageTool. Proportional relationships known to be significant indicators of total whale length (e.g., the blowhole to posterior emargination of the dorsal fin length, tip of rostrum to blowhole length, width of the fluke; Matthews 1937) were measured and used to estimate the total body length. To reduce observational error, the spatial scale of these tracings were calibrated using the known dimensions of the Dtag (Johnson & Tyack 2003) and multiple photographs of each whale and each proportion (when available) were used.
Table 11: Body length estimates for tagged Antarctic humpback whales from the Western Antarctic Peninsula region. Lengths were measured using photogrammetric techniques on digital photographs taken in the fall of 2009 and 2010. Data are compiled from Kutcher (unpublished data). Total body lengths are represented as means ± SD

<table>
<thead>
<tr>
<th>Whale ID</th>
<th>Number of measuring photos</th>
<th>CV of total body length (%)</th>
<th>Total body length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>122b</td>
<td>1</td>
<td>-</td>
<td>13.48</td>
</tr>
<tr>
<td>127a</td>
<td>7</td>
<td>21.35</td>
<td>12.14±2.59</td>
</tr>
<tr>
<td>136a</td>
<td>13</td>
<td>5.52</td>
<td>15.90±0.88</td>
</tr>
<tr>
<td>140a</td>
<td>14</td>
<td>1.68</td>
<td>15.85±0.27</td>
</tr>
<tr>
<td>148a</td>
<td>2</td>
<td>8.80</td>
<td>11.41±1.00</td>
</tr>
<tr>
<td>152a</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>132a</td>
<td>16</td>
<td>18.66</td>
<td>13.48±2.51</td>
</tr>
<tr>
<td>133a</td>
<td>1</td>
<td>-</td>
<td>15.44</td>
</tr>
<tr>
<td>139a</td>
<td>7</td>
<td>20.79</td>
<td>13.94±2.90</td>
</tr>
<tr>
<td>144a</td>
<td>1</td>
<td>--</td>
<td>9.32</td>
</tr>
<tr>
<td>146a</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>151a</td>
<td>3</td>
<td>0.69</td>
<td>10.07±0.07</td>
</tr>
<tr>
<td>155a</td>
<td>3</td>
<td>1.88</td>
<td>8.26±0.16</td>
</tr>
</tbody>
</table>
References

134

Friedlaender AS, Tyson RB, Stimpert AK, Read AJ, Nowacek DP (2013) Extreme diel variation in the feeding behavior of humpback whales along the Western Antarctic Peninsula during autumn. Marine Ecology Progress Series 494:281-289

139

Lockyer C (1981) Growth and energy budgets of large baleen whales from the southern hemisphere In: Mammals in the Seas Vol III, General Papers and Large Cetaceans FAO Fish Ser 5, , p 379-487

MathWorks (2013b) Matlab and statistics toolbooks release, Natick, Massachusetts, United States

Matthews LH (1937) The humpback whale, Megaptera nodoso. Discovery Reports 17:7-92

Orians GH, Pearson NE, Horn DJ, Mitchell DR, Stairs GR (1979) On the theory of central place foraging In: Analysis of ecological systems. Ohio State University Press, Columbus, Ohio, p 155

R Core Team (2013) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria

Biography

Reny Blue Tyson
Born: December 12, 1983
Troy, New York

Education
PhD Marine Science and Conservation, Duke University 2014
MSc Biological Oceanography, Florida State University, 2008
BSc Psychology, Florida State University (Honors), 2006

Publications
Awards and Scholarships
Endeavour Research Fellowship, 2014
Scientific Committee of Antarctic Research, 2013
Duke Marine Laboratory Writing Fellowship, 2013
Preparing Future Faculty Fellow, 2013
Ford Foundation Fellowship (Honorable Mention), 2013
Duke Dissertation Research Travel Award, Duke University, 2013
Graduate Women in Science Fellowship (Honorable Mention), 2012
Scientists with Stories Development Grant, 2012
U.S. Congress Antarctic Service Medal, 2011
Beneath the Sea’s Jordan Viders Spirit of the Sea Scholarship, 2011
Early Career/Young Scientist Travel Award for the Tagging Through the Stages Workshop at the Fourth Science Symposium on Bio-logging, 2011
Oak Foundation Travel Grant, 2011
Woods Hole Oceanographic Institute, Duke University Fellowship, 2009
Eonfusion Scholarship, 2009
Bess Ward Honors Grant, 2004

Professional affiliations
Society of Marine Mammalogy
Animal Behavior Society
Association of Polar Early Career Scientists
Society for Conservation of Biology