Reporting standards for literature searches and report inclusion criteria: making research syntheses more transparent and easy to replicate

Kayla M. Atkinson, Alison C. Koenka, Carmen E. Sanchez, Hannah Moshontz and Harris Cooper

A complete description of the literature search, including the criteria used for the inclusion of reports after they have been located, used in a research synthesis or meta-analysis is critical if subsequent researchers are to accurately evaluate and reproduce a synthesis’ methods and results. Based on previous guidelines and new suggestions, we present a set of focused and detailed standards for reporting the methods used in a literature search. The guidelines cover five search strategies: reference database searches, journal and bibliography searches, searches of the reference lists of reports, citation searches, and direct contact searches. First, we bring together all the unique recommendations made in existing guidelines for research synthesis. Second, we identify gaps in reporting standards for search strategies. Third, we address these gaps by providing new reporting recommendations. Our hope is to facilitate successful evaluation and replication of research synthesis results.

Keywords: literature search; meta-analysis; research synthesis; guidelines

1. Introduction

Fundamental to the process of science is the critical evaluation of research methods and results and the ability of others to conduct faithful replications. Concerns about both have risen dramatically in recent years. These concerns have grown more severe because of widely publicized cases of research findings that failed to be reproduced (e.g., Harris et al., 2013). In response, the National Science Foundation (Olds, 2014) has taken up the issue, as has the Association for Psychological Science (Pasher and Wagenmakers, 2012).

Research synthesis is a valuable tool that helps establish whether and under what conditions a research finding has been replicated (Giner-Sorolla, 2012; Ioannidis, 2012). In particular, meta-analysis allows for the estimation of cumulative quantitative outcomes and the systematic search for influences on outcomes (perhaps suggesting why some studies found an effect and others did not). Additionally, meta-analysis allows for the estimation of potential sources of bias in results, in particular, publication bias and other forms of data censoring. Finally, the results of research synthesis often replace primary research as the arbiter of current knowledge when individual findings pass behind the research front (Price, 1965).

Just like primary research, research syntheses—whether meta-analyses or otherwise—should be open to critical scrutiny and replication. Therefore, research synthesists should be held to the same standards for complete reporting as primary researchers (Cooper, 2010). Research synthesists should provide detailed descriptions of the strategies used to define problems, gather the literature, make judgments about the relevance of reports, extract information from reports, integrate results, and draw inferences.

A complete description of the literature search is especially critical if subsequent researchers are to accurately reproduce a synthesis’ methods and results. In this paper, we present reporting guidelines for the literature search
in research syntheses, which we define broadly as the process by which relevant research is located and selected for inclusion. Our guidelines integrate recommendations made by others as well as add some new ones. To begin, we will examine a major impediment to transparent reporting of research (whether it is primary research or research synthesis) and suggest that this barrier may be disappearing.

1. Impediment to complete reporting

In the past, a major impediment to complete reporting was that printed journal space was limited. This led to a premium being placed on concise, but often incomplete, method reporting. However, the omission of important methodological details makes it difficult to evaluate the quality of research and to reproduce what was performed in the target study. However, with the growing use of the Internet in scientific communication, journal space limitations are disappearing, so this problem is now easily overcome. Finely detailed descriptions of research can now be reported through the use of online supplemental files linked to reports. This can be performed regardless of whether the report itself was published in print or online. These detailed descriptions can be used to evaluate the research methods and to produce more precise replications. If the results of replications differ, a complete description of methods may point to a possible cause.

1.2. Standards for research reporting

Standards for thorough reporting of research methods in medical science have existed for many years (e.g., CONSORT, 2010; Des Jarlais et al., 2004). Standards are relatively new in the social sciences. American Psychological Association (APA)’s Journal Article Reporting Standards (American Psychological Association, 2008) appeared for the first time in the sixth edition of the APA Publication Manual (American Psychological Association, 2010).

Several efforts have been undertaken to establish reporting guidelines for meta-analysis. These include as follows:

- the Quality of Reporting of Meta-analysis Statement (Moher et al., 1999) and its revision, Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA; Moher et al., 2009);
- the Meta-analysis of Observational Studies in Epidemiology (MOOSE; Stroup et al., 2000),
- the Methodologic Guidelines for Systematic Reviews of Randomized Control Trials in Health Care from the Potsdam Consultation on Meta-Analysis (Cook et al., 1995);
- the Methodological Expectations of Cochrane Intervention Reviews (MECIR; Chander et al., 2013) and,
- the Meta-Analysis Reporting Standards (MARS; American Psychological Association, 2008).

Guidelines for reporting research syntheses have acknowledged the importance of reporting about the literature search. This is not surprising because variations in search strategy could hugely impact conclusions, as this is akin to sampling from different populations in primary research. For meta-analyses, documentation of how the included reports were located is essential to replicating statistical results, given that this method involves combining the results of retrieved, relevant studies.

Taken together, existing reporting standards for syntheses do an excellent job of outlining the reporter’s tasks. However, the literature search stage of the synthesis process appears to be the least detailed step in reporting standards. PRISMA provides the general recommendation to present the full electronic search strategy and to describe all information sources along with the date of the last search (Moher et al., 1999). MECIR makes recommendations similar to those outlined by PRISMA. The former set of standards also requires information on the searchers to be reported but does not provide detail on the nature of this information. The MOOSE guidelines are a bit more specific, suggesting identifying the search strategy, software, registers, and databases searched (with dates and keywords), and MOOSE and MARS suggest discussion of the qualifications of searchers (Stroup et al., 2000). It also mentions contacting authors and hand searching. The MARS gives detailed advice for reporting the reference databases searched but provides no suggestions regarding other search procedures (American Psychological Association, 2008). MOOSE, MARS, and PRISMA all mention publication status, dates for report appearance, communications to individual researchers, and treatment of studies in different languages. They also mention the need to describe eligibility criteria, but only MOOSE suggests that a justification for exclusions be included. Interestingly, none of the guidelines acknowledges that searches are often conducted sequentially, with an initial screening for relevance followed by a deeper examination of documents. The parameters for a search of citation are also not mentioned.

Despite the less detailed focus on the literature search in existing guidelines, research investigating synthesists’ reporting adequacy suggests that a greater focus on it is essential. For example, a recent study examining syntheses of medical research revealed that less than half of the reports provided information on full Boolean

1A resource for reporting standards in health research can be found at www.equator-network.org.
2Although the MECIR guidelines are distinct from those generated by PRISMA, we wish to note that the MECIR guidelines encourage users to report search information recommended by PRISMA.
operators used in their reference database search(s), and 12% provided no information on the search terms at all (Moher et al., 2007). A study by Delaney et al. (2005) corroborated these findings, concluding that the literature search was one of the areas most lacking in adequate reporting.

In sum then, the details of a literature search strategy are crucial for (i) assessment of the exhaustiveness of syntheses and (ii) replication. Especially in light of evidence that many synthesists report their search strategy with inadequate detail to accomplish these two goals (Delaney et al., 2005; Moher et al., 2007), additional guidance is needed to create a standard for consistent, comprehensive, and transparent reporting of them. We present a set of focused and detailed standards for reporting the methods used in a literature search and accompanying decisions about the relevance of documents to the search topic. Our hope is to facilitate successful evaluation and replication of research synthesis results. Given the excellent existing guidelines for how to conduct a literature search (e.g., Chander et al., 2013; Cooper, 2010), guidelines for the former task are only presented as context and justification for reporting recommendations.

2. Method for retrieving existing recommendations and identifying gaps

We undertook our task to generate a set of focused and detailed literature search reporting standards in four steps. First, we retrieved existing sets of research synthesis guidelines. Second, their recommendations for reporting the search strategy were integrated into a single document, and we identified their common gaps. Third, we pilot tested the resulting reporting recommendations and clarified them based on this experience. Each of these steps is described next.

To obtain existing sets of research synthesis reporting standards, we began with APA’s (American Psychological Association, 2008) MARS guidelines and searched for other guidelines cited within this article. We then went through this same process for all other guidelines that we retrieved. We also examined four resources for conducting research syntheses (Fink, 2005; Galvan, 2006; Hart, 1998; Pan, 2008) to identify any additional guidelines cited in them that were not found through our first search procedure.

To obtain existing guidelines for conducting comprehensive literature searches, we independently read the guidelines and retrieved all literature search reporting contributions. They also independently identified missing information in the search reporting guidelines that would be needed for (i) synthesis replication or (ii) evaluation of its quality. Next, the first and second author combined their efforts and resolved any disagreements through discussion. When a consensus could not be reached, the last author was consulted. Finally, the list of literature search recommendations was then presented to the two remaining authors, and their feedback was integrated.

Third, this final set of literature search reporting guidelines was pilot tested. We did so by applying them to a broad literature search that was used to carry out four research syntheses that all examined the strategies employed in assigning grades (W.T. Grant Foundation, 2013).

3. Reporting standards for literature searches

Table 1 presents the suggested reporting standards for literature searches associated with research syntheses. The guidelines cover five search strategies: reference database searches, journal and bibliography searches, searches of the reference lists of reports (which we call “backward” searches and are also called ancestry searches or “treeing through the references”), forward, or citation, searches, and direct contact searches, of which three varieties are listed. Other search techniques may exist and if used should be described.

Although the recommendations are presented in a fashion that suggests an efficient order of execution, this is not the reality of the research process. Conducting a comprehensive literature search is iterative (Chander et al., 2013) and thus requires flexibility. What we stress is not a strict order of operation but rather transparency in reporting the steps taken to complete a thorough search. For example, searching reference databases is listed before backward and forward searches. In many circumstances, researchers may discover references in a backward or forward search that lead them to expand the keywords used in database searches. These iterative variations in literature searches are both expected and legitimate, as are different orders depending on the specific topic under study. The criteria for good reporting are that as follows: (i) it provides the details that facilitate the evaluation of the comprehensiveness of the search and (ii) it can be faithfully replicated.1

Most of the entries in Table 1 are self-explanatory. Others need further explanation and/or justification for their inclusion.

1Information about false starts, expansion and contraction of search terms, etc. can be good to report. These often illuminate the definition of inclusion criteria and help future researchers clarify their own searches.
Table 1. Reporting standards for literature searches in research syntheses.

| Searcher characteristics | • Number of searchers
| | • Level of education and/or training
| | • Past experience conducting searches
| | • Were initial screeners different from second screeners?
| | o If yes, how?
| Initial screening for relevance | • Elements of reports used in initial screening decision
| | o For example, title, abstract, and full report
| | • Criteria for passing from first to second screen
| Final inclusion criteria | • Definitions
| | o Researched variables
| | o Participants
| | o Researched settings
| | o Dates
| | • For conduct of research
| | • for report appearance
| | • Types of reports, for example,
| | o Publication status
| | o Peer review status
| | • Treatment of studies reported in foreign languages
| | • Adequate reporting
| | o Information needed to include the report
| Excluded Articles | • Listing of studies that met most inclusion criteria but were ultimately excluded
| | o At least one criteria that each study failed to meet
| | • For example, data presented in an unusable way
| General search reporting guidelines | • Total number of documents in the search results
| | • Number of reports retained after initial screening
| | • Number of reports meeting relevance criteria
| | o Number of reports excluded due to insufficient information
| Reference database and registry searches | • Search software version
| | • Full names of databases searched
| | o Justification of database choice
| | • Search terms used
| | o Boolean connectors
| | o Whether automatic explosion of terms occurred
| | • Parts of text searched (e.g., title, abstract, etc.)
| | • Date database search(es) were conducted
| Journal—bibliography and registry search | • Journals or bibliographies scanned for relevant reports
| | o Names
| | o Years/volumes scanned
| | o Document elements used for decision
| | • For example, tables of contents, titles, and abstracts
| Backward (reference list) search | • Whether reference lists were examined
| | • Criteria for reference lists chosen
| | • Element used for relevance decision (e.g., references, mention in introduction, abstract, and full report)
| Forward (citation) search | • Reports for which citation searches were conducted
| | o Justification for why these reports were chosen
| Direct contact searches | • Mass communications to formal or informal distribution lists
| | o Group names or defining characteristics
| | o dates of contact
| | • Communications to individual researchers
| | o Criteria for decisions to contact
| | o Number of researchers contacted
| | o Response rate
| Other search strategies | • Communications with colleagues (leading to reports found no other way)
| | • Describe search strategies in addition to those above and the results of these searches
3.1. General search reporting guidelines

There is general consensus among guidelines on most of the elements that should be reported for reference database searches, and PRISMA provides a flowchart to help with this process. However, a greater level of detail is needed if replication of the search is the foremost concern.

Quantitative information about the results of a reference database search should be reported at several different levels of search precision. First, the number of documents returned by the computer search, based on the search terms used and the date of the search, should be reported. Second, the number of documents passing the initial screen should be reported. It is important to note that results of these broad relevance decisions may be different depending on what document elements were used to make the initial relevance decision. Thus, the document elements used to make initial relevance decisions should be reported. For example, searchers who make initial decisions based on titles alone may decide to look at fewer full texts than those using titles and abstracts (Cooper and Ribble, 1989).

After all reports have been screened for final inclusion, searchers should have the information needed to report the number of documents that qualified for the synthesis. They can also identify the number of reports that met all criteria but did not provide sufficient data for inclusion. While this level of detail may seem excessive, the details will serve as important checkpoints for those hoping to replicate, validate, and update findings.

3.1.1. Dates searched. It is also important that synthesists report when all searches were conducted. It is reasonable to expect that an exact date of electronic searches be given because they will be provided on the output used for relevance decisions. These dates provide readers and future researches with a concrete replication strategy and might explain differences in observed replicated data. If the dates encompassed by a search are not the same, this might explain why results of two research syntheses are different.

3.2. Searcher characteristics

Synthesists should report information about the number of searchers, their level of education and/or training, past experience conducting searches, and whether the initial screeners were different from final screeners. If they do differ from one another, the previously mentioned characteristics should be described for both groups of searchers. Although this information is less important for replication, it is necessary to report because searcher characteristics have implications for the trustworthiness of synthesis findings. For example, the use of multiple searchers is argued to reduce the risk of making mistakes and the possibility that inclusion decisions are biased (Chander et al., 2013).

3.3. Initial screening for relevance

Screening reports for relevance during the search stage of research synthesis often is conducted in two steps. First, a reading of selected document elements (e.g., abstract and title) leads to a broad determination of relevance. Next, an examination of full documents applies a more detailed list of relevance criteria. Often, these two decisions are made by different people, using different information about the documents and applying different rules. For example, to make the initial decision about relevance, the output of a reference database search might be read by the principal investigator alone or by a team of searchers. If any one searcher thinks that a document is relevant, it moves to the next stage. The detailed examination of the full text is then carried out, perhaps by different people with different qualifications and probably more training.

Regardless, inclusion based on “relevance” should remain relatively broad at the initial stage in the search. Further narrowing is performed as the documents are read in depth for the presence of inclusion criteria.

3.4. Final inclusion criteria

3.4.1. Definitions. In order for others to replicate a literature search, it is important to provide a detailed list and explanation of the criteria used to decide whether a study was included. Operational definitions of variables and research questions should be clearly stated. Table 1 lists four substantive classes of inclusion criteria, relating to the definitions of the variables of interest, the participants of interest, the research settings, and dates covered. Fink (2005) provides a more detailed list of common screening variables used in literature searches to set parameters and limit searches based on specific criteria.

*Some reports may lack empirical data but provide pertinent background information. Reporting of these documents is not essential to replication, however.

*It is also recommended to update all literature searches closer to publication (Chandler et al., 2013). If synthesists find new qualifying studies through this process, these ideally should be included in the review. If doing so is not possible, MECIR recommends that they be reported… as a reference under “Studies Awaiting Classification” or “Ongoing Studies” (p. 7).
3.4.2. **Inclusion dates.** Synthesists should report any criteria related to when data presented in the primary reports were collected. For example, if an older review on a similar topic was published in 1990, synthesists may choose to include studies that were conducted since this date. Reporting this information is needed for assessing the temporal generalizability of findings and for conducting moderator analyses involving temporal trends (and for replicating these analyses). Often, the dates of data collection are not included in reports. In these cases, the synthesists should document the dates encompassed by the included reports.

3.4.3. **Types of reports.** There is ample evidence that published and unpublished reports are likely to have different results (e.g., Lipsey & Wilson, 1993). It is because of this that research syntheses often include tests for publication bias (Duval, 2005) and moderator analyses of publication status (if unpublished research is included). Given that publication status is often related to results, it is important to be transparent about report publication status and the role that it played in the literature search. For example, research synthesists’ decisions of whether or not to include unpublished manuscripts will have implications for subsequent replication, in addition to the conclusions that can be drawn from the findings. Moreover, because peer review is the major distinction between published and unpublished work (and perhaps an important marker of research differences), if peer review was used as an inclusion criteria, it should be reported as well.

3.4.4. **Foreign languages.** Ideally, secondary research would be globally exhaustive, but how well this can be accomplished is often restricted by language barriers. Sometimes, synthesists will have reports translated, but this can be expensive. Synthesists should make clear what, if any, language restriction (e.g., only reports in English) occurred in carrying out the search.

3.4.5. **Adequacy of reporting.** Although not strictly an inclusion criterion related to the relevance of the document, searchers often discover that they must consider a study unusable because the report does not contain the information that they need. This often leads to direct contact with the document’s authors in the hope of obtaining fuller information. If the contact is not fruitful, the article is excluded.

3.5. **Excluded reports**

The MOOSE guidelines recommend that when reporting on details of a search strategy, authors should include a “list of citations located and those excluded, including justification” (p. 2010). It is unreasonable to expect researchers to produce a detailed list of all reports excluded, given the large number of abstracts and reports examined during many comprehensive literature searches. For example, many documents identified by a reference database search have little to no real relevance to one’s research topic. Instead, as the MECIR guidelines recommend, synthesizers should include a table of studies for which most or all inclusion criteria were met, but after careful review, were ultimately excluded. For example, work falling into this category may meet all but one criterion for inclusion. It may even be the case that a study meets all of the inclusion criteria, but the document presents incomplete data or data in a way that makes it unusable. The table of exclusions should include the title, authors, and report date, as well as a justification. It is wise to think preemptively about those excluded reports that may lead to questions by readers. Including a table of exclusions will allow for many of these questions to be immediately addressed and will result in a better understanding of the parameters used in the synthesis.

3.6. **Reference database searches**

It is imperative for synthesists to provide precise details on how the reference database searches were carried out. As is recommended by most existing guidelines, it is necessary to document the databases searched and all search terms. In addition to these details, synthesists should note where in reports the search keywords appeared (e.g., the report title, abstract, full text, keywords, etc.), whether the search was automatically “exploded” to include citations with similar controlled vocabulary in the database, and all Boolean connectors (i.e., “AND”, “OR”, and “NOT”). Not only can the number of documents vary widely depending on decisions made about these additional details but they also have important implications for synthesis quality judgments. For example, searches that include the Boolean connector “NOT” introduce the risk of inadvertently removing qualifying documents from a search, making it less comprehensive (Chander et al., 2013).

3.7. **Journal and bibliography searches**

Searchers may find that particular journals contribute heavily to the list of relevant reports. They will then search the tables of contents and/or abstracts of articles published in these journals over specific periods of time. For example, a searcher might find that one to three journals account for a majority of the relevant reports. The synthesizers may also uncover bibliographies on their topic or related topics (for specific periods), and these may be examined. If this is performed, the names of the journals searched and/or bibliographies should be reported. In addition, the method of search should be reported. For example, as mentioned in MOOSE, specific issues of
journals may be selected for hand searching. Alternatively, specific journals can be searched by restricting database searches to one or more journals.

3.8. Backward and forward searches

Existing sets of reporting standards have devoted little attention to the inclusion and potential impact that both backward and forward searches might have on search results. MARS alludes to "reference and citation databases searched" (p. 848), but little information on how and what to report about these searches is specified. Cooper (2010) refers to the backward search as an ancestry approach, defining this as "using the reference lists at the end of research reports to locate other reports that might be relevant to a search" (p. 64) and the forward search, or citation analysis, as a descendency approach.

While the importance of a backward search is universally acknowledged in the previous guidelines, variations in techniques are not discussed. For example, some backward searchers choose to concentrate solely on reference lists of reports. In this case, initial decisions are made solely based on the title and date published. Other searchers use the context provided in introductions to guide their decision to examine references more closely. Some online journals allow linkage from a reference section to the report abstract and even the full report, providing even greater detail to help make relevance decisions. All these strategies are valid, but it is important to report the details so that replication is possible.

The most common way of conducting a forward search is to use the citation index tool in an online scientific citation indexing service, such as Web of Science. The services will accumulate a list of articles that have cited a particular document. Searchers can set date parameters and other criteria to further limit this search. From here, researchers may choose to look at titles, titles and abstracts, or the full report in order to narrow the list.

For both types of reference-based searches, it can be valuable to describe the criteria that were used to decide whether to examine full reports. For example, for backward searches, this criterion might be that ancestors of reports were looked for only from the reference lists of reports that were relevant and appeared relatively recently. For forward searches, the searchers need to explain why articles were chosen for citation analysis. Often, the articles used for referenced-base searches will be earlier research syntheses. Or, they may be works that a reading of the relevant literature suggests are seminal in the field. In other words, they may be works that have a high probability of being cited by descendants.

Sometimes, when works of literature are small and "tightly" bound by a common heritage, the literature search process may actually begin with forward and backward searches conducted on one or a few focal articles. For example, a synthesis of research on a particular measuring instrument might proceed in this way.

While it is ideal to include the number of additional qualifying reports found through reference-based methods, these numbers are likely to differ significantly in replication. Invariably, there will be overlap in references found using different search strategies, and thus, the number of unique reports retrieved from each search strategy is expected to reflect the order in which the searches were conducted. Thus, providing the number of unique references that arise from reference-based searches is not crucial for accurate replication.

3.9. Direct contact searches

Searchers contact potential authors of reports to acquire very recent and unpublished reports (Cooper, 2010). Typically, these queries go to researchers who are active in the specific area of study.

3.9.1. Mass mailings. Searchers may choose to send mass mailings to either formal or informal distribution lists. If used, the defining characteristics of the list need to be noted (for example, a special interest group affiliated with a professional organization).

3.9.2. Individual researchers. Searchers may also directly contact researchers who they believe to be active in the field. For example, searchers may contact researchers who have published multiple papers on the focal topic during a specified period of time, say, having authored papers within a recent period of time. Or, they may contact researchers whose work is highly cited by other researchers. These extra steps in the literature process are ways to avoid (or estimate) publication bias.

3.9.3. Serendipity. Another method of obtaining relevant literature is through serendipity: the passing of hands from one colleague to another. If several qualifying reports are uncovered only through serendipitous sources, such as the colleague next door, searchers may need to reconsider their search parameters and think about why these reports had not been previously found. It is especially important to report the number of unique reports retrieved through serendipitous methods. Assuming that someone were to follow the search procedures perfectly, they may still be unable to replicate these findings. Detailed reporting will explain these potential discrepancies.

6As mentioned previously, the level of reporting in research articles often leaves room for confusion. Although not strictly a form of search, one method of dealing with these questions is to contact authors directly.
4. Conclusion

It is expected that even after the most comprehensive literature search, there will be qualifying reports that never surface. No one expects a search to be completely exhaustive. The key to adequate reporting is that the report is exhaustive enough so that a subsequent research synthesis would reach the same substantive conclusions where they use the reported methods to establish their evidence base. If there is disagreement, full reports about searches facilitate the discussion of why results differ.

These guidelines are both the culmination of past suggestions and the addition of novel recommendations. The creation of literature search reporting standards is not a novel idea. However, search reporting recommendations have received less attention than other aspects of writing a research synthesis report (in meta-analysis, for example, coding frames, analytic strategies, and results). By focusing attention on the literature search, we hope to highlight the crucial role that it plays in creating quality research syntheses and the importance of detailed reports of searches. We also hope to provide a resource for authors of research syntheses and meta-analysis to facilitate their success in adequate literature search reporting.

Transparent reporting will facilitate both the evaluation of inferences drawn by synthesists and the replication of their findings. In addition, these guidelines may encourage researchers to execute more thorough searches, leading to more trustworthy results.

References

Galvan JL. 2006. Writing literature reviews. Pyrczak, Los Angeles, CA.

Harris CR, Coburn N, Rohrer D, Pashler H. 2013. Two failures to replicate high-performance-goal priming effects. PLoS ONE 8(8), e72467.

