Emerging Solar Lending Opportunities for
Community Development Financial Institutions

May 2015

Jennifer Williams
Advisor: Jonas Monast

Masters project submitted in partial fulfillment of the
requirements for the Master of Environmental Management degree in
the Nicholas School of the Environment of
Duke University

2015
TABLE OF CONTENTS

1. Introduction
2. Report Objective
3. Mission Impact
 a. Environmental Health Benefits
 b. Economic Growth Benefits
 c. Social Benefits
 d. Sustainable Investment Leadership Benefits
4. Case Study: Environmental Justice and Climate Leadership in Warren County, NC
5. Solar Finance Primer
 a. CDFI Project Debt Background
 b. Solar Finance Structures and Sources
 c. Budget Components
 d. Revenue and Expense Projections
6. Solar Lending Risks
 a. Technology
 b. Policy
 c. Off-taker
 d. Other Risks
7. Case Study: Boston Community Capital
8. Collateral
 a. Approaches to Valuation
 b. Appraisals and Credit Union Regulation
 c. Intercreditor Agreements
 d. Other Risk Mitigation
9. Case Study: Solar for Minority Farm Owners
10. Barriers
 a. Knowledge
 b. Collateral
 c. Scale
 d. Intercreditor Agreements
11. Next Steps for CDFIs
 a. Unconventional Repayment Terms
 b. Community Solar Models
 c. Non-Rated Private Off-takers
 d. Secondary Markets
 e. Development Roles
 f. Other Opportunities
12. Conclusion
13. Appendices
 a. Sample Leveraged Project Structures
 b. Sample Pro-Forma
INTRODUCTION

In 2012, Self-Help Credit Union and Ventures Fund, a national community development financial institution (CDFI) headquartered in Durham, North Carolina, faced an unusual opportunity in its commercial lending department. A young, small company requested financial assistance to build a biomass energy production facility in a rural, Western area of the state.\footnote{Susan Andrew, “Vice Mayor’s company receives $5 million loan for bioenergy installation at poultry producer,” \textit{Asheville Mountain Express}, November 11, 2011, https://mountains.com/news/community-news/vice_mayors_company_receives_5_million_loan_for_bioenergy_installation_at_p/ (accessed April 19, 2015).} With a mission to create and protect ownership and economic opportunity for all, Self-Help focuses on low-wealth, minority and underserved communities and families.\footnote{Self-Help Credit Union, \textit{Our Mission}, http://www.self-help.org/about-us/about-us/our-mission.html (accessed April 19, 2015).} Financing a biomass facility aligned with the organization’s values based on its potential to create sustainable economic and employment growth in a rural, high-poverty area. The loan opportunity was likely to be denied by traditional lenders for its risk and complexity, and was unprecedented for Self-Help.

After months of due diligence, underwriting, and ultimate credit committee approval, permitting and technical challenges halted progress on the biomass facility. However, another project with the same rural developer grew from the ashes: a utility-scale solar photovoltaic (PV) installation. After the significant research and policy analysis Self-Help had completed on financing clean energy, the transition to different, simpler technology and the same borrower was manageable. The loan was completed, and a new sector of commercial lending began for the CDFI.\footnote{Dale Neal, “Taking a bright idea and electrifying the world,” \textit{Asheville Citizen-Times}, March 10, 2013, http://www.flenergy.com/index.php/2013/138-taking-a-bright-idea-and-electrifying-the-world (accessed April 19, 2015).}

Financing and investment structures in solar development are maturing. Community development financial institutions (CDFIs) and other mission-focused lenders have opportunities to fund solar photovoltaic (PV) projects with debt, but this lending can be challenging. A National Renewable Energy Laboratory (NREL) review found renewable energy lending to be limited due complexity.\footnote{Claire Kreycik, “New Options Increase Capital for Community-based Renewable Energy,” \textit{NREL}, June 13, 2011, https://financere.nrel.gov/finance/content/new-options-increase-capital-community-based-renewable-energy (accessed April 19, 2015).} Loans are typically large, with unusual collateral valuation requirements, negotiation of intercreditor agreements, and new standard-setting required for assessing default risk.

Despite these obstacles, in 2013 and 2014, Self-Help Credit Union in Durham, North Carolina provided $76 million in debt financing for solar electricity development.\footnote{Email correspondence with Melissa Malkin-Weber, Self-Help Credit Union Sustainability Director, April 22, 2015.} These installations occurred as the solar industry soared; with growth over five years from 1.2 gigawatts (GW) to
18.3 GW of operational solar, the U.S. solar market value will exceed $15 billion in 2015. Continued annual growth averaging 7.5% through 2040 is projected, setting the technology on track to become a primary generation source with 48 GW of capacity.

State and federal incentives shape both utility-scale solar growth and financing models, which often include developer project equity, tax equity, and debt. In North Carolina, a corporate state tax credit for renewable generation expires at the end of 2015. A decrease in the federal solar Investment Tax Credit (ITC) from 30% to 10% also looms at the end of 2016. As the industry matures and subsidies decline, companies are exploring new financing solutions with different parallels to more familiar asset classes such as real estate, infrastructure, stocks, and esoteric asset-backed securities, prompting a wider range of investors to enter the field. Self-Help and other CDFIs are poised for impact due to familiarity with tax-credit incentivized deals with project-level finance; solar incentives are structurally similar to community development real estate transactions that utilize New Markets Tax Credits (NMTCs) and Low-Income Housing Tax Credits (LIHTCs).

Nationally, banks, CDFIs, and other mission-focused lenders are now beginning to provide both construction and term debt to solar developers as part of a project finance model for utility-scale projects large enough to warrant the complexity of these transactions or portfolios of smaller installations. Participation is growing in both scale and scope. In 2014, 94 banks engaged in some type of energy project finance, a 20% increase from 2013. Half of contributing banks were small players similar to Self-Help, with overall levels of activity less than $200 million each. Some of the largest recent examples of project finance for solar development are Seminole Financial Services, Hannon Armstrong, National Cooperative Bank (NCB), and a variety of European and Japanese commercial banks. More providers are needed as the U.S. solar industry

12 Ibid.
13 Ibid.
gears up to grow from 10 GW 2015 to more than 16 GW by 2017. Other community financial institutions and lenders may use Self-Help’s experience as a springboard for action and make real impact in the industry, as including debt in the financial structure for development can reduce levelized costs of solar electricity by 20% or more.16

In its first section, this report reviews CDFI missions and how partnership between these groups and the solar industry creates mutual benefit, including environmental health, economic growth, social good, CDFI returns, and sustainable investment influence. In its second section, the experience of both environmental justice and clean energy leadership in Warren County, North Carolina is noted as a case study of these current and potential impacts. In its third section, this report provides a solar finance primer for use by both community lenders and the solar industry, including project-level finance background, structures, sources, budget components, and projections. In its fourth section, the report describes the project-level risks a CDFI must mitigate in order to lend successfully. The accomplishments of Boston Community Capital, a Boston-based CDFI, are highlighted as a case study in the report’s fifth section. Next, the report describes collateral review for solar lending, including valuation, appraisals, intercreditor agreements, and other risk mitigation. In the seventh section, the report outlines the potential for solar development to benefit minority farm owners. Then, despite CDFI solar lending promise, barriers are reviewed in the report’s next section, including the current complexity of deal structure requiring industry-specific knowledge and human capital at CDFIs, collateral limitations, scale, and intercreditor agreements. The report concludes with information on the potential for future CDFI leadership with next steps including unconventional repayment terms, community solar models, loans with non-rated private off-takers, and other opportunities.

REPORT OBJECTIVE

This report assesses commercial solar lending impact, process, barriers, and promise, with focus on information relevant to CDFIs and other small institutions. Newly established practices are explained, including loan structures, underwriting approaches, collateral considerations, valuation methods, policy tools, risk mitigation, and credit enhancement opportunities. Next steps to overcome challenges and make successful partnerships are recommended.

MISSION IMPACT

CDFIs are not-for-profit financial institutions formed to open capital markets to underserved communities. A board of directors composed of community members controls a CDFI, as opposed to stockholders seeking a return on investment, and makes decisions for the benefit of the community being served. CDFI status was officially established in 1994 when the Clinton administration created the Community Development Financial Institutions Fund (CDFI Fund) as a division of the Treasury Department and charged it with supporting the industry. As can be seen below, a number of CDFI entity types exist, with the most popular being a loan fund.

<table>
<thead>
<tr>
<th></th>
<th>CDFIs</th>
<th>All in Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan Funds</td>
<td>572</td>
<td>?</td>
</tr>
<tr>
<td>Credit Unions</td>
<td>~ 197</td>
<td>~ 503</td>
</tr>
<tr>
<td>Banks</td>
<td>~ 72</td>
<td>6,838</td>
</tr>
<tr>
<td>Bank Holding Companies</td>
<td>~ 48</td>
<td>3,984</td>
</tr>
<tr>
<td>Venture Funds</td>
<td>25</td>
<td>462</td>
</tr>
<tr>
<td>Total</td>
<td>~ 912</td>
<td></td>
</tr>
</tbody>
</table>

By definition, a CDFI takes into account mission impact in all of its actions, whether underwriting a single loan or considering entering a new lending sector. Opportunity Finance Network (OFN), the leading network of CDFIs, refers to this approach as performance-oriented, responsible investing focused on benefiting low-income, low-wealth, and other disadvantaged communities. Combined, CDFI impact is large; OFN members directed more than $30 billion to these communities through 2011. By OFN’s analysis, lending to underserved groups often overlooked by conventional banks is smart both in terms of economic justice and financial return. OFN members report cumulative net charge-off rates of less than 1.7%.

20 Ibid.
24 Ibid.
25 Ibid.
Three separate but complementary views exist as to why CDFIs should enter new financing sectors. One is to supplement traditional banks, thereby enhancing access to other capital. Another is to innovate new market mechanisms, test them, and persuade traditional lenders to adopt these solutions. A third argument is that CDFIs should be a competitive alternative to traditional banks, coexisting and gaining market share in traditionally underserved areas over the long term. All three approaches are relevant and possible in the future of solar finance, as CDFIs may supplement, influence, and coexist with traditional financing.

Lending for solar development benefits low-wealth communities in different ways than other traditional CDFI lending sectors. These benefits include environmental health, economic growth, and social benefits. Loans for solar development are also a responsible way for CDFIs to put their capital to work.

A. Environmental Health Benefits

Historically, environmental health disparities exist between low-income communities and wealthier ones. The Center for Disease Control defines these health disparities as the preventable differences in opportunities to gain optimal health that socially disadvantaged populations experience. Pollutant emissions from electricity production contribute to these health disparities, as they affect both localized air quality and the global climate. Nationally, the monetary value of these adverse effects of pollution from electric power generation surpasses $74 billion per year. Coal-fired power plants cause the majority of these damages by emitting $35.9 in damages for every megawatt-hour (MWh) generated. When cleaner technologies, including utility-scale solar generation, displace conventional sources, a regionally varying reduction in emissions occurs that ranges from $10/MWh in the Southwest up to 100/MWh along the East Coast. Though the public health benefits of solar development depend on what type and quantity

27 Ibid.
28 Ibid.
29 Ibid.
34 Ibid.
of generation the solar displaces, renewable energy generation reduces the need to build new fossil-fuel generation facilities and aggregate impacts are growing as the industry matures and competes with other generation sources.

Some have claimed that cheap electricity from coal benefits to poor communities who are most sensitive to the cost of electricity, but solar electric generation costs have declined 50% since 2010 and have the potential to bring significant benefits to these communities. According to a 2014 Deutsche Bank report, solar costs after the federal ITC are expected to reach parity with other generation sources in 36 states by 2016. Another Stanford study found that commercial solar is already at parity with many retail rates and utility-scale solar will reach parity by end of the decade. After analysis of the benefits that increased renewable electricity brings to low-income consumers, the National Association for the Advancement of Colored People (NAACP) advocates for the deployment of clean energy sources, specifically solar and wind power. Displacing fossil fuel production with solar electricity benefits the nation as a whole and disadvantaged communities in particular. Moreover, solar development can be developed in rural low-wealth areas, brownfields, and affordable unused land. Unlike “not in my backyard” (NIMBY) responses to polluting generation that influences placement where health burdens are borne by poorer communities, solar brings economic and job benefits to these communities, as will be discussed below. CDFIs have the opportunity to take part in this transition and place low-wealth communities at the forefront of leadership in environmental health.

B. Economic Growth Benefits

Economic benefits from solar development include both tax base increases and job growth. Increased taxes are paid at the state level and, in certain geographies, to the local jurisdiction either based on a millage rate or via a payment in lieu of tax agreement. According to one study

![Image of a document page](image-url)
in Massachusetts, average annual local revenues are $6,500 per MW. Some jurisdictions choose to encourage solar development with property tax incentives. At least 36 states offer tax credits or incentives to decrease renewable energy costs. Even after these incentives, increases to the local tax base provide valuable financial support when utility-scale solar is installed in low-wealth rural communities.

Employment opportunities in the solar industry also provide living wages in a variety of careers. These include electricians and construction contractors as well as salaried sales, engineering and finance positions at solar installation companies. A Berkeley review of three recent studies shows that the solar industry creates jobs at a rate of 7.58 annual person jobs per average MW installed. In contrast to stagnation in the construction industry during the recession, an industry census found that solar is one of the fastest-growing industries in the country, employing 174,000 individuals and contributing more than $15 billion to the U.S. economy. Renewable energy sources generate more jobs per unit of delivered energy than generation from fossil fuels. Solar jobs are distributed across regions, cannot be sent abroad, and create new opportunities for technical, applied, scientific, and professional positions, many of which do not require graduate degrees.

Energy spending by low-income households is more than four times the median national household energy cost burden; low-income homes have a median of 13.3% compared to 3.3% overall. In states with high retail electricity costs, access to solar power through an individual rooftop installation or a community solar program can significantly reduce the monthly energy cost burden and remove future electricity cost increases for these low-income families, farms, and small businesses.

49 Ibid.
50 Ibid.
C. Social Benefits

The solar industry’s positive impact on communities is not only measured in quantitative units of avoided pollutants and dollars. Installations spark local pride, education, and positive morale, all of which are important social benefits in rural areas where farming jobs are diminishing, other opportunities are scarce, and population growth is in decline.54 For example, in 2014, Self-Help proudly partnered with a range of local businesses for an event referred to as Growing Henderson County Strong, a celebration of sustainable economic development in Western North Carolina.55

In parallel, urban areas historically burdened with high rates of asthma-inducing air pollution, proximity to landfills, polluted waterways, and other environmental injustice also welcome solar employment and development as a source of community pride and symbolic shift of power resources due to distributed generation. In Richmond, California, non-profit Solar Richmond has led job training, environmental education programs, and hands-on solar internships since 2006 in what is now considered a national model.56 In Los Angeles, Homeboy Industries has offered a similar four-month solar installation training program for 1,000 clients, with a 95% graduation rate and 70% placement rate within 90 days of graduation.57 A cooperative placement program between Homeboy Industries and the International Brotherhood of Electrical Workers union (IBEW 569) has supported placements, setting up these workers to take part in leading utility-scale installations throughout Southern California including Kern County.58 Other cities less known for solar leadership also have high-profile solar installations that benefit low-income communities, including New York City and even Memphis.59 60

D. Sustainable Investment Leadership Benefits

Another perspective on the mission impact of CDFI financing for the solar industry is that this lending is an opportunity for CDFIs to be at the forefront of sustainable investment as a

counterpart to divestment from fossil fuels.61 In short, investing in solar development often makes good business sense.62 For CDFIs in particular, revenues from loan repayment that are tied to the energy industry provide a diversified place to deploy capital and help put cash to work during an economic period of low interest rates.63

CDFIs also create models for other banking institutions to follow once the financial strength of these loans is quantified over time. As noted by a Federal Reserve Bank of New York staff report, CDFIs are accustomed to lending to populations and sectors that are underserved by traditional financial services and thus have incomplete data on default rates.64 Once financing in an area begins, the hurdle rate for future investment from other sources may be lowered due to decreased perceived risk or ability to replicate project structures first underwritten by the CDFIs due to knowledge spillovers.65 These spillovers have the potential to both spur more solar growth and pass on more benefits to consumers in the form of more affordable levelized costs of electricity.66 A draft global comparative study found that variations in levelized cost of solar electricity are almost as sensitive to differences in cost of capital as they are to the regional differences in solar resource availability.67 Lazard, a U.S. financial advisory and asset management firm, published a report asserting that financing influences levelized costs of solar electricity by 25 to 27\%.68

\textbf{CASE STUDY: Environmental Justice and Climate Leadership in Warren County, NC}

Environmental justice is the movement for equitable distribution of environmental risks and governmental protection from these risks, especially for low-income areas and communities of color.69 It has grown into a more recent movement for climate justice. As described in a 2004 report by the Congressional Black Caucus, climate change risks and health effects disproportionately burden African-Americans.70

\begin{thebibliography}{99}

\bibitem{65} Ibid.

\end{thebibliography}
The roots the environmental justice movement can be traced back to several protests including a watershed moment in Warren County, North Carolina in 1982. There, the low-income, majority African-American community in Warren County resisted the disposal of highly-toxic PCB-laden soil at a landfill near their homes, leading to weeks of non-violent protests and arrests considered the largest in the South since Dr. Martin Luther King, Jr.’s march through Alabama. The PCB landfill prompted the first major study by the US General Accounting Office (GAO) on the correlation between race and toxic waste sites.

More than thirty years later, Warren County is home to fewer than 21,000 residents but more than 15 MW of solar projects covering more than 100 acres. At a 2013 forum on solar development and siting in North Carolina, Warren County Planning Director Ken Krulik noted that the county benefited socially and economically while maintaining environmental health due to thoughtful, safe zoning. One solar project, Warrenton Farm, is sited on a property previously farmed by J.B. Davis, who inherited the tobacco and cattle land from his father. While earlier activity on the land brought in only marginal income, the solar installation increased the property tax base of Warren County by approximately $15 million over the lifetime of the project without new county services costs. The installation brought over $250,000 in direct expenditures and 80 temporary jobs to Warren County during construction.

Although CDFI financing was not used in the major installations that have been completed in Warren County to date, the contrast between historical inequity and current opportunity is significant for CDFIs to keep in perspective when considering entry into solar lending. Warren County is not unique in its attractiveness for clean energy installations; CDFIs may find that the communities they have historically served in other capacities would also meaningfully benefit from solar development.

80 Ibid.
SOLAR FINANCE PRIMER

A. CDFI Project Debt Background

After establishing an interest in lending to support clean energy growth, a CDFI must understand how its lending capabilities fit with the industry’s needs. In solar development, project-level debt, also often referred to as non-recourse debt, is a loan secured by the solar installation as collateral.81 This type of loan, common in real estate, differs from a company-level loan to a developer, building owner or individual and is separate from the world of venture capital or private equity in clean energy.82 The expected cash flows of the project, which might include property and/or a going concern, must be strong enough to cover the debt. This requires detailed financial modeling and understanding of the solar industry in order to be underwritten by a CDFI. Loans are subject to specific repayment terms and are a strong fit for mature clean energy technology and experienced developers.83 Including debt in a solar development’s capital stack can reduce the resultant cost of electricity generated at that solar site by more than 20 percent.84

According to Mercom Capital Group, an industry consulting group, global publicly announced solar debt financing in 2014 was almost $20 billion, more than triple the $6.2 billion announced in 2013. About 75% of this debt activity in 2014 was in China, but U.S. activity was also strong.85 This analysis aligns with that of Thomas Emmons, the head of renewable energy finance for the Americas at Dutch bank Rabobank, who notes that, based on data from Infrastructure Journal, the 2014 North American project finance bank market for renewables was almost $8 billion.86

CDFIs exist to lend debt in traditionally underserved communities and market segments, and do so with a mission to support the public good.87 With this value in mind, CDFI project debt is appropriate for smaller deals with higher transaction costs, to work in atypical structures or new industries, and to build partnerships for impact with a wide range of developers and investors.88

82 Ibid, page 12.
83 Ibid, page 11.
84 Ibid, page iv.
Self-Help, for example, the commercial lending team funds a portion of its projects with New Markets Tax Credits (NMTC) allocations.89 Then, for a wide variety of projects, these benefits can be passed on to borrowers in the form of lower interest rates.90

\section*{B. Solar Finance Structures and Sources}

Debt, whether from CDFIs or other lenders, is not the only source of capital behind a large-scale solar project. In clean energy development, a typical structure often includes developer equity, tax equity, and project debt.91 The developer equity is the developer’s own cash, or “skin in the game”, used for the project.92 Tax equity is investment in the solar exchanged in return for tax credits, depreciation benefits, and/or future project revenues, typically from a large investor such as a bank or an insurance company with the tax appetite to benefits from these aspects of a project.93 Due to the scale of tax appetite and financial savvy required to profitably complete transactions, few companies have engaged in these transactions.94 Only roughly 25 tax equity investors were active in the solar sector in 2014, according to John Eber, managing director and head of energy investments at JPMorgan Capital Corporation.95 As the cheapest form of capital, debt is included in a project to lever or, in other words, increase returns for equity investors taking on more relative risk than the CDFI, or to decrease the overall cost of capital.96

Several financial models are used in solar development, some of which use project-level debt in different ways. A National Renewable Energy Laboratory (NREL) summary of key elements of different financing structures is included in Appendix A. For small and mid-sized commercial solar projects, debt transaction costs limit its use on individual projects, though debt is a growing capital source for portfolios of these smaller projects.97

\begin{thebibliography}{9}
\end{thebibliography}
Many developers simply self-finance smaller projects and are paid cash by a buyer or are repaid over time as power purchase agreement (PPA) or lease revenues from generation accrue.98 Other developers seek what is referred to as take-out financing, which occurs when a developer sells a project to an investor just before commissioning and the investor purchases the asset, all assigned contracts and tax benefits in full.99 In these cases, project-level debt with the developer is uncommon, though the investor purchasing the asset may leverage its equity.100 A sale leaseback model is used if the tax equity investor who buys the asset then leases it back to the developer, who maintains a sublease with the off-taker.101 This model is common in residential solar electricity development.102

In larger utility-scale solar installations, a category often described as projects larger than 1 to 5 MW, installations are often owned by project-level limited liability corporations (LLCs) formed by the developer and tax investor103104. The installation is then master-leased to a master tenant who runs the project and whose operating subsidies work with the buyers of electricity, or off-takers.105 In the case of solar development in regulated territories, where Self-Help focuses its lending, the off-taker is a regulated utility such as Duke Energy Carolinas, Duke Energy Progress or Dominion Energy, a municipal utility, or rural electricity cooperative.106 This model is used by several developers in the industry and referred to interchangeably as an inverted lease, lease pass through or master tenant lease structure.107 In this structure, project-level debt can be used.108

Another common structure for utility-scale solar is a partnership flip, a method whereby the developer and investor form a joint venture with one partner receiving the majority of tax benefits until a flip occurs in a predetermined year.109 This flip allows the tax equity investor to receive tax benefits but then transfer back all ownership at a reasonable cost after a period of five years or more, when tax benefits are distributed.110 Leveraged partnership flips can include debt provided

100 Ibid, page 4.
102 Ibid.
106 Ibid.
107 Ibid.
108 Ibid.
by the same entity that provides tax equity or debt from a third-party such as a CDFI.111 Partnership flip structures are considered complex, sensitive to specific project variables, and expensive to build on a one-off basis, but developers who expect a pipeline of similar utility-scale solar work can use them profitably.112

The tax equity investor that monetizes the ITC typically also receives project depreciation, but terms and structures vary by project depending on an investor’s specific interests.113 Modified Accelerated Cost Recovery System (MACRS) depreciation, which is not unique to solar, allows an investor to depreciate the value of the asset on its books at a rate faster than the length of the useful life of that asset.114 A solar asset is considered 5-year property for MACRS depreciation purposes, the same term as automobiles or office machinery, which means benefits occur over five years of project life, or six tax years.115 For example, if a business owns a solar asset but that asset depreciates, the amount of taxes owed by that businesses decreases by a specified amount of benefit. In order to take advantage of this depreciation, a business must have tax liability to offset.116

When a CDFI completes due diligence on a potential loan opportunity, it is imperative not only that the loan officer understand the legal structure through which all parties are involved, but also when and how funding sources are expected to contribute to development.117 This due diligence process can vary in difficulty depending not only on project structure complexity but also on the quality of loan application submitted and the stage of development completed at the time financing is requested.118 Debt may be needed for equipment, for construction, for the term of the project, or for both the construction and the permanent periods.119 Construction is considered higher risk, as there is a chance that project operations many never commence.120 A loan officer must also understand which funding sources have priority in terms of access to the revenues of

113 Ibid, page 16.
116 Ibid, page 11.
118 Ibid.
the project once development is completed, an element of loan analysis discussed in more depth in the Intercreditor Agreements section.121

C. Budget Components

When a CDFI loan is made for solar, uses of project funds are straightforward in comparison to real estate development, in large part due to the minimal number of equipment parts in a solar installation, the absence of ongoing fuel costs, and the minimal amount of ongoing maintenance required.122 The main components of a project are equipment, including modules, inverter, racking, design, engineering, permitting, construction and interconnection.123 Budgets also typically include contingency funds.124

D. Revenue and Expense Projections

Self-Help’s experience has included both construction and permanent debt.125 For the permanent period, Self-Help is repaid over as much as a 20-year term and amortization, which is possible in large part due to (1) 10- to 15-year utility contracts called power purchase agreements (PPAs); (2) expectation of future wholesale electricity rate increases; and (3) USDA loan guarantees.126 This is an unusually long term for the solar industry, where other bank participants typically only offer loan terms up to 15-17 years.127 Payments at any given time during this term are supported by the revenues from these PPAs. In some cases, the value of the electricity generated, measured in dollars per kilowatt-hour ($/kWh), is separated from the value associated with the fact that these kilowatt-hours are from a renewable energy source and provide environmental benefits.128 The environmental benefits are measured in solar renewable energy credits (SRECs or RECs) and can be bought by utilities and other entities, often to meet a state renewable portfolio standard (RPS).129 An RPS, which is a regulatory mandate for increased production of renewable electricity, is the most common method by which states have passed renewable energy support

\begin{footnotes}
\item[123] Ibid.
\item[124] Ibid, page 8.
\item[125] Ibid, page 8.
\item[126] Ibid.
\item[127] Ibid.
\end{footnotes}
Many standards have specific carve-outs for certain technologies including solar photovoltaics. Depending on geography and policy, the PPA contract and SREC contract for a solar development may be bundled or negotiated separately.

Typical PPAs have a fixed price for the term of the contract either at a specific rate or a specific rate with an annual escalator. This provides a strong revenue certainty when the purchaser is a creditworthy company such as an electricity utility, but requires a high degree of accuracy in predicting generation from the solar installation. In general, lenders trust the engineering reports created by third-party engineering firms with highly sophisticated models that take into account a systems specific design, location-specific weather, and historical performance of other solar installations. These projections are statistically reliable but, for increased underwriting comfort, some lenders take into account both “P50 data,” which is the expected level of generation, and “P99 data,” which is a more conservative projection reflecting numbers that are likely to be exceeded 99% of the time. The expected useful life of a solar installation is 25-30 years or more. Although production degrades over time at an average of 0.5% annually and varies by season, monthly revenues from the installation are highly predictable even in the later years of the loan, decreasing risk.

Ongoing expense projections are similarly clear-cut in solar lending. Expenses include operations and maintenance, insurance, site leases, property taxes and a small but ongoing administrative overhead burden. A lender checks all revenue and expense projections in a project pro forma model in order to ensure that future cash flows will always be able to support debt payments. This analysis is measured by calculating debt service coverage ratios (DSCRs), or a ratio of cash available for debt payment to the cost of the debt payment. According to Emmons of Rabobank, DSCRs on solar project debt typically exceed 1.35x using P50 data, though Self-Help’s projects often exceed 1.85x, depending on assumptions, and are also compared against P99 data for

131 Ibid.
134 Ibid.
These ratios may shift in future years as more solar installations with debt have longer operating history and lenders can more confidence regarding the accuracy of projections.

SOLAR LENDING RISKS

In addition to careful analysis of mission fit, project structure, budget and financial projections, a loan underwriter at a CDFI must become an expert in a variety of lending risks, many of which can be partially mitigated with careful loan structuring and diligence.

A. Technology Risk

Solar electricity as a technology is now generally considered low risk throughout the finance industry, with decades of historical production data from thousands of different solar installations that can be used to gauge expected generation and to improve design. Although production variance and degradation occur, revenues are remarkably consistent by year and season. The solar development funded by Self-Help’s lending has either met or exceeded production expectations to date.

Despite this confidence in the technology, careful due diligence is required before a loan is approved for solar development. Of particular concern to most lenders is that equipment used is from Tier 1 manufacturers. The market for solar photovoltaic (PV) modules is volatile, with uncertainty about manufacturing company futures as many consolidate and some fail. While there is no definitive list of these Tier 1 providers, Bloomberg NEF provides a quarterly analysis and list, both of which are commonly referenced in the industry. Consensus is that Tier 1 module makers, for example, are bankable companies that are able to manufacture products to exacting standards with third-party performance ratings and transparency into raw material sourcing; Bloomberg also tracks that these modules have been used on a required number of

142 Email correspondence with Melissa Malkin-Weber, Self-Help Credit Union Sustainability Director, April 22, 2015.
146 Discussion with Rebecca Rogers, Assistant General Counsel at Self-Help Credit Union and Ventures Fund, February 2015.
projects with non-recourse financing. These companies are expected to have long-term product warranties, and should be in strong enough financial health to be able to honor these warranties if module failure or excessive degradation occurs. Reinsurance on some module manufacturer product warranties exists with A-rated insurance companies, providing additional risk mitigation and lender confidence, though this is not found across the industry.

Technology risk also pertains to design and construction risk. No matter how exceptional equipment may be, if the development is not designed with proper engineering expertise, it may underperform. Errors include unanticipated shading or ground faults. Systems could also be at risk of failure in unusual circumstances such as high wind, which could pull whole rows of modules out of the ground in a disaster if poles are not anchored deeply enough with withstand upward force. In order to mitigate design risk, lenders prefer to work with solar developers who have an experienced engineering team on hand either in-house or as part of a subcontract with an engineering, procurement and construction (EPC) partner and prefer short, standardized construction periods with closely-monitored installation teams. Some EPC contractors also provide performance guarantees on their work, though industry-standard for these guarantees is for five years or less.

B. Policy Risk

In parallel with a range of renewable energies that are sensitive to policy change, policy risk is significant for the solar industry. However, this risk is more limited and mitigable when a lender is assessing the potential for repayment of a loan for a specific solar project, as that project is likely to already have site-specific contracts and agreements completed or in process, and these agreements should be assignable if development parties shift. Once a solar installation is operational, it is even less likely that a policy change would affect the revenues of that project in particular, as these contracts are executed and in use. By focusing lending at a specific project and

151 Ibid.
152 Ibid.
156 Ibid, page 6
requiring contracted revenue, a CDFI reduces its exposure to policy uncertainty. Within this approach, policy risks are most significant during the development and construction phases of an installation, when timelines are at risk and deadlines may not be met. For example, if a project is expected to be interconnected in North Carolina in 2015 but misses this end of year deadline, it may become ineligible for state tax credits required for profitability. The CDFI would then be left with the option either to pull out financing, which may trigger the collapse of the project, or the option to move forward with a loan with lower than expected cash flows, increasing risk of future default. Another possible risk is a change in a renewable portfolio standard that would cause project RECs to become less valuable, endangering project revenues as these contracts do not typically extend as long as the loan term.199

Developers, whom lenders depend on to manage solar installations after they are operational, are also threatened by policy risk. Energy policy changes have the capacity to put developers out of business or cause the whole industry’s success to be threatened, making it necessary for the lender to work with other investors to find a replacement company to provide operations and maintenance and potentially triggering expensive staff time needs at the CDFI. While these risks are difficult to mitigate on a project-specific basis, CDFIs can measure their exposure based on industry concentration risk.160 Many lenders prefer not to have a certain percentage of outstanding loans at any given time be concentrated in any one industry or type of business, much less a new and policy-vulnerable industry such as solar.161

Contracted revenue from a solar PPA is available in the industry due to the Public Utility Regulatory Policies Act (PURPA) enacted in 1978, which requires regulated utilities to purchase electricity generation from qualifying small power producing facilities based on minimum rates referred to as avoided cost rates.162 These lowest avoided cost rates are required to be just, reasonable, and non-discriminatory.163 Moreover, even if the avoided cost rates set by utility commissions in accordance with PURPA change or PURPA itself is amended, the PPA for commissioned solar projects, as with other any other generation type, remain enforceable contracts with set rates for all present and future generation from those specific developments.164

199 Email correspondence with Melissa Malkin-Weber, Self-Help Credit Union Sustainability Director, April 22, 2015.

161 Ibid.

163 Ibid.

C. Off-taker Risk

The off-taker is the user of electricity that agrees to buy what is generated by the solar installation. Off-taker type ranges from a single homeowner to a bundle of many homeowners and businesses, a large big box store, or a utility. Utilities in certain states are mandated to generate portion of their electricity from renewables to meet an RPS, as described earlier in this report. The remarkable cost decline of solar technology has also prompted utilities to build or buy solar generation voluntarily; one industry research group calculates that 5.7 gigawatts (GW) of solar electricity have been procured by utilities since the start of 2014 for reasons other than meeting RPS, though a significant piece of this growth is due to PURPA.

The risk of an off-taker is often measured by the credit rating of that off-taker based upon a personal credit score or corporate credit rating from Moody’s, Standard & Poor's or Fitch Ratings. If a company is unrated, lenders may be able to understand off-taker risk based on a shadow rating. A shadow rating is an assessment performed without public announcements of results, or by independent analysis of the off-taker’s financials, such as Moody’s RiskCalc. For example, if a CDFI has the opportunity to finance a mid-sized solar installation with an agricultural farm as the off-taker, that farm is the primary source of revenue for that project. The farm is likely to be unrated, so the CDFI must carefully review the farm’s financial history and projections in order to understand if that farm will be able to pay for the electricity generated from the solar installation over the duration of the loan. In this case, underwriting the solar installation requires similar due diligence to underwriting a loan to the farm itself. For this reason, it is significantly easier and more standardized to underwrite solar development with rated off-takers.

For private, unrated off-takers, a CDFI can also take into account circumstantial variables that go beyond an off-taker’s financial strength when assessing off-taker risk. This assessment might include the likelihood of site vacancy, solar electricity purchase prices required for loan repayment compared to retail grid electricity prices, and an estimation of the avoided cost rate.

166 Ibid.
169 Ibid.
that the solar would receive if a private off-taker disappeared.170 Even if a private buyer of the electricity moves or dissolves, if the site where the solar is installed is unlikely to be vacant and another potential off-taker would arrive and want to buy the solar electricity, the CDFI would be more likely to have its loan repaid.171 A recent NREL study on solar and vacancy rates found that commercial real estate vacancy rates are improving throughout the country, with growing markets on the coasts around cities such as New York, San Francisco, New Haven, Washington, D.C., and Miami.172 In these areas, where solar is often also experiencing strong growth, default rates are less than 10%.173

Although a transition period might mean lost production, it is unlikely that solar generation would not have a buyer for an extended period of time unless a building remained vacant. A concern, however, is that if grid electricity rates are lower than the solar rates, a new off-taker would decide against buying the solar generation at rates estimated during development; this situation has occurred for other technologies including oil-based electricity generation in Hawai'i.174 A related risk, expressed well in a recent SolarCity note offering ratings report, is that solar rates in the future will be so much lower than rates now that an off-taker would want to renegotiate compared to other users of more advanced versions of the same technology.175

CDFIs are capable of this off-taker and industry analysis due to their lending to many small businesses in other sectors, but it is difficult to automate. Self-Help’s approach is relationship-based and hands-on, whereas other big banks are focused on underwriting algorithms and scalability of these processes.176 For example, Wunder Capital, a start-up that aims to provide debt for solar with crowdsourced capital from accredited investors, has developed an underwriting algorithm that makes the process more automated.177 SunEdison and SolarCity have overcome off-taker risk with scale and securitization, but to date the CDFI world has provided more relationship-based services and less automation.178

170 Discussion with Rebecca Rogers, Assistant General Counsel at Self-Help Credit Union and Ventures Fund, February 2015.
171 Ibid.
173 Ibid.
D. Other Risks

A solar lending underwriter should consider a variety of other risks, including developer risk. If the developer behind a solar installation struggles or dissolves, the CDFI may need to step in and take over the operations and maintenance of a project, which would occur by subcontracting with another provider.179 While the developer typically maintains a share of ownership of the solar installation and is responsible for operations, maintenance and debt repayment, this transition to another subcontractor would not necessarily be disruptive or expensive.180 Solar installation operations are minimal after interconnection and are transferred regularly; however, a CDFI is more likely to work to create a shared vision with the developer in order to avoid this possibility and ensure that projects are completed successfully.181

CASE STUDY: BOSTON COMMUNITY CAPITAL

CDFIs may find unique ways to merge solar financing with other community development project financing in order to decrease risk and maximize mission impact. Boston Community Capital in Boston, Massachusetts is an example of a CDFI that has incorporated clean energy and energy efficiency into affordable housing and low-income community development initiatives.182

In 2008, Boston Community Capital make the decision not just to lend, but to move the market forward and lead solar development focused on non-profit and housing sites in Massachusetts.183 The CDFI formed BCC Solar Energy Advantage, an affiliate non-profit entity that develops solar electricity projects.184 BCC Solar Energy Advantage structures the financing, subcontracts the EPC, and ultimately maintains ownership of the solar projects. Customer utility costs are then reduced with fixed-price PPAs.185

180 Discussion with Rebecca Rogers, Assistant General Counsel at Self-Help Credit Union and Ventures Fund, February 2015.
By installing solar on community sites that are local for the CDFI, Boston Community Capital maintains control of project financial elements, minimizes uncertainty, and ensures that the installations maximize benefit to low-wealth individuals. The CDFI financed a solar installation and other energy improvements at a South Boston public housing site, Old Colony Development, where some residents previously paid more than $4,000 per unit per year on utility bills. These bills were reduced to a fraction of their earlier costs.

Another Boston Community Capital affiliate, the Boston Community Loan Fund, provides debt for the solar development and passes on benefits from an allocation of New Markets Tax Credits (NMTC). Overall, Boston Community Capital has developed 30 solar projects for an accumulated 4 MW of solar capacity. A third of these projects were installed on neighborhood non-profits; the other two thirds were built on multifamily housing, including some affordable multifamily sites with 100% of common area electricity needs met by the solar installations. Boston Community Capital estimates that, in total, their solar projects will provide more than $4.6 million in savings to customers over the installation lifetime. In May 2014, President Barack Obama recognized Boston Community Capital as a leading financial institution and celebrated the CDFI’s programmatic success as an example for other private lenders to replicate.

COLLATERAL

At CDFIs as in the rest of the lending industry, identifying and analyzing collateral is a critical component of due diligence for any secured loan. For solar project debt, this analysis is unique and particularly complex. Collateral, which is what a borrower pledges as security for loan repayment, is the primary protection that a lender has to avoid and mitigate losses in the event of a default. The collateral that backs a secured loan is typically real property, such as real estate. In solar development, the value of a project’s hard equipment collateral is frequently insufficient to cover a loan; the going concern value of the solar installation once it is running, including

187 Ibid.
193 Ibid.
194 Ibid.
contractual rights and intellectual property, is important for a CDFI to consider in addition to the liquidation value of hard collateral.194 This approach to collateral is akin to considering a machine to have a higher collateral value than the sum of its parts individually, especially if that machine has contracted purchase agreements for the widgets it produces. Lender risk is highest if the development is never completed, and also requires that a lender be prepared to take over operations and maintenance of the going concern, or subcontract this work, in the event of default. Lenders may request a collateral assignment of all contracts, agreements, and a landlord’s release, giving the CDFI a right to enter the sites and either remove collateral or continue to operate the projects as desired.195

It is of note that IRS regulation recategorizing solar as real property in certain circumstances is possible.196 If the IRS changes its regulatory stance on the definition of real property to explicitly include or exclude solar modules in certain circumstances, CDFIs will need to take this into account during collateral valuation, which could have both positive and negative effects for the industry depending on which project finance structures are used.197

\section*{A. Approaches to Valuation}

To assess the value of solar collateral, a lender can take into account analysis from three different valuation approaches: cost, market, or income.198 After the three approaches are conducted, the lender compares results and triangulates a weighted average expected value for the solar project that will serve to value the collateral that secure the loan.199

\textit{Cost Approach}

The cost method is the simplest but often the least detailed approach to valuation, as it is difficult to value intangible agreements.200 It is based on total project costs, including all equipment orders, design, permitting, installation subcontracting, a reasonable profit margin and reasonable

\begin{thebibliography}{99}
\bibitem{footnote195} Ibid.
\bibitem{footnote198} Ibid.
\bibitem{footnote199} Ibid.
\end{thebibliography}
The cost approach often serves as an upper bound in the range of solar asset valuations.203

Market Approach

In contrast, no matter how much or little a solar project costs to build, the market approach values it based on what it would be likely to sell for on the open market.204 This price is found by researching comparable property sales in similar locations. This approach is useful but difficult to complete accurately due to the limited number of sales of solar projects on the secondary market.205 As the industry matures and more transfers of assets take place, the market approach may grow in weight.

Income Approach

The final method to valuation is the income approach. This approach is based on the value of expected future cash flows.206 In this valuation method, a lender can reference the contracts for revenue that a solar project has secured and may also take into account some potential for uncontracted but likely revenue.207 This approach requires certain assumptions that are difficult to verify and standardize, such as appropriate discount rates, project life and future market conditions.208 Even so, when the lender and borrower communicate regarding these expectations in a cautious and transparent way and complete an income-based analysis carefully, this approach is typically the most accurate, and has been defended as such in case law and by tax authority.209

B. Appraisals and Credit Union Regulation

In many cases, an independently completed appraisal of the development covering the different approaches outlined above is by a lender during due diligence.210 In lending for real estate assets, independent appraisals are a required standard.211 Third-party fair market value (FMV) appraisals such as those conducted by Novogradac & Company and CohnReznick establish the fair market

202 Ibid.
203 Ibid.
204 Ibid.
207 Ibid.
208 Ibid.
209 Ibid.
211 National Credit Union Administration, Regulation, Part 722, Appraisals, Sec. 722.3(a)(7), \url{http://www.ncua.gov/legal/reghistory/pages/part722.aspx} (accessed April 19, 2015).
value of a solar installation and support the financial and structural analyses performed by the project developer and CDFI lender during development even when the solar development is not secured by real estate. While appraisals are not completed for all solar development, they are most commonly used to establish fair market value to establish the basis on which federal renewable energy investment tax credits (ITCs) are calculated and allocated to investors who own the solar installation, and to help establish standard valuations in the market. In order to be used for these purposes, the appraiser must follow uniform reporting requirements.

FMV appraisals are challenging for CDFIs to depend on from a collateral perspective. Due in part to the youth of solar industry lending, no examples of lenders that experienced a default on a solar loan could be found for reference and comparison to appraisal value during the completion of this report. FMV is a critical and sometimes contentious issue because developers have an incentive to claim the highest FMV achievable in order to maximize tax credits. A lender might decide that it is more appropriate to use a more conservative or risk-weighted number for its own internal valuation of the solar project as collateral.

C. Intercreditor Agreements

Coordination between a lender and other investors regarding appraisal valuation is not the only area where it is necessary to confirm that interests are aligned and to negotiate certain decisions. Intercreditor agreements are important to bring up early with a potential borrower, as certain lenders and investors may not be able to compromise on issues in a mutually agreeable way.

Intercreditor agreements can be one of the most significant challenges to success in CDFI lending for solar development, as is discussed in the Barriers section of this report.

The primary contractual intercreditor agreement considered in solar development is a subordination, nondisturbance, and attornment agreement (SNDA). This is an agreement provided by the lender which states that the lender will honor certain other investor relationships and circumstances in the event that the developer defaults on the lease and the lender takes over.

The operation of the solar asset. The details within an SNDA matter to investors because tax benefits may be jeopardized or recaptured by the government if a lender takes over the operation of a solar asset during the period that another investor is receiving tax benefits on the project. According to Eber at JPMorgan, tax equity investors participating in leveraged projects want forbearance through the five-year recapture period for the ITC at minimum. This requirement means that a lender can take steps to remedy a payment default from the developer but could not take over the solar asset altogether and dissolve the ownership structure.

The specific steps available to a lender vary by agreement. One example compromise is the ability to foreclose on equipment collateral and sell it as long as an underlying master lease is not disturbed. In all likelihood, repayment of a loan is most likely if the tax credit and operational structures are kept in place even if a developer defaults, as the lender can take over project management to ensure continued repayment through contracts with the electricity off-taker. Even so, a CDFI lender may be hesitant or unable to agree to the provisions in intercreditor agreements, and crafting an SNDA that satisfied all parties required focused discussion.

D. Risk Mitigation

Several types of agreements and credit enhancements protect lenders and mitigate risk when loan repayment is jeopardized while still staying within the limitations of an SNDA. These include pledges of interest and control, guarantees and insurance.

Pledges of Interest and Control

A lender may require a solar developer and all of the separate entities formed within the solar project development structure to contractually pledge their membership interests to the lender so that, in the event of nonpayment, the lender has recourse to the solar asset.

Guarantees

217 Ibid.
219 Ibid.
220 Ibid.
221 Ibid.
222 Ibid.
225 Ibid.
Particularly when working with small solar developers that lack balance sheet strength or long-term operating history, a CDFI may insist that the potential borrower provide a personal or corporate guarantee.226 These guarantees indicate a high level of commitment to the project and mean that the parent company is responsible for repayment even if the project revenues do not support repayment at some point during the life of the loan. In many instances, a CDFI may ask for corporate or personal guarantees as an indication of the borrower’s “skin in the game” on a project even if the borrower’s assets are small relative to loan size.227 If a borrower is hesitant to provide a guarantee, this may be due to concern that future financial opportunities may be more difficult to secure if the borrower has these obligations.

Third-party guarantees may also provide the credit enhancement necessary for a lender to move forward with a potential borrower.228 The most significant third-party guarantee available in solar project finance is a United States Department of Agriculture (USDA) Rural Energy for America Program (REAP) Loan Guarantee.229 First established in the 2008 Farm Bill, REAP loan guarantees encourage rural solar industry growth by guaranteeing 75% or 80% of a loan.230 Over $228 million in loans for over 9,000 renewable energy projects have used this REAP guarantee.231

Insurance Requirements
Understanding and approving a borrower’s insurance coverage requires early conversation with both the borrower and the insurance company, as it is difficult to separate a technology failure from a workmanship or circumstantial failure after an extreme event.232 The understanding should include how a developer’s corporate insurance may differ from the policy taken out to cover a specific solar project entity.233 Different geographies may require different coverage; some installations may require insurance that costs up to 25% of total ongoing operating expenses or more.234 Extreme weather damage in certain locations may not be practical to insure against, such as earthquake insurance in California or wind damage along the North Carolina coast. In these

227 Ibid.
228 Ibid.
230 Ibid.
231 Ibid.
233 Ibid.
cases where extreme weather risk is practically uninsurable, the developer may be expected to set aside extra reserves.

CASE STUDY: SOLAR FOR MINORITY FARM OWNERS

Beyond developing expertise in the mechanics of solar lending, CDFIs can increase impact by proactively researching how a loan can make a pointed impact for an underserved portion of the population. One such opportunity for CDFIs is to develop loan products for minority farm owners. In 1920, the number of farms operated by African-American peaked at 926,000, roughly 14.5% of farms nationally and 30-40% of farms in North Carolina specifically. Since that time, black farmers have declined by more than 98%, to 30,500 in 2007, a faster rate than other farm declines even after controlling for farm size. In 2007, African Americans owned only 3.2 million acres of farmland. As agricultural producers consolidated and farm income declined throughout the 20th century, African American farmers faced the worst of this shift. This is in part due to documented historical civil rights violations by the USDA, including unequal access to farm financing and unequal rates of foreclosure on distressed farms, brought to light in a successful class action lawsuit in 1999 resulting in the largest civil rights settlement in U.S. history at the time.

While few African-Americans still own farms, CDFIs have the opportunity to assist those that do in order to help them maintain their lands and thrive. This opportunity also extends to women, Hispanic, and other minority farmers. Several potential borrowers have reached out to Self-Help for assistance to integrate solar development with farm operations. While many potential projects face challenges due to lack of information and difficulty securing investors with adequate tax appetite, the potential for impact is large. Agricultural operations, especially those with

240 Ibid.
241 Ibid.
244 Discussion with Rebecca Rogers, Assistant General Counsel at Self-Help Credit Union and Ventures Fund, February 2015.
245 Ibid.
electricity needs for irrigation or livestock management, spend 2-5% of average total expenditures on energy, though this varies by farm type.245

BARRIERS

CDFIs face a variety of barriers to success upon entry into the solar industry. Lack of knowledge, scale, collateral, or intercreditor agreement can each cause a project to stall even when mission alignment is clear.246 For some lenders, all challenges are surmountable. For others, structural or regulatory limitations related to these barriers are impossible to renegotiate or overcome. Early and thorough research is recommended when considering solar lending.

A. Knowledge Barriers

Knowledge barriers are familiar to CDFIs faced with a wide variety of lending opportunities. No matter how promising a loan may be, the sector knowledge and human capital required by a commercial lending group to complete due diligence may not be commensurate with the benefits of the prospect. Taking on a project is a leap of faith that requires significant time, leadership, and advocacy within the organization. The capacity to put organizational resources toward a new lending sector may not make strategic sense for a CDFI faced with limited bandwidth, or in an area without volume of similar projects. This is particularly true if a CDFI cannot identify an employee to champion solar development loans and lead research in the area. Success despite knowledge barriers is most likely if a CDFI can devote staff time to research and can develop a pipeline of solar lending opportunities so that expertise can be built up over time and processes become more efficient through standardization.

B. Scale Barriers

Even when a lender is committed to building sector expertise in the solar industry, aligning the scale of debt needs with lender capital availability is challenging. Some CDFIs simply do not make loans large enough for utility-scale solar projects; as the solar industry matures, larger traditional banks may win project portfolios instead of smaller community lenders. Even CDFIs

with deep lending resources are understandably averse to the risk of concentrating too large a proportion of their resources into a single sector over a short period of time. CDFIs can overcome this barrier by focusing on specific geographies or lending niches, such as solar for multifamily housing, that are underserved by traditional banks.

C. Collateral Barriers

CDFI lending is subject to government regulation. Individual lenders also have established loan policies to guide decisions and control risk.247 Collateral guidelines are a fundamental component of lending policy; they outline how the assets securing a loan are valued.248 In the case of solar lending, a CDFI must come to an organizational decision about how to value collateral. Typically, this valuation must be as a going concern and the equipment value is not likely to be sufficient to reach a desired loan-to-value ratio.249 Lenders may decide that Board of Director approval is needed due to the unique nature of the loans or if this approach to collateral is ambiguous in institutional policy. This challenge is one that a CDFI should research early while considering entry into solar lending, as agreement on approach to collateral valuation is a foundational aspect of the lending process.

D. Intercreditor Agreements

As described earlier in the report, forging an approach to intercreditor agreements is another of the most significant challenges to solar lending. Certain CDFIs may not be able to gain comfort with modified subordination, nondisturbance, and attornment agreements (SNDA) that decrease the lender’s ability to secure repayment in the event of default.250 Intercreditor dynamics that come into play while negotiating these agreements may change after 2016 if federal incentives for clean energy decrease and lenders take on a larger piece of the capital stack than tax equity investors.251 Certain CDFIs may not be able to find common ground until that time if, institutionally, they are...

248 Ibid, page 31.

unwilling to give up their power to take over operational control of the solar asset to remedy payment default and to provide provisions favorable to tax equity investors.252

NEXT STEPS FOR CDFIs

CDFIs may continue providing basic term debt to utility-scale solar developers, as their successes in this approach are clear. Alternatively, in keeping with the CDFI philosophy of directing capital to underserved markets, working with unprecedented models and eventually sparking other support from more traditional sources, project debt for solar development may quickly be established enough that CDFI action is better suited toward the next frontiers in lending. At the same time, CDFIs that cannot overcome the barriers described above may seek other paths to provide financial support to the solar industry. CDFIs can succeed in providing innovative financial support by taking next steps including unconventional repayment terms, community solar models, products for non-rated private solar off-takers, and other opportunities.

A. Unconventional Repayment Terms

One area of opportunity for CDFIs is to work with borrowers who request unconventional repayment terms. To date, CDFI lending for utility-scale solar installation has largely adhered to mortgage-style amortization, meaning that every loan payment is equal over the term of the loan.253 Throughout the loan life, the ratio of principal to interest paid shifts, with a higher percentage of payments made earlier in the life of the loan going to pay off interest. Solar installation revenue typically tracks generation, which varies seasonally and degrades by an average of 0.5% annually.254 Additionally, tax benefits from accelerated depreciation and the federal ITC occur during the first five years of a solar project’s operations. This results in revenue streams that are highest early in the loan life but decline slightly over time unless a power purchase agreement has a price escalator.

For a borrower to fully take advantage of CDFI debt leverage without taking on undue risk with low DSCR in winter months late in the term of the loan, reamortization and sculpted debt options are attractive. Reamortization is a type of loan modification where a borrower makes a larger than

253 Discussion with Rebecca Rogers, Assistant General Counsel at Self-Help Credit Union and Ventures Fund, February 2015.
usual one-time payment and then resets future payments based on new outstanding principal amount.255 While reamortization is typically associated with borrowers in distress, it could be used so that lenders can better match revenues to loan payments. Banks that cater to residential solar customers with loan products, including Admirals Bank, offer flexibility including prepayment opportunities.256

A related opportunity is sculpted debt. Sculpted debt is a commonly used financial instrument in large-scale institutional project finance including debt for fossil-fuel power generation facilities.257 It allows for loan payments to vary within certain parameters by period based on a predetermined target debt service coverage ratio, with calculations completed before the loan is made to ensure that the repayment obligation can be completed over a desired term.258 In some cases, each month, the cash flow available for debt service (CFADS) is matched to the desired coverage ratio to determine a payment. Interest due is repaid, and then the remaining payment draws down the principal balance.259 CDFIs unused to sculpted debt may find both underwriting this approach and planning loan servicing are too challenging to undertake, particularly since many CDFIs are better suited to make smaller loans with lower transactional overhead. Even so, larger institutions have gained comfort in this approach for wind project development.260 It would be of assistance for similarly structured solar projects if loan payments better matched revenue seasonality, and would provide confidence to CDFIs that loans have a high likelihood of being repaid.

B. Community Solar Models

Another opportunity for CDFIs to help lead solar industry growth with strong social impact is to finance community shared solar opportunities. The term “community solar” has taken on specific meaning in the industry.261 It is a model whereby one centralized solar installation is connected to a set of dispersed off-takers, owners, investors, or other beneficiaries in some way, allowing a group to be connected to and benefit from solar development without completing an installation

258Ibid.

259Ibid.

on their own rooftops. CDFIs may find mission alignment with community solar developers that focus on widening the realm of those who can benefit from solar installations to those without site availability for solar. This increased market includes both residential and commercial renters and building owners with shaded or otherwise unsuitable roofs. Community shared solar installations can often be built more efficiently than distributed generation due to economies of scale and optimal siting. As this market grows, particularly in states with favorable including Massachusetts, Minnesota, and Colorado, CDFIs have the opportunity to influence how community solar models develop. For example, a lender might finance a project with the requirement that a portion of off-takers are low-income and are included in such a way that electricity costs decrease. While it is difficult for a CDFI to underwrite a loan to a developer with repayment contingent upon revenue from a large pool of disparate off-takers, one or a handful of anchor off-takers might provide a foundation that secures the loan. Room in the market for a variety of structures are possible if the model matures as quickly as expected; Minh Le, the US Department of Energy SunShot Director, recently announced that between $6 billion and $12 billion will be invested in community shared solar from 2015 to 2020, making the sector the fastest-growing portion of the solar industry.

C. Products for Non-Rated Private Off-takers

CDFIs may also find a niche serving non-rated private solar off-takers. Many lenders, such as Self-Help, Summit Credit Union in Milwaukee, Wisconsin, and Velocity Credit Union in Austin, Texas, provide low-interest loans for solar installations. However, these loan products are often focused on homeowners installing residential solar electricity only, with some CDFIs capping loan amounts at $20,000. The small commercial sector has not kept pace with residential growth, in part because of the difficulty of providing financing for small businesses. With analysis of credit strength, vacancy risk, and electricity rates, CDFIs may be able to take

262 Ibid
264 Ibid
265 Favorable policy may incent community shared solar with financial carve-outs specifically for this type of development and/or with rate tariff options such as virtual net metering. See NREL, Community Shared Solar: Policy and Regulatory Considerations, http://www.nrel.gov/docs/fy14osti/62367.pdf (accessed April 19, 2015), page 3.
267 Ibid
269 Ibid
part in shifting this trend and meeting the needs of this group, and to strengthen opportunity by incorporating Small Business Association (SBA) 7(a) or 504 loan funding for eligible projects. NeighborWorks Capital in Silver Spring, Maryland is a CDFI leading the way in this area, with both pre-development and mini-permanent loans that can be used for small commercial solar installations. These loans are attractive for their low, fixed interest rates over a 7-year period and for their flexibility, as they have high maximum loan-to-value ratios of 95% and can be made in a subordinate position to a first mortgage.

D. Secondary Markets

In 2014, Self-Help worked with Craft3, a CDFI in Oregon, to purchase a portfolio of loans made to fund energy efficiency upgrades. Other CDFIs can learn from the way that this transaction overcame perceived risks and shifted market dynamics; the success became the subject of a Lawrence Berkeley National Laboratory Policy Brief. The transaction was valued at approximately $15.7 million. It broke new ground as the first market-rate secondary markets transaction of energy efficiency loans of this type, as the lack of project seasoning, unusual program design and lack of property valuation data made the transaction complicated. Craft3 publicly states that it would not have been able to complete the transaction with a lender that was not mission-oriented, as setting up a process required patience and commitment to impact.

Another replicable secondary markets opportunity occurred in early 2015 when Self-Help took part in a secondary markets transaction from a different perspective. A portfolio of FLS Energy solar projects financed in part with Self-Help debt were purchased by sPower on the secondary market, a move considered one of the industry’s largest and most complex sales of operating projects. As more solar assets mature, more secondary markets transactions will occur. The ability for CDFIs to take part in this growth depends on their ability to better underwrite risk where other institutions and yieldcos overlook value and to work with smaller projects.

272 Ibid.
276 Ibid.
277 Ibid.
278 Ibid.
E. Development Roles

Perhaps the clearest path to increased impact for some CDFIs is to shift from focusing solely on lending products for solar development toward a more comprehensive approach in a community that includes pre-development assistance or a full development role. CDFIs such as Boston Community Capital have used this approach to heighten influence in certain geographies and bring energy benefits to underserved members of their communities.\footnote{Boston Community Capital, Sustainability Initiatives, http://www.bostoncommunitycapital.org/programs-services/sustainability-initiatives (accessed April 19, 2015).} Creating a community development corporation (CDC) is one way to separate and grow a CDFI’s development work with a separate non-profit entity partner defined by goals such as job creation, access to affordable housing, and provision of other development-related social services.\footnote{Stephen Morris, “CDCs and CDCs: Community Development Corporations and SBA Certified Development Companies,” SBA, June 23, 2011, https://www.sba.gov/blogs/cdcs-and-cdcs-community-development-corporations-and-sba-certified-development-companies (accessed April 19, 2015).} This allows for more time and focus on proactively structuring solar development that best serves a certain community’s needs instead of limiting impact to debt finance.\footnote{Ibid.}

F. Other Opportunities

Several other opportunities for unprecedented and impactful CFDI lending include activity in shared profits partnerships and loans for aggregators of renewable energy credits (RECs). Criteria for assessing whether any of these options are a good fit for a specific CDFI include the scale of lending required, appetite for risk, and whether any staff at the CDFI have experience with parallel asset classes. Structuring projects with shared profits partnerships, for example, might include a CDFI helping a landowner negotiate more benefit from a utility-scale solar installation than a small site lease payment. Agreements to share profits may have parallels to mineral rights in fossil fuel exploration. However, since photovoltaic generation is highly predictable, with less upside than mineral rights contracts, the transaction costs of shared profits partnerships may be less beneficial to landowners than stronger negotiation in standard site lease contracts. A CDFI may help navigate this with developer parties to ensure that both project financials and social benefits are maximized.
CONCLUSION

In conclusion, CDFI financing and investment structures for solar development are maturing. CDFIs and other mission-focused lenders have opportunities to fund solar projects with term debt, and to go beyond existing debt models with a variety of innovative next steps. If common barriers to solar lending can be overcome, the potential mission impact of environmental health, economic growth, social, and sustainable investment leadership benefits is strong.
APPENDICES

APPENDIX A: SAMPLE LEVERAGED PROJECT STRUCTURES

NREL Solar Financing Structure Summary

<table>
<thead>
<tr>
<th>Equity Owners</th>
<th>Single Owner</th>
<th>All-Equity Partnership Flip</th>
<th>Leveraged Partnership Flip</th>
<th>Sale Leaseback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developer (third party if sold)</td>
<td>Tax investor; developer</td>
<td>Tax investor; developer</td>
<td>Tax investor (lessor)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Debt</th>
<th>Yes (owner choice)</th>
<th>None</th>
<th>Yes</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Return Target</th>
<th>Owner After-Tax IRR</th>
<th>Tax investor after-tax IRR (flip target)</th>
<th>Tax investor after-tax IRR (Flip Target)</th>
<th>Lessor after-tax IRR</th>
</tr>
</thead>
</table>

| Cash Sharing | Owner: 100% of project cash | Pre-Flip: all to tax investor after developer cost recovery; Post-Flip: primarily to developer | Pre-Flip: Proportional to investment after developer cost recovery; Post-Flip: Primarily Developer | Lessor: Receives lease payment; Lessee: Receives operating budget, project margin |

| Tax Benefit Sharing | Owner: 100% of project tax benefits | Pre-Flip: primarily tax investor; Post-Flip: primarily developer | Pre-Flip: primarily tax investor; Post-Flip: primarily developer | Lessor and lessee different taxable incomes; ITC & depreciation to lessor |

Sources: Karcher et al. 2010; SAM User Guide 2011

6 This table does not represent all of the projects using financial structure in today’s market. Actual market projects may have very unique features.

Appendix B: Sample Pro Forma

Sample Pro Forma: Solar for a Farmowner to Offset an Existing $3,000/mo Average Electricity Bill

Term Debt for a Small Commercial Solar PV Installation

<table>
<thead>
<tr>
<th>PV System Assumptions</th>
<th>Annual Cost Assumptions</th>
<th>Escalator</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Size (kW DC)</td>
<td>O&M ($ / kW DC)</td>
<td>3.0%</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>Property Tax ($ / kW DC)</td>
<td>-5.0%</td>
</tr>
<tr>
<td>Initial Annual Production (kWh)</td>
<td>Insurance ($ / kW DC)</td>
<td>-5.0%</td>
</tr>
<tr>
<td>Degradation</td>
<td>Accounting & Prof ($ / kW DC)</td>
<td>3.0%</td>
</tr>
<tr>
<td></td>
<td>USDA Annual Servicing Fee</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility Electricity Price Assumptions</th>
<th>Uses of Cash</th>
<th>per watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Price ($ / kWh)</td>
<td>Solar Capital Cost</td>
<td>$2.50</td>
</tr>
<tr>
<td>Price Escalation</td>
<td>Financing Costs</td>
<td>$0.07</td>
</tr>
<tr>
<td></td>
<td>Total Costs</td>
<td>$2.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REC Payment Assumptions</th>
<th>Sources of Cash</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC Price ($ / kWh)</td>
<td>USDA Grant / Other Incentive</td>
</tr>
<tr>
<td></td>
<td>USDA Guaranteed CDFI Loan</td>
</tr>
<tr>
<td></td>
<td>Borrower Equity</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loan Assumptions</th>
<th>Tax Credit Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate</td>
<td>Solar ITC (% of Capital Costs)</td>
</tr>
<tr>
<td>Term (Years)</td>
<td></td>
</tr>
<tr>
<td>Payment / Month</td>
<td></td>
</tr>
<tr>
<td>Payment / Year</td>
<td></td>
</tr>
<tr>
<td>CDFI Origination Fee</td>
<td></td>
</tr>
<tr>
<td>USDA Guarantee Origination Fee</td>
<td></td>
</tr>
</tbody>
</table>
Annual Pro Forma

<table>
<thead>
<tr>
<th>Year</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
<th>2031</th>
<th>2032</th>
<th>2033</th>
<th>2034</th>
<th>2035</th>
<th>2036</th>
<th>2037</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td></td>
</tr>
<tr>
<td>Gross Util & Sales</td>
<td></td>
</tr>
<tr>
<td>REC Payments</td>
<td></td>
</tr>
<tr>
<td>Total Operating Revenues</td>
<td></td>
</tr>
<tr>
<td>Expenses</td>
<td></td>
</tr>
<tr>
<td>Operations & Maintenance</td>
<td></td>
</tr>
<tr>
<td>Increased Property Taxes</td>
<td></td>
</tr>
<tr>
<td>Increased Insurances</td>
<td></td>
</tr>
<tr>
<td>Accounting & Professional Fees</td>
<td></td>
</tr>
<tr>
<td>LUXA Fee</td>
<td></td>
</tr>
<tr>
<td>Total Operating Expenses</td>
<td></td>
</tr>
<tr>
<td>Net Operating Income</td>
<td></td>
</tr>
<tr>
<td>Debt Service</td>
<td></td>
</tr>
<tr>
<td>Cash Flow After Debt Service</td>
<td></td>
</tr>
<tr>
<td>DCF with PPD Date</td>
<td></td>
</tr>
<tr>
<td>DCF with PPD Date</td>
<td></td>
</tr>
<tr>
<td>Federal Tax Credit</td>
<td></td>
</tr>
<tr>
<td>Cash Flow After Debt & Tax Benefits</td>
<td></td>
</tr>
<tr>
<td>Borrower's Cumulative Cash Flow</td>
<td></td>
</tr>
</tbody>
</table>

Debt Service Coverage Ratios

<table>
<thead>
<tr>
<th></th>
<th>PD Ratio</th>
<th>PMT Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1.07</td>
<td>1.44</td>
</tr>
<tr>
<td>Avg Over</td>
<td>1.59</td>
<td>1.84</td>
</tr>
<tr>
<td>Min Over</td>
<td>1.77</td>
<td>1.84</td>
</tr>
</tbody>
</table>

Borrower NPV Analytic

<table>
<thead>
<tr>
<th>TSX NPV</th>
<th>MM NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>45% Discount Rate</td>
<td>206,188</td>
</tr>
<tr>
<td>5% Discount Rate</td>
<td>13,915</td>
</tr>
<tr>
<td>10% Discount Rate</td>
<td>13,915</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Chadbourne. *Project Finance NewsWire: Cost of Capital: 2015 Outlook*, February 2015. http://www.chadbourne.com/files/Publication/0642096e-a001-47d8-86d4-e08b5ea1e9b9/Presentation/PublicationAttachment/8368e0f0-1b12-4b01-8c03-e2beda271f9/pfn_0215.pdf (accessed April 19, 2015).

NREL. *Community Shared Solar: Policy and Regulatory Considerations.*

NREL, *Technology Deployment - State and Local Governments: Renewable Portfolio Standards,*

http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=e219160e29f831f2dd7bd934e5a98cf9&rgn=div5&view=text&node=18:1.0.1.11.58&d1no=18#18:1.0.1.11.58.2.27.6 (accessed April 23, 2015).

