Bayesian Models for Causal Analysis with Many Potentially Weak Instruments
This paper investigates Bayesian instrumental variable models with many instruments. The number of instrumental variables grows with the sample size and is allowed to be much larger than the sample size. With some sparsity condition on the coefficients on the instruments, we characterize a general prior specification where the posterior consistency of the parameters is established and calculate the corresponding convergence rate.
In particular, we show the posterior consistency for a class of spike and slab priors on the many potentially weak instruments. The spike and slab prior shrinks the number of instrumental variables, which avoids overfitting and provides uncertainty quantifications on the first stage. A simulation study is conducted to illustrate the convergence notion and estimation/selection performance under dependent instruments. Computational issues related to the Gibbs sampler are also discussed.
Economics
Bayesian methods
High dimensionality
instrumental variable
posterior consistency
Sparsity
variable selection

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Masters Theses
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info