Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of an Image-Guided Dosimetric Planning System for Injectable Brachytherapy using ELP Nanoparticles

Thumbnail
View / Download
9.1 Mb
Date
2015
Author
Lafata, Kyle
Advisors
Cai, Jing
Yin, Fang-Fang
Repository Usage Stats
364
views
625
downloads
Abstract

Elastin-Like Polypeptide (ELP) nanoparticles present a promising mechanism for delivering brachytherapy for cancer treatment. These organic, polymer-based nanoparticles are injectable, biodegradable, and genetically tunable. Presented as the motivation of this thesis is a genetically encoded polymer-solution, composed of novel radiolabeled-ELP nanoparticles that are custom-designed to self-assemble into a local source upon intratumoral injection1. While preliminary results from a small animal study demonstrate 100% tumor response, effective radionuclide retention-rates, strong in vivo stability, and no polymer-induced toxicities, the current workflow lacks a dosimetry framework. The purpose of this thesis research was to provide such an infrastructure. We have developed a robust software framework that provides image-guided dosimetric-planning capabilities for ELP brachytherapy. This has resulted in several novel applications. First, the development of a point-dose-kernel-convolution-based dose calculation algorithm has invited the possibility of more quantitative ELP brachytherapy outcomes. Likewise, the ability to graphically pre-determine ELP injection sites under μCT image-guidance has introduced a new technical advantage into the current workflow. The planning system has also been integrated into a Monte Carlo environment, where SPECT imaging information can be exported and converted into a simulated source, allowing realistic, injection specific simulations to be performed. In addition to these technical developments, ELP steady state distributions have been experimentally measured via μSPECT acquisition, and the dose calculation algorithm has been validated against Monte Carlo simulation. The planning system was ultimately used to perform an internal dosimetry calculation of an in vivo ELP solution. Prior to this thesis work, this type of calculation had yet to be performed.

Type
Master's thesis
Department
Medical Physics
Subject
Physics
Medicine
Biomedical engineering
Permalink
https://hdl.handle.net/10161/10034
Citation
Lafata, Kyle (2015). Development of an Image-Guided Dosimetric Planning System for Injectable Brachytherapy using ELP Nanoparticles. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/10034.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University