Advances in understanding mechanisms of thalamic relays in cognition and behavior.
Abstract
The main impetus for a mini-symposium on corticothalamic interrelationships was the
recent number of studies highlighting the role of the thalamus in aspects of cognition
beyond sensory processing. The thalamus contributes to a range of basic cognitive
behaviors that include learning and memory, inhibitory control, decision-making, and
the control of visual orienting responses. Its functions are deeply intertwined with
those of the better studied cortex, although the principles governing its coordination
with the cortex remain opaque, particularly in higher-level aspects of cognition.
How should the thalamus be viewed in the context of the rest of the brain? Although
its role extends well beyond relaying of sensory information from the periphery, the
main function of many of its subdivisions does appear to be that of a relay station,
transmitting neural signals primarily to the cerebral cortex from a number of brain
areas. In cognition, its main contribution may thus be to coordinate signals between
diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala,
and striatum. This central coordination is further subject to considerable extrinsic
control, for example, inhibition from the basal ganglia, zona incerta, and pretectal
regions, and chemical modulation from ascending neurotransmitter systems. What follows
is a brief review on the role of the thalamus in aspects of cognition and behavior,
focusing on a summary of the topics covered in a mini-symposium held at the Society
for Neuroscience meeting, 2014.
Type
Journal articlePermalink
https://hdl.handle.net/10161/10212Published Version (Please cite this version)
10.1523/JNEUROSCI.3289-14.2014Publication Info
Mitchell, Anna S; Sherman, S Murray; Sommer, Marc A; Mair, Robert G; Vertes, Robert
P; & Chudasama, Yogita (2014). Advances in understanding mechanisms of thalamic relays in cognition and behavior.
J Neurosci, 34(46). pp. 15340-15346. 10.1523/JNEUROSCI.3289-14.2014. Retrieved from https://hdl.handle.net/10161/10212.This is constructed from limited available data and may be imprecise. To cite this
article, please review & use the official citation provided by the journal.
Collections
More Info
Show full item recordScholars@Duke
Marc A. Sommer
Professor of Biomedical Engineering
We study circuits for cognition. Using a combination of neurophysiology and biomedical
engineering, we focus on the interaction between brain areas during visual perception,
decision-making, and motor planning. Specific projects include the role of frontal
cortex in metacognition, the role of cerebellar-frontal circuits in action timing,
the neural basis of "good enough" decision-making (satisficing), and the neural mechanisms
of transcranial magnetic stimulation (TMS).

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy
Rights for Collection: Scholarly Articles
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info