Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits.

Thumbnail
View / Download
2.3 Mb
Date
2014-07-09
Authors
McKinstry, Spencer U
Karadeniz, Yonca B
Worthington, Atesh K
Hayrapetyan, Volodya Y
Ozlu, M Ilcim
Serafin-Molina, Karol
Risher, W Christopher
Ustunkaya, Tuna
Dragatsis, Ioannis
Zeitlin, Scott
Yin, Henry H
Eroglu, Cagla
Show More
(12 total)
Repository Usage Stats
219
views
293
downloads
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.
Type
Journal article
Subject
corticostriatal connections
excitatory synapses
huntingtin
reactive gliosis
synapse maturation
synaptogenesis
Animals
Cells, Cultured
Cerebral Cortex
Corpus Striatum
Excitatory Postsynaptic Potentials
Huntingtin Protein
Mice
Mice, Transgenic
Nerve Tissue Proteins
Nuclear Proteins
Synapses
Permalink
https://hdl.handle.net/10161/10231
Published Version (Please cite this version)
10.1523/JNEUROSCI.4699-13.2014
Publication Info
McKinstry, Spencer U; Karadeniz, Yonca B; Worthington, Atesh K; Hayrapetyan, Volodya Y; Ozlu, M Ilcim; Serafin-Molina, Karol; ... Eroglu, Cagla (2014). Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci, 34(28). pp. 9455-9472. 10.1523/JNEUROSCI.4699-13.2014. Retrieved from https://hdl.handle.net/10161/10231.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Eroglu

Cagla Eroglu

Chancellor's Distinguished Professor of Cell Biology
Yin

Henry Yin

Professor of Psychology and Neuroscience
I am interested in understanding the neural mechanisms underlying goal-directed actions. For the first time in history, advances in psychology and neurobiology have made it feasible to pursue the detailed neural mechanisms underlying goal-directed and voluntary actions--how they are driven by the needs and desires of the organism and controlled by cognitive processes that provide a rich representation of the self and the world. My approach to this problem is highly integrative, combining behav
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University