Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion

Thumbnail
View / Download
6.2 Mb
Date
2015-07-13
Authors
Chen, G
Park, C-K
Xie, R-G
Ji, R
Repository Usage Stats
305
views
353
downloads
Abstract
(A) Selective targeting of i.t.-injected BMSCs (CM-Dil labeled) to ipsilateral L4–L6 DRGs 3 days after i.t. injection (day 7 after CCI). Scale bar: 100 μm. Note that there was only limited migration of BMSCs to contralateral DRGs. (B) ELISA analysis showing CXCL12 expression in contralateral and ipsilateral L4–L6 DRGs on days 4 and 14 after CCI. *P < 0.05; n = 4 mice/group. (C) Chemotaxis (Transwell invasion) assay showing the migration of BMSCs in response to CXCL12 (0–100 ng/ml) and the inhibitory effect of the CXCR4 antagonist AMD3100 (5 mg/ml, 30 min). *P < 0.05, compared with the control group (no treatment); #P < 0.05; n = 4 wells from separate cultures. (D) Reduction of Cxcr4 mRNA levels in BMSCs treated with Cxcr4 siRNA (1 μg/ml for 18 h). *P < 0.05; n = 3 separate cultures. (E) Antiallodynic effect of i.t. BMSCs (2.5 × 105 cells) was compromised by pretreatment of BMSCs with Cxcr4 siRNA, but not with nontargeting control siRNA. Arrow indicates BMSC injection on day 14 after CCI. *P < 0.05, compared with the vehicle group; #P < 0.05; n = 5 mice/group. (F) Migration of CM-Dil–labeled BMSCs to ipsilateral L5 DRGs 7 days after i.t. injection (day 21 after CCI). Note that this migration was blocked by Cxcr4 siRNA. Scale bar: 50 μm. (G) Number of CM-Dil–labeled BMSCs in ipsilateral L4–L6 DRGs after the treatment shown in F. *P < 0.05; n = 5 mice/group. Statistical significance was determined by 1-way ANOVA, followed by Bonferroni’s post-hoc test (B and C), 2-way, repeated-measures ANOVA, followed by Bonferroni’s post-hoc test (E), or Student’s t test (D and G). All data are expressed as the mean ± SEM.
Type
Journal article
Permalink
https://hdl.handle.net/10161/10285
Published Version (Please cite this version)
10.1172/JCI80883
Publication Info
Chen, G; Park, C-K; Xie, R-G; & Ji, R (2015). Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion. Journal of Clinical Investigation. 10.1172/JCI80883. Retrieved from https://hdl.handle.net/10161/10285.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Gang Chen

Assistant Professor in Anesthesiology
Ji

Ru-Rong Ji

Distinguished Professor of Anesthesiology, in the School of Medicine
Chronic pain is a major health problem in the US, affecting 100 million Americans. The long-term goal of the lab is to identify molecular and cellular mechanisms that underlie the genesis of chronic pain and, furthermore, to develop novel pain therapeutics that can target these mechanisms. We are interested in the following questions. (1) How do neuroinflammation and activation of glial cells (microglia and astrocytes) regulate pain and spinal cord synaptic plasticity via neuro-glia
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University