Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The liver kinase B1 is a central regulator of T cell development, activation, and metabolism.

Thumbnail
View / Download
2.0 Mb
Date
2011-10-15
Authors
MacIver, Nancie J
Blagih, Julianna
Saucillo, Donte C
Tonelli, Luciana
Griss, Takla
Rathmell, Jeffrey C
Jones, Russell G
Repository Usage Stats
180
views
315
downloads
Abstract
T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.
Type
Journal article
Subject
Animals
Cell Differentiation
Cell Proliferation
Cell Separation
Cell Survival
Flow Cytometry
Homeostasis
Immunoblotting
Lymphocyte Activation
Mice
Mice, Knockout
Protein-Serine-Threonine Kinases
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction
T-Lymphocytes
Permalink
https://hdl.handle.net/10161/10316
Published Version (Please cite this version)
10.4049/jimmunol.1100367
Publication Info
MacIver, Nancie J; Blagih, Julianna; Saucillo, Donte C; Tonelli, Luciana; Griss, Takla; Rathmell, Jeffrey C; & Jones, Russell G (2011). The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol, 187(8). pp. 4187-4198. 10.4049/jimmunol.1100367. Retrieved from https://hdl.handle.net/10161/10316.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

MacIver

Nancie Jo MacIver

Adjunct Associate Professor in the Department of Pediatrics
My laboratory is broadly interested in how large changes in nutritional status (e.g. malnutrition or obesity) influence T cell immunity.  Malnutrition can lead to immunodeficiency and increased risk of infection, whereas obesity is associated with inflammation that promotes multiple diseases including autoimmunity, type 2 diabetes, and cardiovascular disease.  We have identified the adipocyte-secreted hormone leptin as a critical link between nutrition and immunity.  Leptin is
Rathmell

Jeffrey Charles Rathmell

Adjunct Associate Professor in the Department of Pharmacology and Cancer Biology
My laboratory studies the mechanisms and role of glucose metabolism in lymphocyte survival and activation. We have found that dramatic increases in glucose metabolism are necessary for lymphocytes to survive and mount immune responses. Excessive glucose metabolism, however, can lead to T cell hyperactivation and autoimmunity. A key mechanism for control of lymphocyte glucose metabolism is regulation of glucose uptake by the glucose transporter, Glut1. Interestingly, upregulation of Glut1 and glu
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University