Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation.

Thumbnail
View / Download
1.3 Mb
Date
2014-11-19
Authors
Liu, Donglai
Zuo, Tao
Hora, Bhavna
Song, Hongshuo
Kong, Wei
Yu, Xianghui
Goonetilleke, Nilu
Bhattacharya, Tanmoy
Perelson, Alan S
Haynes, Barton F
McMichael, Andrew J
Gao, Feng
Show More
(12 total)
Repository Usage Stats
178
views
149
downloads
Abstract
BACKGROUND: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.
Type
Journal article
Subject
Amino Acids
HIV-1
Humans
Immune Evasion
Mutation, Missense
T-Lymphocytes
Virus Replication
gag Gene Products, Human Immunodeficiency Virus
Permalink
https://hdl.handle.net/10161/10437
Published Version (Please cite this version)
10.1186/s12977-014-0101-0
Publication Info
Liu, Donglai; Zuo, Tao; Hora, Bhavna; Song, Hongshuo; Kong, Wei; Yu, Xianghui; ... Gao, Feng (2014). Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation. Retrovirology, 11. pp. 101. 10.1186/s12977-014-0101-0. Retrieved from https://hdl.handle.net/10161/10437.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Gao

Feng Gao

Professor Emeritus in Medicine
Dr. Feng Gao is Professor of Medicine at Duke University. The Gao laboratory has a long-standing interest in elucidating the origins and evolution of human and simian inmmunodeficiency viruses (HIV and SIV), and in studying HIV/SIV gene function and pathogenic mechanisms from the evolutionary perspective. These studies have led to new strategies to better understand HIV origins,  biology, pathogenesis and drug resistance, and to design new AIDS vaccines.
Haynes

Barton Ford Haynes

Frederic M. Hanes Distinguished Professor of Medicine
The Haynes lab is studying host innate and adaptive immune responses to the human immunodeficiency virus (HIV), tuberculosis (TB), and influenza in order to find the enabling technology to make preventive vaccines against these three major infectious diseases. Mucosal Immune Responses in Acute HIV Infection The Haynes lab is working to determine why broadly neutralizing antibodies are rarely made in acute HIV infection (AHI), currently a major obstacle in the de
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University