Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Mass Spectrometry

Thumbnail
View / Download
12.9 Mb
Date
2015
Author
Chen, Evan Xuguang
Advisor
Brady, David
Repository Usage Stats
764
views
559
downloads
Abstract

Conventional mass spectrometry sensing has isomorphic nature, which means measure the input mass spectrum abundance function by a resemble of delta function to avoid ambiguity. However, the delta function nature of traditional mass spectrometry sensing approach imposes trade-offs between mass resolution and throughput/mass analysis time. This dissertation proposes a new field of mass spectrometry sensing which combines both computational signal processing and hardware modification to break the above trade-offs. We introduce the concept of generalized sensing matrix/discretized forward model in mass spectrometry filed. The presence of forward model can bridge the cap between sensing system hardware design and computational sensing algorithm including compressive sensing, feature/variable selection machine learning algorithms, and stat-of-art inversion algorithms.

Throughout this dissertation, the main theme is the sensing matrix/forward model design subject to the physical constraints of varies types of mass analyzers. For quadrupole ion trap systems, we develop a new compressive and multiplexed mass analysis approach mutli Resonant Frequency Excitation (mRFE) ejection which can reduce mass analysis time by a factor 3-6 without losing mass spectra specificity for chemical classification. A new information-theoretical adaptive sensing and classification framework has proposed on quadrupole mass filter systems, and it can significantly reduces the number of measurements needed and achieve a high level of classification accuracy. Furthermore, we present a coded aperture sector mass spectrometry which can yield a order-of-magnitude throughput gain without compromising mass resolution compare to conventional single slit sector mass spectrometer.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Electrical engineering
Computational mass spectrometry
Computational sensing
magnetic sector spectrometer
Mass spectrometry
Quadrupole ion trap
Quadrupole mass filter
Permalink
https://hdl.handle.net/10161/10452
Citation
Chen, Evan Xuguang (2015). Computational Mass Spectrometry. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/10452.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University