Structural and Functional Evolution of Human Heat Shock Transcription Factors
Proteotoxic stress is implicated in numerous human diseases including neurodegeneration, cancer, and diabetes. Unfortunately, our mechanistic understanding of the cellular response to proteotoxic stress is limited. A critical feature of the cellular stress response is the activation of Heat Shock Transcription Factors (HSFs) that regulate the expression of numerous genes involved in protein folding, protein degradation, and cellular survival. The studies presented here utilize a diverse array of techniques including yeast genetics, recombinant protein expression and purification, biochemical analysis of protein-DNA interactions, x-ray crystallography, in vitro post-translational modification, and mammalian cell culture to illuminate novel aspects of HSF biology. Critical findings include understanding key principles of HSF-DNA interactions, identification of a novel negative regulator of HSF activity, and identification of structural features of HSF paralogs that enable precise combinatorial regulation. These unique insights lay the foundation for a greater understanding of HSF in specific cellular contexts and disease states.
Biology
Pharmacology
Cell Stress
Heat Shock Factor
Protein Chaperones
Protein-DNA Interaction

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Duke Dissertations
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info