Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional Variants in Notch Pathway Genes NCOR2, NCSTN, and MAML2 Predict Survival of Patients with Cutaneous Melanoma.

Thumbnail
View / Download
1.0 Mb
Date
2015-07
Authors
Zhang, Weikang
Liu, Hongliang
Liu, Zhensheng
Zhu, Dakai
Amos, Christopher I
Fang, Shenying
Lee, Jeffrey E
Wei, Qingyi
Show More
(8 total)
Repository Usage Stats
195
views
259
downloads
Abstract
BACKGROUND: The Notch signaling pathway is constitutively activated in human cutaneous melanoma to promote growth and aggressive metastatic potential of primary melanoma cells. Therefore, genetic variants in Notch pathway genes may affect the prognosis of cutaneous melanoma patients. METHODS: We identified 6,256 SNPs in 48 Notch genes in 858 cutaneous melanoma patients included in a previously published cutaneous melanoma genome-wide association study dataset. Multivariate and stepwise Cox proportional hazards regression and false-positive report probability corrections were performed to evaluate associations between putative functional SNPs and cutaneous melanoma disease-specific survival. Receiver operating characteristic curve was constructed, and area under the curve was used to assess the classification performance of the model. RESULTS: Four putative functional SNPs of Notch pathway genes had independent and joint predictive roles in survival of cutaneous melanoma patients. The most significant variant was NCOR2 rs2342924 T>C (adjusted HR, 2.71; 95% confidence interval, 1.73-4.23; Ptrend = 9.62 × 10(-7)), followed by NCSTN rs1124379 G>A, NCOR2 rs10846684 G>A, and MAML2 rs7953425 G>A (Ptrend = 0.005, 0.005, and 0.013, respectively). The receiver operating characteristic analysis revealed that area under the curve was significantly increased after adding the combined unfavorable genotype score to the model containing the known clinicopathologic factors. CONCLUSIONS: Our results suggest that SNPs in Notch pathway genes may be predictors of cutaneous melanoma disease-specific survival. IMPACT: Our discovery offers a translational potential for using genetic variants in Notch pathway genes as a genotype score of biomarkers for developing an improved prognostic assessment and personalized management of cutaneous melanoma patients.
Type
Journal article
Subject
Adolescent
Adult
Aged
Aged, 80 and over
Amyloid Precursor Protein Secretases
DNA, Neoplasm
DNA-Binding Proteins
Female
Genetic Variation
Genome-Wide Association Study
Genotype
Humans
Male
Melanoma
Membrane Glycoproteins
Middle Aged
Nuclear Proteins
Nuclear Receptor Co-Repressor 2
Polymorphism, Genetic
Prognosis
Survival Rate
Texas
Transcription Factors
Young Adult
Permalink
https://hdl.handle.net/10161/10668
Published Version (Please cite this version)
10.1158/1055-9965.EPI-14-1380-T
Publication Info
Zhang, Weikang; Liu, Hongliang; Liu, Zhensheng; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; ... Wei, Qingyi (2015). Functional Variants in Notch Pathway Genes NCOR2, NCSTN, and MAML2 Predict Survival of Patients with Cutaneous Melanoma. Cancer Epidemiol Biomarkers Prev, 24(7). pp. 1101-1110. 10.1158/1055-9965.EPI-14-1380-T. Retrieved from https://hdl.handle.net/10161/10668.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Zhensheng Liu

Assistant Professor of Medicine
Wei

Qingyi Wei

Professor in Population Health Sciences
Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University