Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The minimum constraint removal problem with three robotics applications

Thumbnail
View / Download
1.8 Mb
Date
2014-01-01
Author
Hauser, K
Repository Usage Stats
164
views
410
downloads
Abstract
This paper formulates a new minimum constraint removal (MCR) motion planning problem in which the objective is to remove the fewest geometric constraints necessary to connect a start and goal state with a free path. It describes a probabilistic roadmap motion planner for MCR in continuous configuration spaces that operates by constructing increasingly refined roadmaps, and efficiently solves discrete MCR problems on these networks. A number of new theoretical results are given for discrete MCR, including a proof that it is NP-hard by reduction from SET-COVER. Two search algorithms are described that perform well in practice. The motion planner is proven to produce the optimal MCR with probability approaching 1 as more time is spent, and its convergence rate is improved with various efficient sampling strategies. It is demonstrated on three example applications: generating human-interpretable excuses for failure, motion planning under uncertainty, and rearranging movable obstacles. © The Author(s) 2013.
Type
Journal article
Permalink
https://hdl.handle.net/10161/10778
Published Version (Please cite this version)
10.1177/0278364913507795
Publication Info
Hauser, K (2014). The minimum constraint removal problem with three robotics applications. International Journal of Robotics Research, 33(1). pp. 5-17. 10.1177/0278364913507795. Retrieved from https://hdl.handle.net/10161/10778.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Hauser

Kris Hauser

Adjunct Associate Professor in the Department of Electrical and Computer Engineering
Robot motion planning and control, semiautonomous robots, and integrating perception and planning. Applications of this research have included automated vehicle collision avoidance, robotic manipulation, robot-assisted medicine, and legged locomotion.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University