Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Post-translational aging of proteins in osteoarthritic cartilage and synovial fluid as measured by isomerized aspartate.

Thumbnail
View / Download
1.6 Mb
Date
2009
Authors
Catterall, Jonathan B
Barr, Daniel
Bolognesi, Michael
Zura, Robert D
Kraus, Virginia B
Repository Usage Stats
169
views
165
downloads
Abstract
INTRODUCTION: Aging proteins undergo non-enzymatic post-translational modification, including isomerization and racemization. We hypothesized that cartilage with many long-lived components could accumulate non-enzymatically modified amino acids in the form of isomerized aspartate and that its liberation due to osteoarthritis (OA)-related cartilage degradation could reflect OA severity. METHODS: Articular cartilage and synovial fluid were obtained from 14 randomly selected total knee arthroplasty cases (56 to 79 years old) and non-arthritis cartilage from 8 trauma cases (51 to 83 years old). Paired lesional cartilage and non-lesioned OA cartilage were graded histologically using a modified Mankin system. Paired cartilage and synovial fluids were assayed for isomerized aspartate, phosphate-buffered saline/EDTA (ethylenediaminetetraacetic acid) extractable glycosaminoglycans, and total protein. Macroscopically normal non-lesioned OA cartilage was separated into superficial and deep regions when cartilage thickness was at least 3 mm (n = 6). RESULTS: Normalized to cartilage wet weight, normal cartilage and deep non-lesioned OA cartilage contained significantly (P < 0.05) more isomerized aspartate than superficial non-lesioned OA cartilage and lesioned cartilage. Synovial fluid isomerized aspartate correlated positively (R2 = 0.53, P = 0.02) and glycosaminoglycans correlated negatively (R2 = 0.42, P = 0.04) with histological OA lesion severity. Neither synovial fluid isomerized aspartate nor glycosaminoglycans nor total protein correlated with histological scores of non-lesioned areas. CONCLUSIONS: We show for the first time that human cartilage and synovial fluid contain measurable quantities of an isomerized amino acid and that synovial fluid concentrations of isomerized aspartate reflected severity of histological OA. Further assessment is warranted to identify the cartilage proteins containing this modification and to assess the functional consequences and biomarker applications of this analyte in OA.
Type
Journal article
Subject
Aged
Aged, 80 and over
Aspartic Acid
Biomarkers
Cartilage, Articular
Glycosaminoglycans
Humans
Isomerism
Middle Aged
Osteoarthritis, Knee
Protein Processing, Post-Translational
Proteins
Synovial Fluid
Permalink
https://hdl.handle.net/10161/10870
Published Version (Please cite this version)
10.1186/ar2675
Publication Info
Catterall, Jonathan B; Barr, Daniel; Bolognesi, Michael; Zura, Robert D; & Kraus, Virginia B (2009). Post-translational aging of proteins in osteoarthritic cartilage and synovial fluid as measured by isomerized aspartate. Arthritis Res Ther, 11(2). pp. R55. 10.1186/ar2675. Retrieved from https://hdl.handle.net/10161/10870.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bolognesi

Michael Paul Bolognesi

Professor of Orthopaedic Surgery
As chief of the adult reconstruction service, the majority of my research effort has been directed toward clinical outcomes, implant survivorship, functional recovery, the biology of hip and knee arthritis and cost effectiveness.
Kraus

Virginia Byers Kraus

Professor of Medicine
My special area of expertise is as a clinician scientist investigating osteoarthritis. Osteoarthritis is the most common form of joint disease in man and its incidence increases with age. It is a problem of increasing concern to the medical community due to the increasing longevity of the population. Trained as a molecular biologist and a Rheumatologist, I endeavor to study this disease from bedside to bench. The work in this laboratory focuses on osteoarthritis and deals w

Robert Douglas Zura

Associate Professor of Orthopaedic Surgery
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University